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Abstract 

Child mortality is a big problem around the world, especially in low- and middle-income nations where there are big differences in health 

care and social conditions. This investigation seeks to create a predictive model for child mortality and pinpoint the key factors that 

significantly contribute to it, employing machine learning (ML) methodologies. The dataset includes various features such as parental 

age, maternal education, birth weight, wealth index, and access to healthcare services. Thirteen machine learning classifiers were used, 

categorized into four model groups: Traditional Models (Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Naive 

Bayes), Tree-Based Models (Decision Tree, Random Forest, Extra Trees), Boosting Models (AdaBoost, Gradient Boosting, XGBoost), and 

Ensemble Learning Models (Soft Voting, Hard Voting, Stacking). The efficacy of each model was assessed using classification 

metrics including Accuracy, Precision, Recall, and F1-Score within a 10-fold cross-validation framework to guarantee robustness. Results 

indicate that ensemble models, particularly AdaBoost, achieved the highest predictive accuracy, with perfect scores across all metrics 

(1.00). XGBoost and Stacking also demonstrated strong and consistent performance. The findings indicate that ensemble learning 

methods are effective in predicting child mortality and can assist policymakers and healthcare planners in identifying high-risk 

populations and implementing targeted interventions to reduce child mortality. 
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I. INTRODUCTION  

Child mortality is a serious public health issue, especially in 
low-income and developing nations where there are significant 
differences in mother education, socioeconomic status, and 
healthcare access [1,2]. The World Health Organization (WHO) 
reports that 4.8 million children under the age of five die 
annually from preventable or treatable causes, including 
inadequate prenatal care, insufficient immunization, 
malnutrition, and limited access to clean water and sanitation 
[3]. Reducing child mortality is not only a moral imperative but 
also a key indicator of a nation’s overall development and 
healthcare effectiveness. Understanding the multifaceted causes 
and associated risk patterns of child mortality is vital for 
designing effective interventions and evidence-based policy-
making [4].  

In this context, technologies on the data such as Machine 
Learning (ML) have become known as powerful tools in 
healthcare analytics. Unlike traditional statistical methods, ML 

algorithms are capable of acquiring hidden patterns and 
representing complicated nonlinear relationships among 
multiple features gives powerful potentials for early 
identification of children at risk of mortality [5]. Machine 
learning creates new techniques to use prediction models in 
health care like predicting child mortality in the recent days. By 
taking large and diverse datasets, ML models can be used to 
develop robust, data-driven decision support systems. These 
systems can assistance policymakers and healthcare 
professionals in identifying liable people and providing needs 
more effectively. 

In this study, we have used a complex dataset that includes a 
wide range of demographic, health, and socio-economic features 
such as maternal and paternal age, birth order, birth weight, 
maternal education, wealth index, prenatal check-ups, 
institutional delivery, vaccination status, and access to water and 
sanitation. These features were carefully selected based on their 
known associations with child mortality outcomes. To evaluate 
the predictive capability of machine learning in this domain, the 
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study systematically analyzes and compares 13 different 
classifiers, including traditional models (Support Vector 
Machine, Logistic Regression, K-Nearest Neighbors, Naive 
Bayes), tree-based models (Decision Tree, Random Forest), 
boosting algorithms (AdaBoost, Gradient Boosting, XGBoost), 
and ensemble methods (Soft Voting, Hard Voting, and 
Stacking). Each classifier is trained and tested on the given 
dataset, and their performance is calculated using evaluation 
metrics. The study integrates predictive modeling with 
Explainable AI (XAI) techniques, particularly utilizing SHAP 
(SHapley Additive Explanations) for the interpretation of model 
predictions. This allows us to identify which features contribute 
most significantly to child mortality risk, thus adding a layer of 
transparency and interpretability to the machine learning 
outputs. This research makes three major contributions: first, it 
presents a comprehensive benchmarking of 16 machine learning 
models on a real-world child mortality dataset; second, it offers 
a detailed comparative analysis of traditional and ensemble 
models for child mortality prediction; and third, it applies SHAP 
for feature importance analysis to enhance the interpretability 
and reliability of the model outcomes. 

II. LITERATURE SURVEY 

F. Iqbal et al.,[6] discussed how child mortality prediction is 
possible using predictive analytics. The author has considered 
the SMOTE technique to balance the dataset. Apart from this, 
they also used 4 supervised machine learning classifiers for the 
said task. They employed performance metrics for comparative 
analysis to predict the child's survival status. The number of 
children under five in a household, the time between 
pregnancies, the size of the family, the mother's age at her first 
birth, antenatal care visits, breastfeeding practices, the child's 
birth weight, and the place of delivery are all important risk 
factors for child mortality. The random forest classifier was able 
to predict the deaths of children under five with an accuracy of 
93.8%. The findings may substantially enhance the decision-
making process for child health intervention initiatives. 

