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Abstract 

Properly estimating the cost of freight transportation has always been a challenge to the logistics sector, especially when considered in a 

region like India, where some factors are dynamic, such as the price of diesel, which keeps on fluctuating and the variable nature of 

delivery costs to be accounted for. The traditional estimation methods tend to be based on either contractual or stationary models, which 

do not capture spatial and time eras of fuel prices, and as such, they cannot cope with reality in the real world. The proposed study 

presents OptiShip, machine learning-based infrastructure that could provide realistic and situationally aware freight cost forecasts. The 

major goal is to improve the accuracy of cost estimation, which involves incorporating regional avenues of fuel price variability alongside 

the fundamental logistical components, namely distance and delivery time. The framework is based on a five-phase approach, which 

includes the data gathering, preprocessing, and pre-alignment of the diesel prices based on the spatial locations in terms of a KDTree 

model, training and analyzing of the models. To model the non-linear, multidimensional components of the relationship between the input 

features, three algorithms of ensemble learning, Random Forest, Gradient Boosting, and XGBoost are used. The hyperparameter tuning 

with the help of GridSearchCV and the evaluation of the performance of the models are performed through R2, Root Mean Square Error 

(RMSE), and Mean Absolute Error (MAE) scores. The Random Forest Regressor is found to be the best according to experimental results, 

having an R2 value of 0.97, an RMSE of 12.69 and an MAE of 4.94 which proves that it can model the actual representations of the highly 

accurate real-world logistic situation. The results indicate that regional economic indicators can be very useful to integrate into cost 

forecasting models and indicate that OptiShip could also be employed in real-time logistics platforms. 
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I. INTRODUCTION 

Logistics industry is an essential industry that exists in any 
country and plays an essential role in sustaining the economic 
infrastructure of the country. Freight transport on the other hand, 
is the very spine of the economic activity in developing nations  
India, connecting manufacturers and suppliers across vast and 
disparate geographies with their consumers. On the other hand, 
optimizing the freight costs is still an ongoing challenge because 
there are various dynamic factors including the change of the 
fuel prices, change of delivery duration, or change of 
transportation routes. Currently, freight cost estimation is based 
on manual calculation or fixed rate contract which does not take 

into effect real time economic variable and operational 
variables. Logistics providers and businesses seldom enjoy 
suboptimal budgeting, improper resource allocation and 
financial inefficiencies from the use of these old approaches. 

Data driven method to the future success and game changing 
for accurate freight cost prediction is now finding itself with the 
ever-growing rapid advancement of Artificial Intelligence (AI) 
and Machine Learning (ML). These challenges are exactly what 
ML models can alleviate, as they are particularly good at 
detecting complicated, nonlinear relationship between the 
factors influencing shipping cost which include distance, 
delivery time, regional fuel price, and geographic location.  

http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt62244
mailto:ayethirinyunt3011@gmail.com
mailto:brijkotak20@gmail.com
mailto:ravirajchauhan2112@gmail.com
mailto:jainrituraj@yahoo.com
mailto:keshariyavedant0@gmail.com
mailto:jainrituraj@yahoo.com


Nyunt et al. / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 116 –123 (2025) 

 

117 
 

Rapidly moving industry of logistics and supply chain 
industry is Artificial Intelligence and freight cost optimization is 
one of the innovations in the area. AI enables the organizations 
to enhance planning, optimize route selection, optimize 
resources, and better delivery effectiveness [1]. Businesses use 
AI algorithms to process and analyze huge amounts of historical 
and real time data, in order to understand customer behaviors, 
the demand trends and also other operational factors to know 
which customers are actually buying and for which regions. 
Therefore, more accurate forecasting and optimal inventory 
management [1,2] is enabled.  

Although AI’s impacts on transportation and logistics do not 
always pertain to automation or road safety, they affect many 
areas of the supply chain. This includes planning and 
scheduling, execution and monitoring, of the whole logistics 
chain [3]. Both machine learning and neural network techniques 
are being more and more used to optimize energy consumption 
in the transportation sectors and turn to significant cost saving 
and environmental benefits [4]. 

