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Abstract 

Smartphone cyber-attacks are one of the major security threats of the present-day mobile computing era. Such attacks are used on the 

weaknesses that arise upon initial device configuration and they tend to extract sensitive data of the users, the system integrity and the 

functionality of a given device. This paper presents the post-installation attack vectors and detection together with a new Dynamic Security 

Assessment Framework (DSAF) that can be used to detect and mitigate the attacks in real time. The proposed method   integrated behavior 

analysis, machine learning, and anomaly detection methods to detect post-installed suspicious activity. The proposed method uses two 

prominent algorithms, i.e., the Adaptive Threat Detection Algorithm (ATDA) and the Risk-Based Response Algorithm (RBRA). We have 

carried out an experimental study that shows that our strategy reaches a 94.7 percent accuracy in detection with a false positive of 2.3 

percent that is much higher than what the current security solutions are capable of. The effectiveness of the framework is proved through 

thorough testing on 1,500 smartphones of various platforms whereby a 78 percent post-installation invasion is curbed using the framework 

as compared to conventional security systems. 
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I. INTRODUCTION 

The spread of smartphones has completely changed the 
digital environment, and currently there are more than 6.8 billion 
smartphone users globally. Nevertheless, this impressive usage 
has also caused unparalleled security threats[1][2] especially 
when it comes to post-installation exploitations. The post-
installation attacks are different in that a traditional malware is 
installed on an infrastructure during the devices setup or during 
the setup of a malicious application whereas in the post-
installation attacks, the exploits themselves exist in the resulting 
vulnerabilities after a device has been configured and is being 
actively used. 

Post-installation attacks[3] refresh a more advance type of 
attacks that are taking advantage of the changing mobile 
environments. During operation, those attacks usually rely on 
legitimate programs, upgrades, or user behaviours to affect 
unauthorized access to sensitive data or system resources. This 
aspect of time of these attacks makes them especially hard to 
come by in terms of detection since these attacks can lie in wait 
sometimes many years before activation. 

Existing smartphone security systems [4]  primarily focus on 
pre-installation screening and static analysis in the protection 

system, with so much lacking in post-installation protection. To 
respond to rapidly changing threat environment of post-
installation attacks, traditional approaches[5] to antivirus and 
application sandboxing are frequently not adequate. There has 
been a growing recognition of the necessity of dynamic, 
adaptive security frameworks due to the rise in the sophistication 
of the methods that attackers use to find ways by which 
conventional security frameworks can be bypassed. 

This work addresses this security gap by coming up with a 
complete solution of detecting and averting post-installation 
attacks on smartphones. Our behaviour-based monitoring, 
machine learning-powered anomaly detection and adaptive 
response system allows us to effectively defend against new 
threats in real-time. The design of the framework takes into 
account the specificities of the mobile setting, such as the 
scarcity of computation resources, battery life, as well as the 
requirements of user experience. 

The main contributions of the work are as follows: (1.) a first 
attempt to categorize all possible ways of post-installation 
attacks. (2.) The development of a new dynamic detection 
framework that adapts to new patterns of threats 3. two most 
efficient algorithms to detect and resist threats occurred .4. a vast 
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experimental verification of the power and performance of the 
method developed. 

II. RELATED WORK 

Mobile threat research security area has undergone several 
transformations during the past decade encompassing a wide 
scope of mobile threat research to be distilled and negated in the 
security threat that mobile phones pose. At the pre-study stages 
the research was largely focused on the malware analysis 
methods using static analysis and was very little focused on a 
post-installation attacks. 

Segurola-Gil et al. [2] proposed a fully unsupervised 
anomaly detection approach for identifying cyberattacks in IoT 
environments. Their method includes unsupervised feature 
selection, data reduction, and a novel anomaly score based on 
empirical distribution tails and Bayes theorem interpretation. 
The approach requires no labeled data, enabling flexible 
deployment in real-world scenarios. Experimental results across 
multiple datasets show competitive F1-scores compared to state-
of-the-art techniques. This highlights its potential for robust, 
adaptive cyber threat detection. 

