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Abstract 

Early diagnosis and treatment is very essential in monitoring Brain tumor using MRI images. Convolutional Neural Networks (CNN) and 

Machine Learning (ML) classifiers have been widely used but there is not much work on how feature selection techniques would affect 

the performance of the CNN. Secondly, there is a need for investigation concerning small dataset adaptability and ML-CNN comparisons. 

To improve the classification accuracy, we integrate Univariate, Recursive Feature Elimination (RFE), Recursive Feature Elimination 

with Cross Validation (RFECV) with CNN in this study. Preprocessing, feature extraction & selection was carried out on the dataset 

consisting of 253 MRI images and they are classified using CNN and ML models (Logistic Regression, Decision Tree, Random Forest, 

Naïve Bayes). With the results 96%, CNN with Univariate Feature Selection performed better than ML classifiers, and other selection 

techniques. The results demonstrate that feature selection is necessary to get the best performance out of CNN models operating on small 

datasets. Future studies should be based on different deep learning architectures to improve classification and application in other 

datasets. 
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I. INTRODUCTION 

A brain tumor is defined as the development of a bulge or an 
unnatural growth of brain cells (in the brain) which many 
consider to be abnormal. These cells become abnormally 
accumulated either benign (noncancerous or malignant 
(cancerous). Additionally, they can be divided according to their 
location inside the brain, most commonly in the cerebral 
hemispheres, in the cerebellum or in the brainstem. 

The most well-known methods of brain tumor segmentation 
are predominantly based on machine learning, specifically deep 
learning. CNNs are used in these methods to analyze medical 
images and determine tumor boundaries. On a labeled dataset of 
images in which radiologists have segmented the tumor and 

CNNs are trained on it, these CNNs can be used to segment new 
images [1, 2]. 

The segmentation results are usually provided as a binary 
mask, where the pixels corresponding to the tumor are marked 
as 1 and the pixels corresponding to healthy brain tissue are 
marked as 0. These results can be used to generate 3D models of 
tumor and to plan treatments of the tumor [3, 4]. 

Within the field of machine learning, a brain tumor is 
classified as a certain medical issue which can be analyzed and 
diagnosed using computer techniques. Models based on 
machine learning can be trained to identify potential patterns 
within medical images, such as an MRI scan which might 
indicate the presence of a brain tumor. Brain tumor diagnosis, 
segmentation, and prediction along with classification can be 
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performed with the help of machine learning models. For 
example, a tumor can be segmented by virtue of being able to 
train a model to analyse MRI images and identify and delineate 
tumor boundaries with high accuracy. It allows this 
segmentation information to be used for surgical planning or 
determining the tumor's progression. 

One way to classify is to train models that will be able to 
differentiate between different types of brain tumor, say, 
gliomas, meningiomas and so on, for example. These models 
learn from a big database of labeled brain tumor images, which 
help in identifying some characteristics and patterns of different 
types of tumors such that they can make a perfect diagnosis. 

Prediction of treatment response and disease evolution can 
also be carried out using machine learning. Examples of models 
include employing historical patient data such as tumor 
characteristics, clinical information and treatment outcomes to 
learn to predict the likelihood of tumor progression, recurrence 
or even response to a certain therapy. For example, these 
predictions can aid in making informed treatment strategy and 
patient management decisions by the clinician. 

Furthermore, machine learning techniques could be used on 
brain tumor data to discover meaningful features from which a 
better picture of how brain tumor gain cancerous properties and 
understand the mechanisms of disease development can be 
gleaned. Such knowledge can prove to be very useful in the 
discovery of new biomarkers that can become novel therapeutic 
targets or potential treatment approaches. 

More generally, in machine learning, brain tumor are 
medical problems treated computationally. With the application 
of complex algorithms and models, the field of machine learning 
has integrated detection, diagnosis, treatment planning, and 
patient outcome improvements in brain tumor research and 
clinical practice [3-5]. 

Several research gaps in detecting brain tumor using ML and 
DL have yet to be solved. The previous studies had not 

investigated the role of feature selection in the CNN 
performance or compared the CNN with the traditional ML 

classifiers. Moreover, the small dataset adaptability and 
preprocessing problems have not been well studied. 

This study is focused on evaluating feature selection 
techniques, comparing CNN to ML classifiers and determining 
which preprocessing techniques to further optimize the 
performance of a brain tumor classifier. This study makes an 
advance on existing methodology by providing the following 
Table I which details the key research questions, identified gaps 
and the contributions. 

II. RELATED WORK 

With the progress of medical imaging analysis, the 
classification of brain tumor using ML and Deep Learning (DL) 
techniques has drawn significant attention. Recent 
advancements in the segmentation, classification, and detection 
of tumor have utilized CNN. However, challenges such as 
feature selection, small dataset adaptability, and comparative 
performance evaluation of CNN vs. ML classifiers remain 
underexplored. This section critically examines prior research, 
identifies gaps, and highlights the contribution of this study. 

A. Machine Learning and Deep Learning in Brain Tumor 

Classification 

CNN based approaches had been applied in several studies 
for brain tumor detection and classification. As seen in [5], high 
accuracy of 91.66% is achieved with MRI based classification 
of brain tumor through Faster R-CNN, using CNN for tumor 
identification. The study, however, did not cover other ML 
classifiers and did not study the feature selection techniques. 
Like [6], they also used a 2D CNN model for discrimination 
against tumor types (meningioma, glioma, pituitary tumor), with 
the accuracy of 91.3%. However effective their study was, they 
did not investigate the effects by preprocessing and the feature 
selection on CNN performance. 

In [7] also proposed another CNN based tumor segmentation 
model with a dual branch architecture that extracts both global 

and local features to increase segmentation accuracy (Mean 
Dice Score: 0.92 of whole tumor, 0.87 of tumor cores). While 

TABLE I.  RESEARCH QUESTIONS, IDENTIFIED GAPS, AND CONTRIBUTIONS 

Research Questions Identified Research Gaps Research Contributions 

How does feature selection impact the accuracy of 

CNN-based brain tumor classification? 

Limited research on how feature selection 

affects CNN accuracy in medical imaging. 

The study applies Univariate, RFE, RFECV, and Tree-

Based Feature Selection to CNN and demonstrates that 

Univariate Selection achieves the highest accuracy 
(96%). 

How does CNN compare with traditional ML 

classifiers (Logistic Regression, Decision Tree, 
Random Forest, Naïve Bayes) in brain tumor 

detection? 