A. W. Demsash et al.,[7] investigated machine learning 
classifiers for child mortality prediction. The author has 
considered the five algorithms, like J48, RF, etc. They used 1813 
samples for testing child mortality from the 2019 Ethiopian 
Demographic and Health Survey dataset. The author has divided 
the entire dataset into 2 parts,70% training and 30% testing. 
Each algorithm has undergone 10-fold cross- validation. For 
generating the rule, authors were considered if…then rules and 
implemented through WEKA Software.  

C. Chivardi et al. [8] used machine learning to study how 
socioeconomic factors affected child mortality rates (U5MR) in 
Brazil, Ecuador, and Mexico over a period of 20 years. We built 
a cohort at the municipal level from 2000 to 2019 and trained a 
random forest model to see how important socioeconomic 
factors are in predicting U5MR. As part of a sensitivity 
investigation, we trained two more machine learning models and 
reported the mean squared error, median absolute deviation, and 
root mean squared error. According to our statistics, the Gini 
coefficient, poverty, and illiteracy are the best indicators of 
U5MR. 

O. Samuel et al.,[9] studied machine learning models and 
discussed how child mortality is possible as well as how to 
predict under-five mortality, with the Random Forest and ANN 
algorithms. This model obtained an accuracy of 89.47% and an 
AUROC of 96%. It has been observed that under-five mortality 
rates have some of the features, influenced more by wealth index, 
maternal education, antenatal visits, etc, in Nigeria.  

To determine the effect of overall, health-related, and other 
types of public spending on child mortality, L. P. Garcia et 
al.[10] examined data from 147 nations (2012–2019). Increased 
public spending, especially in health, was associated with lower 
neonatal mortality, while investment in non-health sectors 
reduced death in children aged 28 days to 5 years, according to 
results obtained using a Generalized Propensity Score approach. 
It is clear that the amount and distribution of public investments 
are crucial in enhancing child survival, since the effects differed 
by industry and age group. 

S. Holcroft et al. [11] aim to construct a PPH prediction 
model by examining the statistical importance of early risk 
factors. The data set originated from an observational research 
in northern Rwanda that used a case-control design. Random 
Forests, Extremely Randomized Trees, logistic regression, 
logistic regression with elastic-net regularization, gradient-
boosted trees with XGBoost, and logistic regression were the 
machine learning methodologies and statistical models that were 
examined. Since the Random Forest model had better results 
than the other models (average sensitivity: 80.7%, specificity: 
71.3%, and misclassification rate: 12.19 percent), it may be a 
useful tool for PPH prediction. 

R. K. Saroj et al.,[12] took the data from the Family Health 
Survey (NFHS-IV) to predict child mortality using a machine 
learning classifier. The author has considered DT, RF, NB, 
KNN, LR, etc. Each model’s performance metric was estimated, 
followed by a confusion matrix. Among the predictive models 
included in this study, the neural network model proved to be 
the most effective in predicting death among children under five. 
The most effective model was the neural network, while logistic 
regression also performed well in terms of accuracy (94% to 
95%), precision- recall curve (99.5% to 99.6%), and AUROC 
range (93.4% to 94.8%) in predicting under-five mortality. 

A. Satty et al.[13] look at how machine learning classifiers 
use data from the 2018–2019 Multiple Indicator Cluster Survey 
to estimate the death rate of children under five in CAR. The 
author used LGB, XGBoost, EGB, and compared them with the 
traditional logistic regression model. As well as evaluated the 
performance metrics and found that CATBoost is one of the top 
performers for child mortality prediction with an accuracy of 
0.94, F1-score is 0.95, and AUC is 0.973.  

S. Naznin et al. [14] looked into how well a machine learning 
model could predict child deaths. The author has looked at the 
information from the Bangladesh Demographic and Health 
Survey. The under-five mortality rate in Bangladesh has 
markedly declined during the research period, and machine 
learning models effectively predict future trends. Linear 
Regression demonstrated the highest accuracy among the 
models, evidenced by the lowest Mean Absolute Error (4.05), 
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Root Mean Square Error (4.56), and Mean Absolute Percentage 
Error (6.64%), as well as the highest R-squared value (0.98). 

S. Das et al.,[15] investigated the collected data from 
Bangladesh with 5669 children. The study looked at the medical 
records of kids aged 0 to 59 months who were hospitalized to 
the acute care unit at the International Centre for Diarrheal 
Disease Research in Dhaka, Bangladesh. We tested logistic 
regression, gradient boosting trees, random forest, elastic net, 
least absolute shrinkage and selection operator, and our other 
models by looking at the area under the receiver operating 
characteristic curve. 

S. Adithya et al., [16] focuses on predicting child mortality, 
specifically for children under the age of five, including fetal 
deaths. It aims to develop AI-based strategies to accurately 
determine factors affecting fetal and child well-being. The 
approach involves analyzing the dataset using supervised 
machine learning techniques, which includes steps like 
identifying variables, handling missing values, and performing 
univariate, bivariate, and multivariate analysis, along with data 
cleaning, validation, and visualization. The study also includes 
sensitivity analysis to understand how different model 
parameters impact fetal health classification. Finally, the study 
gives a machine learning-based framework for predicting child 
mortality and tests how well different ML models operate on the 
dataset. 

