
 

 

Vol. 03, No. 02, pp. 74 –80 (2022) 
ISSN: 2708-0757 

 

JOURNAL OF APPLIED SCIENCE AND TECHNOLOGY TRENDS 
 

www.jastt.org  

 

                                                             74 
doi: 10.38094/jastt302174   

 

Impact of land cover change on land surface temperature over 

Greater Beirut Area – Lebanon 

 

 

Ali Khyami 

Department of Geography, Faculty of Humanities, Lebanese University, Beirut, Lebanon 

 

ali_khyami@hotmail.com 

 

Abstract 

Remote sensing (RS) technology has been used together with geographic information systems (GIS) to determine the LC types, retrieve 

LST, and analyze their relationships. The term Greater Beirut Area (GBA) is used to refer to the city of Beirut and its suburbs, which 

witnessed rapid urban growth after the end of the civil war in the last decade of the twentieth century, due to the increase in the number 

of its inhabitants, and the prosperity and development of sectors such as; industrial, trade, tourism, and construction. These factors led 

to a wide change in land cover (LC) types and increased land surface temperature (LST). The results showed an increase in built-up areas 

by 29.1% and agricultural lands by 6%, while bare land, forests, and seawater decreased by 28.5%, 4.9%, and 1.9%, respectively. These 

changes caused large differences in the LST between built-up areas and other LC types. The highest LST recorded was in built-up areas 

(33.03°C in 1985, and 34.01°C in 2020), followed by bare lands (32.61 °C in 1985 and 33.49°C in 2020), cropland (31.23°C in 1985 and 

32.17°C in 2020), forest (30.08°C in 1985 and 30.47°C in 2020), and water (24.97°C in 1985 and 28.15°C in 2020). Consequently, converting 

different LC types into built-up areas led to increases in LST and a changed microclimate. 
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I. INTRODUCTION 

One of the major issues facing cities and urban areas is the 
change of the LC types and the increase in land surface 
temperature LST (see, e.g., [1] and references therein). LC can 
be defined as the physical condition of the surface, and it is 
divided into several categories such as dense vegetation, 
agricultural land, waterbody, barren land, and built-up areas [2]. 
According to changing landscapes, climatic conditions, and soil 
type, these categories may differ from one place to another. Land 
use illustrates how people use the land. For example, urban areas 
are divided into residential areas, industrial areas, and 
recreational areas, while water bodies are divided into pools, 
rivers, lakes, and sea. LST is defined as the temperature felt 
when touching any object on the Earth's surface, such as soil, 
rocks, grass, and asphalt roads. Changes in the LC affect soil 
quality, evaporation rates, runoff, albedo, and the amount of the 
transported sediment, as well as the local climate, by modifying 
surface temperatures [3]. 

Urbanization is considered one of the most prominent factors 
that lead to broad changes in the categories of LC. Green spaces, 
forests, agricultural areas, and unused lands are converted into 
residential buildings, commercial centers, industrial areas, 
roads, recreation areas, and other facilities associated with 
public services, such as train stations, airports, seaports, and 
government buildings. Synthetic materials such as asphalt and 
concrete are used in urban construction, which are impermeable 
materials that absorb and store solar radiation. 

After the end of the civil war in 1990, GBA witnessed rapid 
and unplanned urban growth in the absence of planning, 
regulations, and legislation regulating land use. Green spaces of 
various kinds were eliminated and replaced by buildings and 
roads, which led to pressure on the quality of the environment 
and possible modification of the surface temperature (Stone, 
2001). Increasing LST in urban areas leads to the necessity of 
cooling the buildings, which is very costly economically, 
especially in the summer months, and in an area suffering from 
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the irregular electric supply. Therefore, studying urban growth 
in GBA and assessing its negative effects on the local climate is 
considered an urgent matter that must be highlighted. Over the 
past decades, remote techniques have been used together with 
GIS to map the LC, retrieve LST, and give satisfactory results. 
Remote sensing images are characterized by their spectral, 
spatial, radiometric, and temporal resolutions [4]. Geographic 
information systems (GIS) provide a flexible environment for 
entering, displaying, and analyzing digital data and for showing 
the results in the form of tables, graphs, and maps [1, 3, 5-7]. 
This research aims to map the LC types, retrieve LST, and 
analyze the relationship between them, from 1985 to 2020, over 
GBA. 