Lack of comparative analysis between 

CNN and ML classifiers in tumor 
classification. 

The study evaluates multiple classifiers and proves that 

CNN outperforms traditional ML models in accuracy 
and robustness. 

Can CNN models be adapted to small datasets 

without overfitting, and how does feature 
selection contribute to this? 

Most studies train CNNs on large datasets, 

leaving small dataset adaptability 
unexplored. 

The study trains CNN on a small dataset (253 MRI 

images) and shows that feature selection prevents 
overfitting and improves performance. 

What preprocessing and feature selection 

techniques improve CNN performance in brain 
tumor detection? 

Prior works do not analyze preprocessing 

impact (e.g., normalization, augmentation) 
on CNN classification accuracy. 

The study implements grayscale conversion, 

normalization, augmentation, and compares 
preprocessing techniques for optimal CNN 

performance. 

Can alternative deep learning architectures 

(Capsule Networks, Vision Transformers) further 
improve CNN-based brain tumor classification? 

CapsNets and Vision Transformers (ViTs) 

remain unexplored in tumor classification 
despite their advantages over CNNs. 

The study suggests future research into CapsNets and 

ViTs to improve robustness, long-range dependencies, 
and spatial hierarchies in brain tumor classification. 
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this approach made efficiency and feature selection more 
relevant through reducing the amount of overhead, it did not 
consider ML alternatives or feature selection strategies to 
improve classification performance. 

A multitask CNN based classification model for tumor 
detection, grading, and localization is developed by [8] with 
accuracy of 92%. While the CNN based holistic tumor analysis 
was proven to benefit in this study, feature selection was not 
discussed. Finally, it did not compare CNN to traditional ML 
classifiers, which is important for analyzing the most powerful 
classification technique. While these studies show CNN’s 
effectiveness, there is no comparative analysis with ML 
classifiers and no study on how feature selection affects CNN 
optimization that this research attempts. 

B. Feature Selection and Preprocessing in Brain Tumor 

Classification 

There are feature selection techniques that reduce 
dimensionality and improve interpretability that are necessary to 
improve model performance. Contrast enhancement techniques 
were used by [9] based on which they introduced Regularized 
Extreme Learning Machine (RELM) for tumor classification. 
However, they demonstrated that preprocessing has a large 
impact on classification accuracy but integrated feature selection 
methods. Similarly, [10] described the use of feature extraction 
based on Local Binary Patterns (LBP) and nLBP as 
preprocessing techniques which have an influence on the 
accuracy of the classification. However, the model performance 
was not evaluated regarding its different feature selection 
techniques. 

There are several researchers that investigated the hybrid 
feature selection approaches. In [11], they suggested tumor 
segmentation by SVM and ANN based on adaptive regularized 
kernel based ultracened fuzzy Cmeans clustering (ARKFCM). 
Despite their effectiveness, they did not consider CNN based 
techniques. In this framework, [12] proposed a hierarchical 
SVM-CNN framework that achieves a better performance (Dice 
Score: 0.73~0.81). Nevertheless, this study did not analyse 
feature selection that can be used in CNN or compare with other 
ML classifiers. However, the effect of feature selection methods 
in CNN-based classification have not been investigated and 
therefore it is a key issue to be answered by this study. 

C. Emerging Trends in Deep Learning for Brain Tumor 

Classification 

One significant problem in classifying tumor from the brain 
is the scarcity of annotated medical datasets that resulted in 
overfitting and low generalizability of models. In particular, [13] 
observed that low sample sizes hinder CNN based intraocular 
tumor classification. However, their suggestions for solving this 
problem were data augmentation and low shot learning 
techniques, which they did not explore the use of feature 
selection techniques to better adapt the CNN to small datasets. 
[14] presented Adaptive Moving Self Organizing Map 
(AMSOM) and Fuzzy k means clustering (FKM) model 
achieved 10% better segmentation than the previous model. 
However, they didn’t use CNN architecture and did not explore 
feature selection strategies in their work. 

Usually, generalization problems often happen while 
training deep learning models on small datasets. ML models 
were used by [10] to classify malignant vs. benign neoplasms 
based on MR images of ADC images with 90.41% accuracy. 
While effective, the study did not compare to CNN based 
approaches and does not include feature selection in this ability 
to adapt to small dataset. To tackle these problems, this work 
also looks at CNN performance in a small set of data (253 MRI 
images) in conjunction to feature selection techniques to reduce 
overfitting and increase generalizability. 

To reduce the time in detecting brain tumor CNN, 
EfficientNetB0, InceptionV3, ResNet50 and NASNETMobile 
have been used in [27]. They suggested a cost-sensitive model 
for the imbalance data and the combination of CNN and 
InceptionV3 gave the accuracy of 92.31%. 

In [28] they collected datasets from brat’s dataset and 
applied features were extracted using attribute aware attention 
(AWA) methodology. The images are segmented using visual 
geometry group (VGG-19) model. A relevance score of 94.86% 
was achieved using AWA based VGG-19 model. 

III. METHODOLOGY 

To detect the occurrence of a tumor in an image, the 
following steps are consecutively taken: 

• The first step is to acquire medical images of the brain, 
such as MRI or CT scans. 

• The next step is to preprocess the images. This includes 
tasks such as cropping, resizing, and normalizing the 
images in such a way that they are at the same scale and 
that the tumor is clearly visible in all images. 

• The next step is to build and train a machine learning 
model on a labelled set of images. The model is trained 
during the training phase to recognize the characteristics 
of the brain tumor within the image such as shape, size, 
intensity, and more. 

• After training the model, it is used to identify brain tumor 
in other images. Analyze these images and then inform 
the prediction whether there is a tumor and if yes, what 
is its position. 

• The last stage involves assessing the effectiveness of the 
model. This may include metrics such as accuracy, 
sensitivity, and specificity. 

• Depending on the results of the evaluation, the model can 
be fine-tuned or retrained if necessary. 

Fig. 1 shows the overall procedure for modelling brain tumor 
using CNNs and machine learning approaches. 

