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Abstract 

Bone fractures are among the most frequent injuries requiring immediate diagnosis, yet traditional X-ray analysis is time-consuming and 

reliant on expert interpretation. As medical AI advances, there is an increasing requirement in terms of effective and implementable 

diagnostic tools. The purpose of the study is to create a real-time, clinically practical system to detect a fracture combining lightweight 

deep learning, interpretability, and system-level integration. A convolutional neural network with MobileNetV2 architecture was trained 

on a stratified dataset of the elbow X-ray images, which have been divided into three classes: normal, hairline, and displaced fractures. 

Generalization and explainability were performed with data augmentation, two-phase fine-tuning, and Grad-CAM. This model had an 

accuracy of 89.26 percent, a precision of 91.52 percent, F1 score of 89.04 percent and a minimum false negative of 14 cases out of 1018 

cases. The system is delivered using Docker on the AWS EC2 and available as a web interface implemented using Flask, which provides 

an opportunity to apply it in distant clinical facilities. The suggested pipeline merges both deep learning research and clinical practice 

domains because it provides a system allowing one to detect bone fractures quickly, interpretably, and scale up, and is the first of its kind 

to provide an entity that is accurate, can be used in real-time, and be deployable end-to-end. 
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I. INTRODUCTION 

One of the most common body injuries across the globe is 
that of bone fractures, which immediately require diagnosis and 
treatment to avoid complications. The existing markets for 
fracture detection include standard X-ray and CT scan, which 
often demand great expertise and are time-consuming. With 
advances in medical imaging technologies, deep learning 
algorithms are beginning to emerge as viable systems to 
automate and expedite the process of fracture detection. This 
work is concerned with the development of an automated 
fracture detection system for bone images based on deep 
learning that will adopt a MobileNetV2 architecture. The model 
would improve its accuracy and robustness through data 
augmentation, evaluation metrics, and regularization 
techniques. The model will be built from deep learning by 
training on a dataset of labeled bone X-ray images so that 
important identification and classification of fractures may help 
healthcare professionals by reducing the time and effort for 
diagnosis. This system describes the building, training, and 
evaluation processes of the deep learning model, the methods to 

ensure high performance and generalization across many 
fracture scenarios, and the envisaged clinical application of the 
system and its consequent effects on the health system 
worldwide. An intelligent deep learning model would be 
developed in such a way that this would automatically detect 
fractures on an X-ray image with very high accuracy and 
reliability. The objective the proposed system are:  

1) To design and train a convolutional neural network 

employing the MobileNetV2 architecture. 

2) To improve the generalization power of the model with 

the use of advanced data augmentation techniques. 

3) To analyze the decision-making process of the model 

using Class Activation Mapping (CAM). 

4) To test real images and produce diagnosis output. 

5) To create an end-user system that is capable of use for 

clinical decision support. 

In contrast to existing approaches, this study focuses not 

only on classification accuracy but also on the deployment of a 
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lightweight, interpretable, and real-time system optimized for 

clinical settings. 

II. LITERATURE REVIEW 

Automated bone fracture detection using medical imaging 
has garnered significant interest, with machine learning (ML) 
and deep learning (DL) methods increasingly employed to 
support clinical diagnostics. Early classical ML approaches, 
such as the study by [1], showed encouraging results on X-ray 
images using linear discriminant analysis (LDA). This technique 
integrated multiple image processing methods like Canny and 
Sobel edge detection, along with Hough line feature extraction, 
and was evaluated across several classifiers with 
hyperparameter tuning and cross-validation. However, the study 
lacked insights into clinical interpretability and the use of 
diverse datasets. 

