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Abstract 

Positioning is needed for many applications related to mapping and navigation, either in civilian or military domains. The significant 

developments in satellite-based techniques, sensors, telecommunications, computer hardware and software, image processing, etc. 

positively influenced solving the positioning problem efficiently and instantaneously. Accordingly, the mentioned development empowered 

the applications and advancement of autonomous navigation. One of the most interestingly developed positioning techniques is what is 

called in robotics Simultaneous Localization and Mapping (SLAM). The SLAM problem solution has witnessed a quick improvement in 

the last decades, either using active sensors like the RAdio Detection and Ranging (Radar) and Light Detection and Ranging (LiDAR) or 

passive sensors like cameras. Definitely, positioning and mapping is one of the main tasks for geomatics engineers, and therefore it's of 

high importance for them to understand the SLAM topic, which is not easy because of the huge documentation and algorithms available 

and the various SLAM solutions in terms of the mathematical models, complexity, the sensors used, and the type of applications. In this 

paper, a clear and simplified explanation of SLAM from a geometrical viewpoint is introduced, avoiding going into the complicated 

algorithmic details behind the presented techniques. In this way, a general overview of SLAM is presented, showing the relationship 

between its different components and stages, like the core part of the front-end and back-end, and their relation to the SLAM paradigm. 

Furthermore, we explain the major mathematical techniques of filtering and pose graph optimization, either using visual or LiDAR 

SLAM, and introduce a summary of the efficient contribution of deep learning to the SLAM problem. Finally, we address examples of 

some existing practical applications of SLAM in our reality. 
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I. INTRODUCTION 

 SLAM is an acronym for Simultaneous Localization And 
Mapping which is a technology that enables a robot to map an 
unknown environment and position itself based on the built 
map at the same time [1] and frequently with the absence of 
exterior positioning systems such as Global Navigation 
Satellite System GNSS [2]. The starting point for SLAM was 
at the third IEEE International Conference on Robotics and 
Automation which was held in San Francisco, in 1986. While 
the first use of the term “SLAM” was at the Seventh 
International Symposium of Robotics Research which was 
held in Munich, Germany, in 1995 by Durrant-Whyte, et al. 
[3]. Nowadays, SLAM is a major factor behind autonomous 

unmanned aerial vehicles (UAVs), unmanned ground vehicles 
(UGVs), self-driving cars, augmented/virtual reality, and 
various autonomous indoor and outdoor mobile mapping 
applications [4, 5]. To accomplish this SLAM step, the robot 
should have on-board sensors that apply several 
measurements along the robot trajectory. Major robot sensors 
used can be the camera, LiDAR, GNSS receiver/antenna, and 
the Inertial Measurement Unit IMU. When the SLAM 
algorithm is based on camera sensors it is called visual SLAM, 
while when based on laser scanners is called LiDAR SLAM 
[6, 7]. 

One of the important sensors mounted on the robot is the 
IMU, which is used to measure the linear and rotational  
acceleration of the robots. In more detail, IMU is a 
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combination of triaxial accelerometers that measure dynamic 
acceleration and gravity and triaxial gyroscopes measure 
angular velocity.

 

Fig.1. SLAM techniques overview.

 

Sometimes triaxial magnetometers are integrated with 
them. Accordingly, the speed of the robot and the traveled 
distance can be estimated from the IMU measurements which 
can be used for odometry. However, the IMU-based 
navigation suffers from accumulated error over time since the 
positions are computed using the dead reckoning method [8]. 
Therefore, the IMU in robots manufactured for use outdoors 
is usually integrated with  GNSS, which permits the 
acquisition of the absolute position to a high level of accuracy 
in open-sky environments. 

 This GNSS measurement provides direct information 
about the location of the robot independently from the 
previous location estimates and therefore no positional 
accumulated errors occurred further [4]. Nevertheless, the 
integration of the GNSS with the IMU leads to a more robust 
navigation system, especially in urban environments where 
the quality of GNSS signals sometimes degrades or even 
outages in blocked areas [9]. Consequently, SLAM is a 
challenging problem either for indoor mapping applications or 
GNSS denied outdoor environments like in urban canyon and 
forests where sophisticated techniques are required for having 
a reliable localization and mapping solution.  

The traditional solution for SLAM at GNSS denied areas 
is to fix landmarks (reference points or control points) that can 
be easily identified from the robot sensors. However, this 
approach is costly and difficult to be used in large-scale 
environments. 

The core implementation of a SLAM system incorporates 
two main components: the front-end and the back-end as 
shown in Figure 1. In the front-end component, the detection 
and tracking of features from imaging sensors  (Visual 

SLAM) either monocular or stereoscopic can be applied [10, 
11]. This is very well known in computer vision and 
photogrammetry and called the structure from motion SfM 
technique [12]. The corresponding features in consecutive 
images/scans are associated; this is the so-called data 
association. 

In LiDAR SLAM, the front end step is applied by scanning 
the environment attained from a moving robot [13, 14] and the 
successive point clouds are coregistered using the well-known 
scan matching techniques like the iterative closets point ICP 
[15, 16]. 