A. Dataset 

MR images were downloaded from the Kaggle website. All 
the images were in jpg format, and there was a total of 253 
images in which 98 images did not contain tumor and 155 
images contained tumor. Fig. 2 shows the sample images that 
have no brain tumor, and Fig. 3 shows the sample images that 
have a brain tumor [15, 16]. 
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B. Preprocessing of the dataset 

The dataset was downloaded from the Kaggle website, and 
all the images were in the jpg format, few of the images were in 
RGB format, and few were in grayscale format. First, all the 
images were converted to grayscale images using the rgb2gray 
method in MATLAB. Then 49 features are calculated for each 
image: entropy, kurtosis, mean, contrast,  GM9,  standard 
deviation, GM10, CM9,  skewness, GM8, CM8, SIM6, energy, 
GM7, CM7, variance, GM5, GM12, CM5, Haralicks Feature 2, 
RIM1, GM2, SIM2, CM3, GLCM ASM Haralicks feature 1, 
RIM 2, CM10, GM11, SIM5, centriod y coordinate, Haralicks 
Feature 5, GM1, CM1, centriod x coordinate, SIM1, RIM4, 
Haralicks Feature4, GM4, CM4, SIM7, RIM3, Haralicks 
Feature 7, GM3, CM2, SIM4,  Haralicks Feature 6, GM6, CM6, 
and SIM3. Each feature provides information about images, as 
a greater number of features increases the accuracy of detecting 
brain tumor. These features were saved in .csv format. 

 

There are 49 features, and these features are calculated for 
each image, which is for 213 images. The statistical features that 
are calculated are [17]: 

1. Mean: The mean is the average value of the intensity of the 

image.  

Mean: μ =  ∑ iP G−1
i=0    (1) 

2. Contrast: In the context of visual perception, contrast refers 

to the discernible distinction in luminance or color between an 

object and its surroundings, which allows the object to stand 

out. This distinction is influenced by the variation in the 

brightness and color of the object and other objects present in 

the same visual field. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡: 𝜎2 = ∑ (1 − 𝜇)2𝑃(𝑖)𝐺−1
𝑖=0  (2) 

3. Skewness: Skewness indicates the level of asymmetry 

present in a real-valued random variable's probability 

distribution, and as such, it serves as a measure of dispersion. 

In other words, when skewness is absent in a distribution, it is 

symmetrical; however, at times, a zero value, which indicates 

the most frequent outcomes being bordered by the least 

frequent outcomes on both sides, is not always the case. 

Skewness: μ3 = σ−3 ∑ (1 − μ)3G−1
i=0 P(i) (3) 

4. Kurtosis: Kurtosis, in statistics, refers to the degree of 

flatness or peakedness of a probability distribution's histogram 

for a real-valued random variable. This term is mathematically 

linked to the fourth moment of the distribution. A distribution 

with high kurtosis has tails that are more pronounced and spread 

out, often accompanied by a sharper peak, although this is not 

always the case. Conversely, a low kurtosis distribution exhibits 

shorter, thinner tails and a more rounded peak, although 

exceptions to this pattern can occur. 

Kurtosis: μ4 = σ−4 ∑ (1 − μ)4P(i) − 3  G−1
i=0  (4) 

5. Energy: The measure of change in an image that can be 

quantified is referred to as energy, and energy measures that 

quantification. 

Energy: E = ∑ [P(i)]2G−1
i=0   (5) 

6. Entropy: Entropy is a statistical measure that enables 

quantification of the degree of randomness in the intensity 

values of an input image, and is utilized to characterize its 

texture. Additionally, entropy can be employed to assess the 

degree of variation in the distribution present in a specific 

region. Interestingly, the entropy values are inversely related to 

the uniformity measure, thereby allowing the same conclusions 

to be drawn from both measures. 

Fig. 1. CNN and machine learning based tumor classification 

 

 

Fig. 2. Images of patients with no tumor [16] 

 

 

Fig. 3. Images of patients with tumor [16] 
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Entopy: H = − ∑ P(i)log2[P(i)]G−1
i−0   (6) 

7. Standard deviation: The standard deviation is a fundamental 

statistical metric that serves to quantify the extent of variation 

in the intensity of an image relative to its mean intensity. 

Standard deviation is used in image processing to track how 

much “dispersion” there is from a predicted or average value. 

A low standard deviation suggests data points are closely 

bunched around the mean, whereas a high standard deviation 

indicates distribution is much wider. Due to its ubiquity in 

statistics, the standard deviation (SD) represents a widely used 

measure of diversity or variability. 

𝑆𝐷 = √
∑(𝑥−�̅�)2

𝑛
  (7) 

8. Variance: Variance is a statistical measure used to determine 

the extent to which each pixel in an image deviate from 

neighboring pixels or a central pixel. In classification tasks that 

involve segmenting images into distinct regions, variance is 

commonly used. Variance is one of the several descriptors of a 

probability distribution and as such, it quantifies the extent of 

variation among a group of numbers. Specifically, it represents 

one of the moments of a distribution, and is mathematical tool 

that is useful for distinguishing between different types of 

probability distributions. However, we can perform this task 

with many other techniques, but the techniques based on 

moments are computationally and mathematically simple. 

𝑉𝐴𝑅𝐼𝐴𝑁𝐶𝐸 = ∑ ∑ (𝑖 − 𝜇)2𝑃𝐺−1
𝑗=0

𝐺−1
𝑖=0 (𝑖, 𝑗) (8) 

9. Gray level co-occurrence matrix (GLCM): It characterizes 

the distribution of prior texture of the image’s cooccurring pixel 

values at a specified offset. The size of the GLCM is a square 

matrix with dimensions being same as the number of gray 

levels, G, in the image. A very early method in the literature of 

image processing was to employ statistical image features such 

as the GLCM. This is a technique that is used for the 

relationship between the two adjacent pixels. An analysis of the 

statistical properties of such relationships can then provide 

useful insights into how the image structure and content are 

most likely structured and what content it contains [18-21].  
GLCM Contrast: It is the measure of gray level variation 

based on the reference pixel and its neighbors of a gray level co-
occurrence matrix (GLCM). High contrast shows that there are 
large differences of intensity between the pixels in the GLCM. 

𝐶𝑂𝑁𝑇𝑅𝐴𝑆𝑇 = ∑ 𝑛2{∑ ∑ 𝑃(𝑖, 𝑗)𝐺
𝑗=1

𝐺
𝑖=1 },    |𝑖 − 𝑗| = 𝑛𝐺−1

𝑛=0 (9) 

GLCM correlation: The correlation feature of a gray level 
co-occurrence matrix (GLCM) is an indicator of the degree of 
linear dependence between the gray level values in the matrix. 