C. Ashwini et al. [17] utilized the NFHS-V dataset to analyze 
spatial disparities in under-five mortality in Uttar Pradesh. Four 
machine learning models were employed to ascertain significant 
causes of mortality. Prediction accuracies varied between 76% 
and 79.4%, with logistic regression attaining the best accuracy, 
highlighting notable geographical variations. The factors that 
notably influenced the mortality rate of children under five years 
old encompassed the mother's body mass index (BMI), the 
number of births in the preceding five years, the child's gender, 
the timing of birth, prenatal therapy, birth order, and water 
accessibility. Machine learning approaches, especially logistic 
regression, can effectively influence actions aimed at enhancing 
child survival based on the findings. 

By using machine learning to the 1,188 cases included in the 
publicly available "Paediatric Intensive Care database," J. 
Prithula et al. [18] hopes to enhance the accuracy of pediatric 
intensive care unit death prediction. Using Random Forest, 
Extra Trees, and XGBoost, we selected 16 important 
characteristics from 105. Then, we tested 10 ML models, 
including CatBoost and ensemble approaches. Addressing class 
imbalance, a novel data splitting strategy dramatically improved 
performance. The use of ML to improve intensive care unit 
readiness and clinical outcomes was demonstrated by the 85.2% 
AUC and 89.32% accuracy achieved by the suggested strategy. 

Along the Iraq–Turkey border in the Duhok region, the study 
[19] examines forest change from 2015–2024. It used machine 
learning and satellite imagery to show that forest loss has been 
on the rise, mostly as a result of human activity like road 
construction, fires, and illicit deforestation. There was a 
reduction in forest cover from 630 km² to 577 km². Results from 
the tests showed that XGBoost was the most effective model. 
This research demonstrates how machine learning may fill in 

data gaps in our understanding of forest change and its 
management. 

A. A. Abdullah et al. [20] presents a novel approach to 
medical picture classification uncertainty assessment by 
utilizing Bayesian deep learning ensembles. This method 
improves prediction accuracy and confidence by selecting the 
top 'k' models according to their strength in predicting each 
class. This approach is helpful for high-risk domains like 
healthcare because it outperforms or performs comparably to 
traditional Bayesian ensembles. 

In order to fix the overconfidence in predictions made by 
conventional deep learning models in healthcare, the study [21] 
examines how Bayesian Deep Learning (BDL) might be used. 
For delicate medical judgments, BDL is preferable than classical 
models since it assesses uncertainty. Medical imaging, clinical 
signals, and electronic health records are just a few of the fields 
that benefit from BDL methods, which are discussed in this 
article along with their limits. It goes on to mention current 
research obstacles and voids in healthcare BDL applications and 
goes over new DL designs. 

The study by M.S Rao et al., [22] delves into the ways in 
which AI can enhance healthcare by facilitating more precise 
and rapid prediction. The analysis of massive volumes of health 
data is made easier with the use of machine learning and cloud 
computing. The use of AI in conjunction with wireless sensors 
that monitor one's behavior and level of physical activity allows 
for the early diagnosis of diseases. With the help of these 
innovations, healthcare systems are becoming more intelligent 
and adaptable. The article goes on to talk about how AI may 
improve decision-making using environmental data and how it 
can assist reduce mistakes in medicinal therapies. 

The goal of the team-based competition conducted by B. A. 
Sullivan et al. [23] was to estimate the probability of mortality 
in NICU patients using several machine learning algorithms. For 
this study, five groups of neonatologists used a dataset including 
more than six thousand NICU cases using models such as 
logistic regression, neural networks, and XGBoost. Although 
the audience had a preference for the sophisticated CNN model, 
logistic regression produced the highest AUC and was the most 
accurate. The results show that simpler models can sometimes 
beat more complicated ones, demonstrating the importance of 
data comprehension and model interpretability over complexity. 

J. Lee et al. [24] aimed to enhance mortality prediction in 
preterm neonates (<32 weeks gestation) during hospitalization. 
Traditional approaches (CRIB-II and logistic regression) were 
compared to random forest. The random forest model, trained to 
flag data 6 hours before death as "worry," beat traditional 
models on 275 newborns. The random forest model predicted 
mortality better by incorporating clinical and physiological data 
than CRIB-II and logistic regression, which had AUC scores of 
0.78 and 0.84. 

Predicting the mortality of infants was the subject of eleven 
research articles that C. Mangold et al. [25] reviewed. Out of 434 
studies that were evaluated, including 1.26 million babies, only 
those with 500 or more participants and postnatal data were 
considered. It was common practice to employ logistic 
regression, neural networks, and random forests. Five minutes 
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to seven days following delivery, some versions utilized three to 
sixty-six attributes. Very few studies were checked and adjusted 
by experts outside the field. With sensitivity levels ranging from 
63-60% and specificities from 78% to 99%, AUC values were 
between 58.3% and 97%. Although it made use of a large 
number of features, linear discriminant analysis yielded the best 
results. Additional research is necessary to confirm and use ML 
for healthcare prediction of newborn mortality, according to the 
review. 