II. STUDY AREA 

GBA represents the urban agglomeration that includes 
Beirut (the capital of Lebanon, the governorate center) and the 
adjacent municipalities of the Mount Lebanon Governorate. It is 
not considered an independent administrative unit, and it 
extends into the south, east, and north of Beirut. On the west 
side, there is the Mediterranean Sea as a natural border. GBA is 

located between 35°27′–35°39′E and 33°42′–33°
58′N (Fig. 1), at the midpoint of Lebanon's Mediterranean 

coast, with an area of 250 km2, equivalent to 2.3% of Lebanese 
territory.  No recent population census was conducted because 
of the sectarian system controlling the country. The latest 
population statistics for the region were conducted in 2007, and 
the population was estimated more than 2.2 million people. 

GBA is affected by the semi-arid Mediterranean climate. 
Moderate temperatures and rainfall characterize autumn and 
spring, winter is rainy and cold, and summer is humid and hot. 
The average temperature is 22 °C, and the annual average 
rainfall is about 825 mm. During the civil war (1975-1990), the 
city's destruction has led to intense urbanization of the north and 
south coast. In 1963, the urbanized area of GBA formed a region 
of 68 km2. In 1987, this area had reached 80 km2 and expanding 
to 143 km2 in 2005 [8]. 

 

Fig. 1. Map of Greater Beirut Area 

III. MATERIALS AND METHODS 

Landsat 5 Thematic Mapper (TM) image for 1985, and 
Landsat 8 OLITIRS image for 2020 acquired in August, were 
used to map LC types and show their impacts on LST over GBA. 

The satellite images were selected according to the criteria 
adopted by Sun, et al. [1], who suggested the percentage of 
clouds should be less than 10%. All images used were nearly 
cloudless. The images were in UTM projection (WGS 84 datum, 
zone 36 N) and were downloaded from the US Geological 
Survey (earthexplorer.usgs.gov). Thermal bands were utilized to 
retrieve LST from Landsat images (band 6 in TM and band 10, 
11 in Landsat 8) using the raster calculator tool from ArcGIS 

software. The three visible bands (blue, green, and red), were 
combined to obtain true-Color Image. Red and Near Near-
Infrared bands were used to extract the normalized difference 
vegetation index (NDVI). Fig. 2 shows the methodology 
adopted in the present study, and Table I shows the properties of 
the Landsat images. 

 

Fig. 2. Flowchart of the Methodology adopted in this study. 

TABLE I.  THE PROPERTIES OF LANDSAT 5 TM AND LANDSAT 8 IMAGES 

Satellite Bands 
Wavelength 

(µm) 

Resolution 

(m) 

Landsat 5 TM Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared 

(NIR) 
0.76-0.90 30 

Band 5  - Shortwave 

Infrared (SWIR) 1 
1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120×(30) 

Band 7 - Shortwave 
Infrared (SWIR) 2 

2.08-2.35 30 

Landsat 8 

  

Band 1 - Ultra Blue 

(coastal/aerosol) 

0.435 - 

0.451 
30 

Band 2 - Blue 
0.452 - 

0.512 
30 

Band 3 - Green 
0.533 - 
0.590 

30 

Band 4 - Red 
0.636 - 

0.673 
30 

Band 5 - Near Infrared 

(NIR) 

0.851 - 

0.879 
30 

Band 6 - Shortwave 
Infrared (SWIR) 1 

1.566 - 
1.651 

30 

Band 7 - Shortwave 

Infrared (SWIR) 2 

2.107 - 

2.294 
30 

Band 8 - Panchromatic 
0.503 - 

0.676 
15 
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Band 9 - Cirrus 
1.363 - 

1.384 
30 

Band 10 - Thermal 
Infrared (TIRS) 1 

10.60 - 
11.19 

100 × (30) 

Band 11 - Thermal 

Infrared (TIRS) 2 

11.50 - 

12.51 
100 × (30) 

 

A. Retrieval of LST from Landsat 5 TM and Landsat 8 OLI 

In order to retrieve LST in both Landsat 5 and Landsat 8, 
four steps have been adopted. The first step varies between the 
two satellite images. The remaining three steps are the same in 
Landsat 5 and Landsat 8. Landsat series provide metadata files 
of the bands, which can be used for retrieval of the LST as 
illustrated in [9]. 