CORRELATION = ∑ ∑
{i∗j}∗P(i,j)−{μx∗μy}

σx∗σy

G−1
j=0

G−1
i=0  (10) 

GLCM Energy: The addition of the squared value to GLCM 
is a measure that reflects the uniformity of the distribution or, 
alternatively, the angular second moment. 

Energy = √ASM  (11) 

GLCM Homogeneity: Homogeneity quantifies how 
comparable the distribution of components within a GLCM is to 
the diagonal of the matrix. The greater the value of homogeneity, 
the lesser the contrast within the image. 

HOMOGENEITY = ∑ ∑
1

1+(i−j)2 P(i, j)G−1
j=0

G−1
i=0  (12) 

GLCM AsmHaralicks Feature 1: The Angular Second 
Moment (ASM) quantifies the degree of local homogeneity of 
grey scales in an image, while the sum of squared values in 
GLCM are calculated. When pixels in an image closely 
resemble each other, the resultant ASM value will be large. 

ASM = ∑ ∑ {P(i, j)}2G−1
j=0

G−1
i=0    (13) 

Haralick Feature 2: Entropy is a measure of randomness or 
disorder within an image. When all the elements within the co-
occurrence matrix are identical, the entropy is maximized. 
Conversely, when the elements are dissimilar, the entropy is at 
its minimum 

𝐸𝑁𝑇𝑅𝑂𝑃𝑌 = − ∑ ∑ 𝑃(𝑖, 𝑗) ∗ 𝑙𝑜𝑔(𝑃(𝑖, 𝑗))𝐺−1
𝑗=0

𝐺−1
𝑖=0  (14) 

Haralick Feature 3: Difference variance is a currently used 
measure to analyse heterogeneity and place greater weight on 
the more disparate intensity level pairs. 

VARIANCE = ∑ ∑ (i − μ)2PG−1
j=0

G−1
i=0 (i, j)  (15) 

Haralick Feature 4: It is a statistical measure of dissimilarity, 
as known as difference average, as the mean difference in gray 
values of neighboring pixels in an image. The higher the 
dissimilarity value is, the more there is difference in intensities 
of neighboring pixels. 

𝐴𝑉𝐸𝑅 = ∑ 𝑖𝑃𝑥+𝑦(𝑖)2𝐺−2
𝑖=0   (16) 

Haralick Feature 5: Sum Entropy is used as a statistical 
measure to describe the amount of uncertainty or order in the 
distribution of the sum of gray levels of an image. It is a measure 
that incorporates the probability distribution of all possible sums 
that can occur in the image and the randomness or predictability 
about those sums. An increase in the sum entropy value signifies 
that the image is more disordered or uncertain with regard to the 
distribution of the sum of the gray levels inside the image. 

SENT = − ∑ Px+y(i)log2G−2
i=0 (Px+y(i))  (17) 
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Haralick Feature 6: Difference entropy is a way to measure 
image disorder (or randomness) on the basis of the gray level 
difference distribution in an image. 

DENT = − ∑ Px+y(i)logG−1
i=0 (Px+y(i))  (18) 

 

Haralick Feature 7: Inertia is a statistic-based measure which 
determines the magnitude of local variations in an image. On the 
other hand, this measure of contrast is sensitive to quantities 
from p(i, j) that are in fact farther away from the diagonal of the 
co-occurrence matrix. 

INERTIA = ∑ ∑ {𝑖 − 𝑗}2 ∗ 𝑃𝐺−1
𝑗=0

𝐺−1
𝑖=0 (𝑖, 𝑗)   (19) 

Haralick Feature 8: Cluster shade is a statistical feature to 
measure the asymmetry of the GLCM matrix, in other words, it 
is proportional to the perceptual uniformity and is 
HaralickFeature 8. A higher value of the Cluster Shade 
represents more asymmetry. 

SHADE = ∑ ∑ {i + j − μx − μy}
3G−1

j=0
G−1
i=0 ∗ P(i, j) (20) 

 

Haralick Feature 9: Cluster prominence is a feature for 
measuring asymmetry in gray level co-occurrence matrix 
(GLCM). The greater asymmetry (higher value) the peak of the 
distribution shifts further away from the mean. The opposite is 
true when a lower value appears, the distribution is close to the 
mean, and is less skewed. 

𝑃𝑅𝑂𝑀 = ∑ ∑ {𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦}
4𝐺−1

𝑗=0
𝐺−1
𝑖=0 ∗ 𝑃(𝑖, 𝑗) (21) 

10. Centre Moment: It is an application of probability theory 

and statistics where Centre moment is a statistical moment, that 

measures the properties of a probability distribution for a 

random variable in accordance with its mean. Specifically, it is 

the expected value of that particular integer power which 

measures the extent of deviation between this random variable 

and its mean [22]. 
If f(x,y) is the image function and is the piecewise 

continuous bounded function then the centre moment can be 
defined as 

μpq = ∫ ∫ (x − x̅)p∞

−∞
(y − y̅)y∞

−∞
f(x, y)dxdy  (22) 

where x ̅=M_10/M_00 and y =̅M_01/M_00 are the centroids 
of the image f(x,y). 

For 2D continuous function f(x,y) the moment of order (p+q) 
is defined as 

Mpq = ∫ ∫ xpyqf(x, y)dxdy
∞

−∞

∞

−∞
  (23) 

Where p,q=0,1,2….. 

CM1 ∶  μ00 = M00   (24) 

𝐶𝑀2 ∶  𝜇01 = 0   (25) 

CM3 ∶  μ10 = 0    (26) 

CM4 ∶  μ11 = M11 − x̅M01 = M11 − y̅M10 (27) 

CM5 ∶  μ20 = M20 − x̅M10  (28) 

𝐶𝑀6 ∶  𝜇02 = 𝑀02 − �̅�𝑀01  (29) 

𝐶𝑀7 ∶  𝜇21 = 𝑀21 − 2�̅�𝑀11 − �̅�𝑀20 + 2�̅�2𝑀01 (30) 

𝐶𝑀8 ∶  𝜇12 = 𝑀12 − 2�̅�𝑀11 − �̅�𝑀02 + 2�̅�2𝑀10 (31) 

𝐶𝑀9 ∶  𝜇30 = 𝑀30 − 3�̅�𝑀20 + 2�̅�2𝑀10 (32) 

𝐶𝑀10 ∶  𝜇03 = 𝑀03 − 3�̅�𝑀02 + 2�̅�2𝑀01 (33) 

