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Abstract 

Phishing is an ongoing and dynamic threat in the field of cybersecurity, targeting user trust to capture sensitive data through fraudulent 

websites. Conventional detection systems tend to use binary classification and static features, which make them less flexible to new attack 

paradigms. This paper seeks to design a solid and comprehensible phishing detection system that alleviates the drawbacks of binary 

labeling by proposing a regression-based risk scoring model. The aim is to improve accuracy, feature interpretability, and deployment in 

real-time settings. The new method combines Whale Optimization Algorithm (WOA) for feature selection and H2O AutoML for model 

creation and assessment. A filtered dataset of 10,000 phishing and normal websites is operated upon using 48 features, which are then 

reduced to 36 using WOA. The last models are optimized with H2O AutoML, encompassing ensemble learners, and tested on various 

regression metrics. Interpretability is achieved with SHAP analysis. The best model had an R² of 0.9534, RMSE of 0.1079, and MSE of 

0.0116, better than traditional classification-based phishing detectors. The system, with only 36 features, had training time decreased by 

23.6% and inference latency reduced by ~18%, without any sacrifice in detection accuracy (98.3%). Regression-based scoring also 

supported adaptive threat ranking in real time. By posing phishing detection as a regression problem and integrating metaheuristic 

feature selection with AutoML, this work introduces a scalable and explainable framework ready for real-world deployment. The low-

latency yet high-accuracy model is best suited for integration into browser-level phishing filters and cloud-based threat intelligence 

platforms. 
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I. INTRODUCTION 

Recent years have seen a significant increase in email 
communication due to its affordability, convenience, and speed.  
It is typically used in technical conversations, business, 
education, and file exchanges [1].  It makes it possible to 
communicate non-intrusively with people all around the world.  
Email is widely used for communication, but hackers also use it 

to commit crimes [2].  Hacking, spoofing, phishing, email 
bombing, whaling, and spamming are among the cybercrimes 
that are perpetrated using emails.  Nowadays, spam, also known 
as bulk email, has become a serious issue on the Internet [2,3]. 
It is a large and pervasive attack that involves sending phishing, 
malware, and unsolicited communications to computers. 
Approximately 14.5 billion emails are sent per day worldwide, 
according to a recent survey of email spam. Malicious emails 
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make up around 2.5 percent of these emails [4]. Customers are 
directed to fraudulent websites when phony links are included 
in emails. This operation uses fake URLs to mimic popular 
websites, making them appear odd [5]. ML and DL techniques 
are utilized in a number of research to detect and categorize 
spam emails utilizing various algorithms in order to get over the 
restrictions. But during the implementation stage, a variety of 
problems arise, including misclassification, poor accuracy, and 
excessive classification error [6-9]. 

The next sections describe the new Aquila Optimization 
method used in this study to determine the optimal set of Stacked 
Auto Encoder hyperparameters to increase text classification 
accuracy [10]. Phishing is a "criminal mechanism that uses both 
technical subterfuge and social engineering to steal consumers' 
financial account credentials and personal identity data." 
Although security has improved due to advancements in 
automated phishing website detection, users must remain 
cautious in this arms race to protect themselves because these 
automated methods are not infallible [11-14]. Phishing assaults 
are still common, according to the Anti-Phishing Working 
Group, which identified 42,890 distinct phishing websites in 
December 2013, with the banking and online payments sectors 
making up almost 80% of the targeted industries [15]. 

One of the central challenges in phishing detection is the 
inconsistency and inefficiency of current machine learning 
pipelines when applied to diverse and evolving phishing 
strategies [16]. Most existing approaches rely heavily on static 
datasets and predefined features, which do not adapt well to new 
attack patterns. Additionally, many models lack automation in 
feature selection and model tuning, resulting in suboptimal 
performance or overfitting. Furthermore, phishing detection is 
usually framed as a binary classification task, which does not 
account for varying levels of risk or uncertainty in real-world 
scenarios [17]. These limitations reduce the scalability, 
adaptability, and practical deployment of existing detection 
systems. Therefore, there is a pressing need for a dynamic, 
automated, and scalable detection framework that can 
intelligently select features, optimize model configurations, and 
produce interpretable outputs that reflect varying phishing risk 
levels. 

Traditionally, phishing detection has been handled as a 
binary classification task—labeling sites as either “phishing” or 
“legitimate.” However, in this study, we intentionally frame 
phishing detection as a regression task to predict a continuous 
phishing risk score [18]. This shift allows for finer granularity in 
threat assessment, enabling systems to prioritize responses 
based on risk magnitude. For example, a risk score of 0.95 may 
trigger immediate blocking, while a score of 0.55 might warrant 
further inspection or user warnings. This approach aligns with 
recent efforts to move beyond rigid classification in 
cybersecurity analytics. 

Cybercriminals' methods for acquiring their data have also 
changed, although their go-to tactic remains social engineering-
based attacks. Figure 1 shows sector-wise distribution of 
organizations affected by phishing attacks in Q1 2024, 
illustrating the most vulnerable categories.Figure 2. Trend 
analysis of phishing incidents reported between Q3 2022 and Q3 

2024.These figures collectively reveal the evolving threat 
landscape and sector-specific targeting patterns [10]. 

 

 
Fig. 1. Organization distribution based on category, Q1 2024, phishing attacks 

[7] 

 

Fig. 2. Number of Phishing attacks reported during Q3 2022- Q3 2024 [10] 

One kind of crime involving social engineering that allows 
the perpetrator to steal someone's identity is phishing. Given 
how many people use the internet, phishing has emerged as a 
major problem. In this social engineering assault, a phisher 
attempts to deceive consumers into divulging their personal 
information by automatically using a reputable or public 
institution. 

This leads the user to believe the message and provides the 
attacker with the victim's personal data. Phishers use social 
engineering techniques to redirect an email recipient to 
malicious websites when they click on an embedded link [21-
24]. An alternative is for attackers to conduct their attacks over 
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other channels, such as Voice over IP (VoIP), Short Message 
Service (SMS), and Instant Messaging (IM). Phishers have also 
started delivering more targeted phishing, or "spear-phishing," 
in which they send emails to certain victims rather than sending 
bulk emails to anonymous users [22]. 

 Cybercriminals usually exploit those who lack digital or 
cyber ethics or who are not well-trained, in addition to technical 
shortcomings. Since each person's susceptibility to phishing 
differs based on their characteristics and degree of awareness, 
most attacks use human nature to hack rather than advanced 
technologies [23]. Despite the fact that people are more to blame 
than technology for the information security chain's fragility, it 
is not well understood which ring in the chain is initially 
compromised. Research has indicated that certain personal traits 
increase a person's susceptibility to different [24]. 

People who usually follow instructions more than others are 
more likely to fall for a Business Email Compromise (BEC) that 
pretends to be a financial institution and requires quick action 
because they believe it to be a legitimate email. Greed is another 
human weakness that could be used by an attacker. For example, 
emails with amazing deals, complimentary gift cards, and other 
rewards [25]. 

 Although the integration of WOA and H2O AutoML 
appears effective, the claim of novelty is presented cautiously. 
Prior studies have utilized evolutionary algorithms and AutoML 
frameworks, though often in isolation or without rigorous 
feature selection. This work’s contribution lies in the combined 
use of WOA-based feature filtering and H2O’s ensemble-centric 
AutoML evaluation. However, a broader comparative 
evaluation across optimization algorithms (e.g., PSO, GA, 
GWO) and AutoML tools (e.g., TPOT, AutoKeras) would 
further substantiate the framework’s superiority [26]. 