a) Conversion of digital number (DN) to Spectral radiance 

(Lλ): The thermal infrared bands (band 6) of Landsat 5 (bands 

10, 11) of Landsat 8 were used to convert digital numbers (DN) 

values to Spectral radiance. The following equation was used 

for Landsat 5 [10]: 

Lλ = (
𝐿𝑀𝐴𝑋 − 𝐿𝑀𝐼𝑁

𝑄𝐶𝐴𝐿𝑀𝐴𝑋 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁
) . (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁) + 𝐿𝑀𝐼𝑁       (1) 

Where Lλ is the spectral radiance at the sensor (W M - 2 sr -1 

µm-1) Qcal= a digital number of each pixel, Qcalmax= 255, 

Qcalmin= 0, LMAX is the spectral radiance scaled to Qcalmax 

(W M - 2 sr -1 µm-1), and LMIN is the spectral radiance scaled 

to Qcalmin (W M - 2 sr -1 µm-1). While for Landsat 8, the 

following equation was used (Landsat Project Science Office, 

2002): 
Lλ = ML. Qcal + AL                       (2) 

 

Where Lλ is the spectral radiance at the sensor (W M - 2 sr -1 

µm-1), ML is the Band specific multiplicative rescaling factor 

(band 10, 11), Qcal is the DN of a given pixel (band 10, 11), 

and AL is the Band specific additive rescaling factor. 
 

b) Conversion of spectral radiance (Lλ) to at- satellite 

brightness temperature (TB): The brightness temperature (TB) 

is the microwave radiation radiance traveling upward from the 

top of the Earth's atmosphere [5]. Spectral radiance was 

converted to brightness temperature (TB) by assuming the 

Earth's surface is a black body [11]. TB for both Landsat- 5 and 

Landsat- 8 were calculated by using the following equation 

[10]: 

TB = (
𝐾2

𝑙𝑛 (
𝑘1

   Lλ
 )

+ 1)                 (3) 

Where TB = Satellite brightness temperature (Kelvin), Lλ = 
spectral radiance, K1, and K2 are calibration constants for both 
Landsat 5 (band 6), and Landsat 8 (band 10, 11) (see Table II).  

c) Estimate Land Surface Emissivity:Land surface emissivity 

(ε) is the ratio of energy emitted from natural material to that 

from ideal blackbody at the same temperature [4]. It is desired 

in land surface models for better simulations of surface energy 

budgets from which LST is retrieved [12]. Land surface 

emissivity was calculated as suggested in [13]. 

𝐿𝑆𝐸 =  0.986 +  𝑃𝑣 ×  0.004                     (4)   
 

Land surface emissivity (𝜀) =  0.986 +  𝑃𝑣 ×  0.004. Where 

ε is the Land surface emissivity (LSE), 0.986 and 0.004 are 

constant emissivity for soil and vegetation cover respectively, 

Pv is the vegetation proportion obtained according to Carlson 

and Ripley [12]. 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼 𝑚𝑖𝑛

𝑁𝐷𝑉𝐼 𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼 𝑚𝑖𝑛

)
2

                   (5) 

where 

NDVI min – NDVI reclassified for soil  

NDVI max – NDVI reclassified for vegetation 

𝑁𝐷𝑉𝐼 = (
𝑁𝐼𝑅 −  𝑅

𝑁𝐼𝑅 +  𝑅
)                                      (6) 

Where R is the red band, and NIR is the Near Infrared band. 

d) Retrieval of the Land Surface Temperature:The final step of 

retrieving the LST, or the emissivity corrected LST, was 

obtained using the following equation [14]. 

𝐿𝑆𝑇 =
𝑇𝐵

[1 +  (𝜆 ×
𝑇𝐵
𝜌

) × 𝐿𝑛𝜀]
              (7) 

Where LST = Land surface temperature in Kelvin, TB = 

satellite brightness temperature, λ = wavelength of emitted 

radiance (11.5 μm), ε =  land surface emissivity, ρ = h * c/σ 

(1.438 * 10 -2 mK, (h = Planck’s constant = 6.626*10-34 Js, c 

= light speed =2.998 *108 ms-1, and σ = Boltzmann constant 

=1.38 * 10_23 J/K-1), finally land surface temperature was 

retrieved in Kelvin, and converted to Celsius by subtracting 

273.15. 

