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Abstract 

Fungal diseases represent a widely spread natural phenomenon affecting many wild and domesticated plants. In nature, all plant species 

form plant communities of a mixed character, and the spatial pattern of dominant species is usually irregular and spotted. Some species 

are impregnable to a certain infection, which provides a kind of natural barrier to the infection spreading within the natural community. 

Under the agricultural environment, when a single plant species may occupy a huge area, the species-specific parasite takes a great 

advantage to develop focal outbreaks and fast spreading of the infection within the area. The concentration of vulnerable plants and the 

absence of natural barriers within the agricultural areas provoke outbreaks of fungal diseases that may have highly harmful consequences 

and result in significant yield losses. One of the purposes of the satellite optical data is an operative, cost-effective diagnostic tool and, in 

combination with climatic datasets and crop rotation information, a prognosis of fungal disease appearance and severity. This paper 

describes the system of prognostic and monitoring measures to control the fungal diseases of wheat in Central Kazakhstan, with particular 

attention to Septoria leaf blotch. The prognostic procedure provides a map of the probability of septoria leaf blotch appearance. The 

prognosis considers the combination of three main variables: the model of ecological niche for Septoria, the presence of wheat residue, 

and the vegetation condition index counted for the late spring (May) of the current year. The novel spectral-based approach introduced 

in this paper is the core component of monitoring activity. The SLBS-equation appears to have high sensitivity to Septoria leaf blotch 

severity in the middle to late (stages 8–11, accordingly, Feekes growth stages) periods of wheat development. Several other spectral indices 

(RETA, VSDI, and vegetation indices) may help provide information on the spatial unevenness of wheat crops that may indicate the 

presence of fungal infection. 
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I. INTRODUCTION 

At the end of XX century, wheat (Triticum aestivum L.) was 
grown on about 239 million hectares, 8% of which were in 
western Europe, 16% in North America, 4% in eastern Europe, 
11% in the Russian Federation countries, and 38% in Asia [1]. 
Annually, on average, about 13.0 million tons of grain are 
produced in Kazakhstan. The average grain yield is 1.1 tons per 
hectare [2]. Septoria leaf blotch is one of the most destructive 
fungal pathogen of wheat in all wheat-producing areas [3]. 
Pathogen leads to the decrease of chlorophyll content in leaf 
tissues. The destruction of chloroplasts and the shrink of the 
assimilation area of the leaf lead to the reduction of 
photosynthesis activity and the diminution of respiratory activity 
[4]. Yield losses occur mainly as a result of grain content 
decrease within the single ear and decrease of grain weight in 
general [2]. Septoria tritici and Stagonospora (Septoria) 

nodorum cause significant crop loss and severely reduce grain 
quality. Annual yield losses may reach 10–15 % in cases of 
moderate development of the disease [5] and up to 40-50 % 
during epiphytoties [3, 6].  

As many as ten fungal pathogens causing the septoria blotch 
in wheat are recently known. Often the single wheat plant may 
possess several infections at the same time [7]. The main sources 
of the infection are infected leaves of the living plant, wheat 
residue, and infected seeds. The most common pathogens are 
Septoria tritici, Septoria graminum, and Septoria nodorum [8, 
9]. A moist period of 15 hours was found to be a minimum 
condition for infection, whereas 35 hours of moisture followed 
by 2 days of high humidity favored heavy infection [10]. The 
greatest disease severities resulted from the combination of long 
moist periods and high temperature [10]. However, it was shown 
that humidity and temperature do not appear to be limiting 
factors in a susceptible cultivar, as the Septoria can tolerate 
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prolonged, and repeated interruptions to humid periods and still 
infect efficiently [11]. Maximum of the disease development 
may be observed at the stages 10th and 11th [12] of the plant 
development, i.e. at flowering and grain ripening, at the ambient 
air temperature of 14-22˚С and relative air humidity of 90% or 
above. All above-ground parts of the plant may be infected, 
depending on the pathogen and disease severity. The disease 
symptoms usually look like elongated spots of a different color 
(from white to brown) on leaves with dark outlines and dark dots 
scattered throughout the spot area. Dark dots represent pycnidia 
– the organ where the pycnospores come from. Severely infected 
leaves become completely dry, grains lose weight, or they may 
become undeveloped. Septoria spreads by pycnospores during 
the vegetation season, moist weather intensifies the release of 
pycnospores from pycnidia. Pathogen winters in a form of either 
mycelium or pycnidia at wheat residuals on the top of the soil. 
Septoria nodorum winters in the form of mycelium within 
infected seeds as well. As a rule, there are several generations of 
pycnidia during the vegetation season. The pathogen may spread 
via water drops as well as by winds or insects.  

