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Abstract 

Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide, primarily due to the difficulty of early diagnosis and the 

subtle radiological signatures it presents. To address this challenge, we propose a hybrid computer-aided diagnostic framework that 

integrates the Quaternion Wavelet Transform (QWT) for robust multi-scale and phase-preserving feature extraction, a Squeeze-and-

Excitation (SE) network for adaptive channel-wise feature recalibration, and a Support Vector Machine (SVM) classifier for reliable 

categorization of pancreatic lesions. The QWT effectively captures discriminative structural information, while the SE network enhances 

representational quality by modeling inter-channel dependencies. The fused features are subsequently classified by the SVM to ensure 

efficient and accurate decision-making. Experiments conducted on the publicly available Kaggle CT dataset demonstrate that the 

proposed method achieves an accuracy of 96.40%, a precision of 95.50%, a recall of 97.05%, a specificity of 96.72%, and an F1-score of 

95.73%, outperforming several state-of-the-art approaches. These results highlight the potential of combining QWT, SE networks, and 

SVM in advancing computer-aided diagnosis for PC and suggest a promising direction for clinical translation. 
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I. INTRODUCTION  

Among cancers, pancreatic cancer (PC) ranks high in terms 
of mortality, with a worldwide 5-year survival rate of just 
12.8%. Despite its low incidence rate of 4.9 per 100,000 people 
per year, PC has surpassed lung cancer to become the sixth most 
deadly cancer [1]. It is expected to overtake lung cancer as the 
second most deadly cancer by 2030. The poor prognosis is 
largely attributable to the absence of early symptoms, which 
leads to delayed diagnosis. Early-stage detection significantly 
improves outcomes, as patients diagnosed at stage T1 and 
undergoing resection have reported 5-year survival rates of 35–
67% [2–3]. Unfortunately, less than 10% of patients are 
identified at this curable stage [4]. 

While screening may be valuable for individuals at high risk 
[5], no reliable population-wide screening method currently 
exists. Imaging modalities such as CT and MRI remain central 

to early detection, yet the subtle patterns of early lesions often 
make interpretation challenging for radiologists. Emerging as a 
game-changer in healthcare in recent years, AI can handle 
diagnostic complexity like these. Artificial intelligence systems 
can learn patterns, process massive volumes of imaging data, 
and providing decision assistance as accurate as, if not more 
accurate than, human specialists [6]. In particular, AI-driven 
analysis of CT and MRI scans has demonstrated strong potential 
for the early detection of pancreatic lesions. An example of CT 
imaging for PC identification is shown in Figure 1. 

Deep learning (DL) has been experimented with in the 
diagnosis of pancreatic cancer, and preliminary results are 
promising [7–11]. From this group, models based on 
convolutional neural networks (CNNs) as U-Net and its 
derivatives have extensive application in medical picture 
segmentation and classification [12]. Transfer learning with pre-
trained CNNs, including VGG [13], Inception [14], and 
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ResNet[15], has also been explored to enhance performance on 
limited medical datasets. However, challenges remain regarding 
limited dataset sizes, poor generalizability across populations, 
and the “black-box” nature of deep models. Data augmentation 
and  

larger, more diverse datasets have been proposed to address 
these limitations [16–17]. 

 

Fig. 1. Example of PC based CT Images 

Despite these advances, there is still a clear research gap. 
Conventional CNN approaches often struggle with the complex 
textural and multi-scale characteristics of pancreatic lesions, 
leading to suboptimal detection performance. Moreover, most 
prior studies focus solely on CNN architectures without 
leveraging hybrid models that combine wavelet-based feature 
extraction, attention mechanisms, and robust classifiers. 

The current research suggests a unique hybrid architecture to 
fill this need; it uses a Squeeze-and-Excitation (SE) network to 
calibrate the channels, a Quaternion Wavelet Transform (QWT) 
to extract features at many scales, and a Support Vector Machine 
to perform the final classification. This pattern blends 
handcrafted wavelet features with contemporary deep learning 
modules to improve the sensitivity and specificity of pancreatic 
cancer detection, even with limited CT datasets. The goal is to 
make the process more efficient. 