With the advancement of DL, newer methods have offered 
enhanced capabilities, though results vary depending on dataset 
composition and imaging modalities. In [2] authors utilized a 
combination of YOLACT++ segmentation and YOLOv4 
detection on an augmented arm bone X-ray dataset, 
outperforming some existing models. Still, the small dataset 
used limits generalizability, underscoring the need for validation 
on larger, multicentric datasets. Authors in [3] conducted a 
systematic review highlighting DL's potential in pediatric 
fracture detection, particularly for elbow injuries. Their analysis 
emphasized the predominance of single-institution studies, 
pointing to a need for broader and more diverse data to enhance 
model robustness. In the domain of CT imaging, authors of [4] 
investigated 3D CNNs for pelvic fracture detection but faced 
challenges in accurately modeling complex bone structures. 
Alternatively, Weikert et al. demonstrated the potential of DL 
for rib fracture detection in whole-body trauma scans, achieving 
notable specificity and sensitivity, though still with limitations 
in clinical coverage. 

For skull fractures, authors of [5] compared YOLOv3 and 
attention-based U-Net segmentation models. While both 
techniques demonstrated effective localization, they did not yet 
align with ideal benchmarks expected for clinical deployment. 
More recent efforts have aimed at improving detection 
sensitivity and reducing false positives. In [6] authors introduced 
a multi-stage 3D DL algorithm for rib fractures that showed 
enhanced detection with refinement, though it still requires 
broader validation. In X-ray imaging, author applied YOLO for 
rapid fracture localization [7], while authors used a fusion of 
feature and image pyramid networks to improve detection 
accuracy in thighbone fractures [8]. In [9] authors addressed the 
detection of rare acetabular fractures using a DCNN, though 
their work was constrained by limited data availability.  

Several other researchers [10-12] employed CNN-based 
models such as AlexNet, DenseNet, and VGG19 across larger 
datasets, achieving superior performance compared to 
traditional ML methods. These works demonstrate the evolving 
accuracy and efficiency of DL models in medical image 
classification. In [13], researchers provided a comprehensive 
review on hip fracture detection, highlighting the advantage of 
AI-human collaboration in enhancing diagnostic reliability. In 
[14], researchers explored integrated learning techniques on the 

MURA dataset with promising classification outcomes, though 
real-world deployment remains to be explored further. 
Moreover, researchers in [15] focused on vertebral fracture 
detection using DL, reporting performance comparable to 
clinical experts, while Hsieh et al. extended DL’s application to 
predict fracture risks related to bone mineral density in 
osteoporosis.  

Even though other researches already addressed diverse 
deep learning models in fracture detection, the present research 
proposal contributes to the research field by a combination of a 
light-weight model (MobileNetV2) with a explainable AI 
framework (Grad-CAM) trained according to a two-phase fine-
tuning approach and implemented as a real-time web interface. 
Our method, unlike the traditional ones, is a full-end-to-end 
pipeline, inclusive of data preprocessing, deployment on the 
cloud to Flask, Docker and AWS EC2. The suggested system 
focuses not only on the accuracy of classification but also the 
usability, transparency, and scalability of such an idea to the real 
world clinical environment with a focus on resource limited 
conditions. 

Overall, AI-driven bone fracture detection shows substantial 
promise but challenges remain in dataset diversity, clinical 
interpretability, minimizing false positives, and validating 
models across multiple institutions and imaging modalities to 
ensure real-world applicability. Table I summarizes the key 
research gaps identified in the domain of automated bone 
fracture detection and outlines the specific contributions of the 
proposed framework in addressing each of these challenges. By 
leveraging a lightweight MobileNetV2 backbone, extensive data 
augmentation, transfer learning, and explainability via Grad-
CAM, the system not only enhances detection performance but 
also ensures real-time usability and clinical integration through 
a web-based interface and full-stack deployment strategy. 

