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Abstract 

The resection in 3D space is a common problem in surveying engineering and photogrammetry based on observed distances, angles, and 

coordinates. This resection problem is nonlinear and comprises redundant observations which is normally solved using the least-squares 

method in an iterative approach. In this paper, we introduce a vigorous angular based resection method that converges to the global 

minimum even with very challenging starting values of the unknowns. The method is based on deriving oblique angles from the measured 

horizontal and vertical angles by solving spherical triangles. The derived oblique angles tightly connected the rays enclosed between the 

resection point and the reference points. Both techniques of the nonlinear least square adjustment either using the Gauss-Newton or 

Levenberg – Marquardt are applied in two 3D resection experiments. In both numerical methods, the results converged steadily to the 

global minimum using the proposed angular resection even with improper starting values. However, applying the Levenberg – Marquardt 

method proved to reach the global minimum solution in all the challenging situations and outperformed the Gauss-Newton method.   
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I. INTRODUCTION 

Resection in 3D space is a common problem in surveying 
engineering and photogrammetry to fix the position at an 
unknown occupied point. This is normally applied either by 
measuring distances, angles, or other quantities that define the 
intersected rays in space coming from reference points. Mostly, 
all the 3D resection models are either nonlinear and subject to 
the proper starting values or direct linear solutions that cannot 
handle the redundant observations [1]. Additionally, these 
resection methods are vulnerable to the inadequate distribution 
of the points [2]. Conventionally, angular based resection in 3D 
space is applied by utilizing the horizontal and vertical angles. 
However, the resection model is highly sensitive to initial values 
that should not be far by more than 1' to ensure the correct 
solutions, otherwise, the solution diverges to wrong values [3-
5]. 

Accordingly, this research aims to develop a generic 
mathematical model for the 3D angular based resection that 

consider the redundancy in the observations and vigorous even 
with incorrect starting values. This implies introducing a method 
that is: geometrically stable, reliable, and converges to the global 
minimum even with improper starting values.   

Recently, [6] introduced a robust resection model that relies 
on deriving oblique angles out of the measured horizontal and 
vertical angles between the unknown camera station and the 
reference points. The nonlinear least-squares method NLLS is 
further applied to handle the redundant observations using the 
Gauss-Newton method.  

Although, we don’t need to calculate the second-order 
derivative when using the Gauss-Newton this method may not 
be able to handle highly challenging starting values because of 
the high residual errors and then better adaptation methods 
should be used [7].  

In this paper, we are going to proceed with the oblique 
angular resection model and to elaborate on the use of the 
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Levenberg – Marquardt LM or the damped least-squares 
method [8, 9]. Currently, Levenberg – Marquardt is a widely 
used technique for solving the nonlinear least-squares problems 
and is considered as a mixed method between the Gradient 
Descent and the Gauss-Newton methods [10] as shown in Fig.1. 

The gradient descent method is based on updating the 
solution and selecting values that make the function value 
smaller in each iteration. Precisely, the sum of the squared 
errors is reduced by moving toward the direction of steepest 
descent and ensures to converge linearly. Whilst the Newton 
method converges quadratically in the direction of the 
minimum, but it fails to converge if it is far away from its 
minima. 

To overcome the problem of failed convergence and 
reaching a robust solution, Levenberg – Marquardt method 
utilized a modified enhancement to the Gauss-Newton method 
by depending on the value of an algorithmic parameter λ [11]. 
This parameter λ is a non-negative damping factor that 
suppresses the solution by adjusting its value at each iteration to 
ensure a reduction in the error. According to [12], the least 
square normal equation matrix becomes nearly diagonal if the 
damping is set to a large value and then the Levenberg – 
Marquardt update step is near the steepest descent direction. On 
contrary, if the damping factor λ is too small, the Levenberg – 
Marquardt step approaches the exact quadratic step like the 
Gauss-Newton problem. Accordingly, Levenberg – Marquardt 
increases or decreases the damping value if a step fails to reduce 
the objective function. On this basis, Levenberg – Marquardt is 
capable to switch between a slow descent approach when being 
far from the minimum and a fast approach when being close to 
the minimum (Fig.1). 

 

Fig.1. Levenberg-Marquardt method (dashed line) starts like gradient descent 

(blue) and switch to Gauss-Newton (red) when become in the 
neighborhood of the minima.  

 

Accordingly, in this paper, we rely on two aspects to apply a 
vigorous 3D resection solution: 1) robust angular based 
mathematical model and 2) robust NLLS solution using the 
Levenberg – Marquardt method. 