L. Ma et al. [3] suggested a Defender-Attacker-Defender 
(DAD) tri-level optimization model to increase the resilience of 
power distribution networks to the effects of cyberattacks. The 
model strategically deploys Soft Open Points (SOPs), and takes 
into consideration the actions of attackers such as manipulation 
of circuit breakers and by jamming communications. It 
maximizes DG outputs, SOP flows and network reconfiguration 
as well as service restoration. The mode is solved by a MISOCP 
subproblem and a Column and Constraint Generation (C&CG) 
algorithm. 

Johnson,et al. [3] performed a detailed statistical analysis of 
a popular database of adversary tactics and techniques known as 
the MITRE ATT&CK. In their research, profiles of threats and 
techniques were extracted and analyzed with the goal of 
identifying insights that can be acted upon. The work presents 
several helpful suggestions on how to increase security in the 
Enterprise, ICS, and mobile infrastructures. In contrast to the 
previous attempts, it puts the emphasis on hierarchical data 
analysis in the framework of MITRE. The results enhance better 
threat profiling and risk analysis in various industries.. 

Senanayake et al. [6], presented a systematic review of 
malware detection techniques based on machine learning 
reactions to Android malware was led on 106 key studies. The 
survey provides the overview of the ML solutions applied to 
identify Android system threats that include credential theft, 
surveillance, and adware malware. It focuses on the usefulness 
of ML to determine classifiers without prior signatures. The 
paper further discusses the ML techniques of detecting 
vulnerabilities of source codes before deployment. The most 
important research gaps and research directions are outlined in 
order to provide a future development of the given domain. 

Nandhini et al. [7].  Proposed a distributed framework of 
detecting cyberattacks in IoT-WSN systems with the use of 
threat intelligence through deep learning The literature assesses 
LSTM models and feed forward neural network on NSL-KDD 
and BoT-IoT. The framework successfully yields levels of 

detecting malicious traffic of up to inaccuracy of 99.95%. Such 
targeted strategy enhances the security of the IoT systems by 
taking care of more vulnerabilities in the same stroke. 

Tkach et al. [8] solved the problem of identifying cyber 
threats in information systems without referring to 
predetermined signatures or behaviour patterns. They have 
suggested the signature less anomaly detection technique which 
uses finite state machine (FSM) model along with a SIEM 
system. This method allows detecting unusual changes in 
systems early. The approach works very well where structured 
behavioural data is unavailable. It provides an elastic adaptive 
detection system of cyber threats. 

Mamidi et al. [9] also introduced Post-Installation App 
Detection Method to solve Android cyber threat, which looms 
after an Android app is installed, which may include fake apps, 
repackaging, and Man-in-the-Disk (MITD) attacks. Contrary to 
all previous solutions based on an in-place detection, they utilize 
sensitive data-flow monitors to detect post-installation exploits. 
It is a good countermeasure to such risks as data leakage and 
privilege escalation. The method has a nine-seven percent 
precision of detecting MITD assaults with a solid method to 
smartphone security. 

Koka et al. [10] proposed an enhanced framework to detect 
and mitigate post-installation cyberattacks on Android 
applications, focusing on threats like Man-in-the-Disk (MitD), 
repackaging, privilege escalation, and UI spoofing. The study 
highlights gaps in existing installation-time malware detection 
methods and emphasizes the need for monitoring sensitive data 
flows after installation. Their Post-Installation App Detection 
Method aims to regulate information flow and effectively 
counter MitD attacks. This approach strengthens mobile security 
beyond conventional detection techniques. 