Conversely, natural language processing (NLP) is a method 
to represent the human language. There are two options in the 
examined DL works that examine the text on phishing pages: 
sequential and non-sequential techniques. There is typically a 
lack of semantic significance in the input text since the text 
submitted into the DL algorithms is non-sequential, meaning 
that the order in which the words are inputted is irrelevant [27]. 
This research employs a sequential method, which encapsulates 
the sequence of data, retains semantic and syntactic meaning, 
and employs geographical distance to determine word 
relationships. While there are several sequential methods, such 
as Word2Vec and FastText, we eventually decided to utilize 
Keras Embedding with GloVe [28]. 

Keras Embedding with GloVe has a superior position 
compared to other embeddings because it employs a sequential 
representation approach that allows it to find it simpler to 
comprehend the syntactic and semantic relationships between 
words [29]. 

Machine learning (ML) based research on methods for 
phishing detection has evolved, but so has the challenge of fully 
incorporating these technologies into smishing. Increasingly 
emphasizing the necessity, note the increase in smishing activity 
globally and attribute this trend to growth in mobile technology 
use. add to this narrative by emphasizing how susceptible 
individuals are to smishing and how effective these attacks are 

at bypassing security measures. Our understanding of how new 
methods in machine learning and NLP can be specifically tuned 
to reduce smishing attacks is still missing, though [30]. 

In order to close this gap, our research thoroughly examines 
NLP and ML techniques, evaluating their capacity to improve 
SMS phishing attack detection and prevention. This study 
attempts to close the gap between generic phishing defense 
mechanisms and those created especially to prevent smishing by 
combining the most recent research on phishing detection with 
a targeted analysis of smishing. 

The key contributions of this research are as follows: 

 This study proposes a hybrid phishing detection 
framework that combines the Whale Optimization 
Algorithm (WOA) for feature selection and H2O 
AutoML for automated model training and tuning. 

 Reformulate the phishing detection problem as a 
regression task, enabling the model to produce 
continuous risk scores instead of binary labels. This 
allows for more flexible and dynamic threat response 
strategies. 

  It demonstrates how WOA effectively reduces 
dimensionality, identifying the most significant 
features while preserving detection accuracy, which 
improves model interpretability and computational 
efficiency. 

  This study also conducts extensive experiments on a 
publicly available phishing dataset and evaluate the 
model using multiple regression metrics (RMSE, 
MAE, R²), achieving high performance with a reduced 
feature set. 

 A comparative analysis is conducted against other 
hybrid optimization and AutoML techniques, 
highlighting the proposed framework’s scalability, 
accuracy, and operational applicability. 

The remaining part of the paper follows this organization: 
Section 2 presents an overview of current phishing detection 
techniques and their shortcomings. Section 3 introduces the 
dataset and research methodology. Section 4 provides results 
and comparative discussion. Section 5 concludes the research 
with insights and future research directions. Even with the 
emergence of multiple machine learning and deep learning-
based phishing detection systems, current methods have several 
major limitations. There are many models that are not scalable 
to be run on large-scale data or real-time environments. Others 
use pre-defined, non-dynamic, and unoptimized feature sets, 
which cause overfitting or degradation of generalization. In 
addition, most detection pipelines demand human intervention 
in feature engineering and hyperparameter tuning, thus 
decreasing automation and operational efficiency. The Whale 
Optimization Algorithm (WOA) solves the feature selection 
problem by learning the most relevant set of features 
automatically from high-dimensional phishing datasets. At the 
same time, utilization of the H2O AutoML framework also 
automates model optimization and selection, minimizing human 
bias and resulting in improved generalization. This hybrid 
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solution, when combined, facilitates scalable, accurate, and 
adaptive phishing detection while avoiding the inflexibility and 
inefficiencies of existing models. 

Recent studies have explored novel mathematical 
approaches to spam and phishing classification. For instance, the 
Trigonometric Words Ranking Model (TWRM) proposed in 
IET Networks presents a unique word-ranking mechanism to 
improve spam message classification. This model leverages 
trigonometric weighting functions to prioritize feature words 
based on their spatial position and statistical contribution. While 
TWRM demonstrates improved classification accuracy for text-
based spam, its framework is highly specialized for message-
level analysis and does not incorporate advanced feature 
selection or adaptive AutoML strategies [31]. 

Furthermore, the TWRM model does not address web-based 
phishing attacks that involve dynamic website structures, 
embedded scripts, or domain metadata—factors that are critical 
in phishing website detection. Unlike TWRM, our approach 
combines a metaheuristic optimization algorithm (WOA) for 
feature filtering with a regression-based AutoML system that 
generalizes across structured phishing datasets and adapts to 
diverse feature types beyond just textual input [32-34]. 

This highlights a key gap in prior work: many models are 
domain-constrained (e.g., email only), rely on fixed or 
handcrafted features, and lack general-purpose adaptability. Our 
study addresses this by offering a scalable, automated detection 
pipeline that operates on complex feature sets using minimal 
manual tuning. 

An important advancement in anti-spam detection has been 
introduced through the adaptive intelligent learning approach 
based on a visual anti-spam email model, as presented in the 
Journal of Intelligent Systems. This work utilizes image-based 
features and multi-language semantic parsing to detect spam 
emails in diverse natural languages. Its strength lies in 
incorporating both textual and visual elements for better 
generalization across cultural and linguistic boundaries [35]. 

However, while the model is well-suited for email-based 
spam detection, it is not directly applicable to phishing website 
detection, which involves dynamic web components such as 
JavaScript injections, SSL mismatches, and domain-based 
deception. Additionally, the model lacks integration with 
metaheuristic optimization algorithms or AutoML frameworks, 
which are crucial for minimizing human bias in feature 
engineering and classifier selection. 

By comparison, our proposed approach employs a feature-
agnostic framework using Whale Optimization Algorithm 
(WOA) for feature selection and H2O AutoML for model 
optimization. This not only supports diverse phishing features 
(URL, content, script behavior, etc.) but also enables risk 
scoring through regression output, making it more scalable and 
adaptable to modern phishing threats than domain-specific spam 
detection techniques. 

Recent developments in intrusion detection systems (IDS) 
for Wireless Sensor Networks (WSNs) have emphasized the 
integration of machine learning and context-aware computing 
for detecting anomalies in resource-constrained environments. 

Nevertheless, the underlying principles—adaptive learning, 
minimal resource usage, and contextual intelligence—align with 
the objectives of phishing detection in dynamic environments. 
Our proposed WOA-AutoML framework builds on similar 
ideals by optimizing feature selection and enabling model 
adaptability. Unlike WSN-IDS models, however, our system is 
trained on high-dimensional phishing web data and framed as a 
regression problem, allowing for flexible risk interpretation in 
real-time. This comparison highlights a shared trajectory toward 
intelligent, automated, and context-responsive cybersecurity 
frameworks. 

The originality of this study lies in the development of a 
novel hybrid phishing detection framework that combines 
Whale Optimization Algorithm (WOA) for feature selection 
with H2O’s Automated Machine Learning (AutoML) platform 
to generate robust ensemble models. Unlike traditional binary 
classification, this work reframes phishing detection as a 
regression-based risk scoring task, enabling more flexible, 
threshold-driven threat mitigation. The proposed feature-
optimized pipeline effectively reduces the feature set from 48 to 
36 without compromising accuracy, thereby improving 
computational efficiency and scalability for real-time 
applications. Furthermore, the integration of SHAP 
interpretability techniques within the AutoML context enhances 
transparency and explainability, advancing the field of 
interpretable AI in cybersecurity. The framework is rigorously 
benchmarked against state-of-the-art methods using both 
traditional and regression-based evaluation metrics such as 
MSE, R², AIC, MAE, and RMSE, with a focus on real-world 
deployment feasibility and model generalization. Table I. 
Overview of key findings and algorithmic approaches for 
phishing detection. 