TABLE I.  SUMMARY OF RESEARCH GAPS AND CORRESPONDING 

SOLUTIONS PROPOSED IN THIS STUDY 

Research Gap 

Identified 

Impact on Prior 

Studies 

How This Research 

Addresses It 

Lack of lightweight, 

deployable models 

for real-time 

detection 

Limited 

deployment in 

clinical or low-

resource settings 

Uses MobileNetV2, a 

lightweight and fast model 

suitable for low-resource 

environments 

Limited dataset 

diversity and poor 

generalization 

Overfitting and low 

robustness in varied 

clinical scenarios 

Applies data augmentation 

and transfer learning to 

improve generalization 

across classes 

High false negative 

rates in clinical 

diagnostic tools 

Missed fracture 

cases, risking 

delayed diagnosis 

Achieves very low false 

negatives (14/1018), 

enhancing diagnostic 

reliability 

Absence of user-

friendly interfaces 

for clinicians 

Reduced clinical 

trust in model 

decisions 

Provides a responsive web-

based interface with image 

upload, preview, and real-

time output 

Lack of 

explainability in 

predictions 

Models remained 

inaccessible to 

clinicians 

Integrates Grad-CAM for 

visual feedback on model 

attention, enhancing 

interpretability 

Lack of end-to-end 

deployment for 

clinical adoption 

Gaps in practical 

application and 

scalability 

Implements complete 

pipeline with Flask, 

Docker, and AWS EC2 for 

scalable, remote clinical use 
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III. METHODOLOGY 

The proposed system for automated bone fracture detection 
integrates deep learning with a lightweight MobileNetV2 model 
and a user-centric web interface to provide real-time diagnostic 
support from X-ray images. This section outlines the end-to-end 
methodology, including dataset preparation, preprocessing, 
model training, hyperparameter tuning, system architecture, and 
deployment. 

A. Dataset Description 

The dataset used in this study was sourced from a publicly 
available repository which contains X-ray images of multiple 
anatomical regions, including the elbow, hand, and shoulder. 
This was further discerned into three viable clinical groups of 
normal, hairline and displaced fractures. The method of 
stratified sampling was utilized with the following division of 
the data partition into the training (70%), validation (15%), and 
testing (15%) sets, where each of them run through the defined 
number of classes in a balanced distribution. To improve model 
generalization and to avoid overfitting, a complex augmentation 
pipeline was used, including rotations (±20°), zooming (up to 
20%), horizontal and vertical shifts (±20%), brightness variation 
(±20%) and horizontal/vertical flipping. These distortions 
simulate randomness, which is typically present in healthcare 
radiography and enhance the generalizations of the model in 
practice. 

B. Preprocessing Pipeline 

All input images underwent standardized preprocessing 
prior to model training. Images were resized to 224×224 pixels 
to comply with MobileNetV2’s input specifications. Pixel 
values were normalized to a [0, 1] range for improved training 
convergence. Channels were formatted in RGB to align with the 
pre-trained network expectations. Moreover, stratified sampling 
ensured class-balanced distributions across training, validation, 
and test sets, promoting unbiased learning and evaluation. 

C. System Architecture 

As depicted in Fig. 1, the system comprises four primary 
modules: the user interface, preprocessing pipeline, deep 
learning inference engine, and result display unit. The client-
side interface, built using HTML, CSS, and JavaScript, allows 
users to upload X-ray images through a drag-and-drop interface 
or manual selection. These images are processed via a Flask 
backend, which executes preprocessing, invokes the trained 
MobileNetV2 model for inference, and returns the prediction 
(fracture or no fracture) to the frontend dynamically without 
reloading the page. This modular design ensures efficient 
operation, low-latency feedback, and intuitive clinical usability. 

D. Model Description and Training Strategy 

In this study, we used MobileNetV2 as the backbone 
architecture, a well-known lightweight convolutional neural 
network which is efficient and highly accurate at the same time 
in low resource environments. In order to have the same input 
dimensions of ImageNet pretrained models which are (224 × 
224 × 3), the model was initialized with this dimension, as 
summarized in Table II. This was set to 0.75 to decrease model 
complexity while maintaining a little drop in the feature 
extraction skills. It was removed the top layers of classification 

(include_top = False) in order to receive a custom head 
classification for the binary fracture detection task. ImageNet 
Pretrained weights were used to leverage the transfer learning to 
allow extraction of robust and generalized image 
representations. 