Hence, features can be sparse as landmarks or dense as 
point clouds depending on the sensor type and technique used 
for the feature detection and tracking. Whenever the robot 
moves, new landmarks or point clouds are detected and 
tracked. The features can also be lines [17], planes [35], or 
surfels [18] extracted from the LiDAR data. 

However, the performance of these feature-based SLAM 
algorithms is mainly based on the success of the detection and 
tracking methods within the front-end step. For instance, 
image-based SLAM will fail in textureless areas and provide 
a low ability to deal with poorly textured ones, and planar 
feature-based SLAM will fail in environments that lack planar 
structures. 

Therefore the outliers that can be found in this step may 
highly mislead the following step of the back end where the 
pose of the robot and the location of the landmarks is 
estimated.  

The back-end can be applied using complex mathematical 
techniques either using filtering or smoothing techniques as 
will be explained in the next section and involved mainly with 
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the estimation or update of the landmarks and the robot 
positions in a reference coordinate system [13]. 

In this paper, we provide an overview of the SLAM 
solution showing the relationship between its different 
components and stages. We address the general problem from 
different types of data and illustrate the different techniques 
with the advantages and disadvantages of each. Finally, we list 
some existing practical SLAM-based applications in our 
reality. The paper can serve as a tutorial for SLAM users or 
even non-specialized readers. 

The remainder of this paper is structured as follows: In the 
following section, we present the SLAM paradigm. In Section 
3, we commence with a brief overview of SLAM in the 2D 
and 3D space domain, then we proceed with SLAM 
enhancement techniques in Section 4. Section 5 presents 
SLAM sensor-based techniques. The different map 
representations in SLAM are discussed in section 6. Section 7 
introduces a summary of the deep learning efficient 
contribution to the SLAM. Next, some different SLAM-based 
applications in our reality are listed in Section 8. Finally, the 
paper ends with conclusions in Section 9. 

II. SLAM PARADIGM 

SLAM should work perfectly in a well-identified 
environment with available high certainty in Robot positions. 
However, in the real-life scenario, SLAM must deal with high 
uncertainties in the surroundings and with imperfect 
knowledge of the Robot positions. Accordingly, the SLAM 
problem is generally defined employing probabilistic tools 
because of the inherent sensor measurement noise [11].  

Currently, many solutions are found to the SLAM problem 
which can be classified either as filtering or smoothing 
approaches (Fig.1). Filtering approaches are more suitable for 
on-line robot state and map estimation. The estimate is 
supplemented and refined by immediate integration of the new 
sensor measurements as the robot moves. Techniques like 
Kalman filters [19] and particle filters [20] are a major 
example of this filtering SLAM type and are typically 
designed as on-line SLAM techniques.  

Filtering approaches are applied in two main steps: a 
prediction step and an update step. Generally, they are 
considered as a maximum a posterior (MAP) method in which 
measurements from sensors like the IMUs are used to estimate 
the prior distribution of the robot pose. The IMU 
measurements are combined with the measurements taken 
mostly by a camera or a LiDAR to build the likelihood 
distribution [21]. In a typical SLAM filtering approach, the 
IMU sensor measurements are used in the prediction step to 
predict the motion of the vehicle (odometry) [22]. While the 
measured features on images and the estimated camera pose 
are used as a likelihood distribution to update the predictions 
in the update step [21]. Filtering approaches will be more 
explained in the next section. 

On the other hand, smoothing approaches like the graph 
SLAM, estimate the full robot trajectory by processing the full 
set of the sensor measurements. These smoothing approaches 
are categorized as the full SLAM problem, and they normally 

rely on least-squares adjustment techniques and optimization 
[23, 24] which is considered as an advantage over the filtering 
process in terms of accuracy. On the other hand, the main 
disadvantage of the graph SLAM is the high memory 
consumption as it combines all the pose estimates in the 
computation procedure. While procedures like the Kalman 
filtering consider the last pose only and the motion model [25] 
to enable an online implementation and use the loop closure 
to increase the accuracy. 

In both filtering and smoothing approaches, it is now clear 
to the reader the significant amount of mathematical 
formulation required to have a final reliable robot poses and 
constructed map [11]. This expensive computing cost is a 
challenge when executing SLAM on robot hardware. 
Computation is usually performed on limited processing 
power microprocessors while to achieve accurate SLAM 
localization, it is important to execute either image 
processing or point cloud alignment at a high rate [26]. 
Furthermore, optimization calculations like loop closure are 
costly computational processes. Altogether, it is a challenge to 
execute such computationally expensive processing on robot 
microcomputers. Different solutions are proposed to 
overcome this problem like parallel processing, using multi-
core CPUs, or embedded GPUs to improve the processing 
speeds [26]. 