Using WHO health data, K. Pal et al. [26] employ machine 
learning to forecast the potential mortality rate of newborns in 
various nations. Over the course of several years, the researchers 
merged general health statistics with data on reasons of 
mortality, such as prematurity, infections, or birth injuries. After 
comparing various prediction models, they discovered that the 
Random Forest model produced the most accurate results (R² = 
0.990), indicating very high accuracy. This demonstrates how 
machine learning can assist healthcare providers and 
governments in making more informed decisions regarding the 
care of newborns. 

III. METHODOLOGY 

The methodology illustrates a systematic architecture 
designed to predict child mortality using different ML and 
ensemble models. As discussed in the system architecture, the 
procedure begins with the gathering of child mortality data, 
followed by pre-processing to remove unwanted data and 
normalize the dataset. Transformed data is obtained from 
preprocessing and afterward categorized into training and 
testing sets. Various models are implemented to train the 
processed dataset. The trained models are subsequently assessed 
using the testing data, which is based on evaluation metrics. The 
final predicted output is derived from the most effective model. 

Initially a dataset is to be taken to process the data which is 
to be tabular format in the combination of rows and columns. 
The dataset used in our study is publicly available and can be 
accessed by link: https://data.mendeley.com/datasets/cfwnrgd9j
m/1. The dataset includes both maternal and demographic 
attributes such as mother’s age, education, number of prenatal 
visits, previous child deaths, type of residence, income category, 
and more. These features are known to be linked with child 
mortality risk. The dataset is moderately imbalanced, with 
approximately Positive class (mortality) as 49.5% and Negative 
class (survival) as 50.5%. The dataset was split into 80% training 
and 20% testing sets The mentioned Figure 1 is the complete 
architecture for child mortality. Our target variable is mortality, 
and it consists of a yes or no type. That means it is a binary class 
classifier. During the data preprocessing stage, we handled the 
missing values and encoded the categorical features using one-
hot and label encoding, followed by scaling. Our objective was 
to prepare clean and consistent data suitable for the model. In 
this phase, we identified the top features to build the model. Out 
of 13 features, we only considered 9 features that affect child 
mortality. After training the model (using Extra Trees, Random 
Forest, or XGBoost), feature importance scores were calculated, 
and top features such as birth-weight, institutional-delivery, 
mother_education, and antenatal_visits were chosen to increase 
model interpretability and reduce overfitting. 

 
Fig. 1. Proposed Model for Child mortality classifier 

A. Model selection 

Different models have been used for child mortality, and 
these are Logistic Regression, Random Forest, KNN, Naive 
Bayes, Decision Tree, SVM, Gradient Boosting, XGBoost, 
Extra Trees, AdaBoost, Soft Voting, Hard Voting, and Stacking. 
Our goal is to compare the performance metrics and identify the 
best model. After training the model (e.g., Extra Trees, Random 
Forest, or XGBoost), feature importance scores were retrieved, 
and top features, including birth_weight, institutional_delivery, 
mother_education, and antenatal_visits, were chosen to increase 
model interpretability and reduce overfitting. 

• Logistic Regression: It estimates the probability of a 
binary outcome in this case, whether a child is likely to 
survive or not. It performs well with linearly separable 
data and produces interpretable coefficients that makes 
understanding the effectiveness of each prediction as it is 
simple and efficient but may not capture non-linear 
relationships among features affecting child mortality. 

• Decision Tree: Builds a hierarchical structure of 
decisions based on inputs like maternal education, birth 
weight, and access to healthcare. It splits the data into 
branches based on the correlated attributes, making it 
easy to interpret and visualize [27]. However, it leads to 
overfitting, probably with small variations in the dataset, 
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which may impact on generalization of unseen child 
health data. Information Gain helps in feature selection 
during tree construction [28]. 

Information Gain:    

IG(D, A) = H(D) − H(D|A)                                      (1) 

where the entropy H(D) is given by  

 𝐻(𝐷) = − ∑ 𝑃(𝑥𝑖)
𝑛
𝑖=1 𝑙𝑜𝑔2(𝑃(𝑥𝑖))                          (2)  

Here P(xi) represents the probability of class xi in dataset 

D, and H(D|A) is the conditional entropy after splitting 

on attribute A. 

• Random Forest: Extended version of Decision Tree that 
elevates prediction accuracy and decreases overfitting by 
aggregating the outputs of multiple trees. It effectively 
identifies the feature correlations and handles missing 
values, making it suitable for complex health datasets 
[29].  

• K-Nearest Neighbors (KNN):  Predicts the results by 
taking the most similar data points (neighbors) in the 
feature space. In child mortality, it classifies based on 
points in closely related cases like similar maternal age 
and health access. However less effective with uncertain 
data. 