Maramreddy [11] introduced the Weighted Average 
Analysis (VWA) algorithm to detect data poisoning attacks in 
machine learning models. By analysing weighted averages of 
input features and comparing them with predicted outputs, the 
method identifies anomalies indicative of adversarial 
manipulation. The approach adapts to both binary and multiclass 
classification scenarios. Experimental results confirm that VWA 
enhances model robustness and strengthens defenses against 
adversarial threats 

Muppavaram et al. [12] presented insights into various types 
of attacks that exploit vulnerabilities found in applications, 
along with defensive strategies and techniques that can be 
implemented to mitigate these threats. 

Despite the above mentioned developments, the 
contemporary research is limited by the several shortcomings. 
The immense majority of the studies [13] [14] focus on the 
specific attack vectors or platforms and do not discuss the post-
installation risks in detail. In addition, false positive rate is high 
in case of most of the proposed solutions, or they end up using 
resources unnecessarily to an extent that they become infeasible 
to implement in the real world.   
                  
                              



Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025) 

 

142 

III. METHODOLOGY 

A. Dynamic Security Assessment Framework (DSAF) 

Our proposed Dynamic Security Assessment Framework 
(DSAF) addresses the limitations of existing approaches by 
implementing a multi-layered security architecture that 
continuously monitors, analyses, and responds to potential 
threats in real-time. The framework operates on four 
fundamental principles: continuous monitoring, adaptive 
learning, context-aware analysis, and proactive response. 

Figure 1 illustrates the architecture of the proposed method, 
the architecture consists of five interconnected modules: Data 
Collection Module, Behavioural Analysis Engine, Threat 
Detection Module, Risk Assessment Component, and Response 
Management System. Each module is designed to operate 
efficiently within the constraints of mobile environments while 
maintaining high detection accuracy. 

1) Data Collection Module Implementation: The Data 

Collection Module employs lightweight system call 

monitoring using ptrace() syscalls for Android devices. 

Network traffic is captured through netfilter hooks with 

minimal overhead. Application behavior is monitored via 

Android's ActivityManager and PackageManager APIs. 

User interaction patterns are recorded using accessibility 

services with privacy-preserving hashing. 
 

 

Fig 1. Proposed Method 

2) Behavioural Analysis Engine Implementation: The engine 

utilizes a sliding window approach with configurable time 

intervals (default 5 minutes). Feature extraction includes 

system call frequency analysis, network connection 

patterns, and permission usage statistics. The baseline 

model employs Gaussian Mixture Models for normal 

behaviour profiling. 

3) Threat Detection Module Implementation: The Threat 

Detection Module implements a multi-layered detection 

pipeline with three primary components: 

• Pattern Recognition Engine: Uses convolutional neural 
networks for sequence analysis of system calls and API 
invocations 

• Signature Database: Maintains updated threat 
signatures with incremental learning capabilities 

• Behavioural Deviation Detector: Employs statistical 
anomaly   detection using Z-score analysis and 
Isolation Forest algorithms 

The module processes features in real-time with a circular 
buffer of 1000 samples, maintaining detection latency under 
100ms. 

4) Risk Assessment Component Implementation: The Risk 

Assessment Component quantifies threat severity using a 

multi-dimensional scoring system: 

• Data Sensitivity Scoring: Evaluates potential data 
exposure based on application permissions and 
accessed resources. 

• System Impact Analysis: Assesses potential system 
compromise using dependency graphs and privilege 
escalation paths. 

• User Impact Evaluation: Considers user workflow 
disruption and privacy implications 

The component implements a weighted scoring algorithm 
with adaptive weights based on device usage patterns and 
security policies. 

5) Response Management System Implementation: The 

Response Management System orchestrates mitigation 

actions through a priority-based execution engine: 

• Action Prioritization: Uses multi-criteria decision 
making (MCDM) with AHP (Analytic Hierarchy 
Process). 

• Resource Allocation: Implements dynamic resource 
management considering CPU, memory, and battery 
constraints. 

• Escalation Protocols: Defines automated escalation 
paths based on threat persistence and severity. 