A) Extended Kalman Filter EKF  

The Extended Kalman Filter EKF technique is based on 
tracking a Gaussian belief of the robot and assumes all the 
measurements have a Gaussian noise behavior. EKF can be 
applied in the following main steps: predict state, predict 
measurement, apply the real measurements, associate the data, 
and finally update. In SLAM, EKF determines the position 
and orientation of a robot by verifying its state �̂�𝑘  and its 
uncertainty 𝑃𝑘 from the noisy IMU measurements. Then the 
real measurement information captured by the camera or the 
LiDAR is integrated to improve the state prediction (pose) in 
an updated step �̂�𝑘

+. The updated pose state and its uncertainty 
will be fed back as (�̂�𝑘−1, 𝑃𝑘−1) for modeling a new prediction 
and update (Fig.2). Further reading about the EKF 
computational approach can be found in [27].  

 

 Fig. 2. General workflow of Kalman filter [27].  

The formulating of the Kalman filter can be summarized 
as follows where we have two Gaussian distributions [27]:  

 

https://nl.mathworks.com/discovery/image-processing.html
https://nl.mathworks.com/discovery/image-processing.html


Alsadik & Karam/ Journal of Applied Science and Technology Trends Vol. 02, No.02, pp. 147 –158 (2021) 

150 

 

Fig.3. Illustration of the prediction, uncertainty propagation, and update using filtering SLAM

 

1. The predicted measurement 𝐵𝑘 �̂�𝑘 and its 

uncertainty with 𝐵𝑘�̂�𝑘𝐵𝑘
𝑡  where 𝐵 is the jacobian 

matrix. 

2. The observed measurement (𝑧𝑘, 𝑅𝑘) where the 

current sensor state is 𝑧𝑘 and its uncertainty 𝑅𝑘. 

 

The Kalman gain matrix is computed as: 

𝐹𝐾 =  𝐵𝑘𝑃𝑘𝐵𝑘
𝑡  (𝐵𝑘𝑃𝑘𝐵𝑘

𝑡 + 𝑅𝑘)−1 (1) 

Then, the update state calculations can be applied as: 

𝐾′ =  𝑃𝑘𝐵𝑘
𝑡  (𝐵𝑘𝑃𝑘𝐵𝑘

𝑡 + 𝑅𝑘)−1 (2) 

�̂�𝑘
+ =  𝑥𝑘 + 𝐾′(𝑧𝑘 − 𝐵𝑘�̂�𝑘) (3) 

𝑃𝑘
+ =  𝑃𝑘 − 𝐾′𝐵𝑘𝑃𝑘 (4) 

The mentioned equations are used to update the system in 
a repetitive way where �̂�𝑘

+ is the new estimate and together 
with 𝑃𝑘

+  are replaced back into a new iteration 
of prediction and continue until a stopping criterion is 
satisfied.  

In Fig. 3, the concept of online SLAM using filtering is 
shown where SLAM estimates the most recent robot pose 
state based upon the previous states. A sequence of 
illustrations is given where the robot starts measuring 
landmark A using a mounted sensor [20]. At the start location, 
a zero uncertainty at the robot pose is assumed while 
predicting an uncertainty value at the landmark as propagated 
by the measurement uncertainty. Then when the robot moves, 
its pose is calculated with a Gaussian-based uncertainty. Two 
other landmarks B and C are measured and their positions with 
the associated uncertainty are estimated. The robot continues 
its movement with an updated predicted pose and uncertainty 
and when detects a revisited feature (landmark A) a loop 
closure calculations are applied. Thus, the uncertainty in the 
robot poses and landmarks improves significantly. 

Ullah, et al. [28] have developed two SLAM algorithms 
for robot localization, the first one is based on the linear KF 
and the second one is based on the EKF. Although EKF is one 
of the most common filtering techniques, it has some 
disadvantages like being difficult to implement in practice. 
Moreover, it is not a very accurate method for complicated 
nonlinear systems or with high uncertainty problems [21]. 

 

B) Graph SLAM 

A widely used SLAM technique is the graph formulation 
which involves constructing a graph with connected nodes 
(Fig.4). Every node represents a robot pose or a measured 
landmark and in which the edges between the nodes represent 
the sensor measurement that constrains the connected poses 
[29]. After completing the graph construction, the essential 
problem is to find the optimal alignment of the nodes that is 
maximally consistent with the measurements (smoothing). As 
a result, this requires solving a large-scale constrained 
minimization problem. Accordingly, the graph SLAM 
problem is divided into two tasks: 1) graph construction and 
2) graph optimization [29].   

The constraints (edges) are constructed based on the 
sensor measurements either as odometry measurements 
between subsequent robot locations or computed from the 
alignment of images or laser scans captured at two different 
robot poses. Afterward, optimization should be applied to find 
the best graph configuration that satisfies the constraints [29]. 
However, this optimization task is challenging to implement 
on a long navigation trajectory dealing with a large system of 
nonlinear equations [14]. However, the sparse structure of the 
matrices can allow cost-effective algorithms to perform this 
SLAM global optimization. Currently, few open source 
libraries are available to deal with the solution of large-scale 
sparse systems like the g2o library [30], Ceres Solver [31], or 
the GTSAM [32].  
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In visual SLAM, the graph SLAM optimization is similar 
to the well know photogrammetric Bundle adjustment where 
the positions of the observed feature points (landmarks) are 
estimated simultaneously with robot poses as shown in Fig.4 
[33]. It should be noted that in some applications the positions 
of the landmarks are fixed a priori (control points), and then 
SLAM may not be needed if the localization can be done 
reliably concerning the known landmarks [2].  