• Support Vector Machine (SVM): Constructs a best 
possible hyperplane that separates the two classes 
(mortality vs. survival) in a high-dimensional space. It is 
particularly effective in handling complex boundaries 
and smaller datasets. In child mortality prediction, SVM 
helped model complicated mappings between 
socioeconomic and health indicators but it may require 
perfect kernel choice. 

• Naive Bayes: It is probabilistic classifier depends on 
Bayes’ theorem. Despite its simplicity, it performs well 
on categorical health data and can quickly highlight the 
most likely causes of mortality. It gives best results with 
high-dimensional datasets but its assumption of 
independence may not always be true in healthcare data. 

• Gradient Boosting: Builds a sequential DT’s where each 
new tree corrects the errors of the previous ones in order 
to boost the weak learning points at each previous trees 
[30]. It performs well on structured data and can model 
complex patterns but requires careful tuning to avoid 
overfitting. 

• XGBoost (Extreme Gradient Boosting): It is a better 
variant of gradient boosting that is noted for being fast 
and efficient. It solves the problems of missing values, 
feature mappings and imbalancing. By using XGBoost 
in this research produced best results and highlighted key 
factors contributing to child deaths with high feature 
importance scores. 

• Extra Trees (Extremely Randomized Trees): It constructs 
multiple trees using random splits and then aggregates 
the results. It adds more randomness so that it can reduce 

variance in future. It helped to identify correlations 
between features like institutional delivery and birth 
weight. 

• Soft Voting: Similar to ensemble technique that averages 
the predicted probabilities of multiple base techniques to 
make a final decision. It benefits from the strength of 
each individual classifier and balancing the predictions 
in uncertain situations.  

• Hard Voting: selects the majority class predicted by 
multiple classifiers. It is simple and effective when base 
models agree but may struggle if the models are diverse 
and inconsistent. It performed moderately well in this 
study by aggregating predictions from strong classifiers 
like random forest and SVM. 

• Stacking: Advanced ensemble model were estimating of 
different base models are used as input to a meta-model, 
which makes the final speculation. It exploits the 
robustness of various algorithms and often improves 
predictive performance.  

• AdaBoost (Adaptive Boosting): AdaBoost integrates 
multiple weak learners into a strong learners by 
concentrating more on difficult cases in each cycle. It 
regulates weights for misclassified data points and 
improves overall prediction accuracy. Among all 
models, AdaBoost showcased the best performance, 
making it the most powerful model for diagnose child 
mortality risk in the dataset.  

B. Model Training and Validation 

We split our data into two parts: training and testing. We 
utilized 80% of the training data to train the model and 20% of 
the data to test it. This step is used for learning the machine 
learning classifiers' patterns and generalizing the unseen data to 
predict the child mortality ((whether a child survived or not. Each 
model learns the mapping between the chosen input features and 
the target variable (mortality: 0 = alive, 1 = dead). Validation 
assures that the model does not overfit and remains 
generalizable for real-world use (for example, in public health 
decision-making). By evaluating 13 alternative algorithms, you 
may select the best-performing model that strikes a balance 
between high accuracy and strong sensitivity to mortality cases 
(minimizing false negatives). 

C. Model Evaluation 

During model evaluation, we used the performance metrics. 
This phase discusses how the model is trained and predicts child 
mortality. After the model is trained, each classifier is tested and 
gives information about whether a child will survive or not, 
based on the given features.  

D. Prediction and Decision Making  

In this phase, our model predicts the child mortality risk for 
unseen data. After being trained and verified using historical 
data with known outcomes, the model is used to estimate the 
chance of child mortality based on new input data (test or real-
world). Our target Variable (Dependent Variable) is mortality, 
which contains value Binary value (0: Alive, 1: Deceased) 
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IV. RESULTS AND DISCUSSIONS 

Table I shows that evaluation metrics of 13 different ML and 
Ensemble Models and it has been observed that AdaBoost 
performed well in comparison to the other models. We used the 
13 classifiers for child mortality prediction and estimated their 
performance [31]. Among them, the top performer is AdaBoost 
and which obtained a perfect score and it is 1.0. It means it works 
very well for classification on the test data. Apart from this 
classifier, stacking is also working well, and its accuracy is 
0.997,f1 score is 0.989. Similarly, XGBoost is also performed, 
and its accuracy is 0.996, F1-score is 0.986. Both classifier 
shows very high recall and ROC-AUC. The model rate 
performers are RF, Extra Tree, and Hard Voting.   

They exhibit high precision and good generalization. It also 

observed that the weaker performers for child mortality 

prediction are LR, NB, and KNN. But we observed that SVM 

performs a balanced model for child mortality prediction. 