TABLE II.  CALIBRATION CONSTANT FOR THERMAL BAND 

Sensor K1 K2 

Landsat 5 (band 6) 607.76 1260.56 

Landsat 8 (band 10) 774.88 1321.08 

Landsat 8 (band 11) 480.88 1201.14 

 

B. Image classification 

The main purpose of Image classification is to automatically 
separate similar pixels and place them in different classes that 
represent the LC types. Two kinds of image classification are 
widely used, supervised and unsupervised classification [15]. 
Unsupervised classification is used within the absence of data, 
high-resolution satellite images, or prior knowledge of the study 
area. Thus, the image is assessed by software consistent with the 
number of categories specified by the user. Supervised 
classification is used when data or satellite images or prior 
knowledge of the study area is available, and thus, the 
classification of an image is based on the training areas specified 
by the user for the software. Supervised classification is one of 
the most important methods used for quantitative analysis of 
satellite images. The most common classification algorithms 
used in supervised classification are Minimum-Distance to the 
Mean Classifier, Parallelepiped Classifier, and Maximum 
Likelihood classification [15, 16]. The Maximum Likelihood is 
derived from the Bayes’ theorem and was selected for mapping 
LC types in this study. It develops the probability function based 
on inputs from a data set collected from training sites. The 
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method then considers each pixel in an image, comparing it with 
known pixels (training sites) and assigning unknown pixels to a 
LC type based on similarity and highest probability of belonging 
to an already known type [17, 18].  

Based on the visual interpretation of the Landsat image, and 
the prior knowledge of the study area, five types of LC were 
identified, forest (dense trees, sparse trees), cropland 
(Vegetables, grassland), bare land (bare soil, rock), built-up 
areas (building, industrial areas, roads) and water (only 
seawater). Each type has different spectral radiation (Fig. 3). 
Twenty-five training sites as a polygon were signed for all LC 
types, with an average of five for each category. Then, training 
samples were entered into the GIS software, and the supervised 
classification was carried out based on the Maximum Likelihood 
classification.  

 

Fig. 3. Spectral reflectance of five land cover types in different bands. 

a) Classification Accuracy Assessment: The accuracy 

assessment is the procedure used to determine the reliability of 

the classified image. The most commonly used method for 

evaluating classification accuracy is to create a set of randomly 

classified points and compare them with the classified images 

in the error matrix . The error matrix is a multidimensional table 

that allows visualization of the performance of an algorithm 

used in image classification. The columns (x-axis) in the table 

represent the ground truth data, and the rows (y-axis) represent 

the results of the classified images (or vice versa) (Congalton, 

1991). Ground truth data can be derived from interpreting high-

resolution images, current the classified images, or from GIS 

data layers. A total of 150 reference points as samples were 

randomly distributed over the classified image to check the 

classification accuracy.  

The accuracy assessment measures generated from the error 
matrix are Producer’s accuracy, User’s accuracy, Overall 
accuracy, and Kappa statistic [3, 19, 20].  

Producer’s accuracy indicates the samples that belong to one 
type are included in other types.  It is also a measure of omission 
error. The percentage of Producer’s accuracy was calculated 
using the following equation: 

Producer’s accuracy =
number of correct 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 in a type 

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑤
× 100      (8) 

 

User’s accuracy indicates the samples that do not belong to 
one type are included in the same type.  It is also a measure of 

commission error. The percentage of User’s accuracy was 
calculated using the following equation: 

User’s  accuracy =
number of correct 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 in a type 

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚
× 100        (9) 

 

Overall accuracy indicates the proportion of correctly 
classified samples on the total number of samples on the map. 
The percentage of overall accuracy was calculated using the 
following equation: 

Overall accuracy =
Total number of correct samples  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠.
× 100      (10) 

 

Kappa coefficient is generally used to assess the accuracy of 
image classifications. It is mainly based on the difference 
between how much agreement is presented compared to how 
much agreement would be expected to be present by chance 
alone [19]. Kappa coefficient was calculated using the following 
equation: 