 
Fig.4. Graph SLAM concept. Orange represents true locations and blue 

represents the estimated locations. 

Fig. 4 illustrates the variables that define the graph which 
consist of: 

xk : the state vector describing the pose of the vehicle at time 

k.  

uk : the motion control vector applied the time k-1.  

mi : a vector describing the location of the ith fixed landmark.  

zk,i : a sensor measurement is taken from the robot to the jth 

landmark at time k. 

 
Consequently, the objective of a maximum likelihood 

approach is to find the optimal configuration of the graph 
nodes (𝑥 variables) that minimizes 𝐹(𝑥) all the observations 
𝑧 [29]: 

𝐹(𝑥) = arg min ∑ 𝑣𝑖𝑗
𝑡 Ω𝑖𝑗𝑣𝑖𝑗

〈𝑖,𝑗〉𝜖𝐶

 (5) 

where 𝑣𝑖𝑗  indicates the residual errors or the difference 

between the projected observation �̂�𝑖𝑗  and real observation 

𝑧𝑖𝑗  measured by the robot sensor. These observations 𝑧𝑖𝑗  

includes the position and orientation information. Ω𝑖𝑗  

represent the information matrix which is also called the 

weight matrix. 

The minimization problem is normally solved using the 

nonlinear least-squares adjustment using either the Gauss-

Newton or the Levenberg-Marquardt methods. However, for 

large-scale problems, this optimization may imply a memory 

consumption that grows quadratically in the number of 

variables [2]. 

III. SLAM IN 2D AND 3D SPACE DOMAIN  

SLAM can also be classified into 2D and 3D SLAM as 
described in the following subsections. 

A) 2D SLAM  

2D SLAM is three degrees of freedom (3DOF) process, 
namely position (x, y) and orientation (yaw). It is based on the 
assumption that the robot moves in a plane, thus 2D SLAM 
establishes a 2D map of the surrounding area and provides a 
2D position and orientation of the robot in this map. The 
existence of many 2D SLAM algorithms was a motivation to 
study and analyze them to guide the interested researchers in 
either improving or innovating their algorithms. For example, 
Kümmerle, et al. [34] compared several SLAM algorithms 
based on their output trajectories. The availability of ground 
truth in the comparison method is not necessary as well as the 
analyzed algorithms may use different techniques and sensors.  

Different datasets were used in the study in order to 
determine the level of generality of each algorithm. Moreover, 
they have provided an objective benchmark dataset to help 
other researchers in the mapping field in testing and evaluating 
their algorithms. A subsequent study on the pros and cons of 
the available 2D SLAM algorithms until 2013 has been 
conducted by Santos, et al. [35]. The evaluation process is 
mainly based on the quality of the output map instead of the 
trajectory. They have chosen five 2D LiDAR SLAM 
techniques to be tested under the same conditions. Those 
techniques were HectorSLAM, Gmapping, KartoSLAM, 
CoreSLAM, and LagoSLAM. All the mentioned techniques 
were implemented using the Robot Operating System (ROS). 
which is a prominent framework that enables researchers in 
the robotic field to execute their algorithms [36]. Several 2D 
simulations and real-world tests are conducted for the 
evaluation. For the simulation experiments in MRL Arena 
(4.57×4.04 m), Gmapping and HectorSLAM perform quite 
better than others in generating the map (~0.4 cm error), while 
the generated map by CoreSLAM has the highest error (~ 11.8 
cm). In the real world MRL Arena, KartoSLAM generates the 
map with the lowest error (~1.03 cm) and in contrast to others, 
it does not vary too much than its error in the simulation test 
(~0.55 cm). Overall, in the real world environment all 
techniques provide less accurate results than the virtual 
environment. 

Google Cartographer [37] is one of the most recent 2D 
SLAM-based systems. The Viametris i-MMS system employs 
an online 2D SLAM for positioning in indoor environments 
[38]. Li, et al. [39] designed 2D SLAM-based navigation 
system that utilizes GNSS/IMU integration to navigate 
outdoors and IMU/LiDAR integration for indoor areas. 
Recently, the 2D LiDAR SLAM-based mobile robot has 
achieved success in indoor rescue missions [40]. 

