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Abstract 

Marine debris is persistent solid stuff in the water. Oceans include several varieties of organic marine debris, but massive levels of man-

made marine trash threaten their biological equilibrium. Manually scanning the ocean for garbage is time-consuming and inefficient, 

making it uneconomical. Deep learning, which is more efficient than manual methods, is used to detect marine debris in satell ite imagery 

in our work. Deep learning algorithms have been successful in semantic segmentation, however marine debris detection using satellite 

imagery has been underexplored. The lack of comprehensive marine debris datasets until recently and the complexity of multispectral 

satellite photos are to blame. Our segmentation method using the UNet architecture and a ResNext50 backbone exceeds the existing state 

of the art on the Marine Debris Archive Dataset (MARIDA), a dataset of 11 band sentinel 2 Satellite image patches. The hybrid solution 

combines ResNext50's increased feature extraction with UNet's global and local context preservation, which is crucial in satellite photos 

of floating bodies due to marine debris' movement pattern. We achieved benchmark mean pixel accuracy, IoU, and F1 scores. We achieved 

an 88% recall, a 10% improvement over the state of the art, in categorizing marine trash pixels in photos. This work attempts to advance 

deep learning algorithms for remote sensing and move closer to cleaner oceans. 
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I. INTRODUCTION  

In simple terms, marine debris refers to any man-made 
material that is present in aquatic bodies. These materials are 
dumped on the shores by humans either intentionally or 
unintentionally and eventually reache into the deep sea because 
of tidal currents, winds, and other factors. Marine debris 
includes different types of objects from industrial-grade 
materials, microplastics, fishnets, etc. Oceans naturally contain 
debris such as seeds and plant waste. But these do not 
necessarily cause any ecological harm and hence are mostly 
excluded from studies of marine debris. Although they do add 
hindrance when detecting man-made marine debris. It's 
important to note that a significant part of marine debris is 
enormous clusters of plastic waste, which include nanoplastics, 
microplastics and macroplastics that reach the oceans because 
of irresponsible dumping by industries and human littering. 
Apart from these storm drains from factories and container 
spillage of oil are also active contributors to the increasing 
marine debris in oceans [1]. The ecological impact of these 

materials manifests in various ways, mostly harmful. We discuss 
the environmental impacts of marine debris in the following 
section. 

Various plastics make up most maritime garbage. Marine 
plastics look like weed, jellyfish, and other organic things due to 
their shape, size, and color [2]. Many marine animals that feed 
smaller species mistake marine debris for prey and eat it. Not 
just aquatic organisms are affected. Albatross and other 
predatory seabirds like pelicans mistake plastics for prey [3]. 
The organisms' digestive systems cannot digest these non-
biodegradable compounds, resulting in nutritional loss, 
intestinal blockage, starvation, and death [4]. These trash change 
the surface of aquatic species' habitats, creating navigational 
problems that disrupt marine life's biological equilibrium [5]. 
Marine organisms also consume these wastes. These elements 
also impact humans. Unvisible microplastics enter fish, crabs, 
and other species that humans eat [6]. These microplastics can 
cause hormone changes, intestinal issues, cancer, and more [7]. 
Marine garbage causes enormous numbers of fish to migrate or 
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die, which hurts humans economically. Marine debris damages 
indigenous populations that depend on the sea [8]. 

A. Challenges in marine debris detection 

• Lack of benchmark datasets for marine debris 

detection. 

• Economic limitations of manual and drone-based 

methods. 

• Data hungry nature of deep learning models as the 

complexity of dataset increases. 

• Lack of significant work in working with multispectral 
satellite images in deep learning domain. 

 

B. Problem Statement  

Marine debris is a significant ecological concern considering 
the effect it has on water based organisms, birds and the 
significance on humans both in terms of safety and economic 
harm. While there have been efforts to remove marine debris, 
there are significant hurdles in the first step of removal itself, 
that is detection of the said debris. Current approaches to marine 
debris detection like manual surveys, boats and drones are 
expensive, slow and hence not scalable. Remote sensing 
techniques do offer a promising alternative as they are 
economically viable and offer wide coverage, by leveraging the 
plethora of satellite data available. But these approaches come 
with additional complexities as analysis of multispectral data 
requires specialised expertise in different fields and complicated 
algorithms to analyse the same. Using deep learning techniques 
can help to an extent but despite the popularity of deep learning 
architectures in object detection and segmentation, they have not 
been utilised to much extent. To bridge this gap, we aim to 
employ a hybrid approach to utilize the complexity found in 
multispectral data for efficient feature extraction and semantic 
segmentation to identify marine debris.  

