

Vol. 06, No. 02, pp. 140 –148 (2025)
ISSN: 2708-0757

JOURNAL OF APPLIED SCIENCE AND TECHNOLOGY TRENDS

www.jastt.org

 140

doi: 10.38094/jastt62293

Adaptive Detection and Response System for Post-Installation

Cyber Attacks on Smartphones

Vijay Koka, Kireet Muppavaram*

1Department of CSE, School of Technology Hyderabad, GITAM DEEMED University, kokavijay58@gmail.com,

kireet04@gmail.com

*Correspondence: kireet04@gmail.com

Abstract

Smartphone cyber-attacks are one of the major security threats of the present-day mobile computing era. Such attacks are used on the

weaknesses that arise upon initial device configuration and they tend to extract sensitive data of the users, the system integrity and the

functionality of a given device. This paper presents the post-installation attack vectors and detection together with a new Dynamic Security

Assessment Framework (DSAF) that can be used to detect and mitigate the attacks in real time. The proposed method integrated behavior

analysis, machine learning, and anomaly detection methods to detect post-installed suspicious activity. The proposed method uses two

prominent algorithms, i.e., the Adaptive Threat Detection Algorithm (ATDA) and the Risk-Based Response Algorithm (RBRA). We have

carried out an experimental study that shows that our strategy reaches a 94.7 percent accuracy in detection with a false positive of 2.3

percent that is much higher than what the current security solutions are capable of. The effectiveness of the framework is proved through

thorough testing on 1,500 smartphones of various platforms whereby a 78 percent post-installation invasion is curbed using the framework

as compared to conventional security systems.

Keywords: Cyber-attacks, Dynamic security, Threat Detection, Smartphones, post installation attacks

Received: June 06th, 2025 / Revised: July 20th, 2025 / Accepted: July 24th, 2025 / Online: July 28th, 2025

I. INTRODUCTION

The spread of smartphones has completely changed the
digital environment, and currently there are more than 6.8 billion
smartphone users globally. Nevertheless, this impressive usage
has also caused unparalleled security threats[1][2] especially
when it comes to post-installation exploitations. The post-
installation attacks are different in that a traditional malware is
installed on an infrastructure during the devices setup or during
the setup of a malicious application whereas in the post-
installation attacks, the exploits themselves exist in the resulting
vulnerabilities after a device has been configured and is being
actively used.

Post-installation attacks[3] refresh a more advance type of
attacks that are taking advantage of the changing mobile
environments. During operation, those attacks usually rely on
legitimate programs, upgrades, or user behaviours to affect
unauthorized access to sensitive data or system resources. This
aspect of time of these attacks makes them especially hard to
come by in terms of detection since these attacks can lie in wait
sometimes many years before activation.

Existing smartphone security systems [4] primarily focus on
pre-installation screening and static analysis in the protection

system, with so much lacking in post-installation protection. To
respond to rapidly changing threat environment of post-
installation attacks, traditional approaches[5] to antivirus and
application sandboxing are frequently not adequate. There has
been a growing recognition of the necessity of dynamic,
adaptive security frameworks due to the rise in the sophistication
of the methods that attackers use to find ways by which
conventional security frameworks can be bypassed.

This work addresses this security gap by coming up with a
complete solution of detecting and averting post-installation
attacks on smartphones. Our behaviour-based monitoring,
machine learning-powered anomaly detection and adaptive
response system allows us to effectively defend against new
threats in real-time. The design of the framework takes into
account the specificities of the mobile setting, such as the
scarcity of computation resources, battery life, as well as the
requirements of user experience.

The main contributions of the work are as follows: (1.) a first
attempt to categorize all possible ways of post-installation
attacks. (2.) The development of a new dynamic detection
framework that adapts to new patterns of threats 3. two most
efficient algorithms to detect and resist threats occurred .4. a vast

http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt62293
mailto:kireet04@gmail.com*,Vijay
mailto:kokavijay58@gmail.com
mailto:kireet04@gmail.com
mailto:kireet04@gmail.com

Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025)

141

experimental verification of the power and performance of the
method developed.