A) 3D SLAM  

After the successful implementations of 2D SLAM in 
mapping an environment and localizing the mapping system 
in 2D space, many researchers have turned towards study the 
applicability of 3D SLAM [41]. One of the main reasons 
behind this trend is the significant changes in roll and pitch 
values of the mapping system while on the move. 3D SLAM 
is six degrees of freedom (6DOF) process, namely position (x, 
y, z) and orientation (roll, pitch, yaw). In comparison with 2D 
SLAM, it is a more complex and highly computationally 
intensive process, but it is more efficient to model the general 
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motion of a platform. In case of a limited motion to a 2D 
space, 2D SLAM is sufficient for localization, and a 
perpendicular sensor is used for mapping in the third 
dimension [42]. They have used the horizontal laser range 
finder (Sick) to estimate the location within the plane while 
the vertical one supplies the system with the needed 
information for 3D mapping in the indoor environment. 
Weingarten and Siegwart [43] rotated the 2D laser range 
finder (Sick) to generate a 3D point cloud of an indoor 
environment that feeds 3D SLAM. Some systems that employ 
3D SLAM have been designed to explore the 3D space in 
some cases like human navigation and rescue operations [44]. 
Recently, the 3D SLAM becomes indispensable to operate 
mobile service robots in unknown environments [45]. 

IV. SLAM ENHANCEMENT TECHNIQUES 

Two enhancement techniques are normally applied to 
refine the SLAM performance namely loop closure and 
trajectory interpolation. 

A) Loop Closure  

Similar to the well-known technique used in traversing and 
geodetic network adjustment in Geomatics, the last step in 
SLAM is to apply a loop closure. This is the final refinement 
step to have a globally consistent SLAM solution, particularly 
over long trajectories. This is necessary even when using 
highly accurate sensors because they are still prone to some 
amount of random uncertainty and will lead to a trajectory 
drift [46], which in turn, can result in a significant misclosure 
at the end of a loop. 

Accordingly, loop closure is the process of revisiting the 
same stored mapping area by either new image frames or 
LiDAR scans and connecting between them by a constraint. 
This SLAM front-end step of loop closure will significantly 
reduce the accumulated drift in the final estimated map and 
robot poses (Fig.5) [4, 29].    

A powerful computational approach is required to match 
features in the new images or scans concerning all the 
previously detected features in real-time which is impractical 
and consumes memory especially over long trajectories [4]. 
Therefore, some techniques like the Bags of Words technique 
are initialized to tackle this issue [2]. 

 

Fig. 5. Loop closure illustration. Left: before loop closure. Right after loop 

closure. [13] 

To validate the loop closure, additional geometric 
verification steps are needed to determine their quality. In 
visual SLAM applications, geometric verification and outlier 
rejection are applied using RANSAC [47]. While in laser-
based SLAM approaches, loop closure can be tested by the 
goodness of the alignment between the current laser scan point 
cloud and the previously scanned point cloud [2]. This can be 

measured by checking the histogram of point cloud normal as 
a descriptor for achieving loop closure [33]. 

B) Continuous robot trajectory interpolation   

As described earlier, SLAM is applied using several 
sensors onboard the robot like the IMUs, LiDARs, cameras, 
odometers, and GNSS receivers/antenna. Accordingly, every 
sensor may operate at a different frequency than the other 
sensors. One solution is to consider the trajectory of the robot 
as a continuous function of time either as a nonparametric 
Gaussian method or as a spline function [46].  

A common preference is a cubic B-spline [48] where a 
sequence of spline time spaced knots can be stored. At every 
spline knot, the pose is defined by the three rotations 
(𝜔, 𝜑, 𝑘)and three translations (𝑇𝑋, 𝑇𝑌 , 𝑇𝑍). The modelling of 
e.g. 𝜔(𝑡) by a B-spline function is given in Equation (2) [49]. 

𝜔(𝑡) = ∑ 𝛼𝜔,𝑖𝐵𝑖(𝑡)

𝑖

 (6) 

where 𝛼𝜔,𝑖is the spline coefficient for angle 𝜔 to be estimated 

on interval 𝑖. 

Then the trajectory is defined at any time by computing 
the weighted sum of the four closest knots [46]. Thus, a total 
of 10 variables per second is required for the optimization 
which will reduce the size of the variables to be estimated and 
the trajectory will be smooth without motion distortions 
(Fig.6). 

V. SLAM SENSOR-BASED TECHNIQUES  

SLAM can be classified into two main techniques 
concerning the map measuring sensor which is either by using 
a camera or a LiDAR. Accordingly, two terminologies are 
found: Visual SLAM and LiDAR SLAM. 

 

Fig. 6.Spline smoothing (red) of the robot trajectory.  

A) Visual SLAM 

The Visual SLAM technique is based on using images 
taken from a camera mounted on a robot. The cameras used 
can be optical with wide-angle lenses, fisheye lenses, or 
panoramic like the ladybug camera [50]. Other camera types 
like the RGB-D cameras [51] are also widely used for indoor 
mapping applications. 

When the Robot is equipped with a single camera, the 
SLAM technique is called monocular SLAM where the depth 
estimation is challenging. However, using fixed-position 
landmarks that can be automatically detected in the images 

Goal  

obstacles 
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like coded targets and the inertial measurement units IMUs 
will highly support the visual SLAM technique. When the 
IMU is used, the SLAM technique is called visual odometry 
which utilizes the motion sensor data derived to estimate a 
robot’s change in position over time. 