 

C. Objectives 

The objective of this paper is to develop a deep learning 
based architecture by hybrid approach to advance the detection 
of marine debris and semantic segmentation of the same from 
multispectral satellite imagery. More specifically the paper aims 
to  

• Leverage the MARIDA [9] dataset to train machine 
learning models to advance the detection of marine 

debris. 
• Implement and Test different hybrid architectures for 

enhanced feature extraction from complex 

multispectral data. 
• Evaluate the proposed model against current state of 

the art on the MARIDA dataset over metrics like 

Intersection Over Union IoU, mean Pixel Accuracy, 

F1 score etc. 

• Improve upon the current state of the art by achieving 

better evaluation metric scores on the test dataset. 

•  Use the findings of the work to contribute to the 

advancement of marine debris detection and usage of 

deep learning for remote sensing in general. 

II. LITERATURE SURVEY 

Pujie et al. [10] proposed a dual stream real-time detector 
that synergizes visible and infrared images to enhance detection 
in challenging scenarios at night. An important contribution in 
this study was a cross-modal feature enhancement module that 
uses attention mechanisms to make small target detection by 
preventing information loss during the processing of images by 
the network. It also consisted of a three-stage fusion strategy that 
integrated features across spatial, channel and overall 
dimensions which ensured that the model delivered robust 
performance. Although, this study had the drawback of 
increased computational resources because of the dual stream 
architecture that was used along with complex fusion strategies. 

Kunhao et al [11] proposed using a novel approach of the 
Multi-Channel Water body detection Network. This was a deep 
convolutional neural network that integrated the architecture of 
multi-channel fusion module, Enhanced Atrous Spatial pyramid 
pooling layers and Space to depth operations to process 
multispectral data from sentinel 2 imagery. Although the model 
demonstrated good performance in identifying water bodies, and 
detecting small water features the study lacked insights on 
detecting non aquatic objects present in water bodies which have 
more applications. Uehara et al.[12] proposed a feature 
extraction technique called Multi Channel Higher order Local 
Autocorrelation for enhancing object detection using 
multispectral satellite images. The method is an extension of the 
conventional Higher Order Local Correlation as it incorporates 
spectral relationships along with the spatial relationships present 
in the HLAC. This way it is able to fully utilize the multispectral 
nature of satellite image to extract data. The study demonstrated 
that the proposed model effectively captured complex patterns 
through analysis of pixel intensities within neighbourhood 
across all the channels together which improved its detection 
performance thus indicating that cross channel feature extraction 
is a promising technique. The model outperformed GLCM in 
identifying golf courses in multi spectral satellite images. 
However, due to increased computation, it may lead to higher 
computation time even after training which can affect real time 
capabilities.  

Hu et al. [13] did a critical study on the Spectral 
interpretations of satellite images. Their work showed that with 
the mixed band resolutions along with very low sub pixel 
presence of debris in the images, there were chances for spectral 
distortions to occur which could lead to misclassification of the 
pixels if the distortions were treated as sign for floating 
materials. The study performed simulations and MSI analysis 
which highlighted the necessity of using both pixel averaging 
and subtraction techniques while developing algorithms for 
spectral analysis and to enhance the accuracy of marine debris 
detection through sensors.  

Rubwurm et al. [14] proposed a deep learning-based detector 
which identifies coastal marine debris using sentinel 2 satellite 
imagery. The study consisted of a deep segmentation model that 
outputs pixel level probabilities which depicted marine debris 
presence.  The model was trained on annotated datasets and then 
tested in real time environments with high likelihood of plastic 
pollution. The model was successfully able to demonstrate its 
effectiveness thanks to the data centric approach where negative 
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examples were sampled extensively. However, due to high 
reliance on annotated datasets it could make it hard for the model 
to generalize to different environments. Addressing these 
limitations is critical to go in the direction of real time 
applications of deep learning for marine debris detection. 