Data on the fungal diseases were collected by JSC “NCSRT” 
for many years (2004-2017) in Aqmola, Kostanay, and North-
Kazakhstan Districts as georeferenced points of disease 
occurrence. Data acquired during 2004-2017 were used to 
develop the Species Distribution Model for the disease’s 
pathogen [13]. Last two years (2019-2020), the data collection 
was redesigned into the form of the registration of disease 
symptoms within selected fields in Aqmola District. In the 
period mentioned, the experimental polygon within Aqmola 
District was selected to provide a further collection of 
experimental data at wheat fields of the selected polygon. 

II. MATERIAL AND METHODS 

A. Study Area 

The study area is represented with fields of JCS 
“Novokubanskoye” located in Shortandy Region of Aqmola 
District (Fig. 1). The study area encompasses a series of fields 
to cultivate different crops, like linen, barley, lentil etc., while 
wheat is a major type of crop. Geographically the study area 
belongs to the dry continental steppe characterized by warm 
summer and cold winter, Dfb zone by Kottek, et al. [14] with 
annual precipitation of 300-310 mm. Calcic chernozem is the 
main soil type of the area. 

B. Ground data and measurements 

Three fields were chosen in the year 2019 to provide field 
measurements depending on septoria leaf blotch severity. 
Disease severity can be defined as the area of a sampling unit 
(plant surface) affected by the disease, expressed as a percentage 
or proportion of the total area. However, the disadvantage of 
visual estimates is that they are prone to subjectivity [15]. Since 
the top three leaves are known to make the main contribution to 
grain yield [16]we used a simplified scheme to define the 
severity of septoria leaf blotch, as described below: 

1. Weak severity or initial stage of infection–only lower 
leaves are affected at stages 9-11 in most observed 
plants; 

2. Moderate severity–lower and middle leaves are 
infected with sporadic spots at the flag leaf at stages 9-
11 in most observed plants; 

3. Strong severity– infection spreads over the flag leaf at 
stages 9-11 within the entire field of wheat. 

 
Fig. 1. Study area. JSC “Novokubanskoye”, Aqmola District, Republic of 

Kazakhstan. 

 
Fig. 2. Example of field sampling design in 2019. Dots indicate the sampling 
and measuring points. 

The temperature of the crops and GreenSeeker’s NDVI were 
measured and GPS-registered within the 1-kilometer long route 
with a period of 40-50 meters (Fig. 2) at each sampled field. The 
temperature of crops and bare soil was measured with an 
infrared remote thermometer. The temperature of crops 
markedly differs between infected and intact plants, and this 
difference was documented by other studies [17]. Despite 
thermal information perspectives, however, this paper is focused 
on non-thermal indices, since firstly, - the thermal information 
on the Earth surface is limited with a few satellite sensors, and 
secondly - the distribution of thermal fields might be one of the 
additional criteria to reveal disease symptoms rather than the 
main diagnostic parameter. It is obvious, the temperature of 
plants is influenced by many factors, like the water content and 
evapotranspiration intensity, the air humidity, the soil moisture, 
the rainfall that occurred short before the satellite image was 
taken, etc., so the high temperature of crops itself might not be 
a sufficient indicator of the infection. 
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The Trimble GreenSeeker handheld crop sensor emits brief 
bursts of red and infrared light and then measures the amount of 
each type of light that is reflected back from the plant. The 
sensor displays the measured value in terms of an NDVI reading 
(ranging from 0.00 to 0.99) on its LCD display screen. The 

strength of the detected light is a direct indicator of the crop's 
health; the higher the reading, the healthier the plant. The sensor 
data were obtained for each sampling point within all mentioned 
fields and compared to satellite indices, and the ground 
measured septoria blotch severity as well.