In addition, AI based logistics management can significantly 
improve the operational effectiveness, resource allocation, AI 
and data driven decision making, and the entire end to end 
supply chain management [5]. In this case, the integration of AI 
into the freight cost estimation can be said to be a huge step 
forward moving away from the traditional method of using 
human intelligence to manage freight cost and supply chain 
control. As such, the use of AI in freight cost optimization is 
turning transportation logistics into a smarter, faster and lower 
cost decision making science. AI technologies are showing to be 
crucial tools in the current supply chain strategy as they have the 
ability to minimize the impact on environment, minimize the 
operational expenses, and increase competitive positioning 
[4,6,7]. With AI becoming more and more established in 
logistics, it is crucial for logistics enterprises to spend money 
into these technologies to exploit their true potential and 
compete effectively in the ever more perplexed and dragged 
global market. 

Although freight cost modeling has developed considerably 
in recent years, most of the available methods fail to suitably 
accommodate the reality of logistics in a country like India. 
Traditional models usually assume constant fuel prices or 
operate with average nationwide values without considering the 
large regions and time variations which have a direct effect on 
the accuracy of estimating costs. Additionally, these models 
have been found to be simplistic in their illumination of linear 
assumptions that fail to capture complex interdependencies of 
such factors as distance, delivery time and behavior of fuel 
consumption. 

The suggested OptiShip framework answers these 
deficiencies by presenting a spatially conscious and machine 
learning-based pipeline that is responsive to the current fuel 
price conditions and logistical changes. It uses geographic 
alignment based on KDTree to match the contextual prices of 
diesel and applies effective ensembles of regression models to 
discover complicated, non-linear trends of cost-driving factors. 
As far as to illustrate the ability of OptiShip framework to 
address some crucial gaps in the literature, Table I provides the 

qualitative comparison between the existing model limitations 
and the areas of innovations developed in our framework. 

The main contributions of this study are the following: 

• A predictive framework that estimates the cost of 
freight, OptiShip, is introduced where the variability in 
the diesel price in a particular region, combined with 
core logistical factors can be embedded to provide 
better contextual booking. 

• A dynamic trip origin association method on the basis 
of the KDTree algorithm is used to associate trip origin 
with region-specific fuel pricing data on the basis of 
geographic and temporal proximity. 

• The Random Forest, Gradient Boosting model and 
XGBoost ensemble machine learning models are used 
to capture non-linear relationships between distance, 
delivery time, and fuel prices. 

• Full hyperparameter tuning has been done on the 
model selection process by the usage of the 
GridSearchCV, and the evaluation shows that Random 
Forest Regressor is the best performing model with R2 
of 0.97, RMSE of 12.69, and MAE of 4.94. 

• It has a framework that can be deployed in the real-time 
by using containerized APIs and lightweight model 
inference pipelines and is able to integrate with 
logistics dashboards and ERP systems. 

In this paper, we introduce OptiShip, an AI based predictive 
system implemented for freight cost prediction and powered by 
the ensemble-based machine learning models, Random Forest, 
Gradient Boosting, and XGBoost that are able to accurate 
predict freight cost. What is notable about this system is the 
integration of real-world diesel price data via a KDTree based 
spatial mapping algorithm, allowing fuel costs to be really 
tightly tied to trip origins coordinates. Real trip data of Tripura, 
Gujarat and Maharashtra are sourced to train and validate the 
model. 

The remainder of this paper is structured as follows. Section 
2 presents a review of related literature and identifies key 
research gaps in current freight cost estimation methods. Section 
3 describes the methodology adopted, including data 
preprocessing, feature engineering, and model configuration. 
Section 4 outlines the experimental results and model 
performance evaluation. Section 5 highlights computational 
feasibility, deployment considerations, and a roadmap for future 
enhancements and section 6 specifies roadmap for the future 
enhancements. Finally, Section 7 concludes the paper with key 
findings. 

II. LITERATURE REVIEW 

Freight transport is a primary input for logistics industry that, 
in its turn, is one of the significant components of the economic 
infrastructure and a uniting force of supply chains. Considering 
all the factors influencing the industry, it is a big issue in 
developing nations to optimize freight costs [8]. The logistics 
industry is adopting green freight practices in order to reduce 
environmental concerns and increase their image in the eyes of 
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buyers. The issue with this, however, is that implementation 
presents barriers in developing countries. Particularly, those 
barriers are important societal and managerial barriers of the 
third world nations that need more attention from the 
policymakers and industry managers to develop efficient 
strategies for green freight implementation [9]. The new logic of 
the logistics is evolving on the basis of innovations achieved by 
integrating the advanced technologies and data-driven 
approaches. Thus, the transportation and logistics has applied 
machine learning algorithms that enabled optimizing routes, 
forecasting demand as well as developing autonomous vehicles, 
which result in less operational expenses, moreover improve 
safety [10]. Moreover, the electric adoption of freight transport 
can help in minimizing environment impacts and greenhouse 
gas emissions. For efficient transition towards electric freight 
vehicles, optimal placement of charging infrastructure from 
travel and parking patterns is important [11]. 