In the following section 2, the proposed method will be 
described in detail. In section 3, two experimental tests will be 
demonstrated to investigate the efficiency of the proposed 
method, and then discussion and conclusions will be shown in 
section 4.  

II. METHOD 

 As mentioned, to ensure a vigorous solution of the proposed 
3D resection problem, two models are followed: 

- Robust geometric relationship between the observed 

angles with high redundant observations. 

- Efficient least squares method that can vigorously handle 

the nonlinear redundant model. 

 
Accordingly, a mathematical model is developed based on 

the oblique angles enclosed between the unknown point of 
resection and the reference points. Furthermore, two least-
squares solutions are investigated to see how they perform when 
very far starting values are given and with the existence of 
redundant observations in a nonlinear model.  

According to [6], oblique angles can be derived using 
directly measured two vertical angles (𝛽1, 𝛽2) and one horizontal 
angle 𝜃  using the cosine rule of a spherical triangle as in 
equation 1: 

 

cos 𝛾 = 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝛽1 cos 𝛽2 + 𝑠𝑖𝑛𝛽1 𝑠𝑖𝑛𝛽2                        (1) 
 

Furthermore, oblique angles can be defined using three 
points 𝑃, 𝑖, and 𝑗 as shown in Fig. 2 where 𝑃 is the unknown 
point. Consequently, a minimum of three oblique angles is 
necessary to define the 3D coordinates 𝑋𝑌𝑍 of a point resected 
by three rays. The maximum number of derived (observed) 
oblique angles can be calculated based on the number of the 
observed reference points 𝑛 using equation 2: 

𝑀𝑎𝑥. 𝑛𝑜. 𝑜𝑓 𝑜𝑏𝑙𝑖𝑞𝑢𝑒 𝑎𝑛𝑔𝑙𝑒𝑠 =
(𝑛2−𝑛)

2
                     (2)  

 

Fig.2. One oblique angle enclosed between the reference points 𝑖, 𝑗 and the 

unknown point 𝑃. 

 

Differently, the computed oblique angles are based on the 
approximate unknown coordinates at the resection point as in 
equation 3: 

                      

𝑐𝑜𝑠𝛾 =
𝑑𝑥𝑖𝑑𝑥𝑗+𝑑𝑦𝑖𝑑𝑦𝑗+𝑑𝑧𝑖𝑑𝑧𝑗

𝐿𝑖∗𝐿𝑗
      (3) 

Where 

 𝑑𝑥𝑖 , 𝑑𝑦𝑖 , 𝑑𝑧𝑖 , 𝑑𝑥𝑗 , 𝑑𝑦𝑗 , 𝑑𝑧𝑗  : the difference in coordinates 

between the unknown point P and the reference points 𝑖 and 𝑗. 
𝐿𝑖 , 𝐿𝑗 : the spatial distance between the unknown point and the 

observed reference points 𝑖 and 𝑗 respectively. 

 

Starting value 

Minima 
𝑃 

𝑗 

𝑖 Z  

X  

Y  

𝐿𝑖 

𝐿𝑗 
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To apply the nonlinear least squares solution with the 
existence of redundancy, the first-order derivative terms 

(
 𝜕𝐹  

 𝜕𝑋𝑃
,

 𝜕𝐹  

 𝜕𝑌𝑃
,

 𝜕𝐹  

 𝜕𝑍𝑃
) of a Tylor expansion are evaluated as follows 

[13]: 

 

𝐹 =    𝐿𝑖  𝐿𝑗  𝑐𝑜𝑠𝛾 − (𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑑𝑦𝑖𝑑𝑦𝑗 + 𝑑𝑧𝑖𝑑𝑧𝑗)             (4) 
 

 𝜕𝐹  

 𝜕𝑋𝑃
=  𝑋𝑖 − 2𝑋𝑃 + 𝑋𝑗 +

𝑐𝑜𝑠𝛾 (2𝑋𝑃−2𝑋𝑖)𝐿𝑗

2𝐿𝑗
+

𝑐𝑜𝑠𝛾 (2𝑋𝑃−2𝑋𝑗)𝐿𝑖

2𝐿𝑗
  

 𝜕𝐹  

 𝜕𝑌𝑃
= 𝑌𝑖 − 2𝑌𝑃 + 𝑌𝑗 +

𝑐𝑜𝑠𝛾 (2𝑌𝑃−2𝑌𝑖)𝐿𝑗

2𝐿𝑖
+

𝑐𝑜𝑠𝛾 (2𝑌𝑃−2𝑌𝑗)𝐿𝑖

2𝐿𝑗
      (5) 

 𝜕𝐹  

 𝜕𝑍𝑃
= 𝑍𝑖 − 2𝑍𝑃 + 𝑍𝑗 +

𝑐𝑜𝑠𝛾 (2𝑍𝑃−2𝑍𝑖)𝐿𝑗

2𝐿𝑖
+

𝑐𝑜𝑠𝛾 (2𝑍𝑃−2𝑍𝑗)𝐿𝑖

2𝐿𝑗
  

 

Where (𝑋𝑃, 𝑌𝑃 , 𝑍𝑃) represent the coordinates of the unknown 

point of resection.  