 

Fig. 1. End-to-End System Architecture for Real-Time Bone Fracture 

Detection Using MobileNetV2 

Two separate phases of model training were optimized for 
performance and generalization. First, the base MobileNetV2 
layers were frozen and only the custom classification layers 
were trained which enabled the domain adaptation to be 
effective. Then in the second stage the last 30 layers of the 
backbone were unfrozen to fine tune the network to learn task 
specific features. The Adam optimizer was used for training 
with the learning rate of 0.0001 and the batch size of 64. Dropout 
layers with dropout rates of 0.7 and 0.5 were applied on various 
stages to avoid overfitting while the use of L2 regularization 
with a weight decay coefficient (λ = 0.01) was also employed. 
Manual search over learning rate schedules, batch size, dropout 
rates and regularization values were performed based on 
surrogate performance on the validation set. This systematic fine 
tuning approach ensured that the balance between the 
computational efficiency and accuracy of classification 
productions was optimal. 

TABLE II.  MOBILENETV2 BASE MODEL CONFIGURATION 

E. Hyperparameter Optimization  

In order to have optimal model performance while being 
efficient, a systematic hyperparameter tuning has been 
implemented. Then the learning rate was manually explored in 
the range [0.1, 0.01, 0.001, 0.0001] and 0.0001 was found to 
provide the best convergence and stability. Batch size 
experiments were studied with values of 32, 64, 128 and 64 was 
chosen as the best value that maintains a balance between model 
generalization and computational requirement. At these two 
important stages in the custom classification head, dropout 
regularization was applied at rates of 0.3, 0.5 and .0. A 
(validation) performance of 0.7 in the first dropout layer and 0.5 

Parameter Value Description 

Input Shape (224, 224, 3) Standard ImageNet size 

Alpha 0.75 Width multiplier (reduced from 1.0) 

Include Top False Exclude final classification layers 

Weights ImageNet Pre-trained weights 

Trainable Layers Last 30 Fine-tuning approach 
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in the subsequent layer had better results. We also tested L2 
regularizations with λ values of 0.1, 0.01 and 0.001, we found 
that a trade-off between mitigating overfitting and training loss 

stability is with λ = 0.01. Also, the fine tuning of the width 

multiplier (α), with MobileNetV2 was done for α∈[0.35, 0.5, 

0.75, 1.0], where α=0.75 was found to theoretically provide the 

best balance between model expressiveness and classification 
accuracy. During model optimization, the search space of the 
hyperparameters explored is outlined in Table III, learning rate, 
batch size, dropout rates L2 regularization and alpha scaling. A 
specification is given for test ranges, optimal values chosen and 
tuning methods for each parameter. Through this systematic 
tuning, we ended up with a well-balanced configuration which 
simultaneously achieved maximum possible classification 
performance and kept the computational expense at bay. 

TABLE III.  HYPERPARAMETER SEARCH SPACE 

Parameter Values Tested Optimal Value Tuning Method 

Learning Rate 
[0.1, 0.01, 

0.001, 0.0001] 
0.0001 Manual Search 

Batch Size [32, 64, 128] 64 
Resource 

Constraints 

Dropout Rates [0.3, 0.5, 0.7] 
0.7 (first), 0.5 

(second) 

Validation 

Performance 

L2 

Regularization 

[0.1, 0.01, 

0.001] 
0.01 

Weight Analysis 

 

Alpha Value 
[0.35, 0.5, 0.75, 

1.0] 
0.75 

Model 

Size/Accuracy 

Tradeoff 

F. Training Management and Callback Optimization 

To guarantee the proper convergence and the possibility of 
overfitting, a well-planned training strategy was followed with 
three important callbacks. The EarlyStopping was set up with a 
patience of 5 epochs which terminated the training once the 
validation performance had stagnated to avoid having to spend 
unnecessary computations. The ReduceLROnPlateau was 
applied to automatically scale the learning rate with a factor of 
0.2 in case no improvement was noted out of the last 3 epochs 
in the training, thus leaving the model to adjust its weights 
better. ModelCheckpoint was applied in order to track validation 
accuracy and store the model weights at the point when the best 
performance was achieved. The optimizer used to train the 
model was the Adam type and the model could train up to 20 
epochs although with the EarlyStopping feature, it usually 
converged within 14th to 17th epochs. 