11. Scale Invariant Moment (SIM): The scale-invariant 

moment, or SIM, is a technique used in computer vision for 

recognizing and describing local details in images. Initially, 

SIM key points for certain objects are collected from a group of 

reference images and stored in a database. For recognizing an 

object in a different image, each feature of the new image is 

compared one by one with the features stored in the database, 

and candidate matching features are found by using the 

Euclidean distance to their feature vectors. The scale invariant 

moments are calculated via normalization [22]. The normalized 

centre moments are 

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇00
𝛾    (34) 

 𝛾 =
(𝑝 + 𝑞 +

2)
2, 𝑝 + 𝑞 = 2,3 … . .⁄  

Based on the normalized central moment 7 SIM are 
calculated 

SIM1: ϕ1 = η20 + η02   (35) 

SIM2: ϕ2 = (η20 − η02)
2 + 4η11

2  (36) 

SIM3: ϕ3 = (η30 − 3η12)
2 + (3η21 − μ03)2 (37) 

SIM4: ϕ4 = (η30 − 3η12)
2 + (η21 + μ03)2 (38) 

SIM5: ϕ5 = (η30 − 3η12)(η30 + 3η12)[(η30 + η12)2 −
3(η21 − η03)2] + (3η21 − η03)(η21 + η03)[3(η21 − η12)2 −

(η21 − η03)2] (39) 

SIM6 ∶  ϕ6 = (η20 − η02)[(η30 − 3η12)2 − (η21 + η03)2 +
4η11(η30 + η12)(η21 + η03)(40) 

SIM7 ∶  ϕ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 −
3(η21 − η03)2] − (η30 − 3η12)(η21 + η03)[3(η30 + η12)2 −

(η21 − η03)2]     (41) 

12. Centriod X coordinate: If f(x,y) is an image function then 

the centroid x coordinate is the center value of the x values in 

the image function.  

�̅� =
𝑀10

𝑀00
   (42) 

13. Centriod Y coordinate: If f(x,y) is an image function then 

the centroid y coordinate is the center value of the y values in 

the image function.  
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�̅� =
𝑀01

𝑀00
   (43) 

The variables were calculated with feature individual 
augmentation and normalization. The dataset, with 30% 
allocated for testing and 70% for training the model, was then 
separated into test and train datasets. 

 

C. Feature Selection 

It is necessary to perform feature selection to minimize the 
number of irrelevant features and computation time in CNN 
based tumor classification. This study employs four feature 
selection techniques for brain tumor classification; Univariate, 
REF, RFECV, and Tree Based Selection.  However, these 
methods were chosen because they have been proven able to: 

• Univariate Selection: Statistical significance tests for 
fast removal of irrelevant features. 

• RFE & RFECV: While not a supervised method, it has 
previously been featured in another Kaggle tutorial and 
provides a great approach for selecting feature 
importance in each dataset. 

• Tree-Based Methods: Score the features within 
decision trees based on their impurity in determining 
the tree structure. 

In the following, each method is discussed in detail. 

1) Univariate feature selection:  

The univariate selection was used here as the best feature 
selection technique because it is better, as it tests a single feature 
at a time, selecting the best features by correlation with the target 
variable. As with any method, a simple one that is nevertheless 
powerful makes it an appealing technique when dealing with 
small datasets, for which computational efficiency is critical. 
Furthermore, this method applies to statistical tests like ANOVA 
(Analysis of Variance) and Mutual Information (MI) to 
determine the degree of significance of each feature. Univariate 
Selection helps in removing the irrelevant pixel and texture-
based features from the medical images which do not assist 
classification performance. The major point of using them is to 
quickly filter out irrelevant features and then use other more 
comprehensive selection techniques.  Table II shows the features 
selected by this method. 

2) Recursive feature elimination (RFE):  

The reason for choosing RFE is because it is a wrapper-
based method which iteratively selects the least important 
features to be removed depending on the model’s performance. 
Where Univariate Selection evaluates features individually, 
RFE takes feature importance in the context of other features. 
This method identifies the optimal feature subset by training the 
model multiple times, starting from the complete information 
about the features, and removing at each step the least significant 
feature to stop training. Similar to a Boolean function, the main 
advantage of RFE is aggregation of the highest essential 
features, which provide an important contribution to increase the 
accuracy of the model. As CNN models are data intensive, use 
of RFE decreases dimensionality and maintains the robustness 

of the model. Table II shows the features selected by this 
method. 

3) Recursive feature elimination with cross validation 
(RFECV) 

RFE can be extended to RFECV first to make use of cross 
validation to automatically pick the optimal number of features. 
As opposed to choosing a fixed number of features, RFECV 
considers only the features that determine best validation 
performance. This method ensures that there would not be 
overfitting as a common problem in deep learning models 
trained on a small set of data. The cross-validation aspect makes 
sure that the features chosen to generalize well to new data and 
not simply fit too closely to the training data. And since RFECV 
combines recursive elimination and validation scoring, it lends 
itself well in such cases of small datasets in order to select an 
optimal feature subset well for a high accuracy. Table II shows 
the features selected by this method. 

4) Tree-based feature selection 

The inclusion of tree-based feature selection was because it 
uses decision tree-based algorithms (such as RF, Extra Trees) to 
rank the features based on their importance in the classification 
tasks. Unlike RFE and RFECV which consider ranking features 
based on a single model used in the pipeline, tree-based methods 
work on an ensemble, considering ensemble of varying number 
of decision trees to find the most important features. This 
approach is robust to nonlinear relationships and good at high 
dimensional datasets. Since MRI based tumor classification 
involves complex patterns of pixels and their intensities, tree-
based methods are a more interpretable way of ranking feature 
importance. This method was used with the main purpose of 
capturing feature interactions and guaranteeing the continuance 
of the most informative texture-based features. Table II shows 
the features selected by this method. 