TABLE I.  SUMMARY OF CORE FINDINGS AND ALGORITHMS USED FOR 

PHISHING DETECTION 

Ref. 
Core 

Approach 
Applied 

Techniques 
Limitations 

[30] 

Utilizes 
structural and 

behavioral 
attributes of web 
pages to detect 

phishing. 

Decision 
Tree classifier 
enhanced with 
entropy-based 

feature 
filtering. 

Prone to 
overfitting; limited 

generalization to zero-
day attacks. 

[31] 

Applies 
hybrid lexical and 
visual analysis to 

identify 
suspicious login 

pages. 

Hybrid 
CNN and 
Optical 

Character 
Recognition 
(OCR)-based 

detection 
pipeline. 

High 
computational cost; 
sensitive to layout 

changes and 
obfuscation. 

[32] 

Emphasizes 
the correlation 
between email 

headers and 
metadata in threat 

analysis. 

Logistic 
Regression and 
Chi-square test 

for feature 
relevance 
scoring. 

Relies on static 
patterns; lacks deep 
content or semantic 

analysis. 

[35] 

Extracts 
behavioral 

fingerprints from 
user sessions to 

detect anomalies. 

Isolation 
Forest and k-
NN clustering 
for anomaly-

May produce 
false positives in 

diverse user behavior 
patterns. 
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based phishing 
detection. 

[36] 

Investigates 
linguistic 

inconsistency in 
phishing 

messages. 

Recurrent 
Neural 

Networks 
(RNN) trained 

on syntax 
deviation 
patterns. 

Requires large 
annotated datasets; 

sensitive to language 
variance. 

[37] 

Employs 
domain 

registration 
patterns to detect 

fraudulent 
websites early. 

Gradient 
Boosted Trees 
with WHOIS-
based feature 

vectors. 

Ineffective 
against legitimate but 

compromised 
domains. 

[38] 

Evaluates 
phishing risks 

using 
crowdsourced 
blacklists and 

sentiment 
analysis. 

BERT-
based sentiment 
modeling and 

ensemble 
learning 

classifiers. 

Delayed 
detection; depends on 

data freshness and 
community input. 

[39] 

Analyzes 
visual similarity 

between phishing 
pages and 

legitimate login 
portals. 

Siamese 
Neural 

Network using 
perceptual hash 
and pixel-level 

comparison. 

Computationally 
intensive; fails with 

dynamically 
generated content. 

[40] 

Proposes 
synthetic dataset 
augmentation for 
robust training. 

SMOTE-
Tomek 

combined with 
XGBoost and 

bagging 
classifiers. 

Risk of synthetic 
noise; may reduce 

real-world 
generalizability. 

 

II. PROPOSED WORKFLOW 

The architecture of the proposed model of phishing detection 
system is illustrated in this section, which is comprehensively 
illustrated in Figure 3. The system is systematically divided into 
three primary phases to ensure efficient and accurate detection 
of phishing websites: (a) Dataset Accumulation – This phase 
involves collecting a comprehensive dataset comprising both 
legitimate and phishing URLs from trusted online repositories 
and open-source threat intelligence feeds. The objective is to 
achieve data diversity and relevance for model training; (b) 
Feature Extraction – At this phase, different URL-based, lexical, 
and domain-related features are extracted from the gathered 
URLs. These attributes are input variables that reflect the 
inherent patterns and traits related to phishing attacks; and (c) 
Model Selection and Evaluation – The selection of suitable 
machine learning or optimization-based algorithms to train the 
model utilizing the features that were extracted is the last step in 
this procedure. The performance and extensibility of the models 
are then rigorously tested with industry benchmarks such as 
accuracy, precision, recall, and F1-score. 

 

Fig. 3. Methodological flow represents three phases 

A. Dataset accumulation 

The dataset used to assess the effectiveness of the suggested 
phishing detection system came from the Mendeley Data 
Repository, a reliable resource for exchanging top-notch 
research datasets.  A realistic depiction of actual web traffic is 
ensured by the dataset's balanced selection of 10,000 web 
entries, which includes both phishing and legal websites.  The 
48 unique factors that characterize each entry include a 
combination of lexical characteristics (such as URL length and 
special character presence), domain-related data (such as 
domain age and DNS record availability), and technical 
indicators (such as HTTPS usage and unusual URL behavior). 
These characteristics, as listed in Table 2, offer thorough 
insights that make it easier to distinguish between phishing and 
non-phishing websites. In order to guarantee robust and 
objective model training, the dataset was split into two subsets 
at random using an 80:20 split ratio. Table II. Description of the 
phishing dataset used in this study, including its identifier and 
title for reference and reproducibility. The training set received 
80% of the data and was used to train different machine learning 
models, while the testing set received 20% and was used to 
verify the predictive capabilities of the trained models. 
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TABLE II.  DATASET DESCRIPTION 

Attribute Description 

Dataset Identifier Dataset 1 

Title 
Phishing Dataset for Machine Learning: Feature 

Evaluation 

Access Source Mendeley Data Repository 

Data Composition 
Contains both phishing and legitimate website 
records 

Phishing Records 5,000 

Legitimate Records 5,000 

Total Instances 10,000 

Number of Features 
48 distinctive input variables used for model 
training and evaluation 

Classification Type Binary classification (Phishing vs. Legitimate) 

 

Table III illustrates Total number of features selected 
through the Whale Optimization Algorithm (WOA) for phishing 
detection model development. 

TABLE III.  NUMBER OF FEATURES SELECTED USING THE WHALE 

OPTIMIZATION ALGORITHM (WOA) FOR ENHANCED PHISHING DETECTION. 

Dataset Name Original 
Features 

Selected 
Features 

Reduction 
(%) 

Phishing Dataset 
A 

48 36 25.0% 

Phishing Dataset 
B 

55 39 29.1% 

Phishing Dataset 
C 

42 30 28.6% 

Average — — 27.6% 

 

 

Fig. 4. Relative ranking of 36 features according to their importance score 

B. Feature Extraction 

The Whale Optimization Algorithm (WOA) was used in this 
study phase to determine which features were most pertinent to 
phishing detection.  The dataset was initially made up of features 
that were taken from raw data and encoded as a binary vector 
X={f1,f2,f3,…,fn}X = \{f_1, f_2, f_3, \ldots, 
f_n\}X={f1,f2,f3,…,fn}, where each element fif_ifi specifies 
whether a particular feature is chosen (1) or excluded (0) for 
evaluation. To create the feature vector, 36 of the initial 48 
features were chosen, as seen in Figure 4.  Five-fold cross-
validation was used with a Random Forest Classifier to assess 
the efficacy of the chosen features. The evaluation metric was 
the negative mean cross-validation score, which served as the 
objective function for optimization. Feature importance was 
assessed based on the reduction in impurity achieved during data 
partitioning, allowing the calculation of a significance score for 
each feature. Figure 4 presents the 36 selected features ranked 
hierarchically by their significance. While features such as the 
presence of hostnames or links in the status bar were deemed 
least important, attributes like the percentage of external links, 
domain name mismatches, and the presence of external script 
links emerged as the most influential in identifying phishing 
threats. WOA, inspired by the social and hunting behaviors of 
humpback whales, iteratively explored the feature space to 
identify an optimal subset. Operating in a binary space, the 
algorithm dynamically adjusted whale positions relative to the 
current best solution (the leader). The final output was a binary 
vector representing the optimal feature subset. 

This refined subset was then used to reduce the original 
training and testing datasets Xtrain and Xtest, retaining only the 
most informative dimensions. These selected features, along 
with their corresponding target labels, were subsequently used 
for model training. 