S. S. S. R. Anjaneyulu et al. [15] performed a study on 
evolution of methods used for satellite image interpretation. The 
study traced the progress in the field. It highlighted the evolution 
from the traditional statistical models to advanced machine 
learning techniques. It also highlights the impact of ML in 
transforming the field of satellite image analysis especially in 
sub domains like classification of land covers, monitoring 
agricultural trends and vegetation patterns and also in urban 
planning. It also highlighted how with the onset of further 
advanced techniques like Convolutional Neural networks in 
deep learning, the tasks of feature extraction which were 
supposed to be done manually and required lots of resources and 
time could be automated in these deep learning models reducing 
need for human intervention. The study also discusses the 
integration of Synthetic Aperture Radar SAR technology and 
emphasized its ability to acquire high resolution images 
independent of weather conditions and whether its daytime or 
nighttime which is important to monitor dynamic conditions like 
oil spills, deforestation etc. The study also provided an insight 
into the various challenges in the field like increased 
computational demands required to process multispectral and 
information rich satellite data and lesser reliability due to 
variability in image quality due to atmospheric conditions and 
sensor limitations. They propose development of robust 
algorithms which can be capable of handling these issues which 
can drastically advance the field of application of geospatial data 
and analysis and fully utilize these technologies. 

An inexpensive technique for finding underwater debris 
using improved underwater photos is presented by Zhao et al., 
[16]. Image clarity was improved and object detection accuracy 
was enhanced using a customized YOLOv8 model (SFD-
YOLO) and super-resolution reconstruction (SRR) techniques, 
particularly the RDN model. An effective method for tracking 
trash in the ocean, even under harsh conditions, this method 
attained a high degree of accuracy (91.2% mAP). 

Đuraš et al. [17] presents the Seaclear Marine Debris 
Dataset, the inaugural publicly accessible dataset for underwater 
debris detection employing instance segmentation and object 
detection. The dataset comprises 8,610 photos obtained from 
ROVs in shallow waters, sourced from diverse locations and 
cameras, annotated for 40 object types, including debris, fauna, 
flora, and robotic components. The baseline results from Faster 
RCNN and YOLOv6 underscore the difficulty of generalizing 
detection models to novel contexts because of domain shift. The 
dataset seeks to facilitate the creation of more resilient and 
versatile underwater object identification methods. 

A novel approach to coral categorization is put out by Ma et 
al. [18] utilizing a portable Speed Sea Scanner (SSS-P) in 
conjunction with point cloud semantic segmentation based on 
deep learning. Using Structure from Motion (SfM) to generate 
3D point clouds and high-resolution coral pictures, the technique 
successfully recognizes corals in low-light, complicated 
underwater environments. It provides a useful tool for coral 

conservation and study, as experiments demonstrate it performs 
far better than conventional image-based methods. 

Shen et al. [19] improves maritime debris detection by the 
integration of YOLOv7 and attention mechanisms. Of the 
evaluated models, CBAM attained the highest performance, 
achieving a 77% F1 score in box identification and a 73% score 
in mask evaluation. Although the Bottleneck Transformer 
exhibited inferior overall scores, it identified garbage 
overlooked by humans and demonstrated superior performance 
on large items, indicating potential for particular applications. 

Nivedita et al. [20] conducted the inaugural investigation 
utilizing Sentinel-2 satellite optical data to differentiate floating 
macroplastics from seaweed. Employing a specialized Floating 
trash Index (FDI) alongside a Naive Bayes machine learning 
algorithm, researchers detected plastic trash in Brazilian coastal 
regions with an accuracy of 87.25%. The system also monitored 
the temporal mobility of plastics and can be utilized to assess 
marine plastic contamination in various global regions. 

Konstantinos Topouzelis et al. [21] have provided a 
comprehensive overview of detection of marine debris using 
optical remote sensing. In their study, they have highlighted the 
need for high resolution multispectral satellite data to monitor 
extensive marine areas in scale which can offer significant 
advantages compared to the manual observation methods. The 
review categorizes different existing detection techniques, and it 
analyses their methodologies and provides valuable insights into 
the different approaches used for monitoring floating marine 
debris. The author further discusses as part of their future scope, 
foundations of space borne floating marine litter detection 
systems and show the feasibility along with complexities in 
accurately identifying and quantifying marine debris from space 
based platforms. Despite the promising capabilities of remote 
sensing, the study acknowledges limitations like poor 
availability of satellite sensor specifications due to 
confidentiality which can reduce detection accuracy. The 
authors suggest that refining the methodological processing 
chain could significantly enhance the future precision of plastic 
detection from space. 

 

III. METHODOLOGY 

A. Dataset 

The MARIDA dataset contains Sentinel-2 satellite patch 
pictures. Each image has a 264*264 resolution and 11 bands, 
including RGB. Each pixel in the image represents a 10m*10m 
region. All pixels in the dataset are tagged with one of the 15 
classes. For each image, a 256*256 pixel segmentation mask is 
used. Pixels are labeled with class numbers (1–15). Unannotated 
pixels are 0.  The pixel values in each channel are not between 
0-255, unlike in RGB images. Reflectance is their worth. A 
percentage of that wavelength range's light returned. Both are 
normalized between 0 and 1. The images are kept in geoTiff 
format. Popular geographic data format. 