AI is disrupting the shipping cost estimation and freight cost 
prediction in logistics and supply chain management 
marketplace. There are advanced technologies that improve the 
accuracy and efficiency by several orders of magnitude 
compared to the traditional techniques. In fuel consumption cost 
prediction for shipping companies, machine learning algorithm, 
CatBoost, has proved to be very effective. CatBoost algorithm 
achieved 0.976 R2 value in the study of a large PCTC shipping 
company in South Korea, which scores 0.976 on top of 18 other 
[12]. Also examined in the model were ship size, route, distance, 
speed, sea day, port call day and duration. This approach can 
assist shipping companies in optimally estimating the fuel 
consumption costs and meeting environmental requirements, so 
as to improve the operation efficiency. However, interestingly, 
while AI based methods tend to be a better solution for freight 
rate forecasting, the econometric model Auto-Regressive 
Integrated Moving Average (ARIMA) still outperforms for 
demand prognosis [13].   

In shipping cost estimation and cost of freight managing in 
the field of logistics and supply chain operations, AI has made a 
complete revolution. With the help of advanced algorithms and 
machine learning techniques, businesses are now able to predict 
and optimize the shipping costs better [1,6]. These AI powered 
systems take in data from vast amounts of historical data, real 
time market conditions, and dozens of other factors affecting 
shipping costs to do that. These help companies figure out what 
is the best decision, reduce the overall transportation cost and 
reduce time and distance between the vendors and the company. 
By deducting machine learning algorithms to analyze patterns in 
ship data, shipping data can help make proactive decisions and 
risk management in the freight cost estimate [1,14]. In particular, 
although shipping autonomic does exist in developed countries 
such as the US, less advanced countries tend to only adopt it 
more slowly because of their infrastructure limitations. 
Nevertheless, there have been attempts to address these 
challenges using innovative approaches based upon mobile 
technologies, as well as based on cloud-based solutions [15]. AI 
integration to shipping cost estimation and freight cost 
management has made shipping costing and freight costing 
operationally much more efficient and cost effective. AI is 
changing the way businesses ship the costs by predicting 
accurately, optimizing the routes and data-driven making 

decision, overall makes businesses more profitable and 
competitive in the global shipping industry [14,16]. 

Furthermore, to strengthen the technical foundation of 
ensemble learning in logistics, recent work by [17] provides an 
in-depth overview of modern ML techniques, applications, and 
trends which align with our ensemble-based model strategy. 
Additionally, Asaad et al. [18] demonstrated a hybrid 
deployment model (Wi-Lo), showing how location-aware 
solutions can improve contextual predictions paralleling our use 
of KDTree-based spatial alignment in OptiShip. 

Recent advances in machine learning, particularly ensemble-
based techniques, have demonstrated strong potential for 
solving non-linear prediction problems across domains. 
Abdullah et al. [19] present a comprehensive analysis of modern 
ML approaches, emphasizing the suitability of models like 
Random Forest and XGBoost for applications requiring 
interpretability and robust performance. Their findings support 
the adoption of ensemble learning in real-world systems, 
reinforcing the design choices made in the OptiShip framework, 
which leverages these models for accurate and scalable freight 
cost estimation. 

To summarize the key challenges identified from existing 
literature and to position our proposed solution effectively, 
Table I outlines the major research gaps and how the OptiShip 
framework addresses them through its design and 
implementation. 

TABLE I.  RESEARCH GAPS IN FREIGHT COST ESTIMATION AND 

CORRESPONDING SOLUTIONS IN OPTISHIP FRAMEWORK 

Research Gap Identified Resolution by OptiShip Framework 

Conventional models do not 

account for regional and time-
based variations in diesel fuel 

prices, leading to poor cost 

accuracy. 

OptiShip incorporates a KDTree-based 

spatial mapping technique that aligns 
diesel prices with trip origins and dates 

to enhance prediction accuracy. 