In literature, visual SLAM well-known techniques are 
structure from motion (SfM), visual odometry, and bundle 
adjustment [26]. It should be noted that visual SLAM can rely 
on sparse point cloud features like ORB-SLAM [10, 11] or 
rely on dense point cloud features such as DTAM or LSD-
SLAM [26]. The well-known visual SLAM techniques like 
ORB-SLAM [11] can be applied using the following steps 
(Fig.7) where the first two steps represent the front-end 
component. 

Map Initialization: based on 2D ORB feature 
correspondences in two overlapped image frames, a relative 
orientation is applied to estimate the robot (camera) initial 
pose. The relative orientation can be applied using the 
fundamental matrix or homography. A triangulation is applied 
to estimate the initial map of 3D points or landmarks.   

Tracking: for each new image frame, apply feature 
matching in the new frame to features in the previous 
keyframe. Since the matched features have their 3D positions 
defined in the previous step, the robot pose is estimated using 
resection techniques like the perspective-n-points (PnP) 
method [52-54]. The estimated camera pose is refined by 
tracking the local map again. 

Local Mapping: in this back-end step, the current image 
frame is used to build new map points. This is applied by 
adjusting the Robot pose and the map 3D points using bundle 
adjustment which minimizes the errors of the projected 3D 
map points into the current image. 

Loop Closure:  When a revisited place is detected using 
the Bags of Words technique, the loop closure refinement is 
applied and all the poses are refined using graph optimization 
or bundle adjustment.   

Fig. 7. Monocular visual SLAM technique concept.  

Compared to LiDAR SLAM, visual SLAM is a more 
preferred approach in terms of cost which uses significantly 
less expensive cameras compared to LiDARs. However, 
visual SLAM may not be precise as the LiDAR SLAM and 
could be slower. Another disadvantage of visual SLAM is 
being very sensitive to the changes in the scene illumination 
and appearance, and textureless environment. Finally, visual 
SLAM has the advantage of better scene coverage than 
LiDAR [6] unless multiple LiDARs are used.  

B) LiDAR – Based SLAM  

LiDARs (laser scanners) output data is generally 2D or 3D 
point cloud data and offers high-precision range 
measurements and performs efficiently for SLAM map 
construction [26]. The most commonly used scanners are the 
2D Hokuyo laser range-finder [55] for indoor mapping [49, 
56-58] and the multibeam 3D-LiDAR Velodyne [59] for 
indoor and outdoor mapping [16, 60]. 

Similar to SLAM, another term called LOAM is also used 
in literature to indicate for LiDAR odometry and mapping as 
a 3D technique [33, 61]. LiDAR-based SLAM has gained 
researchers’ attention because of its high accuracy and the 
increasing number of open-source implementations, 
especially for localization and mapping in dynamic indoor 
environments [62].      

Generally, LiDAR-based SLAM enables the robot 
movement estimation incrementally by registering the 
successively scanned point clouds. The estimated traveled 
distance along the trajectory is used for localizing the robot 
while building the map through the point cloud co-registration 
using in most cases the iterative closest point (ICP) algorithm 
[63]. Current LiDAR-based SLAM techniques are relying on 
derived features out of the point clouds to accomplish the 
estimation. Reduced map representations like voxel/grid-
based methods or point sub-sampling, will effectively 
decrease the data amount used for the co-registration [18]. 
Compared to the visual-based SLAM, in this approach, we can 
work reliably over the variations in lighting conditions or 
seasons by exploiting the geometric structure like planes 
(Fig.6) out of the scanned point clouds [7].  

On the other hand, the challenge to register the successive 
LiDAR point clouds is caused by the difficulty to find 
sufficient correspondences for the co-registration and this may 
result in losing the robot path. In Fig.8, the initial robot 
trajectory based on INS observations (yellow) supposed to be 
refined after the registration, loop closure, and optimization. 
However, the trajectory got deviated (blue) because of the 
misalignment between the successive point clouds caused by 
the insufficient feature correspondences. 

  

Fig. 8. Misaligned LiDAR SLAM.  

Furthermore, point cloud co-registration normally entails 
pretty demanding computations and then necessitates 
optimizing the processes for a fast implementation [21]. In 
addition, the geometry of the LiDAR observations should be 
strong enough to reliably estimate the robot pose otherwise, 
the robot slides in some direction. 

Therefore, localization of the robots will highly improve 
when fusing other sensor measurements such as wheel 
odometry, GNSS, and IMU data [26] and further apply the 
loop closure technique. Recently, Karam, et al. [64] have 
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developed several strategies for IMU-LiDAR SLAM 
integration in which they utilized the IMU measurements to 
support LiDAR SLAM in overcoming some problematic 
areas. The IMU contribution in their strategies is not limited 
to the pose prediction but also the IMU observations 
participate in the pose estimation. Their results showed the 
ability of the IMU to support the LiDAR SLAM and prevent 
the drift in case of insufficient LiDAR observations. 