TABLE I.  LIST OF SPECTRAL INDICES USED TO CORRELATE GROUND AND SATELLITE DATA. 

Basic indices Expression Reference 

Normalized difference vegetation index, 
NDVI 

nir red
NDVI

nir red





 [18, 19] 

Enhanced vegetation index, EVI 

( )*2.5
6* 7.5* 1

nir red
EVI

nir red blue




  
 [20, 21] 

Modified non-linear index, MNLI 2

2

( )*1.5

( ) 0.5

nir red
MNLI

nir red




 
 [22] 

Renormalized Difference Vegetation Index, 
RDVI 

nir red
RDVI

nir red





 [23] 

Atmospherically Resistant Vegetation Index, 
ARVI 

( ) 2*( )

( ) 2*( )

nir red red blue
ARVI

nir red red blue

  


  
 [24] 

PanNDVI ( )

( )

nir blue green red
PanNDVI

nir blue green red

  


  
 [25] 

Normalized Difference Water Index, NDMI 
1

1

nir swir
NDMI

nir swir





 [26] 

Visible Atmospherically Resistant Index, 
VARI 

( )

green red
VARI

green red blue




 
 [27] 

Septoria Leaf Blotch Severity, SLBS 2

2

( )*1.5
1.0713 8.987*( )

( ) 0.5

NIR RED
SLBS

NIR RED


 

 
 This paper 

Supplemental indices Expression Reference 

Visible and Shortwave Infrared Drought 
Index, VSDI 21 ( )

swir blue
VSDI

red blue


 


 [28] 

Selyaninov’s hydrothermal coefficient, SHC 
05 05/ ( /10)SHC Pcp sumT  [29] 

Vegetation condition Index, VCI 
i min

max min

-ndvi

-ndvi

ndvi
VCI

ndvi


 
[30] 

Relative evapotranspiration index, RETA 
1 2

1 2

( )
333.8 47.54*(1.05 0.6*( ))

( )

NIR SWIR SWIR
RETA

NIR SWIR SWIR

 
  

 
 This paper 

Xanthophyll activity index, XA red blue
XA

red blue





 [31] 

 



Malakhov / Journal of Applied Science and Technology Trends Vol. 03, No. 02, pp. 64 –73 (2022) 

 

67 

Crop rotation schemes for 2019 and 2020 were acquired 
from N. Tsiunel, the agronomist of JSC “Novokubanskoye” 
to develop a digital map of crops and exclude non-wheat fields 
from the further analysis of satellite data.  

Satellite data, synchronous to field observation of 2019, 
were acquired from Earth Explorer 
(https://earthexplorer.usgs.gov). Downloaded satellite 
imagery was atmospherically corrected, radiometrically 
calibrated, and used to calculate a series of spectral indices 
(Table I).   

Vegetation indices were used to estimate the correlations 
between current Septoria leaf blotch severity in the field and 
indices’ values calculated from synchronous satellite data. A 
tested series of indices comprises simple and advanced 
vegetation indices and non-vegetation indices sensitive to 
certain biophysical parameters of green vegetation that do not 
directly concern the chlorophyll content. 

TABLE II.  LIST OF SATELLITE DATA FOR 2019-2020, USED IN CURRENT 

PAPER PREPARATION. 

Sensor Scene ID 
Date

_ 

Landsa
t-8 

LC08_L1TP_155024_20190801_20190801_0
1_RT 

1 
August 
2019 

Landsa
t-8 

LC08_L1TP_155024_20200413_20200422_0
1_T1 

22 
April 
2020 

Landsa
t-8 

LC08_L1TP_155024_20200429_20200429_0
1_RT 

29 
April 
2020 

Landsa
t-8 

LC08_L1TP_155024_20200531_20200608_0
1_T1 

8 
June 2020 

Landsa
t-8 

LC08_L1TP_156024_20200623_20200625_0
1_RT 

25 
June 2020 

Landsa
t-8 

LC08_L1TP_155024_20200803_20200803_0
1_RT 

3 
August 
2020 

Sentine
l-2 

L1C_T42UXC_A026386_20200711T063407 11 
July 2020 

Sentine
l-2 

L1C_T42UXC_A016791_20200524T062321 24 
May 2020 

 