G. Implementation and Deployment 

Upon completion of training, the final model was 
encapsulated in a production-ready system using Flask for 
backend integration. The user-facing web interface not only 
supports real-time image upload and diagnosis but also 
incorporates Grad-CAM visualizations for interpretability and 
transparency in predictions. For seamless deployment, the entire 
system was containerized using Docker and hosted on a single 
AWS EC2 instance (t2.medium, 2 vCPUs, 4 GB RAM). This 
lightweight setup eliminates the need for GPU acceleration, 
owing to the efficiency of the MobileNetV2 architecture. The 
deployment ensures cross-platform accessibility, scalability, 

and remote usability—making the system well-suited for use in 
hospital settings, rural clinics, and telemedicine environments. 

IV. RESULT AND DISCUSSION 

The proposed bone fracture detection system, based on a 
fine-tuned MobileNetV2 model, demonstrated robust 
classification performance, high usability, and readiness for 
clinical deployment. Evaluation was conducted using standard 
metrics, confusion matrix analysis, training dynamics, and web 
interface testing. 

A. Training and Validation Trends 

Fig. 2 illustrates the training and validation curves across 20 
epochs. The model exhibited rapid learning during the early 
epochs, with accuracy stabilizing around epoch 10. Loss curves 
show consistent decline in both training and validation sets, 
indicating effective convergence without overfitting. The close 
alignment between the curves confirms that the transfer learning 
strategy enabled the model to generalize well on unseen X-ray 
data. Such consistency was obtained by the considered two-
phase fine-tuning scheme: the original freezing of layers (on the 
first phase) was followed by the subsequent unfreezing the same 
final 30 layers at later stages. Regularization methods like 
dropout, L2 penalty and learning rate were also used as 
additional support. The stability of the performance proved that 
data augmentation and transfer learning provided good 
generalization on unseen data, which is very significant in 
medical imaging. 

 
(a) 

 
(b) 

Fig. 2. Training and Validation curve over 20 epochs for (a) Accuracy (b) loss 
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B. Classification Performance 

The model achieved an accuracy of 89.26%, an F1-score of 
89.04%, precision of 91.52%, and recall of 89.26%, 
demonstrating strong reliability in binary classification of elbow 
X-rays. As shown in Fig. 3, the confusion matrix confirms high 
sensitivity and specificity, with only 2 false positives and 14 
false negatives out of 2034 test images. This low false negative 
rate—approximately 0.69%—is especially important in clinical 
practice, where missed fracture cases can result in delayed or 
incorrect treatment. Analysis of misclassifications showed that 
most errors were associated with subtle hairline fractures, a 
known challenge even for experienced radiologists, further 
highlighting the value of model-assisted diagnostics. 

Table IV compares the proposed model with other notable 
methods from the literature. Notably, our model achieved 
superior accuracy while being significantly more lightweight 
and suitable for deployment on low-resource or real-time 
platforms. This comparison underscores the practical value of 
our method in terms of the trade-off between performance and 
computational efficiency—an often overlooked aspect in earlier 
studies. 

 

Fig. 3. Confusion matrix for the MobileNetV2-based fracture detection 

system. 