 

Fig. 9. LiDAR SLAM concept using derived planes co-registration. 

Even though, it is still challenging in some cases to get an 
accurate SLAM result when scanning textures of shiny objects 
like the glass leading to an inadequate performance [21]. 
Finally, LiDARs are currently expensive instruments and that 
makes them unworkable for extensive operations [62]. 

In Fig.9 a simplified concept for LiDAR SLAM is shown 
where the planar features out of the scanned point are derived 
and co-registered. Whenever features are revisited, a loop 
closure is applied using optimization techniques and then the 
map is updated.  

Finally, it's worth mentioning the existence of hybrid 
SLAM approaches that combine the Visual and LiDAR 
SLAM techniques together. Visual LiDAR Odometry and 
Mapping (V-LOAM) is such an example of an integrated 
technique where the IMU  measurements deliver prior data 
about the sensor motion to a visual odometry unit, which in 
turn delivers prior data to the LiDAR matching unit [7]. 

VI. MAP REPRESENTATION   

As mentioned, SLAM is concerned with the sensor pose 
and the map of the surrounding environment and they are 
depending on each other during the robot navigation. The map 
in SLAM can be represented mostly by a sparse set of 
landmarks, dense point clouds, or by volumetric 
representation.    

A) Sparse map representation: this is the most common map 

representation in SLAM by a set of sparse 2D or 3D 
landmarks along the trajectory related to distinctive features 

in the environment either points, lines, or planes. Then the 

SLAM technique is referred to as feature-based 

representations which are mostly known in visual SLAM as 

the structure from motion technique [2].  

The main disadvantage of this sparse representation is the 

need to have available distinctive features in the mapping 

environment which might be a problem in poor textured 

places. 

 

B) Dense map representation: this is mostly a dense 

unstructured point cloud representation which is also used for 

obstacle avoidance or rendering. In SLAM, sensors like 

stereo cameras, RGB-D cameras, or LiDARs are widely used 

with a dense point cloud representation. The main 

disadvantage of this dense representation is the need to [2]: 

1) Store a large amount of data while they give a low level of 

information about the geometry. 

2) High-performance computing power in real-time. 

Accordingly, one solution is to derive geometric primitives 

like planes [49], cylinders, surfels [4], etc. from the point 

clouds and then efficiently use them for the registration 

between successive scans within the SLAM pipeline.    

 

C) Grid-based map representation: this map spatial-

partitioning representation is applied by defining adjacent 

regular geometric primitives either as voxels or 2D grids [2]. 

The value of each grid cell indicates its state that can be free, 

occupied, or unknown (Fig.10) which is based on a predicted 

probability and defined as the Occupancy Grid [65]. Hence, 

the occupancy value of a grid cell is defined using a 

probabilistic method that has as an input estimated 

measurement from the robot sensor to the map point (like 

distances or angles). Then it is possible to update the grid cell 

values whenever a new measurement is achieved using a 

Bayesian technique [66]. This updating step of the grid cells' 

status will continue while the robot is moving and sensing the 

environment. The resulted grid map can be used for obstacle 

avoidance, path planning, and pose estimation. 

Consequently, this representation has the main advantage of 

being accurate and easy to create [66]. Fig.10 illustrates an 

example of the 3D grid representation (voxels) of the 

environment while a robot is moving inside [67].   

  
a) 

 
b) c) 

Fig. 10. 3D occupancy grid representation. a) 3D occupancy map defined by 

blue occupied voxels and green free voxels. b) Top view of a point cloud 
superimposed on the derived voxels. c) Occupied voxels are shown in blue 

[67]. 
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VII. DEEP LEARNING FOR SLAM 

In recent years, research regarding SLAM is applied using 
deep learning techniques to replace the traditional visual 
odometry approach which is based on geometric processing. 

The motivation to use such machine learning techniques is 
to keep a good positioning performance in difficult 
environments and to overcome the possible inaccurate scale 
estimation of visual SLAM [68]. One example is to directly 
derive the inter-frame pose between two images captured from 
a moving robot.  

Moreover, deep learning is used to estimate the six degrees 
of freedom (DoF) of a camera (rotation and translation) as 
well as estimating the depth distance of the objects in the 
captured single images [4, 33, 69]. It is worth mentioning that 
most of the early proposed deep learning research on SLAM 
was only focused on visual odometry for localization without 
mapping which is recently developed to solve the full SLAM 
problem [68]. 

Recently, Sarlin, et al. [70] introduced the new terms of 
SuperPoint, SuperGlue, and SuperMap. SuperPoint [71] is 
aimed to replace the geometric-based interest points (like 
SIFT) with convolutional neural networks CNN feature 
points. Thereby, feature points and their descriptors are 
computed together without patches and then enable real-time 
processing on a GPU. The SuperGlue which is a mix of the 
Graph Neural Networks and the optimal transport is aimed to 
improve the feature matching by learning. This approach is 
promising to successfully achieve matching at extreme wide-
baseline stereo images in real-time Fig.11. Sarlin, et al. [70] 
are continuing the work for a further step of the SuperMap to 
reach an end-to-end Deep Visual SLAM. 