𝐾 =
𝑁 ∑  𝑋𝑖𝑖𝑟

𝑖=1 − ∑ (𝑋𝑖𝑜𝑋𝑜𝑖)𝑟
𝑖=1

𝑁2 − ∑ (𝑋𝑖𝑜𝑋𝑜𝑖)𝑟
𝑖=1

                 (11) 

 

Where 

r = number of rows in the matrix 

xii = total number of correct samples in a class 

Xio = total of row i 

Xoi = total of column i 

N = total number of samples in the error matrix 

The values of the Kappa coefficient range from -1 to 1. A 
value of 1 indicates a full match, values less than 0.4 as non to 
fair match, from 0.4 to 0.55 as moderate, from 0.55 to 0.7 as 
strong match, from 0.7 to 0.85 as a very strong match, and more 
than 0.85 as an excellent match in the classified images [21]. 

IV. REULTS AND DISCUSSION 

A. Analysis Land cover changes 

 The present study used supervised classification based on 
the Maximum Likelihood method to produce LC maps from 
Landsat images. Based on visual interpretation of the image and 
prior knowledge of the study area, five types of LC were 
identified: forest, cropland, bare land, built-up areas, and water. 
Fig. 4 shows the maps after the classification of LC over types 
over GBA for the years 1985 and 2020. 
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Fig. 4. Land Cover maps of GBA using maximum likelihood classification: 

(a) 24 August 1985, (b) 24 August 2020. 

The produced maps were evaluated for accuracy based on 
150 reference points distributed randomly over the LC types for 
each map 1985 and 2020. Tables III and IV represent the error 
matrix of the classified image for the year 1985 and 2020. The 
overall accuracy for the LC maps of 1985 and 2020 was 87% 
and 89%. The Kappa coefficients were 0.83 and 0.85, 
respectively. In terms of the user’s accuracy the highest 
percentage recorded was 100% for water (1985 and 2020), and 
the lowest percentage recorded was 83.33% and 85% for 
cropland (1985 and 2020). The highest percentage recorded in 
producer’s accuracy was 94.12% in bare lands (1985), and 
93.65% in built-up areas (2020), and the lowest percentage was 
81.82% in built-up areas (1985), and 83.33 in water (2020). This 
means that the classification was done with high accuracy, and 
the method used is appropriate to determine the changes that 
occur in LC over the years. 

TABLE III.  ERROR MATRIX FOR THE LAND COVER MAP OF 1985 

  Reference data 

Classified data 

B
a

re
 la

n
d
s 

B
u

ilt-u
p

 

W
a

ter 

F
o

re
st 

C
ro

p
la

n
d

 

T
o

ta
l 

U
se

rs 

A
c
c
u

ra
c
y
 (%

) 

Bare lands 48 5 0 0 2 55 
87.2

7 

Built-up 3 27 0 0 0 30 90 

Water 0 0 10 0 0 10 100 

Forest 0 1 0 21 3 25 84 

Cropland 0 0 2 3 25 30 
83.3

3 

Total 51 33 12 24 30 
15
0 

 

Producers Accuracy 

(%) 

94.1

2 

81.8

2 

83.3

3 

87.

5 

83.3

3 
  

Overall Accuracy 

(%) 
      87 

Kappa coefficient       0.83 

 

TABLE IV.  ERROR MATRIX FOR THE LAND COVER MAP OF 2020 

  Reference data 

Classified 

data 

B
a
re

 

la
n

d
s 

B
u

ilt-u
p

 

W
a
ter 

F
o
re

st 

C
ro

p
la

n
d

 

T
o
ta

l 

U
se

rs 

A
c
c
u

ra
c
y
 

(%
) 

Bare lands 18 2 0 0 0 20 90 

Built-up 2 59 1 0 3 65 90.77 

Water 0 0 10 0 0 10 100 

Forest 0 0 0 13 2 15 86.67 

Cropland 1 2 1 2 34 40 85 

Total 21 63 12 15 39 
15

0 
 

Producers 

Accuracy 

(%) 

85.71 93.6 
83.

3 

86.