TABLE IV.  ACCURACY COMPARISON WITH SELECTED EXISTING 

FRACTURE DETECTION MODELS 

Method - Study Accuracy (%) 

[1] 88.67 

[2] 81.91 

[4] 69.5 

[8] 87.80 

[9] 82.8 

[15] 86 

Proposed Method 89.26 

 

The given method shows the higher accuracy of 
classification compared to a number of earlier works, and a 
substantial decrease of the computational overhead. Compared 
to systems like CNN-based 3D architectures [4] or ensembles of 
feature networks [8] whose training and obtaining outputs is 
resource-intensive, the current model is based on an efficient 
MobileNetV2 that supports real-time applications. The 
combination of the two-phase fine-tuning technique with 
sophisticated data augmentation techniques increase the 
robustness learned with respect to both domain-specific fracture 
features and by generalizing. Moreover, Grad-CAM integration 
provides a solution to a frequently missed deficiency in the 
previous research an inability to explain AI-based diagnostic 
outcomes. Such a union between model performance, 
interpretability and clinically deployable architecture (thanks to 
Flask and Docker) give rise to a harmonious framework that is 
not only precise but also usable and expandable advantages that 
have seldom been documented together in prior fracture 
detection research. 

C. Web Interface and Real-Time Feedback 

The system includes a browser-based interface, shown in 
Fig. 4, designed for intuitive interaction. Users can upload X-ray 
images via drag-and-drop or manual selection. The interface 
supports JPG, PNG, and JPEG formats and performs reliably 
across modern browsers including Chrome and Edge. Once 
uploaded, images are processed by a Flask backend, and 
predictions are displayed dynamically with no page reload. Fig. 
5(a) shows output when a normal case is detected, and Fig. 5(b) 
shows detection of a fracture, both with real-time visual 
feedback. This interface supports clinician-friendly deployment 
and improves trust via interpretability. 

 

Fig. 4. User-friendly browser-based interface for uploading bone X-ray 

images 

D. Deployment and Real-World Readiness 

The model’s lightweight architecture and low memory 
requirements enable deployment on edge devices or mobile 
platforms. The entire system is containerized using Docker and 
deployed on an AWS EC2 instance for remote access and 
scalability. These characteristics make the solution suitable for 
resource-limited settings, emergency care, and telemedicine 
applications. So, the proposed system integrates robust model 
performance with real-time usability and explainability, 
presenting a practical and scalable solution for automated bone 
fracture detection in clinical settings. Clinically, the proposed 
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system offers significant advantages: a high level of diagnostic 
safety due to the low false negative rate, rapid inference for use 
in emergency care, and a user-friendly interface that requires 
minimal training. From a research standpoint, it addresses key 
gaps in previous literature by combining accuracy, 
explainability, and full-stack deploy ability in a single 
framework. Overall, the study demonstrates that AI-based 
diagnostic tools can be both powerful and practical when 
designed with real-world integration in mind. 

 

(a) 

 

(b) 

Fig. 5. Real-time output showing prediction result (a) No Fracture (b) Fracture 

Detected 

V. CONCLUSION 

This study presents an end-to-end, lightweight, and 
explainable AI framework for automated bone fracture detection 
using elbow X-ray images. By leveraging the MobileNetV2 
architecture, the model achieves a balance between 
computational efficiency and classification accuracy, making it 
well-suited for real-time diagnostic applications. The system 
was trained using a two-phase fine-tuning strategy with data 
augmentation and regularization to enhance generalization and 
reduce overfitting. It demonstrated strong performance, 
achieving 89.26% accuracy, 89.04% F1-score, and minimal 
false negatives—critical in clinical contexts where missed 
fractures can have serious implications. The inclusion of a 
browser-based interface with Grad-CAM visualizations 
enhances model transparency and supports clinician trust. The 
application is containerized and deployed on AWS, ensuring 
scalability for both urban and remote healthcare settings. 
Overall, the proposed solution bridges the gap between 
advanced deep learning research and practical clinical 
deployment, contributing to more efficient, accessible, and 
interpretable medical diagnostic workflows. Overall, the work 
distinguishes itself by not only demonstrating strong diagnostic 
performance but also addressing practical deployment needs, 
interpretability concerns, and clinical usability through a 
complete, lightweight, and real-time AI-driven framework—
advancing beyond prior fracture detection models. 
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