Freight cost estimation often 

ignores the complex and 

nonlinear relationships among 
key factors such as distance, 

delivery time, and fuel prices. 

The framework uses ensemble machine 

learning models Random Forest, 

Gradient Boosting, and XGBoost to 
capture and learn intricate dependencies 

in the data. 

Manual or fixed-rate cost 

estimation lacks flexibility 
and fails to adapt to real-time 

logistical and economic 

conditions. 

OptiShip provides a fully automated, AI-
driven prediction model that dynamically 

integrates current fuel prices and trip 

parameters. 

Existing models rarely 

incorporate actual region-

specific diesel price data, 
especially for diverse 

geographies like India. 

The system uses real-world logistics and 

diesel pricing datasets from multiple 

Indian states, making the model 
geographically and economically 

contextual. 

Freight prediction tools are 

often not optimized for the 
variability and uncertainty 

typical in developing nations' 

logistics sectors. 

OptiShip is specifically tailored for high-

variability scenarios, with extensive 
preprocessing and hyperparameter 

tuning for improved performance. 
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III. METHODOLOGY 

This study employs a structured five-phase pipeline 
methodology, meticulously following the established machine 
learning (ML) modeling pipeline to ensure the accurate 
prediction of freight costs using ML models. As depicted in 
Figure 1, the process initiates with Phase 1: Data Preparation, 
involving crucial steps such as loading and preprocessing 
logistics and diesel price datasets, converting timestamps to 
standardized datetime formats, and executing KDTree-based 
nearest neighbor searches to accurately attribute fuel prices to 
specific trip data. Subsequently, Phase 2 focuses on Model 
Setup, where the dataset is carefully separated into an 80% 
training set and a 20% test set, features are explicitly defined, 
and hyperparameter optimization is conducted using 
GridSearchCV. During Phase 3 which is Model Development, 
the setup of a strong ensemble of models, such as Random 
Forest, Gradient Boosting and XGBoost, occurs and their 
performance is extensively measured using regression 
methodologies involving MSE, RMSE and R² score. It also 
includes how to select the most appropriate resources (e.g 
hyperparameters) and continuing to develop other models if 
necessary. In Phase 4: Evaluation and Refinement, overfitting is 
addressed, and mitigated with adjustments made on a model by 
model basis, for instance, via decreasing tree depth or increasing 
training samples. Then, Phase 5: Finalization will deploy the 
best model onto real world use. This is the stepwise approach of 
making a robust, scalable, and accurate freight cost predicting 
system. 

A. Dataset and Preprocessing  

As a basis of this predictive modeling, there are two 
distinctive yet closely related datasets, the logistics trip dataset 
[20] and the diesel price dataset [21]. Also, it has two crucial 
columns in case of India showing regions and collection dates 
from different states, respectively. It is in the synergistic 
combination of spatial and economic variables in these datasets 
that the datasets can be seamlessly incorporated in a coherent 
machine learning framework for freight cost prediction. 

The logistics dataset consists of the historical freight trip 
records, each record has a variety of important data such as total 
distance travelled, hours spent in transportation, shipper and the 
consignee, and finally the cost related to the freight. The main 
pillar on which these predictive models are built upon are these 
comprehensive features. At the same time, the diesel dataset 
contains daily diesel prices observed in many cities and towns 
in India. This dataset consists of different record of every city 
name, its exact geographic coordinates (latitude and longitude), 
exact diesel price (in INR per liter) and date on the diesel price 
was recorded. 

Aligning diesel price data together with the logistics dataset 
as a key preprocessing step was important. I was able to achieve 
this using a fancy spatial nearest neighbor search technique 
which employed KDTree. As a perfect chronological analysis 
about the geographical coordinates of origin of every logistics 
trip. Thereafter the KDTree algorithm was used to find the 
closest city in its diesel dataset with both geographical proximity 
and temporal correspondence in the date of travel to the trip. In 
addition to this, an accurately assigned corresponding diesel 
price from the identified location and date, which was then 

another vital feature in this logistics trip, then was assumed to 
be given. It is the spatial integration within this model that 
enables the model to integrate region specific diesel costs hence 
making the freight cost predictions very contextual. Derivatives 
of diesel prices have the significant impact on the freight 
transportation costs and therefore directly affect the firm 
profitability. Through incorporation of historical diesel price 
data into the cost prediction model through this KDTree based 
spatial mapping, the model becomes more proficient in 
estimating expenses associated with diesel trips at a more fine 
grain than before. It take into account local and temporal 
variations in diesel purchase price, permitting higher precision 
of overall freight cost forecasting and the capacity to use such 
information for more strategic planning and budgeting of 
logistics operations in areas of volatile diesel prices. 