The QWT enables extraction of shift-invariant and multi-
scale features with rich phase information, making it well-suited 
for capturing subtle patterns in pancreatic tissue. The SVM 
offers a reliable and computationally efficient classification 
mechanism, whereas the SE network improves the network's 
representational strength by adaptively recalibrating channel-
wise feature responses. Our main contributions include: (1) 
introducing a QWT-based feature extraction pipeline for 
pancreatic imaging, (2) integrating SE blocks for enhanced 
feature discrimination, and (3) employing SVM for effective 
classification. Our methodology is effective for PC detection, as 
shown by experimental data that shown considerable 
improvements over existing approaches. 

II. METHODOLOGY 

The proposed framework for pancreatic cancer detection 
integrates Quaternion Wavelet Transform (QWT), Squeeze-
and-Excitation (SE) Network, and Support Vector Machine 
(SVM) classification. Step one is preprocessing; step two is 
feature extraction using QWT; step three is feature enhancement 
with SE blocks; step four is featuring fusion; and step five is 
classification with SVM. Figure 2 provides a high-level picture 
of the system. 

TABLE I.  DETAILS OF THE DATASET 

Source NIHCC 

Number of Scans 82 abdominal contrast-enhanced 

3D CT scans 

Subjects Males 53 (normal and PC) 

Females 27 (normal and PC) 

Age 18-76 years 

cancerous 48 

Non-cancerous 34 

Resolution 512×512 

Pixel size and slice thickness Varying b/w 1.5-2.5mm 

CT scanner device Philips and Siemens 

 

A. Dataset Description 

The dataset used in this study is composed of CT images, 

and it includes both normal controls and cases of pancreatic 

cancer. You can find 3D CT images of the abdomen with 

contrast enhancements in the Pancreas-CT dataset, which is 
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open to the public. This collection, which primarily aims to aid 

with pancreatic imaging and segmentation, now includes 82 

scans from 27 female and 53 male participants [18]. Presented 

in Table I are the dataset's essential characteristics. 

 

 

Fig. 2. Framework of proposed Model 

B. Preprocessing 

Pancreatic imaging data often suffers from intensity 

variations, noise, and low contrast. To mitigate these issues, we 

applied a preprocessing pipeline: 

• Resizing: All CT images were resized to a uniform 

dimension of [e.g., 256 × 256 pixels]. 

• Histogram Equalization: The application of Contrast 

Limited Adaptive Histogram Equalisation (CLAHE) 

helped to highlight small lesions by increasing local 

contrast. 

• Normalization: Using min-max normalisation, 

intensity data were scaled from 0 to 1 and is given in 

equation (1) 

 

𝐼𝑛𝑜𝑟𝑚 =
𝐼 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

                     (1) 

     This preprocessing step ensures consistency and improves 

the performance of subsequent feature extraction 

C. Feature Extraction 

In this stage two type of feature extraction models are 

utilized to improve the identification of PC. The two models 

utilized are QWT and SWINE transform. 

Quaternion Wavelet Transform (QWT) 

The QWT is employed to extract multi-scale, phase-preserving 

features from the input medical images. QWT offers shift-

invariance and directional selectivity, which are crucial for 

detecting subtle pancreatic lesions. 

Let 𝐼(𝑥, 𝑦) be the input grayscale image. The QWT 

decomposes the image into quaternion coefficients: 

 

𝑄(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) + 𝑖. 𝐺(𝑥, 𝑦) + 𝑗. 𝐵(𝑥, 𝑦) + 𝑘. 𝐷(𝑥, 𝑦)     (2) 

 

where 𝑅, 𝐺, 𝐵, 𝐷 represent the real and imaginary components 

derived from different wavelet sub-bands. Here, 𝑅(𝑥, 𝑦) 

represents the low pass components and 

𝐺(𝑥, 𝑦), 𝐵(𝑥, 𝑦), 𝐷(𝑥, 𝑦)  correspond to the three imaginary 

components derived from different wavelet sub-bands, 

capturing horizontal, vertical, and diagonal variations in the 

image. This quaternion representation allows simultaneous 

encoding of multi-directional and phase-preserving 

information, unlike standard Discrete Wavelet Transform 

(DWT), which suffers from shift sensitivity and lacks 

directional selectivity. The extracted QWT features capture 

both amplitude and phase information, which enhances cancer 

detectability. 