Evaluation Metrics: The evaluation metrics used in our study 
are [32-35]: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                    (3) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                            (4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                              (5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
                        (6) 

TABLE I.  PERFORMANCE METRICS OF DIFFERENT MACHINE LEARNING MODELS 

S.No Model Precision Recall F1-Score Accuracy ROC AUC 

1 Logistic Regression 0.7262 0.4326 0.5422 0.8970 0.9121 

2 Decision Tree 0.9353 0.9220 0.9286 0.9800 0.9558 

3 Random forest 0.9683 0.8652 0.9139 0.9770 0.9970 

4 KNN 0.7064 0.5461 0.6160 0.9040 0.9072 

5 SVM 0.8624 0.6667 0.7520 0.9380 0.9745 

6 Naive Bayes 0.7750 0.4397 0.5611 0.9030 0.9372 

7 Gradient Boosting 1.0000 0.9433 0.9708 0.9920 1.0000 

8 XG-Boost 0.9858 0.9858 0.9858 0.9960 1.0000 

9 Extra Trees 0.9565 0.7801 0.8594 0.9640 0.9929 

10 AdaBoost 1.0000 1.0000 1.0000 1.0000 1.0000 

11 Soft Voting 0.9712 0.9574 0.9643 0.9900 0.9983 

12 Hard Voting 0.9601 0.9007 0.9304 0.9810 0.9474 

13 Stacking 0.9790 0.9929 0.9859 0.9960 0.9999 

 

 

Fig. 2. Combined ROC Curve for child mortality prediction 

 

The above-mentioned Figure 2 is the combined ROC curve. 
It provides the classification performance for child mortality 
prediction. He used 13 classifiers to distinguish the classes. In 
this figure, each curve represents the classifier, with the area 
under the curve representing the effectiveness of the model. It 

has been observed that models such as AdaBoost, Gradient 
Boosting, XGBoost, and Stacking perform well and achieve 
nearly perfect AUC values (≈1.0). We also observed that the 
other models like KNN and Logistic Regression showed lower 
AUCs, i.e, they are not well and accurate classification 
boundaries. The main diagonal line refers to the random 
performance. The line that is represented above the diagonal line 
is the best model and predictive capabilities.  

Figure 3 is called the Precision-Recall curve for child 
mortality prediction. It provides the trade-off between precision 
and re-call for 13 classifiers. High-performing models such as 
AdaBoost, Stacking, and Gradient Boosting are perfect in 
situations where both false positives and false negatives are 
crucial, since they show big PR AUC scores in addition to 
maintaining high precision throughout a range of recall levels. 
Conversely, models like Naive Bayes and Logistic Regression 
show a smaller area under the curve, suggesting difficulties in 
successfully striking a balance between recall and precision. In 
unbalanced datasets, where ROC AUC might not accurately 
represent classifier performance, this visualization is especially 
helpful. 
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Fig. 3. Precision-recall curve for child mortality prediction 

A. Logistic Regression 

Figure 4 represents the logistic regression ROC curve and PR 

curve for child mortality prediction. We observed that the ROC 

curve is 0.9121, and accuracy is 0.8970, F1-score is 0.5422. It 

has been observed that there is good discrimination between 

classes. But the PR-AUC is relatively low We also observed that 

this model is not that much of suitable for identifying the 

correctly positive under class imbalance. The lower PR AUC 

suggests that it has trouble accurately detecting real child death 

instances under class imbalance. 

B. Decision Tree 

In Figure 5, the visualization is used to capture the non-

linear relationships and interactions between features for child 

mortality prediction. It has been observed that the Decision Tree 

exhibited good performance, identifying significant patterns in 

the data with a ROC AUC of 0.9528 and PR AUC of 0.9111. 

Despite the possibility of overfitting, its comparatively high 

recall indicates that it successfully detects actual child death 

instances. The classifier captures the non-linear relationships and 

interactions between features. DT splits the data recursively and 

uses the required features to further build the model for 

estimation purposes. 

 

Fig. 4. ROC curve representation model for child mortality prediction. 

 

Fig. 5. ROC Curve and PR-Curve for Child Mortality Prediction 
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C. Random Forest 

In the above-mentioned Figure 6, it is discussed how child 

mortality prediction is possible using the RF algorithm. It is used 

to reduce overfitting by averaging many decision trees. This 

model creates several trees with bootstrapped samples and 

averages their predictions. It has been observed that the ROC-

AUC score is 0.997 and the PR-AUC is nearly 0.97 that the model 

is generalized and robust for child mortality prediction. It is 

among the best at classifying child mortality because of its 

ensemble nature, which enables it to represent intricate patterns 

and relationships. With a solid PR curve that maintains good 

precision across all recall levels and a ROC AUC of 0.9969, 

Random Forest stands out in the combined visualizations. This 

demonstrates how well the model can accurately detect cases of 

both positive and negative mortality with little overfitting.  

 

Fig. 6. Random Forest model for child mortality prediction 

D. KNN 

In the mentioned Figure 7 it visualized KNN-ROC and KNN 

PR-curve for child mortality prediction are visualized. The 

average discriminative capacity (AUC 0.907) is indicated by the 

moderately curved ROC curve for KNN. When attempting to 

record more real fatalities, the PR curve is noticeably flatter, 

particularly at higher recall levels, indicating that it frequently 

predicts false positives. This model is suitable for instance-based 

learning purposes, and it predicts the class of the closest training 

samples. This approach is less suitable for healthcare 

applications with delicate patterns since it is sensitive to 

irrelevant features and data scale. 