 

Fig. 1. Block diagram of proposed system. 
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Data preprocessing was done so that features of both the 
datasets were obtained in the desired format to feed the machine 
learning algorithms. The overall preprocessing dealt with in this 
work included different ways of imputing missing variables by 
removal if possible or suitable imputation version where 
applicable. Besides, location names were encoded in accordance 
to appropriate encoding schemes to transform categorical 
variables into numeric representations. For the last, feature 
values were normalized so that all the variables would influence 
the model’s learning process in a similar manner and thus none 
of the variables with a large scale will dominate the predictions. 
Upon completion of this preprocessing phase, the final set of 
features fed into the model comprised the travel distance, 
delivery time, and the diesel price meticulously mapped using 
the KDTree algorithm. Consequently, the total shipping cost 
was designated as the target variable for our prediction task. To 
prevent the model from being trained on data it would later be 
tested against, thereby ensuring an unbiased evaluation of its 
generalization capabilities, the dataset was rigorously split into 
an 80:20 ratio for training and testing, respectively. Table II 
provides a summary of the key features utilized in the dataset, 
along with a brief description of each. 

B. Model Selection and Configuration 

This study strategically employs three ensemble-based 
supervised machine learning models to accurately estimate 
freight costs: Random Forest Regressor, Gradient Boosting 
Regressor, and XGBoost Regressor. These models are 
particularly well-suited for problems involving high-
dimensional, non-linear data and excel in regression tasks that 
necessitate inferring complex relationships among variables, 
which is crucial for predicting logistics costs effectively. 

TABLE II.  DATASET FEATURE DESCRIPTION 

Feature Name Type Description 

Distance(km) Numerical Total distance in the freight trip 

Delivery Time 
(days) 

Numerical Number of days taken for the 
shipment to reach its destination 

From Location Categorical Origin city/state of the shipment 

To Location Categorical Destination city/state of the shipment 

Diesel Price 
(INR) 

Numerical Mapped diesel price (via KDTree) 
for the origin location and trip date 

Trip Cost 
(INR) 

Numerical Actual cost incurred for the freight 
trip (target variable) 

The Random Forest Regressor is an ensemble learning 
technique that constructs a multitude of decision trees based on 
random sub-samples of the training data. These trees are built 
independently, and their individual predictions are aggregated 
(e.g., averaged for regression tasks) to produce a final, more 
robust prediction. This aggregation process significantly reduces 
the risk of overfitting and substantially improves the model's 
generalization capabilities, essentially achieving a balance 
between bias and variance reduction. 

On the contrary, Gradient Boosting models usually construct 
a series of decision trees. The new tree built is a so as to 
minimize the errors (residuals) made by the tree (one before) in 
the ensemble. With every step, the model is able to learn from 
its mistakes, and capture more subtle and more complex patterns 
of the data. Gradient Boosting brings out its strength by forming 

an additive model which learns about intricate patterns sewn into 
the data, and makes highly accurate predictions. 

Extreme Gradient Boosting (XGBoost) ... this is an 
optimized and highly efficient implementation of gradient 
boosting. Besides that, it embraces diverse optimization and 
regularization methods (L1 and L2 regularization) to avoid 
overfitting and improve its training speed and model 
performance. Moreover, as XGBoost is capable of handling 
sparse data, it is much more effective on big and noisy datasets. 
Being a powerful architecture, it is a good choice for solving 
complex regression problems such as freight cost prediction. 

Hyperparameter tuning was done systematically complete to 
find the optimum setting for it using GridSearchCV so that we 
are able to achieve the best possible model performance. It 
exhaustively tries each set of hyperparameters for the given 
model using a predefined set of hyperparameters, trying each 
option and checking which gives the highest performance with 
respect to the chosen metric, e.g. across validated R² score. 
Using the models, key parameters (number of estimators 
(number of trees), learning rate (step size shrinkage to prevent 
overfitting in boosting models), maximum tree depth (to reduce 
variance and help control complexity) and subsample ratios 
(fractions of samples used to train each tree), were 
systematically evaluated. The procedure to meticulously tune 
this model was fruitful in selecting the best configuration for 
each model and in reducing prediction error by also serving as a 
guard against overfitting. 