 

D. Statistical Validation of Feature Selection Methods 

To statistically validate the performance differences arising 
from various feature selection techniques, we conducted 
appropriate statistical analyses for each method. Univariate 
feature selection relied on p-values and F-scores (Table III) to 
identify significantly contributing features. RFE and RFECV 
were evaluated using logistic regression estimators and 10-fold 
cross-validation, with the mean accuracy and 95% confidence 
intervals reported in Table IV. For Tree-Based selection, feature 
importances were computed using Random Forest across 30 
repetitions, as shown in Table V. These statistical validations 
confirm that the selected features significantly contribute to 
model accuracy and robustness and support the model’s 
generalization capabilities. 
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E. Model Training and Hyperparameter Optimization 

Steps such as data cleansing, feature selection, model 
training, and evaluation were included in the processes before 
the brain tumor identification model was trained. The necessary 
dataset images were downloaded from a Kaggle repository. 
First, the images were converted to grayscale, then 49 statistical 
and textural features were extracted. To improve classification 
accuracy, the most discriminative features were found using 
various feature selection methods like REF and Univariate 
Feature Selection along with Tree Based Feature Selection 
(TFBS) as well as RFECV. To allow the model to be evaluated 
fairly, the data was then split into 70% training data and 30% 
testing data. 

collection of classifiers like Logistic Regression, Decision 
Tree Classifier, Random Forest Classifier, and Naive Bayes 
Classifier was built as a part of the model training using machine 
learning techniques. In this case, the scikit-learn train_test_split 
method is what allowed me to scale these models.  In addition, 
we trained a CNN separately with the image dataset consisting 

TABLE II.  CHOSEN FEATURES OBTAINED THROUGH THE PROCESS OF FEATURE SELECTION 

Univariate RFE RFECV TREE Based 

standard deviation,  variance, 

entropy, CM 8, SIM 3, RIM 1, GM2, 

Mean, CM3, SIM 1,  GM5, RIM 3, 

Energy, kurtosis, skewness, GM11, 

CM 7, SIM 4, Haralicks Feature 5, 

GM1, CM2, SIM 2, Haralicks 

Feature 2, GM6, CM 9, SIM 5, 

Haralicks Feature 4, GM4, CM 6, 

Haralicks Feature 6, GM7, CM 10, 

RIM 2, contrast, centriod y 

coordinate, GM12, RIM 4, centriod x 

coordinate. 

CM 6, Haralicks Feature 6, entropy, 

CM 8, Mean, CM 9, GM5, Haralicks 

Feature 5, variance, RIM 1, Energy, 

centriod y coordinate, GM2, 

Haralicks Feature 2, centriod x 

coordinate, Haralicks Feature 4, 

GM7, GM6, GM1, GM4. 

Haralicks Feature 2, GM5, centriod y 

coordinate, Energy, entropy, Mean, 

Haralicks Feature 4, standard 

deviation, variance, Haralicks 

Feature 6, GM1, contrast, GM6, 

GM2, GM7, GM4, CM 10, centriod 

x coordinate, CM 9, Haralicks 

Feature 5, SIM 3. 

CM1, standard deviation, 

RIM1, SIM 5, centriod y 

coordinate, SIM 7, CM 9, Mean, 

entropy, CM 5, CM 10, 

variance, Energy, CM 6, 

kurtosis, skewness, CM 4, 

GM11, 'GM9, GM12, GM10, 

CM3, CM2, CM 7, CM 8, SIM 

6, RIM 3, RIM 2, RIM 4, 

centriod x coordinate 

 
 

TABLE III  TOP-RANKED FEATURES USING UNIVARIATE FEATURE 

SELECTION BASED ON F-SCORE AND P-VALUE 

Feature F-score p-value 

glcm homogeneity 1009.56144 2.4488E-148 

glcm contrast 767.778365 4.2321E-122 

CM 4 456.2364807 6.25016E-82 

CM 5 456.0139498 6.72703E-82 

CM 6 451.3846532 3.11402E-81 

GLCM ASM Haralicks feature 1 272.7916659 1.32164E-53 

Haralicks Feature 2 271.2077483 2.4267E-53 

Haralicks Feature 5 255.5069323 1.04972E-50 

Haralicks Feature 4 248.5239964 1.60456E-49 

Haralicks Feature 7 246.2186789 3.96244E-49 

Haralicks Feature 10 244.8966894 6.65998E-49 

GM5 214.9506116 1.0123E-43 

GM9 214.8191413 1.06752E-43 

GM7 214.3890897 1.27012E-43 

GM4 214.3784807 1.27558E-43 

GM8 214.37239 1.27873E-43 

GM10 214.2609255 1.33766E-43 

GM6 214.0167405 1.47644E-43 

GM3 212.971821 2.25312E-43 

GM2 212.7574587 2.45734E-43 

Haralicks Feature 6 195.8552549 2.42981E-40 

CM 1 188.5366663 4.98216E-39 

GM1 188.5366663 4.98216E-39 

entropy 140.2225645 3.9557E-30 

CM 10 130.0264937 3.39959E-28 

centriod y coordinate 129.5809382 4.13443E-28 

centriod x coordinate 125.181993 2.86847E-27 

CM 8 123.2299242 6.79522E-27 

CM 7 116.8625038 1.14645E-25 

CM 9 110.9289207 1.62347E-24 

glcm energy 96.07712618 1.33206E-21 

contrast 63.41543991 5.13718E-15 

glcm correlation 44.96370269 3.57879E-11 

 
 

TABLE IV CROSS-VALIDATION ACCURACY AND CONFIDENCE 

INTERVAL FOR RFE AND RFECV FEATURE SELECTION 

Metric 
Mean 

Score 

95% CI 

Lower 

95% CI 

Upper 

Accuracy 0.872 0.853 0.891 
 

TABLE V FEATURE IMPORTANCE SCORES FROM TREE-BASED 

FEATURE SELECTION (RANDOM FOREST) 

Feature Mean 

Importance 

Std 

Deviation 

glcm contrast 0.4969 0.0258 

kurtosis 0.2728 0.0234 

standard deviation 0.2267 0.0253 

glcm energy 0.1623 0.024 

glcm correlation 0.1583 0.0234 

Energy 0.0914 0.0185 

variance 0.0236 0.0158 

skewness 0.0221 0.0105 

Mean 0.0115 0.0097 

entropy 0.0019 0.0026 
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of convolutional layers with filters that were followed by fully 
connected layers which classified if there was a tumor or not. 
These models were validated with respect to accuracy score, 
confusion matrix, cross validation, etc. 