Some of the challenge in the dataset were as follows:  

• There is also a class imbalance problem in the dataset 

because the majority of pixels (75%) belong to marine 
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water. Thus, when designing the architecture we need to 

accommodate for the imbalance. 

• The minority class are extremely small in number 

compared to the majority class. For example, 40% of the 

total annotated pixels in the dataset is annotated as 

sediment water while only 0.41% is annotated as marine 

debris.  

• Further many pixels have been annotated with low 

confidence due to lack of clarity in cloudy areas or 

turbulent weather conditions. 

• There is noise in some images due to moving ships and 

turbid water around it. But these are very small in number 

and would not impact the model significantly. 

The following preprocessing steps were done to prepare the 
data to be fed to the model. 

• The images were transformed from CWH format to WHC 

format for compatibility with pytorch. 

• Data augmentation is done to induce diversity in the dataset 

by using random rotation and flipping. 

• Min-max normalisation performed across bands for 

uniform spread. 

• Missing values were replaced with average pixel values for 

the respective band. 

• The classification masks labels were shifted from 0-15 to -

1 - 14 for easier accessibility. 

• Furthermore, 4 classes Wakes, clouds,Waves, Mixwater all 

representing water were aggregated into one single 

Marinewater superclass.  

• The dataset was split into 50%, 25%, 25% for training, 

testing and validation sets respectively. 
 

B. Model Architecture 

The model architecture is a hybrid architecture consisting of 
a mix of two architectures namely UNet [22] and ResNext50 
[23].  

 

a) UNet Architecture 

The UNet is a popular encoder decoder type architecture that 
is built of convolution blocks. It consists of a contacting path 
and an expanding path. The crux of the UNet architecture is that 
the encoder and decoder, that is, the contracting part and 
expanding part are connected to each other through skip 
connections. This helps the model to preserve the spatial 
information from the encoder layers and also allows better 
propagation of high resolution features from the earlier layers. 
This helps to counter the vanishing gradient problem.  

 

b) ResNext Architecture 

ResNext is a convolutional neural network architecture that 
is based on the residual networks architecture. Unlike ResNet 
that uses two parallel paths,one sequential and the other as skip 
connections, ResNext uses multiple parallel paths grouped 
together. The parallel paths allow the network to learn a broader 

and more diverse set of features. ResNext uses a balance of 
depth and width to allow the network to find correlation among 
different features while also not losing the properties of 
individual features.  

 

c) ResUNext Hybrid Architecture 

The ResUNext architecture is a hybrid of the two mentioned 
models. UNet and ResNext. Specifically, in this paper we use 
the ResNext50_34d variant. The ResNext is used in the encoder 
blocks of the architecture as the backbone. This allows the 
model to successfully extract complex features and also extract 
spatial relationships. It also helps the model to generalize better 
by capturing a more diverse set of features.    

 

The Hybrid ResUNext model consists of:  

• An input Block consisting of Convolution + 

BatchNorm+ReLU layer to increase the number of 

channels from 11 to 64. And a MaxPool layer to reduce the 
spatial resolution by half. That is from 256*256 to 64*64. 

• Three encoder blocks having skip connections to 

corresponding decoder blocks. With each block consisting 

of 3, 4 and 6 layers of ResNext groups stacked together. 

The encoder is described in detail in the following section. 

• Three decoder blocks that take the previous blocks  along 

with skip connections’ output as input and upsample it to 

its original resolution step by step. 

• Lastly, a Segmentation head that converts the output of the 

previous layer to a 11*256*256 segmentation map with 

each channel corresponding to each class. 

The encoder block has skip connections in every group. That 
is, input is added to the outputs in all the layers.  

Fig.1, From a bird’s eye view suggests, each encoder block 
doubles the channel width and reduces the spatial width by half. 
Also, each encoder  block’s output is concatenated to the 
decoder block’s input which is a basic characteristic of UNet. 
The decoder blocks increase the spatial dimensions step by step 
while concatenating its input with output of the corresponding 
encoder block. Thus extracting the features of higher resolution 
activation maps too. Lastly a segmentation head covers the 
activation map to original dimension and a 11*256*256 
activation map with logits is returned by the model. Let us look 
at the blocks in detail now. 