6 
87.1   

Overall Accuracy (%)     89 

Kappa coefficient 0.85 

 

The overlay of LC maps for 1985 and 2020 shows 
considerable changes in the area for each type. The total area of 
the GBA is about 250 km2. Table V shows the area and 
percentage for each type of LC from 1985 to 2020, and Table VI 
represents the changes that occurred during this period. From 
these tables, it can be noticed clearly that the built-up areas 
(building, industrial area, and streets) have the most significant 
changes, which increased by 29.1% (from 54.20 to 127.05 km2), 
this increase was in areas of bare lands, croplands, and water 
(sea). In contrast, bare lands in the same period decreased by 
28.5% (from 91.16 to 20.02 km2). Meanwhile, the cropland 
increased by 6% (from 56.62 to 71.50 km2). However, forest 
decreased by 4.9% and water by 1.9%.  

TABLE V.  AREA AND PERCENTAGE FOR LAND COVER IN 1985 AND 2020 

  1985 2020 

class Area  (km2) Percentage Area (km2) Percentage 

Bare lands 91.16 36.5 20.02 8 

Built-up 54.2 21.7 127.05 50.8 

water 8.91 3.6 4.7 1.9 

forest 39.1 15.6 26.73 10.7 

Cropland 56.62 22.6 71.5 28.6 

 

Based on the previous results (in Tables V and VI), it is clear 
that built-up areas witnessed the greatest growth and expansion, 
at the expense of bare land, cropland and forest areas. Southeast 
of the capital Beirut, where the southern suburb is located, the 
rate of urbanization has increased dramatically, especially in the 
areas of Bourj el Barajneh, Haret Hreik, and Chiyah. As for the 
south of the capital and on the Mediterranean coast, built-up 
areas swept the agricultural lands in the area of Choueifat, Al-
Ozaie, and Khaldeh. The main issue that caused rapid and 
uncontrolled urbanization in GBA is the absence of legislation 
regulating land use and the concentration of commercial and 
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industrial activity in the capital Beirut, which increased the 
demand on land for urban use. This development required the 
expansion of public utilities such as roads, airport and port, 
where the sea areas in Ouzai and Ras Beirut were filled to build 
the western runway of Beirut airport, and the construction of a 
new basin in the Beirut port.  

TABLE VI.  DIFFERENCE BETWEEN AREAS AND PERCENTAGE FOR LAND 

COVER TYPES FROM 1985 AND 2020 

class Area change from 1985 to 2020 (km2) Percentage (%) 

Bare lands -71.1 -28.5 

Built-up 72.9 29.1 

water -4.2 -1.7 

forest -12.4 -4.9 

Cropland 14.9 6 

 

B. Temperature Variations for different land cover types 

LST maps were prepared based on the Thermal Infrared 
bands of Landsat images using the raster calculator tool from 
ArcGIS software. LST was retrieved by the conversion of the 
digital number into the spectral radiance, then the spectral 
radiance is converted to a satellite brightness temperature. After 
this process, emissivity was calculated as suggested in Sobrino 
et al., 2004, and the LST obtained in Kelvin and transformed 
into degrees Celsius by subtracting 273.15 from the result.  

For both images the lowest LST observed was in the water 
(24.97°C in 1985, and 28.15°C in 2020). Forest recorded 
(30.08°C in 1985, and 30.47°C in 2020), cropland (31.23°C in 
1985, and 32.17°C in 2020), bare lands (32.61. °C in 1985, and 
33.49°C in 2020), and built-up (33.03°C in 1985, and 34.01°C 
in 2020).  

The Forest shows the lowest LST after water because it 
contains a variety of dense trees, which can reduce the amount 
of heat stored in the soil and surface structures through 
evapotranspiration, leading to lower temperatures compared to 
other types of LC. The standard deviations of the LST values are 
small for water and forest in both years, this is due to the 
homogeneity of the water (seawater) and forest (pine and oak 
trees) existing in the study area. Cropland showed middle 
standard deviation, while built-up area showed the highest level 
of standard deviation in both years due to the heterogeneity of 
the material used in building, roads, and general amenities.  