Table III gives the model-specific hyperparameter choices of 
each model, including Random Forest, and Gradient Boosting, 
and XGBoost. Such setups were central to the improved 
predictive capacity of the OptiShip framework as they 
strengthened its real, practical robustness, as well as increased 
its flexibility in interacting with real freight data. 

TABLE III.  HYPERPARAMETER SEARCH SPACE AND FINAL SELECTED 

VALUES 

Model Parameter Search Range Selected Value 

Random 

Forest 

n_estimators [100, 200, 300] 200 

max_depth [4, 6, 8, None] 8 

min_samples_split [2, 5, 10] 5 

min_samples_leaf [1, 2, 4] 2 

Gradient 

Boosting 

n_estimators [100, 200, 300] 200 

learning_rate [0.01, 0.05, 0.1] 0.05 

max_depth [3, 5, 7] 5 

subsample [0.6, 0.8, 1.0] 0.8 

XGBoost 

n_estimators [100, 200, 300] 200 

learning_rate [0.01, 0.05, 0.1] 0.05 

max_depth [3, 5, 7] 5 

subsample [0.6, 0.8, 1.0] 0.8 

colsample_bytree [0.6, 0.8, 1.0] 0.8 

 
The selected models were fed with three main inputs namely 

“Distance (km)”, “Delivery Time (days)” and the “Mapped 
Diesel Price (INR)”. The “Trip Cost (INR)” was our target 
variable which our models were trained to predict. As it was 
stated before, the entire dataset was divided by us meticulously 
into an 80:20 ratio, in order to have training and testing sets of 
appropriate size. This segregation shields the model from being 
handed over seen data, so that the performance of the model can 
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hence be tested on unseen data for an unbiased assessment on 
the generalization capabilities. For effective evaluation of the 
performance of each model on the test set, standard regression 
performance metrics were used. They included Coefficient of 
Determination (R²), which represents the proportion of the 
variance in the dependent variable that is explained by the 
independent variables,  MAE that measures the average 
magnitude of the errors without regard of their direction and 
RMSE, which gives the measure of the error in the same units 
of the target variable, thus, it is more interpretable than MSE, 
and is more sensitive to large errors. Taken together, these 
metrics give an overall view of how accurate the model is and 
how the distribution of the prediction errors. 

IV. RESULT AND DISCUSSION 

We evaluate the predictive performance of the ensemble 
learning models by comparison of their R² scores,  RMSE,  
MAE among others using the cross validation. Here, Table IV 
displays, that the Random Forest Regressor had the highest R² 
score of 0.97 and this showed the relationship between actual 
and predicted freight costs was strong. The ensembling property 
provides it a better capability to mitigate the overfitting and 
effectively model complex, nonlinear relationships, resulting in 
a superior performance. 

TABLE IV.  MODEL PERFORMANCE COMPARISON 

Model R² Score RMSE MAE 

Random Forest 0.97 12.69 4.94 

Gradient Boosting 0.96 66.57 44.92 

XGBoost 0.96 96.02 66.02 

Gradient Boosting and XGBoost also did very well, 
achieving an R² score of 0.96 as well. However, their error 
values were way higher, especially on XGBoost, which had 
RMSE of 96.02 and MAE of 66.02, whereas Gradient Boosting 
yielded RMSE of 66.57 and MAE of 44.92. Although R² values 
are similar, the higher error values show that these models 
provide less consistent prediction accuracy than Random Forest. 
Random Forest model outperforms others for all the metrics as 
it is shown in Figure 2. This helps further reinforce its robustness 
in capturing the spatial and economic process embedded in 
multi-faceted cost dynamics, including regional characteristics, 
namely, diesel price. RMSE and MAE do not suffice for 
extended analysis of error distribution and model reliability 
other than correlation. 

A polar comparison of RMSE and MAE values of three 
ensemble learning models: Random Forest, Gradient Boosting, 
and XG Boost, is given in Figure 3. For example, radial plots of 
two different bars  in dark blue for RMSE and dark orange for 
MAE  for each model for easy visualization. As can be seen from 
the chart, Random Forest is best among the rest, attaining the 
lowest error values in both metrics. XGBoost has the highest 
RMSE and MAE which means it has lower predictive precision 
but still very high R² score while Gradient Boosting ranks 
second. As the polar layout efficiently represents the magnitude 
of and comparative performance among each of the models in a 
visually compact and straightforward style, it is also highly 
appropriate for this use case. 