Fig.2 depicts an encoder block of the ResNext model. The 
input of 11*256*256 is passed through a convolution block to 
increase the channels from 11 to 64 and reduce the spatial 
dimension by half.  Next a maxpool Layer further halves the 
spatial dimension. So the input to the first encoder block has 
spatial resolution of 256/4 i.e 64. 
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Fig. 1.  The hybrid ResUNext architecture depicting the four encoder and 

encoder blocks along with skip connections and a segmentation head. 

The first encoder block has a slightly different structure than 
the rest of the encoder blocks. The first group in this block takes 
input from the maxpool layer and first, it increases the channel 
dimension to 128 and then passes it to the 32 parallel path layers. 
This layer takes the 128 channels and splits it into 32 parts for 
each parallel parallel group to extract features from 4 channels 
each. This parallel extraction allows independent features to be 
extracted separately thus they are extracted in a more refined 
manner. Further splitting them into parallel paths is also efficient 
computationally compared to an equivalent resnet block. The 
parallel paths are discussed in detail in the next section. Note 
that spatial resolution doesn't change in this layer in the first 
encoder block. In all the other blocks, the parallel paths group 
has a stride of 2 but in this block the stride is 1.  Another 
convolution layer doubles the number of channels. Further, a 
skip goes from maxpool layer to a convolution block. This 
convolution block is present to match the maxpool layer input to 
output of the first group. These are then added as done in 
residual blocks. Lastly this is passed through a ReLU layer to 
introduce non linearity. The other two groups in this encoder are 
similar in structure. They take input from the previous group, 
reduce the channel width by half, pass it through a parallel path 
and lastly, double it again to get the same channel width as input. 
The difference in these blocks is that the input of the previous 
layer is directly added to output as it is of the same dimension.  
The output of this block has double the channel and half the 
spatial resolution of the first convolution block’s output. 

Fig. 2.  Legend for architecture diagram 

The terminology used for describing diagrams is as follows. 
There are 4 encoding blocks and 4 decoding blocks. Each 
encoding block consists of 3,4 and 6 groups respectively. 
Further each group consists of different layers like Convolution, 
ReLU etc. In the decoding blocks, each block has 2 groups, 
which are just an UpConvolution layer for upsampling and a 
Convolution layer that decreases the number of channels for the 
concatenated input. The segmentation head consists of an 
UpConv block to resize the image and two Convolution layers 
to reduce the number of channels to 11. The output obtained is 
11*256*256 segmentation map. 



Rao / Journal of Applied Science and Technology Trends Vol. 06, No. 01, pp. 50 –60 (2025) 

 

55 

 

 

Fig. 3.  ResNext Encoder block with 4 groups 

The rest of the encoder blocks have a slightly different 
structure. The first group in those blocks are similar except the 

first convolution does not change the number of channels in the 
activation map. And also, the parallel paths have a stride of two 
in the first group of these (2nd, 3rd ,4th) encoder blocks and 
hence are responsible for reducing the spatial resolution by half. 
The last convolution in the initial group is the same as in the first 
block. It doubles the channel width. And the output is 
concatenated with the skip connection input after passing it 
through a convolution layer to match the dimension of input and 
output, just like in the first block. Next this is passed through a 
ReLU and the activation map is passed as input to the next layer 
and also as skip connection to the decoder block for 
concatenation later. Refer to Fig.3 to get a visual idea of the use 
of residual connections in the architecture.  

 

Fig 4. First group of a ResNext block. 

Fig.4 gives a much more detailed insight to the parallel paths 
and its connection to the convolution layer. This entire structure 
can be called the building blocks of encoders. The green, yellow 
and cyan blocks represent the 32-group parallel path. The 
parallel path helps in extraction of features as in the following 
steps. The first layer of the parallel paths (Green Layers in Fig 
4) each take the entire activation map of dimension C*W*H 
where C refers to channel width and W and H refer to width and 
height in number of pixels. This layer is a 1*1 convolution and 
apply C/32 filters on it parallelly. Whose main task is to take the 
full activation map and though not directly but intuitively it 
distributes the C channels into 32 groups with each parallel path 
extracting features of the C/32 channels in that path. Each of the 
parallel paths processes the input independently, Note that all 
the encoder blocks’ first group except the first encoder block 

have a stride of 2 while the rest have a stride of 1. Indicating that 
spatial features extraction happens in this layer. 