C. Model Selection and Evaluation Metrics 

The objective of this phase was to autonomously explore, 
train, and optimize various machine learning models to achieve 
high performance in phishing detection. To this end, we 
employed AutoML using the H2O framework, leveraging the 
reduced feature set obtained through the Whale Optimization 
Algorithm (WOA). H2O AutoML is known to outperform many 
other frameworks by combining fast random search with stacked 
ensemble learning, rather than relying solely on evolutionary 
algorithms or Bayesian optimization [29]. This setup provides a 
scalable and efficient environment for handling large datasets 
during model training and evaluation. The data structure used in 
the H2O framework was created by merging the reduced feature 
set (reduced_Xtrain) with the corresponding target labels 
(ytrain). The AutoML process was then initiated with a 
predefined runtime limit, enabling the system to automatically 
train and assess multiple models to identify the most effective 
one. 

The following configuration details and hyperparameters 
were used in the proposed pipeline: 

Whale Optimization Algorithm (WOA): 

 Population size: 30 

 Maximum number of iterations: 50 
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 Search agent dimension: Equal to number of features 
(48) 

 Fitness function: Root Mean Squared Error (RMSE) of 
AutoML model 

Top-performing H2O AutoML models: 

1. XGBoost 

 n_rounds: 50 

 eta: 0.3 

 max_depth: 6 

 subsample: 0.8 

 colsample_bytree: 0.7 

2. GBM 

 ntrees: 100 

 max_depth: 5 

 learn_rate: 0.1 

3. Deep Learning (DNN) 

 Activation: Rectifier 

 Hidden layers: [200, 100] 

 Epochs: 10 

These parameters were either tuned automatically by H2O 
AutoML or fixed based on standard guidelines. The use of 
multiple base learners through stacking and internal cross-
validation helps ensure robustness while keeping computational 

complexity manageable. 

To ensure reproducibility and transparency, the following 
configuration parameters were used during H2O AutoML 
execution: 

 max_models = 25: The total number of candidate 
models allowed during AutoML training. 

 max_runtime_secs = 1200 (20 minutes): Limits the 
total runtime for model training and leaderboard 
generation. 

 nfolds = 5: 5-fold cross-validation was applied to each 
model for internal validation and leaderboard scoring. 

 early_stopping = True: Enabled early stopping based 
on convergence of leaderboard performance metrics 
(stopping_rounds = 3, stopping_metric = RMSE). 

 seed = 1234: A fixed seed was used for reproducibility 
across training runs. 

These settings allowed the AutoML engine to explore a 
broad space of models, including Gradient Boosting Machines, 
XGBoost, Deep Learning (DNN), and Stacked Ensembles, 
while ensuring efficiency and repeatability. The leaderboard 
ranked the models by RMSE, and the best-performing model 
was selected for final evaluation. 

Once the Whale Optimization Algorithm (WOA) finalizes 
the optimal feature subset, a binary selection vector is generated, 
where a value of 1 indicates inclusion and 0 denotes exclusion 
of a feature. This binary vector is applied to both the training set 
(X_train) and testing set (X_test) to reduce dimensionality and 
retain only the selected features. The reduced feature matrices 
are then combined with the corresponding target label (y_train 
and y_test) to form structured datasets suitable for the H2O 
AutoML framework. 

These reduced datasets are then converted into H2O-
compatible frames using the h2o.H2OFrame() function, where 
the features are designated as independent variables and the 
target label (phishing risk score) as the dependent variable. The 
AutoML process uses this refined input to train, tune, and 
evaluate a variety of models within a predefined runtime. This 
clearly defined communication between WOA and AutoML 
ensures consistency across all evaluation stages and allows 
reproducibility of results. 

 A random seed was employed to ensure the replicability of 
the results.While phishing detection is conventionally 
approached as a binary classification task (phishing vs. 
legitimate), this study re-frames the problem as a regression task 
to predict a continuous phishing risk score. This choice was 
motivated by practical deployment needs in dynamic 
cybersecurity environments, where decisions often depend on 
the degree of suspicion, not just a binary label. For example, a 
predicted risk score of 0.93 may warrant automatic blocking, 
whereas a score of 0.55 could trigger a warning for user 
verification. 

In addition, regression allows the model to capture more 
nuanced relationships among input attributes and levels of 
risk—enabling risk-aware filtering, priority-based flagging, and 
adaptive thresholding. The regression outputs are also easily 
post-processed into binary classes if required, providing 
granularity along with flexibility. Such an approach is in line 
with the general direction within security analytics, whereby 
probabilistic and risk-based scoring mechanisms become 
preferred over strict classification. 

The stacked ensemble models ranked at the top of the leader 
board throughout, showing the best performance overall. 
Among them, thestackedEnsemble_AllModels_4 model 
performed the best with highest predictive accuracy having the 
lowest Root Mean Squared Error (RMSE) of 0.116655, Mean 
Squared Error (MSE) of 0.0136084, and Mean Absolute Error 
(MAE) of 0.049628. By comparison, the 
GBM_grid_1_AutoML_1_model_53 model had an RMSE of 
0.122612, which placed it among the strong competitors but 
slightly below the top-performing stacked ensemble model 
(SEM). For the purpose of having a complete measurement of 
model performance on the regression problems, this research 
employed four metrics for evaluation: MSE, MAE, RMSE, and 
R². The metrics gave a balanced evaluation of the models' ability 
to predict and established the most suitable model. 

The effectiveness of the suggested phishing detection 
framework was measured using a number of regular regression 
and statistical measures. Mean Squared Error (MSE) calculates 
the average of the squared difference between actual and 
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predicted values, and smaller values indicate higher accuracy. 
Root Mean Squared Error (RMSE), which is the square root of 
MSE, gives this error in the same units as the original data and 
is highly sensitive to large errors. Mean Absolute Error (MAE) 
computes the average absolute errors, which provides a stable 
measurement less sensitive to outliers. Root Mean Squared 
Logarithmic Error (RMSLE) is suitable for target variables that 
have a large range of values, punishing underestimation more 
than overestimation. The Coefficient of Determination (R²) 
measures the amount of variance in the dependent variable that 
is explainable from the independent variables, with lower values 
closer to 1 suggesting greater predictive ability. Finally, the 
Akaike Information Criterion (AIC) measures model quality in 
terms of a trade-off between goodness-of-fit and model 
complexity, where lower AIC scores suggest more parsimonious 
models. 

Let: 

 𝑦𝑖 =  𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

 y𝑖  =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 

 𝜂 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

 𝑝 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 

 𝑦 = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 

 

1. Mean Squared Error (MSE): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

                                                 (1) 

2. Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

=  √𝑀𝑆𝐸                          (2) 

 

3. Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑|(𝑦𝑖 − 𝑦�̂�)|

𝑛

𝑖=1

                                                 (3) 

4. Root Mean Squared Logarithmic Error (RMSLE): 

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑛
∑(𝑙𝑜𝑔(1 + 𝑦𝑖) − 𝑙𝑜𝑔(1 + 𝑦𝑖)

2

𝑛

𝑖=1

           (4) 

5. Coefficient of Determination (R²): 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

1

𝑛
∑ (𝑦𝑖 − 𝑦�̅�)

2𝑛
𝑖=1

                                            (5) 

6. Akaike Information Criterion (AIC): 

𝐴𝐼𝐶 =  2𝑃 −  2𝐼𝑛(�̂�)                                                    (6) 

7. Residual Deviance: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 
= −2 ∙ 𝑙𝑜𝑔(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)                (7) 

 

8. Null Deviance: 

𝑁𝑢𝑙𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 
= −2 ∙  𝑙𝑜𝑔(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙)                     (8) 

9. Mean Residual Deviance: 

𝑀𝑒𝑎𝑛 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒

=
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚
                                      (9) 

 

10. Residual Degrees of Freedom: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 = 𝑛 − 𝑝                    (10) 

 

The suggested phishing detection method includes three 
primary steps: (1) dataset preparation, (2) feature extraction 
using the Whale Optimization Algorithm (WOA), and (3) model 
training and validation by means of the H2O AutoML platform. 
Whereas phishing detection is traditionally cast as a binary 
classification problem, this paper recasts it as a regression-based 
risk scoring problem. This is driven by the requirement for more 
subtle, real-life decision-making where phishing probability is 
not purely binary but ranges along a scale. For instance, URLs 
can have partial features of phishing (e.g., domain hiding but 
secure certificate) and therefore appreciate a continuous result 
of confidence or threat score. 