In this step the image decomposition is performed with the 

LL (Low-Low), LH (Low-High), HL (High-Low), and HH 

(High-High) sub-bands represent different frequency 

components of an image. LL contains the approximate, low-

frequency information, while the other three (LH, HL, HH) 

hold details about edges and high-frequency variations in the 

image. The coarse level patterns and fine level pattern from the 

input images are extracted. The achieved output is discussed in 

section IV. 
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D. SWINE transform 

An image-based activity can now benefit from hierarchical, 

efficient attention thanks to our vision transformer. By 

relocating local windows across layers to attain global context 

and restricting self-attention to those windows, it overcomes the 

computational inefficiencies of conventional Vision 

Transformers (ViT) [19]. The architecture of SWIN transform 

is shown in Figure 3. 

 
Fig. 3. Model of SWIN transformer 

      The process of feature extraction stage is:  

Step 1: Convert QWT-extracted tumor features into patches. 

Step 2: Pass patches through hierarchical Swin Transformer 

layers. 

Step 3: Extract deep, spatially-aware tumor features. 

The features extracted are fetched to SE network for features 

recalibration. 

E. Squeeze-and-Excitation (SE) Network 

We include a Squeeze-and-Excitation (SE) block [20], 

which resets channel-wise responses adaptively, to improve the 

QWT features even further. The excitation operation generates 

a vector of per-channel re-calibration weights using self-gating, 

as opposed to the squeezing operation's practice of aggregating 

features across spatial dimensions in order to provide a 

worldwide distribution of channel-level feature response. 

 

The two operations in the SE block are evaluated as,  

a. Squeeze: Global average pooling reduces each feature map 

𝐹𝑐 to a channel descriptor 𝑧𝑐: 

𝑧𝑐 =
1

𝐻 × 𝑊
 ∑ ∑ 𝐹𝑐(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

                          (3) 

 

b. Excitation: The information gathered from the squeeze 

operation is used to simulate the interdependence among the 

channels using sigmoid activation gating. A gating 

mechanism with two fully connected layers generates 

scaling factor  𝑠𝑐: 

𝑠𝑐 = 𝜎(𝑊2. 𝛿(𝑊1.  𝑧𝑐))                             (4) 

 

where 𝛿 is the ReLU function and 𝜎 is the sigmoid function. 

These scaling factors 𝑠𝑐  are then applied to recalibrate the 

feature maps. 

𝐹̂𝑐 =  𝑠𝑐 . 𝐹𝑐                                 (5) 

 

The model of SE network is shown in Figure 4. 

 
Fig. 4. SE Network 

This process emphasizes informative features and suppresses 

irrelevant ones, leading to better classification performance. 

F. Feature Fusion and Classification using SVM 

The recalibrated features from the SE block are flattened 

and concatenated to form a final feature vector V, which is used 

as input to the SVM classifier. The SVM aims to find an optimal 

hyperplane that separates cancerous from non-cancerous 

samples. The dataset split ratio is 70:30, in which 70% for 

training and 30% is for testing. The decision function is given 

by: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖  𝐾 (𝑥𝑖 , 𝑥) + 𝑏

𝑁

𝑖=1

)             (6) 

Where: 

𝛼𝑖  are the multipliers with lagrange, 𝑦𝑖  are the labels for the 

class, 𝐾 (𝑥𝑖 , 𝑥) is the kernel function, 𝑏 is the bias term. 

We fine tune the C parameters and gamma of the RBF kernel 

using grid search to achieve optimal classification results. 

III. RESULTS AND DISCUSSION 

The experimental is conducted on PC image dataset which 
is publicly available [7]. The dataset consists of health and 
unhealthy CT images. The evaluation of data is performed using 
various system specifications and hypermeters. 