The next layer is essentially the core feature extraction layer. 
Each of the 32 parallel path in this layer (yellow block in Fig4) 
takes the C/32 channel input of their corresponding previous 
layer and performs a 3x3 convolution operation using C/32 
kernels on them. Then it sends these to the third layer in the 
parallel path. (Cyan color in Fig 4). The final layer in the parallel 
path (Cyan in Fig4). This is required to restore the original 
number of channels.This layer consists of 1x1 convolution 
kernels with stride of 1. Lastly, the output of the parallel paths 
are added together and the residue is added to it and the output 
is sent into the next layer.  



Rao / Journal of Applied Science and Technology Trends Vol. 06, No. 01, pp. 50 –60 (2025) 

 

56 

 

The decoder blocks are relatively simpler in structure 
compared to the encoder blocks. Each decoder block has an 
UpConvolution Layer and a Conv2d layer. The UpConvolution 
layer takes input from the previous layer and performs a 
deconvolution operation that essentially produces an activation 
map of higher resolution from a latent space of lower resolution. 
It is essentially the reverse of a convolution operation. Once the 
spatial dimension of the feature map is doubled, it is 
concatenated with the feature map from the corresponding 
encoder layer and then they are passed through a convolution 
layer to reduce the channel width to restore the original image 
step by step.  

Segmentation Head is the final block in the network. It takes 
in 32*128*128 activation map as input, increases the spatial 
resolution of the image by a factor of 2*2 by applying a 
UpConvolution layer and restores the image to 11 channels by 
using two convolution layers. The final output is a 11*256*256 
segmentation map where each channel corresponds to the logits 
representing the probability of a particular pixel belonging to 
that class.  

d) Loss function 

In this paper we have used weighted cross entropy loss [24]. 
This was used to handle the class imbalance in the dataset. While 
we experimented with using focal loss [25] for the network, we 
chose to stick with weighted cross entropy because while focal 
loss did classify hard to classify examples more accurately, it 
had problems with classifying easy to classify examples. This 
could be due to large number of classes to be classified in the 
dataset and further the imbalance in the dataset in not distributed 
in one class but several different classes.  

L = −
1

mw

∑ yi

m

i=1

⋅ log(ŷi)                           (1) 

Here, 

𝑚𝑤  : percentage of pixels of class w. 

m: Classes 1 to 11 

𝑦𝑖:  Probability of class i (True probability) 

�̂�𝑖  : Probability of class i predicted by model 
 

e) Optimization 

The model was trained on the training data consisting of 694 
images in geotiff format for 100 epochs. Validation set was used 
after each epoch to record improvement which contained 328 
images. We tested with batch sizes of 5, 20 and 30 and best 
results were obtained for batch size 20 both in terms of training 
time and convergence. Learning rate of 2*10-4 was used. ADAM 
[26] optimizer was used for faster convergence and its versatility 
with multiple types of layers. 

f) Experimental Setup  

The experiment was performed in a google colab 
environment by using free offered resources. It consists of a 
Linux kernel OS with a T4 Tpu and 12 GB RAM and 75 GB 
disk memory. The T4 GPU consists of ~2500 cores that can 
perform operations parallelly.  

Libraries used:  

Rasterio: Converting geoTIFF files to numpy format 

PyTorch: Primary deep learning framework. 

Numpy: Dealing with image matrix data. 

Tensorboard: Visualising the evaluation and performance 

metrics. 

g) Training Strategy 

The dataset was split into 50%, 25% and 25% percent for 
training testing and validation sets respectively. The training set 
consisted of 694 images; the testing set had 359 images and the 
validation set had 329 images respectively.  

Model training was done in parts as training time sometimes 
exceeded google colab limits. The model weights were saved for 
every epoch for checkpointing to be able to easily resume 
training in case of failure in between. The training time was 
between 35 to 40 minutes. 

The following metrics were monitored during training:  

a. Macro Recall: This is the average recall across all 

classes. Does not account for class frequency.             

Macro Recall =
 ∑ Recalli

n
i=1

n
                               (2) 

 

b. Micro Recall /Accuracy: This is the global recall 

calculated for all classes in one go.  

Micro Recall =
 Total Correct Predictions (TP)

 Total Instances (TP + FN)
      (3) 

 
c. Weighted Recall: This is the weighted average recall 

value across all classes. 

Weighted Recall =
∑ (wi ⋅  Recall i)

n
i=1  

∑ wi
n
i=1  

              (4) 

d. Micro Precision: Calculated globally across all 

instances; emphasizes overall instance-level 

performance. 

e. Macro Precision: Average precision across all classes; 

treats all classes equally, regardless of size. 

f. Weighted Precision: Weighted average precision, 

where each class's contribution is proportional to its 

size. 

g. Intersection Over Union: This metric is specifically 

used in image segmentation tasks. It is a measure of 

the number of pixels correctly classified among total 

classified pixels. 