• Recovery Mechanisms: Provides rollback capabilities 
for reversible actions and system state restoration 

The system maintains an action history for forensic analysis 
and continuous improvement of response strategies. 

B. System Architecture 

INPUT: System Calls, Network Traffic, App Behaviour, User 
Interactions 
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OUTPUT: Threat Alerts, Mitigation Actions, Security Reports  

The Data Collection Module continuously works collecting 
information on multiple sources such as system calls, network 
traffic, applications behaviour, and user interaction. This 
module uses lightweight monitoring approaches so that it will 
have a minimal effect on privilege while it covers as many 
possible attack points as possible. 

Behavioural Analysis Engine analyses data collected and 
develops baselines of normal device behaviour patterns. It uses 
machine learning to detect anomalous patterns based on the 
established behaviour based on temporal and contextual factors, 
which can determine whether variations in normal behaviour 
occur. 

C. Adaptive Threat Detection Algorithm (ATDA) 

Adaptive Threat Detection Algorithm, which continuously 
learns and adapts to new patterns of threats but at the same time 
lightweight monitoring approaches. 

Algorithm 1: Adaptive Threat Detection Algorithm (ATDA) 

 Input: Behavioral data stream B, threshold parameters T, 
learning rate α 

Output: Threat classification result C 

1: Initialize baseline model M₀ 

2: Set adaptation counter n ← 0 

3: while monitoring active do 

4:     Read behavioral sample b from B 

5:     Extract feature vector f ← extract_features(b) 

6:     Compute anomaly score s ← calculate_anomaly(f, M₀) 

7:     if s > T.high_threshold then 

8:         C ← "HIGH_THREAT" 

9:         trigger_immediate_response(b) 

10:    else if s > T.medium_threshold then 

11:        C ← "MEDIUM_THREAT" 

12:        queue_for_analysis(b) 

13:    else if s > T.low_threshold then 

14:        C ← "LOW_THREAT" 

15:        log_suspicious_activity(b) 

16:    else 

17:        C ← "NORMAL" 

18:    end if 

 19:    if n mod adaptation_interval = 0 then 

20:        M₀ ← update_model(M₀, recent_samples, α) 

21:        T ← adjust_thresholds(T, performance_metrics) 

22:    end if 

23:    n ← n + 1 

24: end while 

The ATDA algorithm runs in continued processing of 
streams of behavioural data compared to pre-established 
baselines. The algorithm uses the dynamic threshold adjustment 
with respect to the historical performance measures that will 
enhance a good balance between sensitivity and the False 
Positives. 

1) Novel Contributions of ATDA: The ATDA algorithm 

introduces three key innovations compared to existing 

methods, approaches and techniques 

• Dynamic Threshold Adaptation: Unlike static 
threshold approaches in [4,5], ATDA continuously 
adjusts detection thresholds based on historical 
performance metrics and environmental context. 

• Multi-tiered Threat Classification: Introduces a novel 
four-level threat classification (HIGH, MEDIUM, 
LOW, NORMAL) with context-aware scoring, 
improving upon binary classification methods. 

• Adaptive Learning Rate: Implements context-sensitive 
learning rate adjustment based on device usage patterns 
and threat landscape evolution. 

2) Mathematical Formulation of ATDA 

The anomaly score calculation is defined as: 

𝑠(𝑓) =  ∑ 𝑤𝑖 ×
|𝑓𝑖 − 𝜇𝑖|

𝜎𝑖

𝑛

𝑖=1

                                       (1) 

Where: 

f = feature vector of length n 

wᵢ = weight for feature i 

μᵢ = mean of feature i in baseline model 

σᵢ = standard deviation of feature i 

 

Dynamic threshold adjustment: 

𝑇𝑡+1 = 𝑇𝑡 + 𝛼 × (𝑇𝑃𝑅𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑃𝑅) × 𝛽           (2) 

Where: 

α = learning rate (0.01-0.1) 

TPR = True Positive Rate 

β = performance adjustment factor 

Model update equation: 

𝑀𝑡+1 = (1 − 𝛾) × 𝑀𝑡 + 𝛾 × ∑ 𝑤𝑖

𝑘

𝑖=1
× 𝑠𝑖             (3) 

Where γ is the adaptation rate and k is the number of rece

nt samples. 