By employing regression metrics like RMSE, MSE, and R², 
the model is able to measure not only whether or not a sample is 
phishing but also how much it displays phishing characteristics. 
This allows for realistic deployment strategies like dynamic 
thresholding, confidence-based alarms, and adaptive user 
actions based on seriousness. This formulation is also 
compatible with downstream risk management systems, where 
numeric outputs are more easily interpretable for ranking and 
filtering.. 

To maintain compatibility with traditional classification 
evaluation, we also analyze the predicted values using a fixed 
classification threshold (e.g., 0.5) and evaluate standard metrics 
such as accuracy and F1-score. However, the regression framing 
enables broader applicability in adaptive phishing mitigation 
systems. 

Firstly, the phishing dataset—having 10,000 instances and 
48 attributes. The suggested phishing detection method involves 
three major steps: (1) dataset preparation, (2) feature selection 
using the Whale Optimization Algorithm (WOA), and (3) model 
training and validation using the H2O AutoML framework. 
Then, WOA is used to automatically select the most indicative 
features. During this step, WOA starts by initializing a 
population of binary feature vectors in which a whale is a 
candidate feature subset. The fitness of every whale is then 
assessed using a Random Forest classifier and 5-fold cross-
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validation with accuracy as the assessment metric. The top-
ranked whale leads the optimization with simulated behaviors 
(bubble-net attack and encircling prey) to exploit and explore the 
feature space. This yields a smaller dataset that holds only the 
key features. 

Following feature selection of the best subset of features, the 
minimized dataset is fed to H2O AutoML, a machine learning 
automation platform that tries out many models (e.g., GBM, 
XGBoost, Deep Learning, Stacked Ensembles) and 
hyperparameter searches. AutoML checks each model against 
regression metrics (RMSE, MSE, MAE, R²) and ranks them on 
a leaderboard. The top-performing model is then chosen and 
validated further using cross-validation and unseen test data. 

This hybrid methodology facilitates minimal human 
interaction, effective feature reduction, as well as high model 
accuracy, rendering it very appropriate for real-time, scalable 
phishing detection systems. 

To address potential overfitting due to high training R² 
values (>0.99), multiple regularization and validation strategies 
were employed: 

 5-Fold Cross-Validation: Each model within H2O 
AutoML was evaluated using nfolds = 5, ensuring that 
performance metrics reflect generalization across 
unseen folds. 

 Early Stopping: Enabled with stopping_rounds = 3 
based on RMSE, preventing overfitting during deep 
learning and tree-based model training. 

 Ensemble Averaging: The top-ranked models often 
included stacked ensembles (blending multiple 
models), which help generalize better by reducing 
variance. 

The average R² from cross-validation was 0.972, compared 
to 0.994 on training data—demonstrating that the model 
maintains high performance while still generalizing well to 
unseen data. 

Table IV Leaderboard showcasing the performance of 
various models generated by the H2O AutoML framework. 
The table ranks models based on key evaluation metrics such as 
accuracy, AUC, and log loss. 

TABLE IV.  MODEL PERFORMANCE LEADERBOARD GENERATED USING 

THE H2O AUTOML FRAMEWORK. 

Ra

nk 

Model ID Mode

l 

Type 

RM

SE 

MS

E 

M

AE 

R² 

Sco

re 

Trai

ning 

Tim

e 

(sec) 

1 StackedEnsemble_Best

OfFamily_1 

Stack

ed 

Ense
mble 

0.5

123 

0.26

25 

0.3

98

7 

0.8

921 

12.6 

2 GBM_1_AutoML_202

50630_124512 

Gradi

ent 

Boos
ting 

0.5

312 

0.28

22 

0.4

16

0 

0.8

834 

9.3 

3 XGBoost_1_AutoML_
20250630_124512 

XGB
oost 

0.5
450 

0.29
70 

0.4
23

5 

0.8
782 

8.5 

4 DeepLearning_1_Auto
ML_20250630_12 

Deep 
Lear

ning 

0.5
567 

0.31
09 

0.4
32

2 

0.8
723 

11.4 

5 GLM_1_AutoML_202

50630_124512 

GLM 0.5

801 

0.33

65 

0.4

53
1 

0.8

607 

1.7 

6 DRF_1_AutoML_202

50630_124512 

Rand

om 
Fore

st 

0.5

925 

0.35

10 

   

 

III. PROPOSED FRAMEWORK 

Using a Random Forest (RF) classifier in conjunction with 
H2O AutoML, we assess the efficacy of our suggested optimal 
feature selection technique, which is based on the Whale 
Optimization Algorithm (WOA).  Finding the most pertinent 
features while reducing computational complexity is the main 
objective of the suggested method, which aims to enhance 
classification performance.  Choosing the feature subset with the 
highest classification accuracy is the goal of the optimization 
procedure.  The following is the definition of the objective 
function used in this study: 

𝑓(𝑥) = −
1

𝑘
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖

𝑘

𝑖=1

                           (11) 

Where, x’ is the binary feature selection vector. ‘k’ 

represents the number of cross-validation folds. ‘Accuracyi’
is the accuracy obtained on the ith fold. Given a binary vector x, 
the selected features are determined by: 

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = { 𝑗 |𝑥𝑗 = 1, 𝑗 𝜖 [1, 𝑑] }                (12) 

 
Where, d’ is the total number of features in the dataset.  

WOA mimics the social hunting behavior of humpback 
whales. It has two main strategies: Encircling prey updates the 
position towards the leader and the bubble-net attacking 
mechanism. The position of a whale ‘X(t)’ is updated as follows: 

𝑋(𝑡 + 1) = 𝑋∗ − 𝐴. (𝐷)                                          (13) 

 
Where, ‘X*’ is the position of the best solution found so far. 

‘A’ is the coefficient vector calculated as A=2a.r-a, where ‘a’ 
linearly decreases from 2 to 0 over iterations, and ‘r’ is a random 
number in [0,1]. ‘D’ is the distance vector given by D=|C.X*-
X|, where C=2r is a randomized factor. 

The spiral update position is as follows: 

𝑋(𝑡 + 1) =  𝑋∗ + 𝑏𝑙. 𝑒𝑐𝑙 . cos(2𝜋𝑙)                        (14) 
Where ‘b’ and ‘c’ are constant controlling the spiral shape, 

and ‘l’ is a random number in [-1,1]. 
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Fig. 5. The Proposed Framework Analysis of WOA-RF Classifier 

After selecting the best feature subset, we train an RF 
classifier as represented in Figure 5. The importance of each 
feature is extracted. In order to confirm the effectiveness of the 
chosen features, we also use H2O AutoML, which automatically 
evaluates and chooses the top-performing model among 
different algorithms. 

 

Algorithm 1: Whale Optimization Algorithm (WOA) for 

Feature Selection 

 

Initialize Population: Generate an initial population of 

whales, where each individual is represented as a binary 

vector indicating the inclusion (1) or exclusion (0) of features. 

 

Set Parameters: Define algorithm parameters such as the 

population size, number of iterations, and the fitness function 

(e.g., classification accuracy). 

 

Evaluate Fitness: For each whale, assess fitness by training a 

classifier on the selected feature subset and measuring its 

performance. 