Selected vegetation indices comprise simple NIR-RED 
based expressions (NDVI) and advanced expressions that 
include additional spectral bands (all visible bands – 
PanNDVI, VARI; blue band– EVI, ARVI; SWIR band – 
NDMI) to enhance the index sensitivity to healthy vegetation. 
Also, indices with additional coefficients minimizing the 
signal of open soil or atmospheric aerosols (EVI, MNLI) were 
studied. Depending on the wheat’s cultivar, wheat may be 
planted with different densities from 120 to 240 plants per 
square meter. The variety of additional factors and further 
disturbance of crops due to microrelief, drought, pests and 
diseases, may lead to spotted distribution of plants within the 
single field, with the appearance of areas, where the signal of 
open soil may oversaturate the signal of chlorophyll. In such 
a case, simple NIR-RED based vegetation indices may lose 
sensitivity or informativeness and provide unexpected errors 
when interpreting the classification results. Some indices, like 

RETA, XA, VSDI, NDMI, and VARI, were studied to 
determine their informative potential for mapping possible 
crop problems that may or may not be directly related to 
disease severity. In the year 2020, the list of sensors was 
extended with Sentinel-2 data. Sentinel-2 sensor provides 
additional spectral bands, including Red Edge bands, very 
useful for vegetation monitoring purposes, centered at 701.4, 
740.5, and 782.8 nm. Satellite data used in the current paper 
are summarized in Table II. 

III. RESULTS 

A. Monitoring function 

Vegetation indices, calculated for the year 2019, 
demonstrate high correlations to both disease severity and 
GreenSeeker values (Table III). 

TABLE III.  CORRELATIONS OF SPECTRAL INDICES AND GROUND DATA. 

Index 
Correlation to 

GreenSeeker 

p-

value 

Correlation to 

disease severity 

p-

value 

NDVI 0.78 0.05 -0.53 0.05 

EVI 0.79 0.05 -0.49 0.05 

MNLI 0.79 0.05 -0.52 0.05 

RDVI 0.78 0.05 -0.5 0.05 

ARVI 0.79 0.05 -0.51 0.05 

NDMI 0.77 0.05 -0.5 0.05 

Xantophyll 

Index 
-0.78 0.05 0.52 0.05 

VARI 0.77 0.05 -0.29 0.05 

PanNDVI 0.77 0.05 -0.55 0.05 

VSDI 0.78 0.05 -0.49 0.05 

 

The Septoria leaf blotch severity expectedly negatively 
correlates to vegetation indices since the less chlorophyll 
concentration remained due to disease, the higher the septoria 
leaf blotch severity is documented at infected plants. Apart 
from other reasons leading to a decrease in the chlorophyll 
content (drought damage, lack of fertilizers, etc.) the 
development of infections may lead to uneven distribution of 
vegetation indices’ values within the field. Uneven scattering 
of values indicates the presence of abnormality of the crop 
development and, regardless of the reason of unevenness, 
represents the hot spot to draw the farmer’s attention. During 
the field sampling and satellite data processing, the triple 
cross-check of ground and satellite measurements has been 
performed: 1) the correlation of GreenSeeker data and satellite 
spectral indices; 2) the correlation of GreenSeeker 
measurements and septoria leaf blotch severity, and 3) the 
correlation of satellite spectral indices and septoria leaf blotch 
severity. 
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Among the indices studied, Modified Non-Linear Index 
(MNLI) demonstrated the highest correlations to both 
GreenSeeker and Septoria leaf blotch severity, measured in 
the field (Fig. 3). 

 

Fig. 3. Correlations of satellite and ground measurements, 1 August 2019. 
A - correlation of septoria leaf blotch severity (Y-axis) and 

GreenSeeker (X-axis); B – correlation of MNLI (Y-axis) and 

GreenSeeker measurements (X-axis); C – correlation of septoria leaf 
blotch severity (Y-axis) and MNLI values (X-axis). 