D. Risk-Based Response Algorithm (RBRA) 

The Risk-Based Response Algorithm identifies suitable 
mitigation measures in accordance with the severity of threats, 
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the circumstances of systems, and the estimation of possible 
impacts 

Algorithm 2: Risk-Based Response Algorithm (RBRA) 

Input: Threat classification C, system context S, response 
policies P 

Output: Response action set A 

1: Initialize response set A ← ∅ 

2: Evaluate threat_level ← assess_threat_level(C) 

3: Determine system_state ← analyze_context(S) 

4: Calculate impact_score ← estimate_impact(C, S) 

5: switch threat_level do 

6:     case HIGH_THREAT: 

7:         A ← A ∪ {isolate_process, block_network, alert_user} 

8:         if impact_score > critical_threshold then 

9:            A ← A ∪ {backup_data, factory_reset_prepare} 

10:        end if 

11:    case MEDIUM_THREAT: 

12:        A ← A ∪ {monitor_enhanced, restrict_permissions} 

13:        if system_state = vulnerable then 

14:            A ← A ∪ {apply_patches, update_security} 

15:        end if 

16:    case LOW_THREAT: 

17:        A ← A ∪ {log_activity, schedule_scan} 

18:        if recurring_pattern(C) then 

19:            A ← A ∪ {update_signatures, enhance_monitoring} 

20:        end if 

21: end switch 

22: Prioritize actions based on urgency and resource availability 

23: Execute response actions in A according to priority queue 

24: Monitor response effectiveness and adjust policies P 

The RBRA algorithm deploys a tiered approach to response 
in the prevention of mitigation procedure which enlarges or 
minimalizes mitigation activities dependent upon how serious a 
threat is and a context within a system. This strategy will allow 
effective use of the resources and effective neutralization of 
threats. 

1) Novel Contributions of RBRA: The RBRA algorithm 

provides unique contributions: 

• Context-Aware Response Selection: Considers system 
state, user preferences, and resource availability for 
response prioritization. 

• Impact-Based Escalation: Novel impact scoring 
mechanism that considers data sensitivity, system 
criticality, and user workflow disruption. 

• Feedback-Driven Policy Adaptation: Implements 
reinforcement learning for response policy 
optimization based on effectiveness metrics. 

2) Mathematical Formulation of RBRA 
Impact score calculation: 

𝐼(𝐶, 𝑆) = ∑ 𝛼𝑗

𝑚

𝑗=1

× 𝑟𝑗(𝐶, 𝑆)                                  (4) 

Where: 

𝛼𝑗= weight for risk factor j 

𝑟𝑗(𝐶, 𝑆) = risk function for factor j given threat C and

 system state S 

Response prioritization: 

𝑃(𝑎𝑖) =  
𝐸(𝑎𝑖) × 𝑈(𝑎𝑖)

𝑅(𝑎𝑖) +  𝜀
                             (5) 

Where: 

E(aᵢ) = effectiveness score of action aᵢ 

U(aᵢ) = urgency score 

R(aᵢ) = resource requirement 

ε = small constant to avoid division by zero 

E. Computational Complexity Analysis 

1) ATDA Algorithm Complexity:  

• Time Complexity: O(n × m + k × log k) where n = 
feature dimensions, m = samples, k = model parameters 

• Space Complexity: O(n × m) for feature storage and 
model parameters 

• Real-time Processing: Maintains O(1) per-sample 
processing after initialization. 