A. System Environment 

The proposed model was implemented and tested using a 

defined hardware environment to ensure consistent and 

reproducible performance. The computational specifications, 

including processor type, memory capacity, GPU details, and 

software frameworks used, are summarized in Table II. These 

configurations played a critical role in optimizing model 

training time, memory usage, and inference speed. 
 

TABLE II.  COMPUTATIONAL SPECIFICATIONS 

Parameter Configuration 

Operating System Windows11 

Processor Intel i10 

Graphic Card NVIDIA 

RAM 64GB 

Storage space 1TB 

Software tool Matlab Ver 2024 
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To train the specified model, the design makes use of the neural 

network toolbox and image processing tools. When assessing 

the suggested model, the research took several hyper factors 

and learning rates into account. Table III displays the 

parameters that were used. 

TABLE III.  HYPERPARAMETERS USED FOR DETECTION OF PC 

Parameter Value 

Size of Image 256×256 

Rate of Learning 0.001 

Intensity Normalization [0,1] 

Decomposition Levels 03 

Filter banks Dual Tree filters 

Activation Function  ReLU 

Number of epochs 05 

B. Evaluation metrics 

Because these factors determine how successful the model 

is, they must be reviewed. Showcased metrics include F1 score, 

Accuracy, Recall, precision, and Specificity [21]. When the 

model is applied to processed pictures, the desired results are 

obtained. Table IV displays all the examined parameters 

together with their corresponding equations. 

TABLE IV.  PARAMETERS EVALUATED 

Parameter Formula 

Recall 
𝑅𝑒 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
𝑆𝑝 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝐹
 

Precision  
𝑃𝑒 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Accuracy 
𝐴𝑐𝑐 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

F1 Score 
𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

C. Results and Discussion 

Using input CT pictures, the suggested model can 

automatically detect PC and distinguish it from normal 

circumstances. Initially, the input CT image undergoes 

preprocessing followed by transformation into a hyperspectral 

representation to enhance spatial and spectral resolution, 

enabling improved feature extraction. Subsequently, the image 

is decomposed using the Quaternion Wavelet Transform, which 

provides multi-scale and multi-directional features essential for 

capturing fine-grained tissue structures. The decomposition is 

performed across multiple levels to extract high-frequency and 

low-frequency components, which reflect both local and global 

anatomical variations. These feature maps are then passed 

through a Squeeze-and-Excitation network, enhancing channel-

wise attention and suppressing less informative features. Finally, 

a SVM classifier is employed to categorize the input as either 

cancerous or non-cancerous. The resulting classification 

outcomes and feature decomposition at various stages are 

visually demonstrated in Figure 5, showcasing the system’s 

capability to distinguish pathological regions with high 

precision. 

 

Fig. 5. Experimental outputs 

The suggested methodology's performance measures are 

compared with the prior state-of-the-art models in Table V. It 

shows important metrics showing how well the proposed 

technique detects pancreatic cancer, including accuracy, recall, 

specificity, precision, and F1-score. This model is far more 

accurate and resilient in its classifications, especially when 

dealing with small anatomical differences in CT scans. 

TABLE V.  COMPARISON OF PARAMETERS WITH EXISTING MODELS 

Parameter/Method PCA-

PLS-DA 

Augmented 

CNN 

Proposed 

QWT-SWIN 

SE-Net-SVM 

Accuracy (%) 90.50 94.10 96.40 

Specificity (%) 92.44 95.13 96.72 

Precision (%) 89.83 93.38 95.50 

Recall (%) 91.0 94.63 97.05 

F1 Score (%) 88.8 93.05 95.73 

 

A diagrammatic representation of the evaluated 

performance parameters is provided in Figure 6. It shows the 

results of comparing the model being proposed to existing 

approaches using important metrics including recall, 

specificity, accuracy, precision, and F1-score. The results show 

that the suggested model is superior and more resilient. 
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Fig. 6. Comparison of parameters 

The suggested method was cross-validated five times to 
make sure it was strong and could be applied to other situations. 
This procedure involved dividing the dataset into five equal 
parts; during each cycle, half of the parts were utilized for 
training and the other half for testing. With each subset acting as 
the test set once, this procedure was performed five times. An 
accurate measure of the model's efficacy can be found in the 
average performance across all folds. Tables VI and VII show 
the detailed outcomes of the evaluation. 