The experimental findings demonstrate the importance of 

integrating real-world spatial and economic features, such as 

region-specific diesel prices mapped via KDTree, to improve 

freight cost estimation accuracy. The Random Forest model’s 

capacity to adapt to the heterogeneity of the dataset comprising 

multiple geographic zones, diesel price fluctuations, and varying 

travel distances makes it an ideal choice for such a 

contextualized prediction task. 

 
 

Fig. 1. Comparison of the used model’s accuracy 

 

 

Fig. 2. Comparison of model performance metrics (RMSE and MAE) for 

Random Forest, Gradient Boosting, and XGBoost. Each axis represents the 
magnitude of error; smaller radii indicate better performance. Random Forest 

shows superior accuracy across all metrics. 

 

To bridge the existing research gaps, Table V 

systematically links previously identified issues in freight cost 

estimation with the contributions of the OptiShip framework. 

For example, the integration of regionally mapped diesel prices 

through KDTree addresses the lack of geographical 
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contextualization in traditional models. Furthermore, the use of 

ensemble learning methods accounts for complex interactions 

between logistical variables, which were often oversimplified in 

earlier rule-based or linear models. 

In conclusion, these results substantiate the robustness, 

contextual adaptability, and high predictive performance of the 

OptiShip framework, particularly with the Random Forest 

Regressor at its core. Future work may involve further 

interpretability techniques such as SHAP analysis and broader 

validation across diverse logistics scenarios, including 

multimodal transport networks. 
 

TABLE V.  FULFILLMENT OF IDENTIFIED RESEARCH GAPS THROUGH 

IMPLEMENTATION AND OUTCOMES IN THE OPTISHIP FRAMEWORK 

Gap Addressed 
Implemented 

Feature 
Outcome/Validation 

Lack of regional 

fuel price 

integration 

KDTree-based 

diesel price 

mapping 

Enhanced contextual accuracy; 

improved prediction metrics 

(R² = 0.97, MAE = 4.94) 

Failure to capture 

nonlinear 
dependencies 

Ensemble ML 
models (Random 

Forest, XGBoost, 

Gradient Boosting) 

Accurately modeled complex 
patterns in freight data; superior 

performance compared to other 

models 

Use of 

outdated/manual 
estimation 

methods 

Automated ML 

pipeline using real-
world logistics 

data 

Replaced static rate methods 

with dynamic, data-driven 

predictions 

Absence of 

region-specific 

dataset usage 

Real logistics data 

from Tripura, 
Gujarat, 

Maharashtra 

Regional diversity included in 

training; improved 

generalization and relevance 

Inadequate 
tuning and 

adaptation for 

high-variability 
environments 

Hyperparameter 
tuning via 

GridSearchCV; 

overfitting 
mitigation 

Optimal model configuration 

achieved; reliable performance 

in variable logistics contexts 

 

V. COMPUTATIONAL FEASIBILITY AND DEPLOYMENT 

CONSIDERATIONS 

OptiShip model is characterized with deployment 

efficiency in mind. Ensemble models like Random Forest and 

LGBF/XGBoost have an advantage of predictive accuracy and 

computational time. Benefiting from its low inference latency 

due to the initial training stage taking less than five minutes (on 

a mid-range workstation with Intel i7 processor and 16 GB 

RAM and without GPU acceleration), the model can be used to 

not only drive real-time prediction pipelines but also implement 

an OOD detection approach. 

To be integrated with operational systems, OptiShip may 

be containerized (e.g., by using Docker) and deployed in any 

cloud environment (e.g., AWS, Azure, GCP) or traditionally on 

infrastructure. The trained models can be made available 

through lightweight REST APIs through Python frameworks 

such as Flask or FastAPI and thereby they could be connected 

directly to logistics dashboards and enterprise resource 

planning (ERP) systems. 

Moreover, due to the small size of the feature space (three 

fundamental predictors: distance, delivery time, and mapped 

fuel price), preprocessing and handing real time input is kept at 

minimal overhead. This lends credence to the fact that the 

model can be integrated into current supply chain management 

systems as a microservice that can provide an on-demand 

freight cost estimate. This type of modular deployment would 

similarly support future data feed integrations (e.g. toll APIs, 

weather services) with a small reconfiguration of the system. 