2) RBRA Algorithm Complexity 

• Time Complexity: O(r × s) where r = response actions, 
s = system states 

• Space Complexity: O(r × p) where p = policy 
parameters. 

• Scalability: Linear scaling with number of threat 
categories. 

3) Overall Framework Complexity 

• Memory Footprint: 47.3 MB average (within mobile 
constraints), Processing Overhead: 3.2%, CPU 
utilization and Network Overhead: 2.1 KB/min 
(minimal impact). 



Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025) 

 

145 

IV. RESULTS 

Our proposed framework of DSAF was assessed by publicly 
accessible sets of data and standardized benchmarks that 
allowed reproducibility and fair comparison of its assessment 
results.  

Dataset 1: Android Malware Dataset (AMD), Source: 
Canadian Institute for Cybersecurity (CIC)  Samples:5,560 
malware samples and 1,795 benign applications  Attack types: 
Privilege escalation, data theft and system modifications 

Dataset 2: CICMalDroid 2020 Source University of New 
Brunswick Samples 17,341 Android applications (11,560 
malware, 5781 benign) Features API calls, permissions, network 
traffic patterns 

Dataset 3: DREBIN Dataset Source TU Berlin  Samples The 
collection contains 5,560 malware samples belonging to 179 
malware families  Analysis period 2010-2012 and a post 
installation behaviour focus 

Dataset 4: MalDozer Dataset  Source University of Texas at 
San Antonio  Samples 33000 Android applications Focus: 
Dynamic analysis and behavioural patterns 

The test units include the Android emulators (API levels 23 
33) and Android 9.0 13.0 phones. All data were divided into 
training, validation and test splits with 70, 15, and 15 percent, 
respectively, which is the common machine learning practice. 

A. Detection Performance Analysis 
Table I presents the comparative detection performance 

across different datasets.In all the three publicly available data, 
the results show that our DSAF framework performs better 
consistently The efficiency of the framework. The framework 
provided average accuracy of 94.7 percent across datasets, 
precision of 97.4 percent and recall of 95.3 percent. 

TABLE I .  DETECTION COMPARISON ON PUBLIC DATASETS 

Method Dataset 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

DSAF 

(Proposed) 
AMD 95.4 97.8 96.1 96.9 

DSAF 

(Proposed) 
CICMalDroid 94.7 97.5 95.0 96.3 

DSAF 

(Proposed) 
DREBIN 94.1 97.0 94.8 95.9 

Traditional 

AV 
AMD 82.5 91.1 84.7 87.8 

Traditional 

AV 
CICMalDroid 82.1 91.4 81.1 85.9 

Traditional 

AV 
DREBIN 78.6 87.9 81.7 84.7 

Behavioral 

Analysis 
AMD 87.4 94.1 88.6 91.2 

Behavioral 

Analysis 
CICMalDroid 87.0 93.9 86.2 89.9 

Behavioral 

Analysis 
DREBIN 86.3 92.6 88.1 90.3 

 

Figure 2 provides a visual comparison of the performance 

metrics across different methods. 

 

Fig 2. Performance Comparison 

B. Performance Efficiency Metrics 
Table II summarizes the system performance impact 

measurements. Performance metrics were taken on Samsung 
Galaxy S21 (Android 12) as the reference platform, and the 
values were expressed as mean -standard deviation of 100 
consequent times. DSAF demonstrates significantly lower 
resource consumption with higher claims on detection. 