 
Regardless of the method of a solution either using Gauss-

Newton or Levenberg – Marquardt, the least-squares principle 
is based on minimizing the squared residual errors 𝑣𝑡𝑣 =
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 . Accordingly, the corrections ∆  are iteratively 
computed using the Gauss-Newton method as: 

 

∆= (𝐵𝑡𝑊𝐵)−1𝐵𝑡𝑊𝐹                   (6) 

 

Where 

𝐵 : Matrix of partial derivatives to the unknown 

coordinates 𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃, 𝐵 = [ 
𝜕𝐹

𝜕𝑋𝑃

𝜕𝐹

𝜕𝑌𝑃

𝜕𝐹

𝜕𝑍𝑃
]. 

𝑊: Weight matrix of the observations.  

 

The NLLS method using Gauss-Newton can be applied using 

the following steps: 

 

1- Start with initial unknown parameters 𝑋𝑖 and the mesured 

oblique angles. 

2- Set up the stopping criteria like with a maximum number 

of iterations or when corrections ∆  reach a very small 

tolerance threshold. 

3- Compute the observation matrices of 𝐵𝑖  and 𝐹𝑖 based on 

the initial unknown parameters 𝑋𝑖  using equation 4 and 

equation 5. 

4- Compute the normal equation matrices using equation 6 

and then compute corrections Δ𝑖+1:  

5- update the unknown coordinates 𝑋𝑖+1 = 𝑋𝑖 + Δ𝑖+1 

6- Repeat step 3 and compute 𝐵𝑖+1 and 𝐹𝑖+1 using 𝑋𝑖+1 

7- Check the condition of step 2: 

if ‖∆𝑖+1‖ < 0.00001 or no. of iterations > threshold 

stop 

else 

Repeat iterations to compute Δ𝑖+2. 

8- Continue the same procedure until the conditions of step 

7 are fulfilled. 

 

On the other hand, the observation model using NLLS 

Levenberg – Marquardt method can be formulated using the 

sum of the Misfit which is mathematically expressed as the 𝑣𝑡𝑣 

and the Model Norm which is mathematically expressed as ∆𝑡∆. 

Therefore, the objective function ∅  of the Levenberg – 

Marquardt least-squares method is to minimize ∅ after adding 

the effect of the damping parameter  𝜆 . As a result, the 

corrections ∆ using Levenberg – Marquardt are computed as 

follows [12]:  

 

∆= (𝐵𝑡𝑊𝐵 + 𝜆𝐼)−1 (𝐵𝑡𝑊𝐹)             (7)

  

The benefit of adding the damping factor 𝜆 of equation 7 is to 

reduce the minimum norm solution. However, attention should 

be given since larger values of 𝜆  lead to underfitting while 

small values of 𝜆  lead to data overfitting. Hence, the least-

squares method can be applied using the following steps [12]: 

 

1- Start with a value of the damping factor like λ =1 and 

initial unknown parameters 𝑋𝑖. 

2- Determine the stopping criteria like with a maximum 

number of iterations of 50 with a very mall tolerance 

threshold. 

3- Compute the observation matrices of 𝐵𝑖  and 𝐹𝑖 based on 

the initial unknown parameters 𝑋𝑖. 

4- Compute the normal equation matrices with the addition 

of 𝜆𝑖  to the main diagonal of 𝐵𝑖 . Then compute 

corrections Δ𝑖+1:  

Checking the stability of the solution and convergence 

through the following steps: 

if 

 
‖Δ𝑖+1‖

‖Δ𝑖‖+𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
< 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐e  

then iterations stop 

else 

update the unknowns 𝑋𝑖+1 = 𝑋𝑖 + Δ𝑖+1 

5- Repeat step 3 and compute 𝐵𝑖+1 and 𝐹𝑖+1 using 𝑋𝑖+1 
6- Check the condition: 

if ‖𝐹𝑖+1‖ < ‖𝐹𝑖‖  

𝜆𝑖+1 = √𝜆𝑖   

else 

𝜆𝑖+1 = 2𝜆𝑖   

7- Repeat iterations and start at step 4 to compute Δ𝑖+2. 