IoU =
 Area of Overlap 

 Area of Union 
=

 Intersection 

 Union 
          (5) 
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IV. RESULTS AND DISCUSSIONS 

This section analyses the training and testing process to 
provide valuable insights. It discusses the epoch wise training 
trends, model wise comparison and a discussion on the outputs 
obtained. Model training time averaged down to 30 minutes. The 
comparison section clearly demonstrates the superiority of the 

ResUNext hybrid among other models. For reference we have 
also tested with UNet with a focal loss variant which gave 
subpar results. For deeper insights we have also calculated the 
normalized confusion matrix in the form of heatmap for easy 
visualisation. Lastly 12 patches from the test dataset along with 
the outputs given by the model are shown and a discussion is 
provided on the same. 

 
Fig. 5.  Training and testing loss per epoch. 

The above Fig.5 suggests that while there was significant 
loss during the first 20 epochs, there was a sharp decline in the 
loss after 20- epochs. There are few spikes in epochs 21 and 75, 
these can be attributed to sudden gradient changes. This can be 
limited using gradient clipping [27] but since it did not have an 
affect on the overall loss, we decided not to use clipping. A 
pattern that can be noticed from this plot is the loss keeps 
reducing and after it reaches a local minima, the loss again 
spikes. This is followed by gradual decrease in the loss until it 
reaches a lower local minima than the last one. This suggests 
that prolonged training times could improve the accuracy 
without much risk of overfitting. But for the sake of optimum 
usage of resources we trained it for 100 epochs. Eventually by 
the 95th epoch we can also observe that the training loss and 
testing loss have converged to ~0.15. Further discussion on 
evaluation metrics are given in the following section. 

We recorded the loss per epoch for training and testing along 
with other metrics like F1 Macro, IoU and Accuracy. The model 
was able to converge both the training and testing losses which 
indicates that the model is not prone to overfitting, This suggests 
that the model has good generalization to unseen data. The 
oscillatory behaviour of the loss such that the loss decreases then 
spikes before settling at a lower minimum also suggests that the 
optimizer is escaping saddle points and poor local minima. This 
aligns with momentum based optimization techniques like 
Adam which help to deal with sharp loss landscapes. Based on 
the monitoring of validation loss we also observed that early 
stopping would have caused the model to be stuck at local 
minima. Lastly, after 80 epochs it is observed that the loss 
reduction is minimal. Based on this we can conclude that beyond 
100 epochs training might yield diminishing returns and the loss 
would almost plateau. Hence in order to comply with the 
resource constraints we decided to use the model by training it 
upto 100 epochs. 

A. Model Comparison and performance 

Below is a graphical illustration showing comparison 
between different models  

Fig. 6.  Comparison of ResUNext with different models. 

TABLE I.     EVALUATION METRICS OF DIFFERENT MODELS 

Model Pixel Accuracy mIoU F1 (Macro) 

ResUNext 0.85 0.75 0.84 

UNet [9] 0.64 0.52 0.64 

UNet-Focal [9] 0.55 0.39 0.49 

RF (SS+SI) [9] 0.73 0.59 0.7 

RF (SS) [9] 0.6 0.57 0.69 

ResAttUNet [29] - 0.67 0.77 

AttentionUNet [33] - 0.62 0.74 

UNet++ with data 

augmentation [14] 0.86 0.59 0.74 

MAP-Mapper-HP [28] - 0.60 0.75 
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As we can see in TABLE I, ResUNext performed better by 
a margin of 21% compared to UNet and 12% compared to the 
RR(SS+SI) Random forest with spectral signatures and spectral 

indices. The improvement is further visible if we compare the 
mIOU values which shows 23% improvement compared to 
UNet and 16% improvement compared to RF(SS+SI). 

 

Fig.7.  Normalised Confusion matrix depicting predicted and actual classes. 

Notice that a large chunk of natural organic material is 
classified as marine debris shown in Fig 7. This is in line with 
expected results as both have similar characteristics [29].  The 
aim of the study was to utilise a hybrid approach to improve the 
detection of marine debris. Based on the results obtained, it is 
observed that the hybrid model ResUNext has the highest IoU, 
F1 and pixel accuracy. Random forest does have metrics that are 
better than both UNet with focal loss and Vanilla UNet but 
Random forest, being a machine learning model, requires 
significant feature extraction. Here the results obtained use 
Spectral signatures and spectral Indices [30] which require extra 
computational costs. Further, random forests are in general 
black boxes as we cannot interpret anything from intermediate 
results [31]. Whereas neural networks like the UNets can be 
analysed from between by looking at their activation maps. 
Secondly, random forests, because of their inherent simple 
nature, cannot infer spatial relations in images, which are much 
more practical in Real time than calculating spectral signatures 
[32]. Because of these, if images are slightly rotated, or 
transformed while a deep learning based architecture would not 
have much effect while random forest will fail to classify them 
correctly.  