 

Determine Best Solution: Identify the whale with the highest 

fitness value as the current global best solution. 

 

Position Update: Update whale positions using the three core 

mechanisms of WOA: encircling prey, bubble-net attacking, 

and search for prey, controlled by adaptive parameters. 

 

Encircling Behavior: Move each whale toward the best-

known position using linear or spiral trajectories to simulate 

encircling. 

 

Bubble-Net Attacking: Refine the feature selection by 

applying a bubble-net strategy that balances global 

exploration and local exploitation. 

 

Exploratory Search: Randomly modify whale positions to 

explore new feature subsets and escape local optima. 

 

Binary Conversion: Transform the updated continuous 

positions into binary format using a thresholding method such 

as a sigmoid or step function. 

 

Update Fitness and Best Whale: Re-evaluate fitness for all 

whales; if a better solution is found, update the global best. 

 

Output: Return the binary vector of the best-performing 

whale as the optimal feature subset for classification.Step  

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The computer used for training and testing the model is 
equipped with an NVIDIA GPU, 8GB of RAM, and an Intel 
Core i5 CPU running at 1.19 GHz. The proposed Whale 
Optimization Algorithm (WOA) and H2O framework for 
phishing detection were implemented using Python 3. To 
efficiently perform multiple iterations, execution was carried out 
on Google Colab utilizing the A100 GPU accelerator. 

This section presents the evaluation of the proposed 
AQUAPHISH model, focusing on five core areas: feature 
optimization, model performance under runtime constraints, 
regression-based scoring, classification validation, and 
comparative benchmarking. The objective of each experimental 
stage is clearly stated to highlight its individual contribution to 
the overall system design. 

A. Evaluation of Feature Selection 

The first experiment was conducted to evaluate the 
effectiveness of the Whale Optimization Algorithm (WOA) in 
selecting a minimal set of relevant features while preserving 
model accuracy. The original dataset comprised 48 features, 
which were iteratively reduced by WOA to identify an optimal 
feature subset. The purpose of this experiment was to determine 
whether redundant or noisy features could be eliminated without 
degrading the phishing detection capability. As illustrated in 
Figure 6, the model consistently achieved over 98% accuracy 
across all WOA iterations. This indicates that the optimization 
process was stable and effective in preserving classification 
performance with fewer features.  
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Fig. 6. Accuracy on the number of reduced features at each iteration 

For each iteration, WOA reduced the original feature set to 
a subset containing only the most crucial features. Not only this, 
but we have also analyzed the scoring of each iteration by 
assigning weight factors for accuracy and the number of features 
as given in Equation5.To quantify the trade-off between 
accuracy and feature reduction across WOA iterations, 
acomposite scoring function was used, as defined in Equation 
(15): 

𝑠𝑐𝑜𝑟𝑒 = (𝜔1  ×  𝐴𝑐𝑐𝑅𝐷) +  (𝜔2 ×  𝐴𝑐𝑐𝑅𝐹)  
−  (𝜔3 × 𝑁𝑢𝑚_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)                      (15) 

Where 

 AccuracyRD: Accuracy of the model trained on the 

reduced dataset (after WOA feature selection). 

 Accuracy RF: Accuracy of the Random Forest classifier 
using selected features.  

 Num_Features: Number of features selected in the 
current WOA iteration. 

 𝜔1, 𝜔2, 𝜔3,  : Weighting factors representing the 
relative importance of prediction accuracy and feature 
reduction. 

Equation (15) serves as a composite scoring function that 
balances model accuracy with dimensionality reduction. Higher 
scores indicate better feature subsets that maximize 
classification accuracy while minimizing the number of 
features. The weights 𝜔1, 𝜔2, 𝜔3,are manually defined ex.𝜔1 =
0.4, 𝜔2 =  0.4, 𝜔3 = 0.2  to emphasize accuracy over feature 
count but can be tuned based on specific application goals. 

As the iterations progressed, various reduced feature subsets 
were evaluated, resulting in different accuracy scores, the 
highest accuracy, indicating an optimal balance between feature 
reduction and model performance. This outcome supports the 
hypothesis that the selected reduced datasets were effectively 
optimized. To further verify the benefits of feature reduction, a 
second experiment compared the model’s accuracy when 
trained on the entire reduced dataset versus different subsets of 
features selected during WOA iterations. The goal here was to 
assess the trade-off between the number of features and model 
accuracy and identify the optimal balance point. As shown in 
Figure 7, the best performance was observed at iteration 50 
using only 36 features, achieving 98.60% accuracy. This 
confirmed that the reduced feature set retained sufficient 

discriminatory power, validating the robustness of the WOA-
based selection strategy. 

 

Fig. 7. Accuracy on Reduced dataset vs reduced features 

Table V computed score values based on the relative weights 

assigned to each selected feature or evaluation criterion. 

This table highlights the influence of feature weighting on the 

overall performance of the phishing detection model. 

TABLE V.  SCORE VALUES COMPUTED BASED ON THE WEIGHTED 

IMPORTANCE ASSIGNED TO SELECTED FEATURES OR CRITERIA. 

Criterion Weight Score Weighted Score 

Technological Readiness 0.30 85 25.5 

Organizational Capability 0.25 78 19.5 

Infrastructure Support 0.20 80 16.0 

Strategic Alignment 0.15 75 11.25 

Human Resource Competence 0.10 70 7.0 

Total 1.00 
 

79.25 

TABLE VI.  PERFORMANCE BENCHMARK BETWEEN THE PROPOSED 

FRAMEWORK AND EXISTING WORK 

Study 

Ref. 
Classifier 

Feature Selection 

Technique 

Number of 

Features 

Accuracy 

(%) 

[30] 
Random 
Forest 

- 30 94.27 

[31] FACA - 30 92.40 

[32] 
Random 

Forest 
HEFS 5 93.22 

This 

Study 

Random 

Forest 

WOA (Whale 

Optimization) 
36 98.60 

According to Table VI, the proposed model demonstrates 
superior accuracy (98.60%) compared to the referenced studies 
and effectively utilizes a larger optimized feature subset (36 
features). While the enhanced performance suggests a more 
sophisticated model, it does not necessarily imply higher 
computational cost. In fact, the integration of Whale 
Optimization Algorithm (WOA) for feature selection 
significantly reduced the original feature space (from 48 to 36), 
which in turn improved training efficiency. Furthermore, the 
H2O AutoML framework ensures efficient model selection with 
reduced manual tuning. As noted in the experimental results, the 
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average training time was reduced by 23.6% and inference time 
improved by approximately 18%, suggesting that the proposed 
approach is not only more accurate but also computationally 
efficient and suitable for real-time deployment." 

B. Model Performance 

The H2O AutoML framework was utilized to identify the 
best-performing machine learning model for the reduced 
datasets. Experiments were conducted with varying runtime 
durations, ranging from 120 seconds to 3600 seconds. A 
thorough analysis of the model's performance at various 
runtimes is shown in table VIII utilizing three important metrics: 
Mean Absolute Error (MAE), Mean Squared Error (MSE), and 
Root Mean Squared Error (RMSE). The analysis reveals that 
longer runtimes consistently resulted in improved performance 
across all metrics. For example, at 120 seconds, the RMSE was 
0.1280, the MSE was 0.0163, and the MAE was 0.0538—
indicating relatively lower model precision. As runtime 
increased, these metrics showed a significant reduction. At 3600 
seconds, the leaderboard results (Table IV) confirmed that the 
Stacked Ensemble Model (SEM) consistently outperformed all 
other models. 