TABLE VI.  5-fold cross validation accuracy results 
Parameter/Method PCA-

PLS-DA 

Augmented 

CNN 

Proposed 

QWT-SWIN SE-

Net-SVM 

Acc (K=1) 90.5 94.1 96.4 

Acc (K=2) 91.0 94.5 96.6 

Acc (K=3) 90.2 94.0 96.5 

Acc (K=4) 90.8 94.3 96.3 

Acc (K=5) 90.6 94.2 96.4 

      The mean accuracy and corresponding standard deviation 

across all folds were computed to assess the stability and 

reliability of the proposed model. 

TABLE VII.  Result of Mean Acc and Std Deviation 
Model Mean Accuracy (%) Std Dev (%) 

PCA-PLS-DA 90.62 0.29 

Augmented CNN 94.22 0.19 

Proposed 

QWT-SWIN SE-Net-SVM 

96.44 0.11 

 

The variation of validation loss, validation accuracy, testing 
loss and testing accuracy with respect to the number of training 
epochs is illustrated in Figure 7- Figure10. This plot provides 
insight into the model's learning behavior, demonstrating how 
the loss decreases and stabilizes over time, indicating 
convergence and generalization capability of the proposed 
architecture. 

 

Fig. 7. Validation loss across epochs  

 

Fig. 8. Validation accuracy across epochs 

 

Fig. 9. Training loss across epochs 
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Fig. 10. Training accuracy across epochs 

Figure 11 shows the QWT-Swin Transformer-SE-Net-SVM 

model's confusion matrix.This matrix gives a detailed evaluation 

of the algorithm's discriminatory capacity in distinguishing 

between PC and normal situations by showing the distribution 

of true positives, true negatives, false positives, and false 

negatives. 

 

Fig. 11. Confusion matrix for QWT-SWINE SE-Net-SVM model 

Statistical significance test: 

Paired t-test is conducted, and the achieved results is using 

PCA-PLS-DA vs CNN+ Augmentation is p = 0.00000 

CNN + Augmentation vs QWT-SWINSE-NET is p = 0.00001 

PCA-PLS-DA vs QWT-SWINSE-NET is p = 0.00000 . The 

ROC curved evaluated is shown in Figure 12. 

 

Fig. 12. ROC curves with reported accuracy points for the evaluated models 

 Table VI compares the accuracy of the suggested approach 
to that of current state-of-the-art models. As detection accuracy 
is a primary metric for evaluating the effectiveness of a 
classification system, the outcomes prove without a doubt that 
the suggested QWT–Swin Transformer–SE-Net–SVM 
framework in accurately identifying PC cases. 

TABLE VIII.  COMPARISON OF ACCURACY WITH EXISTING MODELS  
Author and Ref Technique and Image 

Dataset 

Accuracy 

(%) 

X. Gao et al., [22] Deep learning and MRI 76.8 

Y. Deng et al., [23] Radiomics model and MRI 79.5 

T. A Qureshi., [24] Artificial Intelligence and CT 86 

Mohamad et al., [25] DenseNet and CT 95.61 

Upendra et al., [26] CNN and CT 94.82 

Khasawneh et al., [27] CNN and CT 88 

Chen et al., [28] CNN and CT 74.4 

Chen et al., [29] CNN and CT 95 

Chegi reddy et al., [30] VGG-16 and CT 96 

D Sarac et al., [31] Radiomic analysis- RFC and 
MRI 

94 

P Anugnya et al., [32] Swin transform and CT 83.5 

T. Viriyasaranon et al., 
[33] 

CNN- Transformer based DL 
and CT 

94.3 

Proposed model QWT-SWINE SE-Net-SVM 96.40 

 The suggested QWT-Swin Transformer-SE-Net-SVM 
model has a data reliance issue, but it achieves great 
performance in PC diagnosis otherwise. Having a diverse and 
high-quality CT imaging dataset is crucial for the success of 
suggested methodology. The ability to apply the results to new 
clinical situations may be impacted by the scarcity of annotated 
PC Images. In this work, only CT Images are being considered 
by this method. Using data from many imaging modalities, such 
MRI and PET, could further strengthen detection robustness. 