The linear regression equation describing the Septoria 
Leaf Blotch Severity as a derivative of MNLI has the 
following form: 

  SLBS = 1.0713 − 8.987 ×
(𝑁𝐼𝑅2−𝑅𝐸𝐷)×1.5

(𝑁𝐼𝑅2+𝑅𝐸𝐷)+0.5
                (1) 

 

where NIR and RED are the corresponding bands of the 
satellite image. 

The main purpose of the SLBS-equation is the early 
recognition of possible septoria leaf blotch by revealing the 
uneven distribution of SLBS values within the field with 
special attention to hotspots of relatively high values. 
However, SLBS-equation may erroneously demonstrate high 
severity of septoria leaf blotch at late crops and at unevenly 
emerged crops, where the signal of the chlorophyll may be 
oversaturated by open soil signal.  

The analysis of the consequent time series of satellite data 
reveals a low informative value of the SLBS until mid-June 
i.e., before the earing stage (about 50 days after planting). The 
index becomes informative during the earing and flowering 
(stages 10-11, after Cooke et al., 2006) when the biomass of 
green wheat plants reaches its maximum.  

After the SLBS validation within selected fields by 2019 
data, the expression has been applied to estimate the Septoria 
blotch severity through the entire area of wheat fields of JSC 
“Novokubanskoye” for the year 2019 (Fig. 4) and 2020 (Fig. 
5). 

 

Fig. 4. Septoria leaf blotch severity by satellite data, 1 August 2019. 

 

Fig. 5. Septoria leaf blotch severity by satellite data, 3 August 2020. 

The validation of the SLBS in 2020 has quite an indirect 
character as it was impossible to organize a field work at the 
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appropriate period due to COVID-19 restrictions. It was 
possible to provide field observations in the second decade of 
August, when the major part of the wheat fields were 
completely dry and ripe, except of the 7th Department’s fields 
(see below in “Prognostic function” chapter). Thus, the 
validation of 2020 was primarily based at personal 
communications of JSC “Novokubanskoye” agronomist, who 
confirmed the extensive development of septoria leaf blotch 
in central and south-western parts of the area, as shown at Fig. 
5. Owners of JSC “Novokubanskoye” were pushed to hire an 
aircraft to provide the aerial fungicide treatment of the fields. 

Additional evidence of possible disease appearance at the 
field may come from the estimation of the wheat’s 
physiological conditions by remotely sensed data. 
Evapotranspiration is a physiological phenomenon associated 
with maintaining the optimal temperature by the plant due to 
the evaporation of water from the leaf surface. Exceeding the 
optimal temperatures leads to a slowdown in the biochemical 
processes in the plant cell, the destruction (denaturation) of 
protein molecules and cellular organelles, and, as a result, the 
wilting of the plant. The spatial distribution of relative 
evapotranspiration values provides the user with information 
about possible disease foci since one of the reasons for the 
decrease in the level of evapotranspiration is the damage to the 
leaf of plants by fungal diseases. The RETA index, introduced 
in this paper (Table 1), calculated from near-infrared and 
shortwave infrared bands of satellite sensors, may be used as 
auxiliary information when monitoring the condition of crops 
(Fig. 6). 

 

Fig. 6. The heterogeneity of relative evapotranspiration, 23 June 2020. 

The water content in green vegetation is another very 
important biophysical indicator. The series of studies explored 
the potential of using reflectance satellite data to estimate the 
vegetation water content at leaf, plant, and canopy scales [32]. 
Moisture reserves determine the ability of plants to maintain 
thermoregulation by evaporating moisture from the leaf over 
some time. The higher the relative water content, the longer 
the plant will be able to maintain the optimum temperature in 
drought conditions, which are common in Central 
Kazakhstan. The map of the vegetation water content 
distribution within the study area (Fig. 7), calculated as VSDI 

(Table I), may indicate possible foci of infection since a 
decrease in the moisture content in plants is directly related to 
the destruction of the cell structures of leaves and stems due 
to fungal diseases. Distribution of VSDI values, calculated in 
June, appears to be correlated to SLBS hot spots, revealed in 
Early August (compare Fig. 5 and Fig. 7). This similar 
appearance of the two algorithms is the subject of further 
study. 