The performance of the model was hyperparameter tuned to 
optimize. Different learning rates (0.001, 0.0001 and 0.01) were 
tested in CNN learning. A test was run to find the proper number 
of estimators, those of 42 and 100 were employed and then the 
choice was made based on the value of the results. Then, in CNN 
model it was trained from 10 to 50 epochs over the batch size of 
32 with categorical cross entropy as the loss function. Also, the 
Decision Tree Classifier depth and splitting criteria had been 
fine-tuned by a 10-Fold cross validation. ReLU method has been 
used as an activation function and for pooling 2x2 max pool has 
been used. Dropouts are 0.25 after convolution layer and 0.5 for 
dense layer. REF and Univariate Feature Selection methods led 
to a great performance improvement and significant impact on 
performance, reducing dimensionality and improving 
classification accuracy. Model architecture for CNN used in 
proposed system is shown in Fig. 4. 

IV. RESULT 

Once the most important features for brain tumor detection 
are identified using several methods including univariate, RFE, 
RFECV, TREE based, the remaining task is to decide upon the 
best classifier for this task. To do this, we apply a machine 
learning algorithm and the convolutional neural network on 
chosen features. We randomly selected our dataset into two 

subsets, one of which was made up of 70 percent of the data 
called 'training set' and one of the remainder or 30 percent of the 
data called 'testing set'. Confusion matrix is used to see its 
efficiency of the algorithm used. The classification itself was 
done using open-source Python software and features that need 
to be selected for the classification purpose were chosen. 

Generally, a classifier is assessed in terms of accuracy, 
precision, recall, specificity, and the F-measure from the output 
of a confusion matrix. A confusion matrix contains nTP, nTN, 
nFP, and nFN which stand for True Positive, True Negative, 
False Positive, and False Negative, respectively. Once nTP, 
nTN, nFP, and nFN are calculated, many other metrics can be 
determined.  

Accuracy is defined as the share of instances that have been 
correctly classified out of the total. The precision assesses how 
many of the predicted positive instances were actually true 
positives. Recall, also termed sensitivity or true positive rate, 
assesses how many of the actual positive instances were 
captured correctly. Specificity assesses how many of the actual 
negative cases were classified as true negatives. The F-measure 
is a metric that is calculated as 2 times precision and recall over 
their summation [23-26]. 

The accuracies of all the models, i.e., logistic regression, 
decision tree, random forest, naïve bayes and CNN with respect 
to the different feature selection algorithms, univariant, RFE, 
RFECV, tree based, and all the features are shown in Fig. 5. If 
all the available features (total 49) are provided to the different 
models, then the accuracy of the naïve Bayes model is low, 
however the accuracies of the CNN and random forest models 
are the same. If univariate, RFE, RFECV and the tree-based 
feature selection method are used with all the models and the 
CNN, then in all cases CNN yields better results. However, with 
the univariate feature selection method, the accuracy obtained 
from the CNN is higher than that of the other methods. 

Concerning the four algorithms, logistic regression, decision 
tree, random forest, and naive Bayes, as well as a convolutional 
neural network, their accuracy for both random forest and CNN 
was equal. For univariate, RFE, RFECV, and tree-based feature 
selection methods, CNN had the best performance. When 
applying the CNN 10 epochs are used with each type of feature 
selection method. 

Classifier performance in brain tumor detection relies 
heavily on feature selection, as depicted in Table VI. NN results 
were maximally accurate (96%) through Univariate selection, 
underscoring feature relevancy selection. Both RFE and RFECV 
yielded competitive results (95% with NN), as they reduced 
redundancies. Decision Tree (81%) and Random Forest (82%) 
results were both consistent due to receiving Tree-Based 
selection and all features, respectively. Naïve Bayes was the 
lowest performer (down to 39%) showcasing its vulnerability to 
feature sensitivity. In summation, feature selection improves the 
performance of the model and Tree-Based selection was the only 
method providing equal improvement to all classifiers. The data 
supports the fact that CNN is the most accurate for brain tumor 
detection when integrated with proper feature selection 
strategies. 

 

Fig. 4. CNN architecture used in proposed system 
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Table VII provides a cross-comparison of the models 
regarding their training and validation accuracy, convergence 
epochs, and overfitting tendencies. Model which used 
Univariate, REF, RFECV, and Tree Based Selection of features 
obtained the maximum training accuracy of 90%, whereas 
validation accuracy stayed  

steady at around 87 to 88%, showing stable generalization. 
Model which uses all the features for training showed lesser 
accuracy (75%) and mild overfitting, suggesting inadequate 
learning. The rest of the models exhibited overfitting after 8 
epochs which indicates effective learning. 

The accuracy plots shown in Fig.s 6, 7, 8, 9, and 10 illustrate 
the model's learning behavior over multiple epochs, showing 
how training and validation accuracy evolve. Fig. 6 
demonstrates overfitting, where validation accuracy increases 
initially but starts declining after epoch 6, indicating that the 
model is memorizing training data rather than generalizing. This 
suggests the need for early stopping or regularization to improve 
generalization. 

In contrast, Fig. 7 and 8 shows better model stability, with 
validation accuracy aligning closely with training accuracy. The 
gradual increase in accuracy suggests that the model learned 
effectively without excessive overfitting. 

Fig.s 9 and 10 represent the best-performing models, where 
accuracy surpasses 90%, and the training and validation curves 

remain closely aligned. This indicates optimal training with 
well-selected features and hyperparameters, leading to superior 
classification performance. These trends confirm that feature 
selection techniques played a critical role in improving CNN 
performance. The steady accuracy gains across figures suggest 
that Univariate Feature Selection contributed to better 
generalization. The final model's high accuracy (>90%) proves 
that proper feature selection, training optimization, and 
regularization significantly enhance CNN’s effectiveness for 
brain tumor classification. 

Fig. 11 provides a comparison of the accuracy of our 
approach with that of previous approaches.  [5] used CNN and 
achieve 91.66% accuracy, [6], used 2-D CNN and achieve 
91.3% accuracy, [7] resolve over fitting then used CNN and 
achieve 92.03% accuracy and [8], used CNN and achieve 92% 
accuracy however this paper showed that highest accuracy 96% 
is achieved when univariate feature selection was used with the 
CNN. 

The results obtained from the experiments indicate that 
feature selection significantly influences CNN performance in 
brain tumor classification. In this section, we analyze the 
implications of these findings, compare our results with previous 
studies, and discuss the role of feature selection in CNN 
optimization. 