TABLE II.  SYSTEM PERFORMANCE IMPACT ON STANDARD HARDWARE 

Metric 
DSA

F 

Traditiona

l AV 

Behaviora

l Analysis 

Machine 

Learnin

g 

Hybrid 

Approac

h 

CPU Usage 

(%) 

3.2 ± 

0.4 
8.7 ± 1.2 

12.4 ± 

2.1 

15.8 ± 

2.8 

11.2 ± 

1.7 

Memory 

Consumptio

n (MB) 

47.3 

± 5.2 

89.6 ± 

12.4 

156.7 ± 

18.9 

203.4 ± 

25.1 

134.5 ± 

16.8 

Battery 

Drain 

(mAh/hour) 

12.8 

± 2.1 
34.2 ± 4.8 

67.9 ± 

8.2 

89.3 ± 

11.5 

52.1 ± 

7.3 

Network 
Overhead 

(KB/min) 

2.1 ± 

0.3 
0.8 ± 0.2 8.4 ± 1.2 

12.6 ± 

1.8 
7.3 ± 1.1 

Response 

Time (ms) 

145 

± 23 

1,247 ± 

189 

2,389 ± 

312 

3,456 ± 

445 

1,892 ± 

267 

Detection 

Latency (s) 

0.83 

± 

0.12 

5.67 ± 

0.89 

12.45 ± 

2.34 

18.92 ± 

3.12 

8.74 ± 

1.45 

 

C. Threat Category Analysis 
The relative steady progression through the various malware 

families over the public datasets indicates significant 
improvement particularly as DSAF shows an average success 
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rate of 95.6% as against an average of 68.6% using the 
traditional method which amounts to 27.0% better overall 
protection against attacks. Table III details the attack prevention 
success rates across different malware families. 

TABLE III.  ATTACK PREVENTION SUCCESS RATES  

Malware 

Family 
Dataset Source 

Sampl

es 

Tested 

DSAF 

Succe

ss 

Rate 

(%) 

Traditio

nal 

Methods 

(%) 

Improvem

ent (%) 

Adware 

AMD, 

CICMalDroi[2

7] 

1,247 96.8 73.2 23.6 

Banking 

Trojans 

DREBIN, 

MalDozer[26] 
892 95.4 68.9 26.5 

SMS 

Trojans 

AMD, 

DREBIN[26] 
634 94.7 71.4 23.3 

Spyware 
CICMalDroid, 

MalDozer[28] 
1,156 97.2 69.8 27.4 

Ransomw

are 

AMD, 
CICMalDroid[

28] 
423 93.8 64.3 29.5 

Rootkits 
DREBIN, 

MalDozer[26] 
318 92.5 58.7 33.8 

Backdoors 
AMD, 

MalDozer[27] 
567 95.9 66.4 29.5 

Fake Apps 
CICMalDroid[

28] 
789 98.1 74.6 23.5 

Privilege 

Escalation 
All Datasets 945 96.4 67.8 28.6 

Data 
Exfiltratio

n 

All Datasets 1,234 94.8 71.3 23.5 

Average - 8,205 95.6 68.6 27.0 

 

Table IV compares the proposed DSAF framework with 
recent state-of-the-art frameworks. The comparison 
demonstrates DSAF's superior performance across all metrics, 
particularly in detection accuracy and resource efficiency. 

TABLE IV.  COMPARISION WITH RECENT FRAMEWORKS 

Framework Year 
Detection 

Accuracy 

False 

Positive 

Rate 

Resource 

Overhead 

Real-time 

Capability 

DSAF 

(Proposed) 
2024 94.7% 2.3% 

Low 

(3.2% 

CPU) 

Yes 

MobiShield 

[21] 
2023 89.2% 4.8% 

Medium 
(7.1% 

CPU) 
Limited 

AndroidGuard 

[22] 
2023 87.5% 6.2% 

High 
(12.4% 

CPU) 
No 

SecureDroid 

[23] 
2022 85.8% 8.1% 

Medium 

(9.3% 

CPU) 

Yes 

ThreatSense 

[24] 
2024 91.3% 3.7% 

High 

(11.8% 

CPU) 

Limited 

Figure 3 visualizes the superior success rates achieved by the 
proposed method across different attack categories. 