 

Fig. 7. The heterogeneity of water content in green biomass, 23 June 2020. 

B. Prognostic function  

In the year 2020, the monitoring routine has been further 
enhanced with prognostic function. The simple prognostic 
scheme was developed basing on the use of three components. 
One component is static, and two others are dynamically 
changing each year. The static component is the probability of 
the septoria leaf blotch appearance derived from the Spatial 
Distribution Model (SDM), previously developed for the 
Aqmola District [13]. One of the dynamic components is the 
value of VCI for the spring months (especially for May) in the 
monitoring area. The second dynamic component is the 
presence of wheat residue in the fields. Both dynamic 
components (and variables) are calculated from satellite data. 

Accordingly to the SDM, most favorable areas for the 
development of the pathogen possess the following 
characteristics: a) maximum and mean temperatures of 
warmest season do not exceed 30 ̊ С; b) minimum temperature 
of the coldest month does not drop below 22 ˚С; c) mean 
temperature of summer months is about 12-20 ˚С; d) 
minimum temperature of winter months is not less than (-20) 
- (-22) ˚С; e) evapotranspiration in June, July and August 
varied between 120-160 mm; f) total precipitation of May is 
no less than 3-4 mm.  

The hydrothermal conditions regulating the development 
of septoria leaf blotch are well studied [8]. Intervals of 
Selyaninov’s hydrothermal coefficient (SHC) optimal for 
septoria blotch development are well-established [8]. 
However, the direct use of SHC, calculated from ground 
meteorological stations data, has strict spatial limitations 
related to the low density of meteorological stations in the 
region. Data on SHC, acquired from few stations, should be 
interpolated to the huge area. Interpolation results in a 
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significant decrease in the index accuracy. As the SHC has an 
acceptable correlation to VCI, calculated with satellite data 
(TERRA\MODIS) it is possible to use VCI instead of SHC. 
The optimal for septoria leaf blotch development interval of 
VCI calculated for late spring (May) of the current year is 0,1-
0,3 [13]. There are two obvious benefits from using VCI 
instead of SHC: the fine spatial resolution of the data (up to 
250 meters per pixel) and high temporal frequency of data, 
available online from Copernicus Global Land Service portal 
(https://land.copernicus.eu/global/products/vci) three times 
per month. 

Septoria is known to winter in wheat residue, left in a field 
after harvesting. Field with vegetation residue on the ground 
has a high risk for the septoria leaf blotch development next 
year. However, the persistence of wheat residue is considered 
an important measure of snow retention and consequent 
increasing of soil water content in spring in arid and semi-arid 
regions. Among the mechanisms reportedly involved in 
disease establishment and year-to-year disease transmission, 
infection by pycnospores, splash-dispersed either from 
neighboring wheat debris or from senescent basal leaves, has 
also been considered as significant [33]. The presence of 
wheat residue may be calculated from high resolution satellite 
data, like Landsat or Sentinel-2, by various methods as the 
straw has quite a distinct spectral characteristic [34]. There are 
several expressions to identify the presence of wheat residue 
at the open soil surface [31, 35, 36]. Some indices refer to 
short-wave infrared bands of satellite imagery, which makes 
some limitations regarding the use of high-resolution satellite 
data, as many commercial sensors only encompass near-
infrared wavelengths. For the current study, the simple and 
universal index of Xanthophyll Activity was applied (Table I), 
which works with red and blue bands, available in every 
optical satellite sensor. To distinguish the presence of wheat 
residue, it is worth using either autumn snowless satellite 
imagery was taken after harvesting or snowless spring data 
taken before the start of agricultural activity. Fig. 8 illustrates 
the result of wheat residue recognition for JSC 
“Novokubanskoye”. 

 

Fig. 8. The map of septoria leaf blotch risk, JSC “Novokubanskoye”, 2020. 
Red color – high risk, Yellow color – moderate risk, Green color – low 

risk, Transparent fields – non-wheat crops. 