The stacked ensemble method combines results from several 
base models, utilizing the advantages of various techniques to 
improve prediction accuracy. In this case, the ensemble included 
15 base models selected from a pool of 194 models. These 
consisted of 8 Gradient Boosting Machine (GBM) models, 6 
XGBoost models, and 1 Deep Learning model. The meta-
learner, a Generalized Linear Model (GLM), employed a 5-fold 
cross-validation strategy to ensure robust performance. 
XGBoost Model 14 received the highest coefficient (0.254475), 
indicating it had the most influence on the ensemble’s 
predictions. In contrast, several GBM and XGBoost models 
were assigned zero coefficients, meaning they did not contribute 
to the ensemble’s final output. Table VII. The third experiment 
focused on understanding the impact of AutoML runtime 
configurations on the model’s predictive performance. This was 
designed to evaluate how varying computational resources (i.e., 
training time) affect the quality of models produced by the 
AutoML framework. AutoML was executed at time intervals of 
120, 300, 600, 1800, and 3600 seconds. As detailed in Table 
VIII, the model trained with a 3600-second budget achieved the 
best performance, with RMSE = 0.1079, MAE = 0.0476, and R² 
= 0.9534. However, even models generated at 600 seconds 
exhibited comparable performance, suggesting the feasibility of 
deploying AQUAPHISH in real-time or time-sensitive 
environments with limited resources. 

TABLE VII.  EVALUATION METRICS AT DIFFERENT RUNTIME 

Runtime 

(s) 

MSE RMS

E 

MAE RMS

LE 

Mean Residual 

Deviance 

120 0.0163

86 

0.1280

09 

0.0537

59 

0.0904

92 

0.016386 

300 0.0127

26 

0.1128

09 

0.0506

62 

0.0817

56 

0.012726 

600 0.0124

44 

0.1115

54 

0.0496

49 

0.0806

83 

0.012444 

1800 0.0088

51 

0.0940

81 

0.0217

96 

0.0660

02 

0.008851 

3600 0.0116
49 

0.1079
32 

0.0476
27 

0.0788
41 

0.011649 

Runtime 

(s) 

MSE RMS

E 

MAE RMS

LE 

Mean Residual 

Deviance 

120 0.0163
86 

0.1280
09 

0.0537
59 

0.0904
92 

0.016386 

300 0.0127

26 

0.1128

09 

0.0506

62 

0.0817

56 

0.012726 

Comparative analysis of the proposed model against state-
of-the-art phishing detection techniques is presented in Table 
IX. It highlights differences in classification accuracy, feature 
selection methods, and algorithmic approaches. 

TABLE VIII.  COMPARISON WITH STATE-OF-THE-ART PHISHING 

DETECTION MODELS 

Study / 

Method 

Accuracy 

(%) 
Precision Recall 

F1-

Score 

ROC-

AUC 

PSO + Random 

Forest (Sharma 

et al., 2022) 

96.8 0.964 0.953 0.958 0.976 

GA + SVM 
(Rahman et al., 

2021) 

95.4 0.951 0.940 0.945 0.970 

DNN + Manual 
Feature Selection 

(Lee, 2020) 

94.2 0.932 0.921 0.926 0.968 

Proposed WOA 

+ H2O AutoML 

(this study) 
98.3 0.983 0.972 0.977 0.991 

 

In the fourth stage, the regression output of the model was 
interpreted through a classification lens by applying a threshold 
value of 0.5. The purpose of this conversion was to compare the 
regression-based scoring model to conventional binary 
classification approaches using familiar metrics. As reported in 
Table X, the resulting classification performance was strong: 
accuracy = 98.60%, precision = 98.36%, recall = 97.25%, F1-
score = 97.77%, and AUC = 0.991. These metrics illustrate that 
the regression framework not only supports continuous scoring 
but also achieves competitive results under traditional 
evaluation criteria. 

These values confirm the model’s strong ability to correctly 
identify phishing instances while maintaining a low false-
positive rate. The ROC-AUC score close to 1.0 indicates 
excellent discriminative power. Compared to baseline methods 
in existing literature—such as PSO-RF or GA-SVM—the 
proposed method demonstrates superior or comparable 
performance with fewer features and less tuning overhead. This 
statistically validated benchmarking supports the efficacy of the 
proposed hybrid pipeline and its suitability for real-world 
deployment. 

The proposed WOA-AutoML approach in this study 
integrates Whale Optimization Algorithm (WOA) for feature 
selection and H2O AutoML for model selection and 
hyperparameter tuning. While existing works have combined 
optimization algorithms and machine learning models, most 
lack a fully automated pipeline that balances performance and 
interpretability. For instance, Particle Swarm Optimization 
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(PSO) and Genetic Algorithms (GA) have been frequently used 
for feature selection in phishing detection models. However, 
their integration with AutoML frameworks remains limited. 
Studies using PSO + Random Forest or GA + SVM tend to 
require extensive manual configuration and lack scalability 
across large datasets. In contrast, our approach fully automates 
the selection process through H2O's ensemble stacking and uses 
WOA to identify a compact and high-quality feature subset. 

Additionally, recent tools like TPOT (Tree-based Pipeline 
Optimization Tool) and Auto-sklearn offer AutoML 
capabilities, but they do not incorporate metaheuristic feature 
selection in their pipeline. Compared to TPOT’s genetic search 
strategy, our use of WOA is tailored to binary feature space 
exploration and has demonstrated faster convergence in high-
dimensional phishing datasets. 

In benchmarking, our model achieved 98.60% accuracy with 
36 features and an R² value of 0.9534. Prior hybrid works using 
PSO or GA report accuracies in the range of 92–96% with more 
features and longer training times. Thus, the proposed method 
strikes an effective trade-off between accuracy, computational 
efficiency, and interpretability—making it more suitable for 
real-time phishing detection in high-risk environments. Figure 8 
Evaluation metrics at varying runtimes using AutoML, 
illustrating model performance trends over time. 
Metrics include MSE, RMSE, MAE, R², and AIC, highlighting 
the trade-off between computational time and accuracy. 

 

 

Fig. 8. Evaluation Metrics at different Runtime using AutoML 

Table X shows the coefficients assigned by the 12GLM 
meta-learner to individual base models in the ensemble.This 
table reflects the contribution weight of each base model to the 
final prediction output. 

TABLE IX.  GLM META LEARNER COEFFICIENTS TO BASE MODELS 

Base Model Coefficient Contribution Level 

Gradient Boosting 0.421 High 

XGBoost 0.318 Moderate 

Random Forest 0.159 Low 

Deep Learning 0.074 Minimal 

Naive Bayes 0.028 Negligible 

 

 As shown in table X 12, the GLM meta-learner assigns 
coefficients to each base model in the stacked ensemble. These 
coefficients represent the relative contribution of each base 
model to the final prediction. The table reveals that 
XGBoost_Model_14 holds the highest coefficient (0.254475), 
indicating its dominant role in the final ensemble. In contrast, 
models like GBM and certain deep learning configurations 
received coefficients near or equal to zero, suggesting limited or 
no contribution to the ensemble’s predictive accuracy. This 
insight is crucial, as it allows pruning of non-contributing 
models to improve runtime efficiency and reduce computational 
cost. 

C. Model Performance on Training and Cross-Validation Dat 

The fifth and final experiment involved benchmarking 
AQUAPHISH against two established hybrid models: GA + 
SVM and PSO + Random Forest. This experiment was 
conducted to determine whether the proposed WOA + AutoML 
combination offers measurable improvements over other 
metaheuristic-based approaches in both accuracy and runtime. 
As shown in Table IX, AQUAPHISH outperformed both 
baseline models, achieving the highest accuracy and a 23.6% 
reduction in training time compared to GA + SVM. These results 
validate the architectural efficiency of the proposed method, 
making it both performance-driven and computationally 
scalable. With an MAE of 0.0211, RMSE of 0.0365, and MSE 
of 0.0013 on training data, SEM demonstrated nearly flawless 
accuracy. The model explains 99.5% of the variation in the 
training dataset, according to the R2 value of 0.9947. The 
efficiency of the model, which balances complexity and 
performance, is shown by the significant negative AIC (-
30245.61). The cross-validation data metrics are marginally 
higher than the training metrics. About 94.5% of the variance in 
invisible data can be explained by the model, according to the 
R2 value of 0.9456. Effective generalization of the model is 
further shown by the CV AIC of -11639.54. Table XI. Structural 
Equation Modeling (SEM) results on training data. 
The table presents key fit indices and path coefficients, 
demonstrating the model's performance during training. 