 

 
Fig. 5. Accuracy of different algorithm using different feature selection method 

TABLE VI  CLASSIFIER ACCURACY ACROSS DIFFERENT FEATURE SELECTION METHODS 

Feature Selection Logistic Regression Decision Tree Random Forest Naïve Bayes Neural Network (NN) 

All Features 0.63 0.78 0.82 0.41 0.82 

Univariate 0.7 0.8 0.77 0.39 0.96 

REF 0.72 0.8 0.8 0.69 0.95 

RFECV 0.74 0.77 0.72 0.41 0.95 

Tree Based 0.66 0.81 0.7 0.43 0.94 
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TALBE VII  EPOCH-WISE MODEL ACCURACY COMPARISON 

Model with different feature selection method 
/ Epochs 

1 2 3 4 5 6 7 8 9 

When all features are 
used  

Training Accuracy 0.5 0.55 0.6 0.63 0.65 0.67 0.69 0.7 0.75 

Validation 

Accuracy  
0.55 0.63 0.65 0.7 0.75 0.75 0.75 0.74 0.72 

When univariate is 

used 

Training Accuracy 0.7 0.75 0.78 0.82 0.85 0.86 0.87 0.88 0.9 

Validation 
Accuracy 

0.75 0.75 0.8 0.82 0.85 0.85 0.86 0.87 0.88 

When RFE is used 

Training Accuracy 0.7 0.75 0.78 0.82 0.85 0.86 0.87 0.88 0.9 

Validation 

Accuracy 
0.75 0.75 0.8 0.82 0.85 0.85 0.86 0.86 0.87 

When RFECV is used 

Training Accuracy  0.7 0.75 0.78 0.82 0.85 0.86 0.87 0.88 0.9 

Validation 

Accuracy 
0.75 0.75 0.8 0.82 0.85 0.85 0.86 0.87 0.88 

When Tree based is 

used 

Training Accuracy  0.7 0.75 0.78 0.82 0.85 0.86 0.87 0.88 0.9 

Validation 
Accuracy 

0.75 0.75 0.8 0.82 0.85 0.85 0.86 0.87 0.88 

 

 
Fig 6. Model accuracy of CNN when all features are used 

 
Fig 7. Model accuracy of CNN when univariate is used 

 
Fig 8  Model accuracy of CNN when RFE is used 

 

 

 

Fig 9. Model accuracy of CNN when RFECV is used 

 

 
 
 

Fig 10. Model accuracy of CNN when Tree based is used 

 

 
 

Fig 11. Comparison of accuracy with previous given approaches 
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V. DISCUSSION 

The experimental analysis reveals that feature selection 
contributes heavily to the performance of CNNs in brain 
  classification. The best result of 96% accuracy was attained 
from using Univariate Feature Selection with CNN as opposed 
to RFE, RFECV, and Tree Based Feature Selection. 
Furthermore, CNN surpassed all conventional classifiers 
including Logistic Regression, Decision Tree, Random Forest, 
and Naïve Bayes as was expected, further proving the efficacy 
of deep learning in detecting brain tumor. 

Out of all the methods utilized for feature selection, 
Univariate Feature Selection with CNN was the most accurate, 
achieving an impressive 96% accuracy, which surpassed REF, 
Recursive Feature Elimination with Cross-Validation (RFECV) 
and Tree-Based Selection. Its effective performance can be 
attributed to multiple reasons. 

One of the primary reasons for its effectiveness is flexibility 
towards small datasets. The dataset applied in the study was 
composed of 253 MRI images which, for deep learning 
approaches, is small. In these situations, reducing the 
dimensionality of the dataset while retaining the essential 
information becomes critical to avoid overfitting. Univariate 
Selection is effective in solving this problem by only selecting 
features that have the strongest statistical measures, which 
enhances the chances of improving the generalization capability 
of the model. On the contrary, wrapper-based approaches such 
as RFE and RFECV need multiple iterations of model training 
along with overfitting which is problematic in small datasets. 

Another advantage of Univariate Selection is freedom from 
model dependency. Univariate Selection, unlike RFE and 
RFECV, does not use feature importance orders from a certain 
model to apply them to the selection of features, but rather it 
assesses them independently through their correlation to the 
dependent variable. This approach prevents the removal of other 
irrelevant features, ensuring that the CNN model contains 
sufficient useful information to enhance classification. 

Apart from that, it is noted that Univariate Selection is more 
efficient in terms of computation time than other methods of 
feature selection. This optimization saves time for systems 
dependent on CNN training time as it does not require iterative 
steps like training RFE or RFECV. CNN-based classification is 
one such use case where time and resources for training a system 
are very critical. 

RFE and RFECV selection feature selection methods 
achieved accuracy rates of 95, which means they manage to 
eliminate redundant features but lost useful ones due to the 
elimination process they are using. Tree-Based Selection 
performed with 94% accuracy, which shows that though the 
decision tree selection methods are effective, they do not yield 
the most important MRI features for CNN to perform. 

This suggests that Univariate Feature Selection is much 
more appropriate for small medical imaging datasets because it 
preemptively eliminates features that may contribute to 
overfitting and enables CNN to perform better with out-of-the-
box classification. These results indicate that there are situations 
when simplistic filter techniques such as Univariate Selection 

have an edge over more complex feature extraction methods, 
especially with scarce medical imaging data. 

VI. CONCLUSION 

This study highlights how feature selection influences the 
classification of brain tumor with CNNs and its difference with 
other conventional machine learning classifications. The study 
analyses the impact of integration of Univariate Feature 
Selection, REF, Recursive Feature Elimination with Cross-
Validation (RFECV), and Tree-Based Selection on model 
performance using a dataset of 253 MRI images. The results 
indicate that CNN combined with Univariate Feature Selection 
outperformed other selection heuristics with an accuracy of 
96%, significantly higher than that achieved with feature 
selection and classical ML classifiers which include Logistic 
Regression, Decision Tree, Random Forest, and Naïve Bayes. 
Research suggests Univariate Feature Selection is very useful in 
small datasets as it helps in preventing overfitting by including 
only the most significant features. When considering wrapper-
based methods like RFE and RFECV, univariate selection is 
simpler and more efficient. This makes it easier to use in medical 
imaging. The study also confirms that CNN models outperform 
all traditional machine learning classifiers, demonstrating the 
ability to capture complex spatial and texture features. This 
approach achieves better classification accuracy compared with 
other studies, which further emphasizes the role of feature 
selection in CNN-based classification problems. The study also 
highlights the need to apply explainable techniques like Grad-
CAM and SHAP to improve trust in AI-based models from a 
clinical perspective. 
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