8- Continue the same procedure until the conditions are 

fulfilled. 

 
Subsequently, the covariance matrix Σ of the unknown point 

coordinates is computed in both mentioned solution methods as 
shown in equation 8. 

 

∑ = 𝜎𝑜
2(𝐵𝑡𝑊𝐵)−1                                            (8) 

 

where 𝜎𝑜
2 is the variance of unit weight. 
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III. EXPERIMENTAL TEST 

Two experimental tests are applied to investigate the 
efficiency of the proposed 3D resection method. The first 
experiment is based on simulation data while the second test is 
applied to real-world data.  

A. Simulated test 

A simulated resection problem is designed where the true 
position is known as  (10, −5, 2)  and measured from four 
reference points as shown in Table I.   

TABLE 1. FOUR SIMULATED REFERENCE POINTS 

Point X [m] Y [m] Z [m] 

A 6.924 -14.972 0.000 

B 5.813 -7.945 19.884 

C  54.687 45.363 18.271 

D  29.085 -76.020 21.878 

 
The horizontal and vertical angles are observed and then the 

oblique angles are derived between the unknown point P and the 
reference points as illustrated in Table II using equation 1. 

TABLE II. DERIVED OBLIQUE ANGLES OF THE SIMULATION TEST. 

Angle Oblique 

𝜸 [Deg.] 

Horizontal 

θ [Deg.] 

Vertical 

𝜷𝟏 [Deg.] 

Vertical 

𝜷𝟐 [Deg.] 

88.218 38.175 -10.875 74.025 88.218 

155.599 155.175 -10.875 13.575 155.599 

40.848 31.725 -10.875 15.225 40.848 

91.985 166.650 74.025 13.575 91.985 

69.896 69.900 74.025 15.225 69.896 

117.088 123.450 13.575 15.225 117.088 

 
Starting values of the unknown point coordinates are 

selected as (0,0,0) to verify the robustness of the solution. The 
proposed NLLS adjustment using Gauss-Newton and 
Levenberg – Marquardt are applied and the correction iterations 
converged to zero as shown in Fig. 3.    

 
a) 

 
b) 

Fig.3. Corrections Δ of the simulated 3D resection point when starting @ 

(0,0,0) using a) Gauss-Newton method. b) Levenberg – Marquardt 

method. 

The results of using the Gauss-Newton and Levenberg – 
Marquardt methods of the simulated test using starting values 
(0,0,0) are both identical as 𝑋𝑝=10.029 ± 0.066 m, 𝑌𝑝=-4.970 ± 
0.034 m and 𝑍𝑝=2.001± 0.100 m. 

However, if we select far starting values of (1010, 1010, 1010) 
then the solution using Gauss-Newton will fail. Though the 
Levenberg – Marquardt method can steadily converge and 
corrections reach negligible values after 37 iterations to the 
global minimum of the true coordinates values as shown in Fig. 
4. The adjusted coordinates are similar to the computed results 
when using starting values (0,0,0) as 𝑋𝑝=10.029 ± 0.066, 𝑌𝑝=-
4.970 ± 0.034, and 𝑍𝑝=2.001 ± 0.100. It should be noted that a 
damping factor 𝜆 = 1 is selected when using the Levenberg – 
Marquardt method. 

 
a) 

 
b) 

Fig. 4. Corrections Δ of the simulated 3D resection point when starting @ (1010, 

1010, 1010) using a) Gauss-Newton method. b) Levenberg – Marquardt 

method. 

Fig.5 illustrates the gradual convergence of the estimated 
resection point position for every iteration until reaching the 
correct coordinates.          

  
Fig.5. The adjusted simulated resection point converges to the true position 

during the iterative NLLS Levenberg – Marquardt method. Left) starting @ 

(0,0,0). Right) starting @ (1010, 1010, 1010) 
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B. Real-world test 

Given five reference points measured to the nearest 
millimeter as shown in Table III. 

TABLE III. FIVE REFERENCE POINTS. 

 Point X [m] Y [m] Z [m] 

A 92291.345 437615.913 38.831 

B 92295.440 437603.790 19.308 

C 92268.879 437625.464 43.961 

D 92276.070 437610.980 -0.352 

E 92243.252 437618.202 53.091 

 

The horizontal and vertical angles are observed and then the 
oblique angles are derived between the unknown point P and the 
reference points as illustrated in Table IV using equation 1 and 
the angles are given to the fifth decimal place for demonstration.  