Observing the confusion matrix, it is noticeable that a large 
portion of marine debris is being classified as natural organic 
material. Despite natural organic material being a minority class. 
This can be attributed to the similar nature of marine debris and 
organic materials like seaweed [33] etc. Further, though not as 
visible as the former, dense sargassum and sparse sargassum 
samples are being classified as each other a few times. This is 
again, obvious because of their similarity. The Network is quite 
successful in handling the class imbalance with weighted cross 
entropy loss. Talking about the epoch wise results it can be 
observed that a local minima is reached at 80th epoch after 
which the loss spikes up. The loss converges well enough by the 
end of the 100th epoch. This indicates low overfitting to training 
data. 

B. Outputs 

 

Fig. 8(a to  l).  Segmentation Outputs along with inputs for the ResUNext 

Hybrid Model. 
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Fig. 9.  Legend for output segmentations mask 

As expected with the dataset majority of the output’s pixels 
were Marine water shown in Fig.8. It's worth noting that the 
model classifies land as clouds due to lack of available data for 
land pixels. Further the classifier is also able to classify water 
bodies surrounded by land as can be seen from the 12th output 
Fig.9. Majority of the segmentation masks are filled with dark 
red pixels which are marine water that is the majority class. The 
light red pixels denote the marine debris class, our primary class 
of consideration. And all the other classes are also classified 
with high accuracy as present in the input images. Note that 
while the images have been displayed in RGB format for 
visualisation the input images are actually 11 band images. One 
of the important observations made from these was that if the 
patches had vegetation cover or land in general, they were 
classified as clouds. This was because we didn't include a 
separate land class as there were very few images for the model 
to be able to learn properly. Although it is to be noted that the 
misclassification of land did not affect the classification of other 
pixels. The model was also able to differentiate between turbid 
water, sediment laden water and marine water respectively 
showing its efficiency. Instances where land features were 
misclassified as clouds, particularly in heterogeneous regions, 
were observed. This can mislead downstream land cover 
classification. Future strategies to mitigate this include 
incorporating multi-temporal data, integrating spectral indices 
or training using auxiliary terrain data to better differentiate 
between high-reflectance land and cloud cover.  

V. CONCLUSION AND FUTURE WORK 

In this work we take a step further in the direction of solving 
the problem of marine debris by contributing to improved 
detection of marine debris using deep learning. We began with 
the primary goal of utilizing a hybrid approach to improve 
detection of marine debris specifically in the MARIDA dataset 
We were able to achieve 10% improvement in overall metrics 
like IoU, F1 and Pixel Accuracy. Thus demonstrating the better 
performances of hybrid models for multispectral data. The 
ability of ResUNext to extract independent features by the use 
of parallel paths is advantageous by separating unrelated 
features. Overall, marine debris were classified with 80 percent 
accuracy. Some classes are still classified incorrectly, indicating 
further scope for improvement. The limited size of the dataset 
and its class imbalance is a limiting factor, in the future 
MARIDA can be augmented with class specific datasets like 
marine debris specifically to improve the performance. A few 

limitations can be highlighted in the work which can be 
contributed towards in the future works. Firstly, despite 
significantly reducing the training time thanks to the 
parallelization provided by ResUNext blocks, the training time 
is still somewhat high. This can be improved by introducing 
more parallelizable hybrid architecture. Apart from that a huge 
problem in the work has been to handle the imbalance classes. 
The imbalance in classes has made it harder to get an accuracy 
above 90%. This can be worked upon by trying out other loss 
functions which can handle class imbalance much more robustly 
like Focal loss by tuning the alpha parameter over several 
iterations. However overall, the paper explored the potential for 
marine debris detection through remote sensing and indicates a 
promising future for the same. In Future Work, will include 
actionable directions such as Incorporating spectral/spatial 
attention modules to enhance multispectral feature extraction, 
evaluating the model on synthetic or simulated datasets for 
better generalization and exploring contrastive pretraining to 
improve feature representation with limited labeled data. 
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