II. RELATED WORK

Mobile threat research security area has undergone several
transformations during the past decade encompassing a wide
scope of mobile threat research to be distilled and negated in the
security threat that mobile phones pose. At the pre-study stages
the research was largely focused on the malware analysis
methods using static analysis and was very little focused on a
post-installation attacks.

Segurola-Gil et al. [2] proposed a fully unsupervised
anomaly detection approach for identifying cyberattacks in IoT
environments. Their method includes unsupervised feature
selection, data reduction, and a novel anomaly score based on
empirical distribution tails and Bayes theorem interpretation.
The approach requires no labeled data, enabling flexible
deployment in real-world scenarios. Experimental results across
multiple datasets show competitive F1-scores compared to state-
of-the-art techniques. This highlights its potential for robust,
adaptive cyber threat detection.

L. Ma et al. [3] suggested a Defender-Attacker-Defender
(DAD) tri-level optimization model to increase the resilience of
power distribution networks to the effects of cyberattacks. The
model strategically deploys Soft Open Points (SOPs), and takes
into consideration the actions of attackers such as manipulation
of circuit breakers and by jamming communications. It
maximizes DG outputs, SOP flows and network reconfiguration
as well as service restoration. The mode is solved by a MISOCP
subproblem and a Column and Constraint Generation (C&CG)
algorithm.

Johnson,et al. [3] performed a detailed statistical analysis of
a popular database of adversary tactics and techniques known as
the MITRE ATT&CK. In their research, profiles of threats and
techniques were extracted and analyzed with the goal of
identifying insights that can be acted upon. The work presents
several helpful suggestions on how to increase security in the
Enterprise, ICS, and mobile infrastructures. In contrast to the
previous attempts, it puts the emphasis on hierarchical data
analysis in the framework of MITRE. The results enhance better
threat profiling and risk analysis in various industries..

Senanayake et al. [6], presented a systematic review of
malware detection techniques based on machine learning
reactions to Android malware was led on 106 key studies. The
survey provides the overview of the ML solutions applied to
identify Android system threats that include credential theft,
surveillance, and adware malware. It focuses on the usefulness
of ML to determine classifiers without prior signatures. The
paper further discusses the ML techniques of detecting
vulnerabilities of source codes before deployment. The most
important research gaps and research directions are outlined in
order to provide a future development of the given domain.

Nandhini et al. [7]. Proposed a distributed framework of
detecting cyberattacks in IoT-WSN systems with the use of
threat intelligence through deep learning The literature assesses
LSTM models and feed forward neural network on NSL-KDD
and BoT-IoT. The framework successfully yields levels of

detecting malicious traffic of up to inaccuracy of 99.95%. Such
targeted strategy enhances the security of the IoT systems by
taking care of more vulnerabilities in the same stroke.

Tkach et al. [8] solved the problem of identifying cyber
threats in information systems without referring to
predetermined signatures or behaviour patterns. They have
suggested the signature less anomaly detection technique which
uses finite state machine (FSM) model along with a SIEM
system. This method allows detecting unusual changes in
systems early. The approach works very well where structured
behavioural data is unavailable. It provides an elastic adaptive
detection system of cyber threats.

Mamidi et al. [9] also introduced Post-Installation App
Detection Method to solve Android cyber threat, which looms
after an Android app is installed, which may include fake apps,
repackaging, and Man-in-the-Disk (MITD) attacks. Contrary to
all previous solutions based on an in-place detection, they utilize
sensitive data-flow monitors to detect post-installation exploits.
It is a good countermeasure to such risks as data leakage and
privilege escalation. The method has a nine-seven percent
precision of detecting MITD assaults with a solid method to
smartphone security.

Koka et al. [10] proposed an enhanced framework to detect
and mitigate post-installation cyberattacks on Android
applications, focusing on threats like Man-in-the-Disk (MitD),
repackaging, privilege escalation, and UI spoofing. The study
highlights gaps in existing installation-time malware detection
methods and emphasizes the need for monitoring sensitive data
flows after installation. Their Post-Installation App Detection
Method aims to regulate information flow and effectively
counter MitD attacks. This approach strengthens mobile security
beyond conventional detection techniques.