TABLE IV. DERIVED OBLIQUE ANGLES. 

Angle  Oblique 

 𝜸 [Deg.] 

Horizontal 

θ [Deg.] 

Vertical  

𝜷𝟏 [Deg.] 

Vertical 

𝜷𝟐 [Deg.] 

APB 24.80589 18.85500 43.46700 24.07875 

APC 27.74341 39.60750 43.46700 54.20175 

APD 48.10406 6.66000 43.46700 -4.26000 

APE 54.43767 97.76250 43.46700 64.92975 

BPC 52.39275 58.46250 24.07875 54.20175 

BPD 37.68708 25.51500 24.07875 -4.26000 

BPE 78.68345 116.61750 24.07875 64.92975 

CPD 64.57988 32.94750 54.20175 -4.26000 

CPE 30.06680 58.15500 54.20175 64.92975 

EPA 94.32506 91.10250 -4.26000 64.92975 

 

 
a) 

 
b) 

Fig 6. Corrections Δ of the 3D resection point when starting at (0,0,0) using a) 

Gauss-Newton method. b) Levenberg – Marquardt method. 

 

To test the strength of the suggested algorithm, challenging 
starting values of (0,0,0) for the unknown point coordinates are 
selected. The least-squares solution of the resection point using 
Gauss newton converged to the optimal values and corrections 
reaches negligible values after 22 iterations as shown in Fig. 6a. 
When using the Levenberg – Marquardt, the solution converged 
to global optimal, and corrections reach negligible values after 
19 iterations using a damping factor 𝜆 = 1 as shown in Fig. 6b.  
It should be noted that both methods converged steadily to the 
optimal values at the 10th iteration of the adjusted three unknown 
coordinates. 

The final coordinates of the resection points are 92255.797 
m, 437597.078 m, and 2.647 m. However, if a very far starting 
value has been selected like (-108, -108, -108), then the Gauss-
Newton method fails to converge as shown in Fig. 7a and end 
up to Nan values. Whilst the Levenberg – Marquardt method 
converges to the optimal values steadily and got close to the 
neighborhood of the minima at the 10th iteration and reaches a 
negligible correction after the 31st iteration as shown in Fig. 7b 
and Table V. 

 
a) 

 
b) 

Fig.7. Corrections Δ of the 3D resection point when starting at (-108, -108, -108) 

using a) Gauss-Newton method. b) Levenberg – Marquardt method. 

 
Fig. 8 shows the improvement of the adjusted point position 

in every iteration until reaches the optimum position. 

 
Fig 8. The adjusted resection point converges to the correct position during the 

iterative NLLS Levenberg – Marquardt method when starting at (-108, -108, -

108). 

 



Mustafa / Journal of Applied Science and Technology Trends Vol. 03, No. 01, pp. 15 –20 (2022) 

 

20 

TABLE V. THE 3D COORDINATES OF THE RESECTION POINT USING 

LEVENBERG – MARQUARDT AND GAUSS-NEWTON WHEN STARTING FROM (-
108, -108, -108). 

  X [m] Y [m] Z [m] 

Correct LM method 92255.797 437597.078 2.647 

Failed GN method Nan Nan Nan 

IV. DISCUSSION AND CONCLUSIONS 

  In this paper, a vigorous 3D resection approach is proposed 
relying on two aspects: 1) a robust geometric model of oblique 
angles and 2) an efficient nonlinear least-squares method using 
the Levenberg – Marquardt algorithm.  

Two experiments are applied using simulated and real-world 
data sets. Both least-squares techniques using Gauss-Newton 
and Levenberg – Marquardt are applied.  

For both tests, the Gauss-Newton method was stable and 
converges to the global minimum when starting at (0,0,0) values 
which indicated a good performance as shown in Fig.3a and 
Fig.6a. However, Levenberg – Marquardt outperformed the 
Gauss-Newton method in both tests when started at very 
challenging values of the unknown coordinates and steadily 
converged to the global minimum as shown in Fig.4b and 
Fig.7b. It should be noted that in the simulated test, the results 
did not exactly match the true values because of the deliberate 
approximation of the measured angles to the 3rd decimal place 
of a degree as shown in Table II. 

As a final conclusion, the proposed method of the angular 
based 3D resection proved its efficiency and stability against 
improper starting values, especially when using the nonlinear 
least-square adjustment powered by the Levenberg – Marquardt 
algorithm.  

Future work will continue expanding the 3D resection model 

and combining it with an intersection model to have a complete 

vigorous positioning algorithm that can be used in solving 

different challenging problems in surveying and geospatial 

engineering.  
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