The prognosis map for the current year is the sum of all 
three components for every single field. The calculation of the 
prognostic map is being held formally from raster bands for 
each variable and the mask of crop rotation with ArcGIS 
functions. It is accepted for current prognostic maps to 
designate the septoria leaf blotch probability as follows: 

a) high probability – all optimal ranges (from SDM, VCI, 

and wheat residue rasters) are presented within the certain 

field’s border; 

b) moderate probability - two of three variables overlap 

within the single field’s border; 

c) low risk – only one or none of three variables are 

presented within the field. 

A prognostic map for the year 2020, as shown in Fig. 9, 
demonstrates fields of different risks of septoria leaf blotch 
appearance. 

The prognostic map was verified in August 2020. The part 
of the JSC “Novokubanskoye” (“7th Department”, shown at 
the southeast corner of Fig. 9) was not treated against fungal 
diseases at all. These fields were sowed late, at the beginning 
of June, and, due to the absence of rainfall, crops appeared to 
grow very irregularly, leaving empty waste areas, where 
sprouts emerged much later or not grew out at all. JSC 
"Novokubanskoye" managers decided to leave this parcel "as 
is" without any treatment, so the “7th Department” 
represented an ideal case to verify the prognostic map. 
Verification was held in the second decade of 2020 August by 
field observation and registration of septoria leaf blotch cases. 
The septoria leaf blotch severity was estimated visually in 
each randomly selected control point accordingly to accepted 
classification (see above) as an averaged severity for all the 
plants in the field of operator’s view (about 2 square meters). 
The general distribution of field-registered septoria leaf blotch 
severity fits well into the prognostic map (Fig. 10). 

 

Fig. 9. The distribution of ground-estimated septoria blotch severity upon 

the prognostic map, early August 2020. 

An The prognostic map is being prepared before the end 
of May, as it utilises VCI values of May, i.e. before the 
planting or during the planting (depending on the weather of a 
given year, the planting starts in the middle of May and 
continues during the first decade of June). Thus, the farmer 
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might consider fields of increased attention long before the 
situation will get worse. 

IV. DUSCUSSION 

The disease cycle of the Septoria parasite is very similar 
for all know species of Septoria. Infected crop residue is the 
most important source of primary inoculum, although infected 
seeds and alternative hosts may also be important in the 
epidemiology of septoria leaf blotch. A principal cause of the 
subsequent spread of disease is the predominantly vertical 
movement of pycnospores by rain splash [11]. The decreasing 
of the chlorophyll content is the most obvious symptom of 
most fungal diseases, including septoria leaf blotch and leaf 
rust. Symptoms induced by Septoria tritici appear 
successively on a leaf as chlorosis; irregular light green 
blotches with rectangular form, before evolving to brownish 
blotches called necrosis, thereafter leaves are covered with 
pycnidia. These rectangular blotches occupy large leaf areas; 
moreover, septoria leaf blotch (caused by Mycosphaerella 
graminicola) induces accelerated leaf senescence. Senescence 
development was also found strongly related to disease 
severity [15]. Symptoms of many fungal infections, being 
related to a decrease of the chlorophyll content, may appear 
very similar in terms of satellite spectral indices. Satellite 
sensors are sensitive to chlorophyll concertation in living 
plants, which makes the satellite data a reliable source of 
information of possible appearance and spread of the infection 
over the area. Ashourloo, et al. [37] confirmed the disease 
symptoms have a high impact on the infected plant spectra.  

Assuming the simultaneous sowing, when the entire field 
is processed within the same day, one could expect the even 
and uniform development of crops. However, this ideal 
situation is usually disturbed by many factors making the crop 
condition uneven within the field. The presence of local tiny 
relief depressions may outline the area of water accumulation 
where the crops will appear healthier than in neighboring drier 
areas. Rains leading to infection of less mature plants will 
facilitate the multiplication of the pathogen on more advanced 
path [38]. Additional factors as the presence of weeds, the 
appearance of pests or other infections, the uneven seeding, 
etc., provide further intermittence of SLBS values within a 
field. The spots of crop’s unevenness revealed by indices are 
the key areas to point the farmer’s attention. 