The spatial distribution of LST in 1985 and 2020 images is 
illustrated in Fig. 5. The surface temperature of the 1985 image 
ranged from 24.9 to 39.9 (average 31.8°C), and for 2020 ranged 
from 28. 1 to 41.5 (average 33.02 °C). It is clear that for both 
images 1985 and 2020, built-up areas followed by bare lands 
exhibit the highest LST in capital Beirut and the surrounding 
suburbs, while the lowest LST was recorded in the west 
(Mediterranean Sea) and in the east (forest). This indicates 
replacing the LC types (water, forests, cropland, and bare lands) 
by built-up areas, which by their nature store heat, increases LST 
and contributes to modifying local climate. The average value 
of LST and LC types in 1985 and 2020 are illustrated in Table 
VII. 

TABLE VII.  AVERAGE VALUES OF LST BY LAND COVER TYPES IN 1985 

AND 2020 

Class 
Average LST 

1985 

Standar

d 

deviation 

Average LST 

2020 

Standar

d 

deviation 

Built-up 32.61 1.39 34.1 1.57 

Bare 

lands 
32.03 1.8 33.49 2.1 

Forest 30.08 1.14 30.47 0.86 

Cropland 31.23 1.37 32.17 1.22 

Water 26.64 0.47 28.71 0.49 

 

The technique of image differentiation (Image 2020 
subtracted from Image 1985) was used to detect LST changes 
that resulted from the changes of LC types. The result has shown 
that the average LST difference between the areas that were 
built-up and continued as well, the temperature rose by 1.49°C, 
and the areas that were transformed from bare lands, cropland, 
forest, and water into a built-up, LST rose 2.07, 2.87, 4.02, and 
7.46 respectively. The area was forest and continued as well. 
The average temperature rose by 0.39°C, the areas were 
transformed from bare lands and cropland into the forest due to 
the plantation campaigns, LST decreased 2.14, 1.56, and 0.76 
degrees, respectively. This indicates replacing the LC types 
(water, forests, and grasslands) with urban areas, which by their 
nature store heat, increases LST, and contributes to modifying 
the local climate.  

LST map shows that the Ras Beirut region, a built-up 
surrounded by seawater from the west, north and south, showed 
lower temperatures than built-up in the surrounding suburbs, 
indicating a possible effect of sea air contributed to cooling the 
surface temperature in this region. In some cases and on a 
limited scale, the LST of bare lands was higher than that of built-
up. This was due to low soil depth or rock exposures. 

 

Fig. 5. LST maps of GBA: (a) 24 August 1985, (b) 24 August 2020. 

V. CONCLUSIONS  

In the present study, an approach of remote sensing (Landsat 
satellite imagery) and geographic information system were used 
to evaluate the LC changes and their impacts on LST over GBA. 
The results showed essential changes between 1985 and 2020, 
which increased the area of built-up and croplands and 
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decreased the area of bare lands, forest, and even water 
(seawater). The most significant change occurred in the capital 
Beirut and its suburbs, especially in the southern and 
southeastern, where the area of built-up increases by 29.1 %. 
The area of bare lands decreased by 28%. These changes led to 
significant changes in the LST, either positively or negatively. 
In the case of LC changes to built-up, the temperature rises 
significantly (from 1.4 to 7.37°C), while in the case of LC 
changes to a forest, the temperature decreases (from 2.56 to 
0.76°C). This study has shown that changing LC types directly 
affects the local climate and leads to its modification often. This 
leads to the emergence of urban heat islands at night over cities, 
where the temperature over urban areas is higher than the 
temperature in the surrounding rural areas, this is a result of the 
spread of impermeable surfaces in cities that store heat and do 
not reflect it, but rather re-emits it to the atmosphere at night.  

The limitations of this study were in the difficulty of 
conducting fieldwork to measure the actual LST and compare it 
with the LST retrieved from Landsat images. Regarding the 
classification of the LC types, we could not differentiate 
between agricultural areas, grassland, and degraded forest, due 
to the similarity of the spectral reflection of these places, so they 
have been considered in one category.  

 The dilemma of finding appropriate solutions to the 
negative effects of land cover changes lies in the difficulty of 
implementing them and their high financial cost. In many cases, 
the problem remains unresolved. For rapidly growing urban, the 
best recommendation to the decision-makers is to avoid the 
problem before it occurs. This is through enact the laws and the 
legislation that regulate land use, distribution of economic 
activities, public services, and preserving trees and green spaces. 
For future research, we suggest studying the relationship 
between LST and air temperature, its impacts on human health, 
and the ecosystem's members 
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