IV. ABLATION STUDY 

The ablation study demonstrates that each component 
contributes to performance improvement. Using SVM alone 
achieves 85% accuracy, while integrating QWT increases 
performance to 92%. Adding SE recalibration further improves 
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accuracy to 94%, highlighting the benefit of channel attention. 
Replacing SE with SWIN results in 95.4% accuracy, showing 
the importance of global contextual learning. Finally, the 
complete model (QWT + SE + SWIN + SVM) achieves the best 
result with 96.4% accuracy confirming that the combination of 
local, channel-aware, global, and discriminative features offers 
synergistic advantages for PC detection. 

TABLE IX.  RESULTS OF ABLATION STUDY 
Model 
Configuration 

Acc 
(%) 

Sp 
(%) 

Pr 
(%) 

Re 
(%) 

F1 Score 

(%) 

SVM 86.2 86.8 84.2 84.5 83.8 

QWT+SVM 91.9 92.5 91.1 92.3 91.6 

QWT+SE+SVM 94.2 94.7 93.2 94.8 94.0 

QWT+SWINE 
+SVM 

95.4 95.8 94.5 95.8 95.2 

QWT+SE+ 
SWINE+SVM 

96.4 96.72 95.5 97.05 95.73 

 

a. The SVM shows limited ability to discriminate 

cancerous vs. non-cancerous CT scans. 

b. QWT contributes the most significant improvement by 

capturing multi-scale features. 

c. SE further boosts discriminability via channel-wise 

attention. 

d. SWIN enhances global context, especially for subtle 

lesion detection. 

e. The full proposed model achieves the best balance 

across all metrics, confirming the synergistic 

advantage of combining all modules. 

Limitation and future study 

The current study is limited by the dataset size, which 

includes only 82 CT scans. Although our proposed hybrid 

QWT–SE–SWIN–SVM framework achieved promising 

results, a dataset of this scale may not fully capture the 

diversity and variability of PC presentations. This 

limitation may restrict the model’s ability to generalize to 

unseen cases in real-world clinical scenarios. 

In future, the Multi-Modal Imaging Integration can be 
performed by leveraging MRI and PET alongside CT to capture 
complementary structural, metabolic, and functional 
information, which has shown improved sensitivity in 
oncological imaging. Evaluating the model across diverse 
datasets to validate its robustness and generalization capacity. 

V. CONCLUSION 

In this paper, the detection of PC is performed by introducing 
a novel hybrid model that is combination of Quaternion Wavelet 
Transform (QWT), Squeeze-and-Excitation (SE) Network, and 
Support Vector Machine (SVM) classification. The QWT was 
utilized for robust multi-scale feature extraction, while the SE 
block enhanced feature discriminability by recalibrating 

channel-wise responses. The final classification was effectively 
handled by the SVM, achieving superior accuracy and 
robustness. Experimental results on the publicly available 
pancreas CT dataset demonstrated that the proposed method 
achieved an accuracy of 96.40%, a precision of 95.0%, recall of 
94.2%, and an AUC of 96.8%, outperforming existing CNN-
based and traditional models. The proposed study confirmed that 
both QWT and SE modules contribute independently to 
performance improvements, with their combination yielding the 
best results. The proposed method shows significant promise for 
computer-aided PC diagnosis, offering enhanced accuracy and 
computational efficiency suitable for real-time clinical 
applications. The future work can be extended to detect other 
abdominal cancers, such as liver and bile duct tumours, using 
the proposed model. Exploring deep learning-based classifiers, 
such as fine-tuned CNN or transformer models, in conjunction 
with the QWT-SE pipeline. Implementing the system as a real-
time CAD tool in clinical workflows. By addressing these 
aspects, we aim to further enhance the robustness and clinical 
applicability of the proposed framework and to conduct learning 
curve analysis to systematically assess the model's performance 
as the number of training instances grows, in addition to adding 
more patient cases from other sources to the dataset. 
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