 

Fig. 7. KNN-ROC and PR curve for child mortality Prediction 

E. SVM 

Figure 8 discusses how SVM is useful for predicting child 

mortality. It has been observed that SVM has the strength to 

separate the classes using a hyperplane, and it obtained a ROC 

curve of 0.9745 and a PR-AUC is 0.8076. We used this model 

because it effectively handles the high-dimensional spaces with 

clear margins. It demonstrates the reliable performance, and it 

is suitable for mortality prediction. But it seems that this model 

suffers from being computationally expensive because it 

requires more tuning. Additionally, its PR curve is steady and 

continuously high, particularly at mid-to-high recall values, 

demonstrating its dependability in capturing more true 

positives while maintaining an acceptable level of precision. 
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Fig. 8. SVM-ROC and PR-Curve for child mortality 

F. Naive Bayes 

The Figure 9 discusses how NB is suitable for child mortality 

prediction. It depicts the ROC Curve and PR curve. It has been 

observed that NB achieves a good ROC AUC score, and it is 

about 0.937, and the PR-curve score is higher for recall. In real-

world situations with intricate data interdependencies, Naive 

Bayes is less reliable. Internally, this model estimates the 

conditional probabilities. The depicted model indicates that it 

often misclassifies positives. 

 

Fig. 9. NB_ROC and PR-curve for child mortality 

 

Fig. 10.  GB-ROC and PR curve for child mortality 

G. Gradient Boosting 

Figure 10 represents the GB visualization for predicting child 

mortality. It discussed how the model learns iteratively to fix the 

errors and increase the overall performance. The PR-Curve score 

is nearly about to 0.97, and the ROC-AUC score is 1.0, which 

means this model makes precise and sensitive predictions. It is 

considered one of the good models for mortality prediction. It 

can learn complex patterns like multi-factor causes of death (e.g., 
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malnutrition + disease + environmental factors) by repeatedly 

building trees and fixing past mistakes. The form of its PR curve 

demonstrates its capacity to reduce false positives while 

preserving high sensitivity. 

H. XGBoost 

The above-mentioned Figure11 Discusses how XGBoost 

performed for child mortality prediction. The obtained ROC-

AUC score is 0.999, and the PR-curve is (0.98+), making it near-

perfect. Here we used XGB to avoid the overfitting model through 

a combined GDB and regularization technique. Its accuracy and 

recall remain excellent throughout the visualisations, 

demonstrating its applicability for delicate prediction tasks such 

as forecasting child mortality. It is among the most dependable 

models in terms of statistical performance and visualisation. This 

model is performing good and is especially valuable when 

precision and recall are both critical. 

 

Fig. 11. XGBoost ROC-PR Curve for child mortality 

I. Extra Trees 

Figure 12 depicts extra tree classification for child mortality 

prediction. From the experimental observation, it is revealed that 

this model achieved a high ROC-AUC(0.995) and a strong PR 

curve (0.92).  

 

Fig. 12. ET_ROC and PR_Curve for child mortality 

 

Fig. 13. AdaBoost_ROC and PR_Curve for child mortality 
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J. AdaBoost 

Both ROC AUC (1.0000) and PR AUC (1.0000) were 

flawlessly achieved by AdaBoost, most likely as a result of its 

powerful boosting of weak classifiers. Although it might still be 

sensitive to noisy data, this makes it a unique model. This is the 

best model because it converts the weak learner into a strong 

classifier. Boosts misclassified samples to improve accuracy 

iteratively.  

K. Soft Voting 

It is one of the ensemble learning models that is used for child 

mortality prediction. It combines classifier probabilities for a 

more balanced output. Then it finds the average predicted 

probabilities for the different models, like RF, XGB, and LR. 

The model archived AUC-ROC curve score is 0.998, and the PR-

Curve is about 0.96, which is represented in the above Figure 14 

It is very effective in real-time tasks. Because of its ensemble 

nature, which lowers bias and variation, it is useful for predicting 

mortality in the actual world. In soft voting, each classifier 

predicts a probability distribution over the possible output 

classes.  

�̂� = 𝑎𝑟𝑔 
𝑚𝑎𝑥

𝑐
 ∑ 𝑤𝑖. 𝑝

𝑖,𝑐
(𝑥)

𝑇

𝑖=1

                            (7) 

The variables 𝑝
𝑖,𝑐

(𝑥) , wi, and ŷ  represent the expected 

probabilities of class c, weighted by classifier i, and the final 
predicted class, respectively. 

 

Fig. 14. Softvoting_ROC_Curve and PR_Curve for child mortality 

L. Hard Voting 

In the figure. Depicts hard voting for child mortality using 

AUC-ROC curve and PR-Curve. The ROC (0.9474) and PR 

curves show that hard voting, which makes predictions based on 

majority class labels, performs somewhat worse than soft voting. 