Fig.12 is designed to summarize all the SLAM-related 
deep learning techniques applied in recent years to enable the 
reader to have an overview of the recent contribution of deep 
learning to SLAM. 

Fig.12. Different research output to apply deep learning for depth estimation 
in stereo and monocular modes. 

VIII. APPLICATIONS 

SLAM is widely used in different applications mainly for 
mobile mapping tasks in GNSS denied or degraded 
environments like indoor environments, urban canyons, dense 
forests, and underwater unmanned missions [4]. 

Robotic unmanned ground vehicles (UGVs) and 
unmanned aerial vehicles (UAVs) represent potential future 

machines that utilized SLAM techniques in different areas 
(Fig.13a,13b). As an example in the oil and gas industry, the 
robots would be equipped with sensors that can detect natural 
gas leaks as well as hazardous substances. This would help to 
avoid accidents and to keep employees safe.  

 

 

Fig.11. SuperPoint+SuperGlue matching result for a challenging case with 

two different scales and perspective images [70].  

A new generation of car parking autonomous robots using 
SLAM was found by Stanley Robotics (Fig.13c) introduced a 
parking service in airports that will save passengers time while 
also reducing vehicle emissions [72]. The construction and 
mining industry also invested in UGVs and UAVs which 
include: moving materials, bulldozing, digging trenches, 
situational awareness, asset inspection, and excavations 
(Fig.13d) [73]. 

Another SLAM-based UAV is introduced by Emesent 
company [74] with its AL2 Hovermap (Fig.13e). AL2 
Hovermap efficiently collects the data automatically based on 
SLAM techniques in challenging GNSS denied environments 
like in underground mining mapping missions. Fig.13b shows 
the HUSKY robot vehicle which performs SLAM to help to 
predict rock bursts and rock falls [75]. SKEYETECH a fully 
autonomous drone for security and safety applications is 
shown in Fig.13f. Another autonomous UAV product is found 
by Skydio [76] which is designed for real-time 3D mapping, 
motion planning, scene understanding, and obstacle 
avoidance. Recently, Boston Dynamics released a versatile 
Spot robot dog that relies on SLAM to navigate 
autonomously. Spot has a 6 DOF arm which gives the ability 
to grasp objects and open doors [77, 78]. More recently, the 
FARO Focus laser scanner has been attached to Spot for 
automated 3D scanning (Fig. 14). 

Among many SLAM applications, we summarize the 

following fields: 

 

 Autonomous driving. 

 Rescue tasks for high-risk or difficult navigation 

environments. 

 Deep-sea exploration and mining. 

 Augmented reality where virtually rendered objects 

need to fit in the real-life 3D environment.  

 Virtual reality where users would like to interact 

with objects in the virtual environment/gaming. 

 Visual surveillance systems. 

 Infrastructure inspection and 3D reconstruction. 
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IX. CONCLUSIONS  

In this paper, a simplified and clear explanation is 
introduced about the SLAM technique for the scientific 
community as well as nonspecialized readers. Terminologies 
like visual odometry, loop closure, 2D SLAM, and pose-graph 
optimization are briefly explained with illustrative figures like 
in Fig.3, Fig.4, and Fig.9. 

 
a)                      b)                 c) 

 
d)                e)               f) 

Fig.13. a) SLAM for underwater applications using Girona 500 AUV [79]. 

b) HUSKY robot for measuring deep mines [75]. c) Stan parking robotic 

[72]. d) UGV for construction industry [73]. e) Emesent Hovermap [74]. f) 
SKEYETECH fully autonomous drone [80].    

 

Fig. 14. The integration of FARO Focus scanner and Spot robot dog [81]. 

Two main mathematical approaches for solving SLAM 
have been presented namely the Extended Kalman Filter and 
the pose-graph optimization. The advantages and 
disadvantages of both mentioned techniques were indicated. 
The contribution of artificial intelligence and deep learning in 
predicting scene depth for solving SLAM in challenging 
environments is summarized in Fig.12.    

Readers of the paper who are interested to know about the 
SLAM problem and its major elements regardless of their 
scientific specialty are expected to benefit from the overview 
given in this paper. For a more advanced and deep 
understanding of SLAM, readers are advised to investigate the 
several references cited in the paper. 

Noticeably, one of the SLAM problem key solutions is the 
loop closure technique which was introduced in surveying and 
geodesy science a very long time before adopted in robotics. , 
it is highly recommended for the specialist in the Geomatics 
field to focus on the uprising techniques offered by the other 
scientific fields in computer science, robotics, etc., and to 
contribute to the advancement of SLAM problems and other 
uprising problems in autonomous navigation. Furthermore, an 
invitation to the academic institutions in surveying and 
geodesy fields to upgrade their curriculums and adapt 
techniques related to autonomous navigation and artificial 
intelligence, etc. as we believe these topics will highly impact 
the development of those sciences. 
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