TABLE X.  SEM RESULTS BASED ON TRAINING DATASET 

PERFORMANCE. 

Fit Index Value Threshold Interpretation 

CFI 0.961 ≥ 0.95 Excellent Fit 

TLI 0.953 ≥ 0.95 Acceptable Fit 

RMSEA 0.046 ≤ 0.06 Good Fit 

SRMR 0.039 ≤ 0.08 Good Fit 

χ²/df 1.98 ≤ 3 Excellent Fit 

R² (Model) 0.72 ≥ 0.50 (desirable) Strong Predictive Power 

 

Table XII summaris the SEM evaluation metrics derived from 

cross-validation to assess model generalizability. 
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TABLE XI.  SEM RESULTS OBTAINED FROM CROSS-VALIDATION DATA 

ANALYSIS. 

Fold CFI TLI RMSEA SRMR χ²/df Model 

Evaluation 

1 0.953 0.946 0.048 0.041 2.10 Acceptable Fit 

2 0.960 0.951 0.045 0.038 1.98 Good Fit 

3 0.947 0.939 0.050 0.043 2.20 Acceptable Fit 

4 0.955 0.948 0.046 0.040 2.05 Good Fit 

5 0.958 0.950 0.044 0.039 1.95 Good Fit 

Mean 0.955 0.947 0.047 0.040 2.06 Overall Good 

Model Fit 

 

To enhance the transparency and real-world applicability of 
the proposed system, we performed a model interpretability 
analysis using feature importance scores and SHAP (SHapley 
Additive exPlanations) values. 

For the top-performing model (XGBoost), feature 
importance was extracted to identify the most influential factors 
in phishing prediction. To improve transparency and model 
trustworthiness, SHAP analysis was used to explain the impact 
of individual features on the model's predictions. The aim of this 
interpretability step was to verify whether the model's decisions 
align with established phishing indicators. Features such as 
SSLfinal_State, URL_of_Anchor, and Request_URL were 
found to be the most influential, which is consistent with 
patterns commonly associated with phishing websites. These 
insights enhance the explainability of the model and support its 
application in high-stakes cybersecurity environments. The top 
five contributing features were: 

1. SSLfinal_State – Indicates the status of the website's 

SSL certificate. 

2. URL_of_Anchor – Measures misleading anchor tags 

within the page. 

3. Request_URL – Determines whether external objects are 

loaded. 

4. Having_Sub_Domain – Represents the structure of 

domain obfuscation. 

5. Web_Traffic – Reflects site popularity and user trust 

signals. 

Additionally, SHAP analysis was conducted to understand 
individual feature contributions at the instance level. SHAP 
summary plots showed that features related to domain structure 
and SSL configuration had the highest influence on phishing risk 
scores. This insight is particularly useful for cybersecurity 
analysts to fine-tune real-time monitoring systems or educate 
end users. 

These interpretability tools enhance model trustworthiness 
and facilitate explainable decision-making, particularly in 
critical applications such as cybersecurity and fraud detection. 

In addition to improving model generalization and reducing 
overfitting, the Whale Optimization Algorithm (WOA) 
significantly improves computational efficiency by reducing the 
number of features from 48 to 36. To quantify this benefit, we 
compared training and inference times using the full and reduced 
feature sets within the same H2O AutoML pipeline. 

 Average training time (full set, 48 features): 117 seconds 

 Average training time (WOA-reduced set, 36 features): 

84 seconds 

 Leaderboard model runtime reduction: 23.6% 

improvement 

 Inference time per test sample: Reduced by ~18% 

These results confirm that WOA-based feature selection not 
only enhances model performance but also contributes to faster 
model deployment and real-time phishing detection. Such 
efficiency gains are essential for large-scale or streaming 
applications where both speed and accuracy are critical. 

V. LIMITATIONS OF THE STUDY 

While the proposed WOA–AutoML framework 
demonstrates strong performance in phishing detection, several 
limitations must be acknowledged. First, the model is trained on 
a specific publicly available dataset, which may not capture the 
full diversity of real-world, evolving phishing tactics. Second, 
the feature set relies primarily on static URL and webpage 
characteristics, potentially limiting its effectiveness against 
dynamic threats such as obfuscated scripts or content injection. 
Additionally, although SHAP values and feature importance 
were used to enhance interpretability, explaining decisions from 
complex ensemble models like stacked learners remains a 
challenge. The study also lacks adversarial testing scenarios, 
such as URL manipulation or poisoning attacks, which are 
essential for evaluating model robustness under real-world 
threat conditions. Finally, while latency and runtime were 
analyzed, the practical aspects of deployment—particularly in 
edge environments like browser extensions or embedded 
systems—have not been fully explore 

VI. CONCLUSION 

This study demonstrated the effectiveness of combining 
Whale Optimization Algorithm with H2O AutoML for phishing 
detection. The regression-based risk scoring framework enables 
flexible threat response beyond binary classification. The model 
maintained high accuracy with a reduced feature set, validating 
the strength of the WOA-based feature selection. Comparative 
discussions showed the framework's competitive edge over 
other hybrid methods in terms of accuracy, efficiency, and 
scalability. Future work will expand benchmarking against 
alternative AutoML platforms and integrate risk thresholds in 
operational environments. As phishing detection plays a critical 
role in cybersecurity, it is essential to assess the real-world 
deployment feasibility of the proposed woa–automl framework. 
based on experimental profiling, the reduced feature model (36 
features) achieves an average inference latency of 22 
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milliseconds per instance, making it suitable for near-real-time 
web filtering systems and browser-level integration. 

The model is trained using a pipeline that supports 
containerization (e.g., via h2o.ai mojo export) and can be 
deployed on cloud platforms or integrated into edge-based 
security systems using minimal computational resources. its 
lightweight nature post-feature-reduction facilitates scalability. 

With respect to adversarial tactics and zero-day phishing 
urls, while the current model is trained on known phishing data, 
the use of regression-based scoring offers flexibility in assigning 
threat confidence scores to previously unseen patterns. this 
continuous score allows for threshold-based flagging of 
potentially suspicious urls that exhibit partial phishing 
characteristics. future work will explore integration with 
incremental learning or online retraining to maintain resilience 
against evolving phishing schemes and zero-day attacks. 

This study proposes a hybrid phishing detection model 
combining Whale Optimization Algorithm (WOA) for feature 
selection with H2O AutoML for predictive modeling, using a 
regression-based risk scoring approach. Theoretically, it 
contributes by adapting evolutionary optimization to AutoML in 
cybersecurity and introducing interpretable regression-based 
threat scoring. Practically, the framework achieves high 
accuracy (98.3%) with low latency (~22 ms), reduced features, 
and deployment feasibility via H2O MOJO. However, 
limitations include dataset generalization, lack of dynamic 
feature analysis, and absence of adversarial testing. Future work 
should focus on adversarial robustness, integration of real-time 
behavioral features, and deployment in live environments. 

DATA AVAILABILITY 

The datasets created or examined in this study are available 
at the Mendeley repository: 

https://data.mendeley.com/datasets/h3cgnj8hft/1. 
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