The above figure shows that this model uses a majority voting 

approach from the base classifiers. It chooses the class with a 

majority vote. It has been observed that the PR-AUC score is 0.90 

and the ROC-AUC score is 0.94. In hard voting, each individual 

base classifier hi(x) provides a predicted class label, and the final 

predicted class is ŷ. 

�̂� = 𝑚𝑜𝑑𝑒(ℎ1(𝑥), ℎ2(𝑥), ℎ3(𝑥), … … , ℎ𝑛(𝑥))                  (8) 

Where ‘n’ is the total number of classifiers, and hi(x) denotes 

the class predicted by the ith classifier.  

 

 

 

Fig. 15. Hard voting_ROC and PR_curve for child mortality prediction 
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M. Stacking 

Stacking achieved outstanding results (ROC AUC 0.9999, 

PR AUC 0.9850) by combining numerous base classifiers and a 

Logistic Regression meta-classifier. It identifies both low- and 

high-level patterns, making it one of the most promising models 

for predicting child death. This model (Figure 16) learns the best 

combination of multiple models' outputs to predict child 

mortality. Trains the meta model on predictions from the base 

models. 

A perfect accuracy score should be substantiated to rule out 

overfitting. we have applied the 10-fold cross-validation to all 

models. Average cross-validated metrics have been included in 

TABLE II. The confusion matrix for the top-performing models 

(AdaBoost, Stacking, and XGBoost) is shown in Figure 17. 

 

Fig. 16. Stacking AUC_ROC and PR_Curve for child mortality 

TABLE II.  AVERAGE 10-FOLD CROSS-VALIDATION OF DIFFERENT MACHINE LEARNING MODELS 

S.No Model Precision Recall F1-Score Accuracy ROC AUC 

1 Logistic Regression 0.7210 0.4278 0.5386 0.8942 0.9105 

2 Decision Tree 0.9302 0.9181 0.9241 0.9773 0.9541 

3 Random forest 0.9625 0.8603 0.9076 0.9745 0.9953 

4 KNN 0.7012 0.5414 0.6117 0.9018 0.9056 

5 SVM 0.8571 0.6623 0.7481 0.9355 0.9734 

6 Naive Bayes 0.7701 0.4355 0.5570 0.9002 0.9359 

7 Gradient Boosting 0.9962 0.9392 0.9668 0.9903 0.9998 

8 XG-Boost 0.9837 0.9840 0.9838 0.9947 1.0000 

9 Extra Trees 0.9502 0.7721 0.8507 0.9624 0.9912 

10 AdaBoost 1.0000 1.0000 1.0000 1.0000 1.0000 

11 Soft Voting 0.9664 0.9527 0.9595 0.9885 0.9980 

12 Hard Voting 0.9543 0.8960 0.9241 0.9783 0.9458 

13 Stacking 0.9758 0.9907 0.9832 0.9955 0.9999 

 

 
   (a)     (b)           (c) 

Fig. 17. Confusion matrices (a) AdaBoost (b) Stacking (c) XGBoost.
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N. Features most significantly influenced child mortality 

prediction  

Figure 18 shows that most important features are used for 

child mortality prediction and would like to know which attribute 

is significantly influence when XGBoost algorithm applied on 

the dataset and how it is going to handle the class imbalance 

problems. The result indicates that XGB provides evidence of 

accuracy is 99.6 % and an F1-score is 98%.XGB is one of the 

classifiers that influences more for child mortality prediction. 

Additionally, the model's internal feature attribution mechanisms 

reinforce its selection for both predictive performance and 

interpretability by offering insightful information about 

maternal, socioeconomic, and healthcare-related variables have 

the greatest impact on mortality outcomes like 

wealth_index_poor and vaccination_status give much attention 

to child mortality prediction.  

Limitations: 

Potential overfitting due to limited sample diversity. The 

dataset's representativeness is limited because it is sourced from 

a single national survey. The absence of external validation, 

such as a holdout test set or external dataset, is a concern. 

 

Fig. 18. Feature importance for child mortality prediction 

V. CONCLUSION 

This study report employed various machine learning 
techniques for predicting child mortality.. We considered 14 key 
demographic and health-related features, along with 13 ML 
classifiers used and evaluated the performance metrics to know 
which classifier performs well for child mortality. The 
performance metrics used. The experimental work reveals that 
AdaBoost is the top performer and obtained 100%. It means 
AdaBoost is the best classifier as comparisons to other 
classifiers. Apart from this, we also found XGBoost (Accuracy: 
99.6%, F1-score: 0.9858) and Stacking (Accuracy: 99.6%, F1-
score: 0.9859), showing the effectiveness of ensemble methods. 
A high-performing, deployable, and interpretable machine 
learning model for early child mortality prediction is provided 
by this study and can be included in national health systems. To 
guarantee scalable deployment, future enhancements can 
include adding temporal features, incorporation of explainable 
AI methods real-time data pipelines, and assessing the model's 
generalizability across regional datasets. 
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