The SLBS-approach functions in the same way with 
spectral indices used to estimate the severity of wheat leaf rust 
[39], i.e., the index represented a linear regression equation, 
demonstrating a high correlation with septoria leaf blotch 
manifestations. To apply the SLBS, it is strictly necessary to 
have the crop rotation scheme, as SLBS will provide false 
alarm at fields with non-wheat crops. Within wheat fields, 
SLBS reveals unevenness of the distribution of values, where 
relatively high values indicate the possible focus of septoria 
leaf blotch appearance. Farmer can effectively plan the use of 
fungicides, addressing the treatment to proper infection foci 
instead of the fungicide spray over all the wheat area. In the 
year 2019, the cost of treatment was about 2 USD per hectare, 
which means the total cost of the single fungicide treatment is 
60 000 USD if process the entire area of JSC 
"Novokubanskoye".  

Additional indices (RETA, VSDI, vegetation indices) may 
provide more detailed information on the problem spots 
within a single field. Both earing and flowering stages are 
optimal to observe the uneven distribution of SLBS values, as 
fungicides have a high impact when the seed is still not formed 
and, thoroughly, is not affected with infection. Those parts of 
the wheat field, where the SLBS values are significantly higher 
than the average value for the given field, must attract the 
immediate attention of the farmer and, most likely, will 
require fungicide injection as a focus of developing an 
infection. 

Monitoring of crops assumes several approaches, focused 
on revealing the above-mentioned unevenness of crops. The 
information on crop condition provided to the farmer, consists 
of the following parameters:  

a) the dispersion of vegetation index values;  

b) the distribution of relative evapotranspiration values;  

c) relative water content in plants;  

d) the distribution of SLBS values. 

The modeling of potential wheat disease development and 
disease severity is the subject of current studies[40-42]. There 
is a number of issues associated with predictive disease 
models [43]: 

1. They predict sporulation or infection based on historical 
microclimatic data, which means that the response time 
to apply fungicides may be limited;  

2. They can overestimate sporulation or infection events. If 
the disease is not present in the crop and there are no 
obvious sources of spores in the field or farming area, 
the microclimate data can still predict sporulation or 
infection events;  

3. They may require the tolerance of very low levels of 
symptoms in the field, as it may not be economically 
viable to eradicate the disease from the crop completely.  

An accurate forecast of damage level from septoria blotch 
mainly requires data on rain, rain splash, and the precise 
growing pattern of the crop [11]. 

V. CONCLUSIONS  

The early prognostic method described in this paper does 
not represent a true model and will not provide an exact 
prognosis of the septoria leaf blotch severity. The main 
purpose of this simple prognostic method is to point the 
farmer’s attention at the fields with a high probability of 
septoria leaf blotch appearance, making the farmer free to 
select the mode of observation and countermeasure activity. 
The use of the SLBS-approach is limited when there is no 
detailed information on the planting dates and crop rotation. 
The SLBS may also provide false alarm at late crops if 
consider to neighboring early sowed fields. The high response 
of the index at late or uneven crops is physically based on the 
strong signal from open soil, which oversaturates 
chlorophyll's signal. However, the purpose of the SLBS–
approach is the early identification of the unevenness within 
the single field, assuming that the sowing was undertaken 
simultaneously. The combination of monitoring and 



Malakhov / Journal of Applied Science and Technology Trends Vol. 03, No. 02, pp. 64 –73 (2022) 

 

72 

prognostic functions herein described provides a farmer with 
the information on the probability of disease appearance at 
every single field and with the information on the crop 
condition of each field during the vegetation season. From the 
stage of wheat flowering, the SLBS-approach provides 
adequate information of possible disease spread within each 
field. Farmer, provided with a variety of the information from 
SLBS, RETA, VSDI, and prognostic model, may precisely 
point his attention to the hot-spots long before the preventive 
countermeasures will become ineffective. The efficiency of 
the proposed approach is defined by reducing fungicide 
treatment cost, as the farmer may address the application of 
fungicides exactly to the spot of disease appearance instead of 
total treatment of all fields. Apart from the reduced amount of 
chemical agents, the well-timed treatment could reduce the 
yield loss up to 3-4 c/ha or up to 30% of the average yield in 
the agricultural zone of Central Kazakhstan. The project of 
crop monitoring at the fields of JSC “Novokubanskoye’ is 
continuous, and data of 2021 and future years will be used to 
further enhance proposed algorithms. 
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