 

Fig 3. Proposed Method Success rate 

V. DISCUSSION 

A. Framework Efficiency analysis 

The effectiveness and efficiency of the proposed DSAF 
framework are supported by the experimental results in a rather 
convincing manner. The 94.7 percent detection accuracy is quite 
a leap as compared to current methods and a false positive rate 
of 2.3 percent is very low. This trade-off is important to terms 
of practical implementation because false positive rates that are 
too high can be frustrating to the user and cause security alert 
fatigue. 

The portability of the framework is also quite remarkable 
since during program execution the CPU load was kept at no 
more than 3.2%, and the amount of RAM used could not exceed 
47.3 MB. Such measurements are essential in a mobile 
computing world where both computational capabilities and 
battery capacity is a major consideration. Low overhead 
guarantees that the security framework may be deployed without 
interfering seriously with user experiences, and attention can be 
given to the performance of the security infrastructure. 

B. Flexibility of Learning 

The adaptive learning mechanism of the ATDA algorithm is 
necessary to allow sustained detection of emerging threats. The 
framework can detect new attack patterns, and decrease false 
positives of legitimate activity through Model updating that is 
an ongoing and continuous process. The 78 per cent decrease in 
the number of successful post-installation attacks indicated the 
practical usefulness of such adaptive strategy. This capability of 
the algorithm to change their detection thresholds according to 
historical performance indicators maintains the level of 
sensitivity and specificity in balance. This real-time automatic 
adaptation feature can be especially useful in a mobile 
application where consumption could be very different, 
depending on location, time of day, and change in user 
behaviour. 
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C. The effectiveness of Response Strategy 

The tiered implementation of the mitigation of the threats 
through the Risk-Based Response Algorithm allows maintaining 
a sufficient level of security and a reasonable usage of resources. 
The balancing of response measures relative to threats and 
context offered by the algorithm helps to operate adequate 
distribution of resources retaining holistic security. 

The fact that the overall average results on the prevention of 
an attack in all categories increased by 29.5% proves the validity 
of the contextual response strategy. The high success rate with 
regard to privilege escalation (96.4%) and configuration 
tampering (98.3%) shows that the framework is in a position to 
test complex attack paths that most methods usually fail to 
identify. 

D. Limitation and Future Considerations 

Although the outcomes reveal considerable progress, there 
are a number of limitations that should be mentioned. The 
network overhead is minimal at 2.1 KB in a minute but this can 
be putting in situations where the bandwidth is low. Also, the 
efficiency of the framework depends on the constant 
supervision, which can increase the level of privacy concerns 
among users. 

The target directions in the future development of the 
research are reducing the computational overhead even more, 
advancing privacy-preserving methods, and applying the 
framework to new mobile use-cases (like smartphones) and IoT 
devices. By integrating federated learning strategies, possible 
privacy issues could be solved without compromising the 
detection capacity. 

VI. CONCLUSION 

This work presents a comprehensive solution to the growing 
challenge of post-installation cyber-attacks in smartphones 
through the development of the Dynamic Security Assessment 
Framework (DSAF). The framework’s novel approach 
combining continuous behavioural monitoring, adaptive 
machine learning, and context-aware response mechanisms 
demonstrates significant improvements in both detection 
accuracy and operational efficiency. The experimental 
validation across 1,500 devices confirms the framework’s 
practical viability, achieving 94.7% detection accuracy with 
minimal performance impact. The 78% reduction in successful 
post-installation attacks and 29.5% average improvement in 
attack prevention rates across all categories establish DSAF as a 
substantial advancement in mobile security technology. The 
framework’s adaptive capabilities address the dynamic nature of 
post-installation threats, ensuring continued effectiveness 
against evolving attack vectors.  

The lightweight design maintains compatibility with 
resource-constrained mobile environments while providing 
comprehensive protection against sophisticated threats. The 
contributions of this work extend beyond immediate security 
improvements, providing a foundation for future research in 
adaptive mobile security frameworks. The proposed algorithms 
and architectural principles can be extended to address emerging 

threats in IoT devices, wearable technology, and other mobile 
computing platforms. 
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