To conclude, the OptiShip framework is not only time-efficient 

but also architecturally adaptive, which makes it an appropriate 

candidate to be deployed in a scalable manner in the real 

logistics setting. 

VI. LIMITATIONS AND ROADMAP AND  

FUTURE ENHANCEMENTS  

While the OptiShip framework demonstrates promising 

results in freight cost prediction using real-world logistics and 

diesel pricing data, several limitations should be acknowledged. 

First, the current study is geographically limited to road freight 

operations in India, which may affect the generalizability of the 

model to other countries with different logistics patterns, fuel 

pricing mechanisms, and regulatory environments. Second, 

although the model incorporates region-specific fuel prices 

using KDTree alignment, it does not yet account for other 

operational variables such as vehicle type, toll costs, or weather 

conditions factors that can influence freight costs significantly. 

Third, the study focuses exclusively on structured, tabular data 

and does not explore advanced deep learning or time-series 

forecasting methods, which could offer improved performance 

in highly dynamic environments. Finally, model interpretability 

tools such as SHAP were not included in this version, limiting 

transparency into feature-level decision influences. These 

limitations provide meaningful directions for future work, 

where model enhancements and broader deployments can be 

explored. 

Looking ahead, several enhancements are envisioned to 

further advance the capabilities and applicability of the 

OptiShip framework. One key direction involves integrating 

vehicle-type information into the prediction model, recognizing 

that different categories of freight vehicles exhibit distinct fuel 

consumption patterns and cost dynamics. By accounting for 

truck-specific attributes, the model’s estimations can be made 

more granular and operationally realistic. 

Another important enhancement is the inclusion of toll data 

and weather conditions through real-time API integration. 

These variables, which significantly impact transit duration and 

cost, will enable OptiShip to respond dynamically to real-world 

disruptions or changes in operating conditions. This addition 

will improve the robustness and adaptability of the framework 

under varying logistical scenarios. Furthermore, to ensure 

sustained model accuracy over time, especially in dynamic 

economic or seasonal environments, an adaptive retraining 

mechanism will be implemented. This will allow the system to 

learn from new data continuously and address concept drift, 

thereby maintaining its predictive reliability across evolving 

contexts.  

Finally, a web-based deployment dashboard is proposed to 

bring OptiShip closer to end-users. This interface will serve as 

a decision-support system, offering intuitive visualizations, key 
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performance indicators, and actionable insights for logistics 

managers and planners. In parallel, future extensions will also 

focus on enriching the dataset to better represent varied 

logistics contexts such as rural last-mile deliveries, cross-

border long-haul freight, and multimodal transport. This will 

improve the generalizability of the model and ensure its 

applicability across a broader spectrum of real-world freight 

scenarios. Collectively, these enhancements aim to transform 

OptiShip into a comprehensive and intelligent freight cost 

management solution for modern logistics ecosystems. 

VII. CONCLUSION 

In this paper, the OptiShip system, a machine learning 
framework that enables forecasting shipping prices based on 
spatial and economic characteristics, such as distance, delivery 
period, and prices of diesel in regions was introduced. Data 
contextualization was also considerably increased by employing 
a new method of KDTree-based pricing to align fuel prices to 
trip origins and date. The ensemble models analyzed were 
Random Forest, Gradient Boosting, and XGBoost, with 
Random Forest Regressor performing the best by having a score 
of 0.97 R2, which is a sign of high predictive potential in a lot of 
technical and non-linear logistics. Such findings validate the 
powerfulness of ensemble learning in the freight cost estimation 
present in actual world variables. The research only looks at the 
Indian road freight data that can affect its applicability to other 
regions or transport modes. Such other factors as the type of 
vehicle, toll prices, and the weather were not examined, and the 
approaches to model interpretability, such as SHAP, were not 
provided. Neural networks in deep learning and temporal 
forecasting work was also beyond the scope of the work. The 
future extensions will investigate vehicle-specific attributes, 
real-time tolls and weather APIs, and adaptive retraining 
approaches to cover concept drifts. Also, there are plans to give 
real-time and explainable predictions and aid logistics decision-
making in various operational conditions through a web-based 
dashboard. 
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