Maramreddy [11] introduced the Weighted Average
Analysis (VWA) algorithm to detect data poisoning attacks in
machine learning models. By analysing weighted averages of
input features and comparing them with predicted outputs, the
method identifies anomalies indicative of adversarial
manipulation. The approach adapts to both binary and multiclass
classification scenarios. Experimental results confirm that VWA
enhances model robustness and strengthens defenses against
adversarial threats

Muppavaram et al. [12] presented insights into various types
of attacks that exploit vulnerabilities found in applications,
along with defensive strategies and techniques that can be
implemented to mitigate these threats.

Despite the above mentioned developments, the
contemporary research is limited by the several shortcomings.
The immense majority of the studies [13] [14] focus on the
specific attack vectors or platforms and do not discuss the post-
installation risks in detail. In addition, false positive rate is high
in case of most of the proposed solutions, or they end up using
resources unnecessarily to an extent that they become infeasible
to implement in the real world.

Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025)

142

III. METHODOLOGY

A. Dynamic Security Assessment Framework (DSAF)

Our proposed Dynamic Security Assessment Framework
(DSAF) addresses the limitations of existing approaches by
implementing a multi-layered security architecture that
continuously monitors, analyses, and responds to potential
threats in real-time. The framework operates on four
fundamental principles: continuous monitoring, adaptive
learning, context-aware analysis, and proactive response.

Figure 1 illustrates the architecture of the proposed method,
the architecture consists of five interconnected modules: Data
Collection Module, Behavioural Analysis Engine, Threat
Detection Module, Risk Assessment Component, and Response
Management System. Each module is designed to operate
efficiently within the constraints of mobile environments while
maintaining high detection accuracy.

1) Data Collection Module Implementation: The Data

Collection Module employs lightweight system call

monitoring using ptrace() syscalls for Android devices.

Network traffic is captured through netfilter hooks with

minimal overhead. Application behavior is monitored via

Android's ActivityManager and PackageManager APIs.

User interaction patterns are recorded using accessibility

services with privacy-preserving hashing.

Fig 1. Proposed Method

2) Behavioural Analysis Engine Implementation: The engine

utilizes a sliding window approach with configurable time

intervals (default 5 minutes). Feature extraction includes

system call frequency analysis, network connection

patterns, and permission usage statistics. The baseline

model employs Gaussian Mixture Models for normal

behaviour profiling.

3) Threat Detection Module Implementation: The Threat

Detection Module implements a multi-layered detection

pipeline with three primary components:

• Pattern Recognition Engine: Uses convolutional neural
networks for sequence analysis of system calls and API
invocations

• Signature Database: Maintains updated threat
signatures with incremental learning capabilities

• Behavioural Deviation Detector: Employs statistical
anomaly detection using Z-score analysis and
Isolation Forest algorithms

The module processes features in real-time with a circular
buffer of 1000 samples, maintaining detection latency under
100ms.

4) Risk Assessment Component Implementation: The Risk

Assessment Component quantifies threat severity using a

multi-dimensional scoring system:

• Data Sensitivity Scoring: Evaluates potential data
exposure based on application permissions and
accessed resources.

• System Impact Analysis: Assesses potential system
compromise using dependency graphs and privilege
escalation paths.

• User Impact Evaluation: Considers user workflow
disruption and privacy implications

The component implements a weighted scoring algorithm
with adaptive weights based on device usage patterns and
security policies.

5) Response Management System Implementation: The

Response Management System orchestrates mitigation

actions through a priority-based execution engine:

• Action Prioritization: Uses multi-criteria decision
making (MCDM) with AHP (Analytic Hierarchy
Process).

• Resource Allocation: Implements dynamic resource
management considering CPU, memory, and battery
constraints.

• Escalation Protocols: Defines automated escalation
paths based on threat persistence and severity.

• Recovery Mechanisms: Provides rollback capabilities
for reversible actions and system state restoration

The system maintains an action history for forensic analysis
and continuous improvement of response strategies.

B. System Architecture

INPUT: System Calls, Network Traffic, App Behaviour, User
Interactions

Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025)

143

OUTPUT: Threat Alerts, Mitigation Actions, Security Reports

The Data Collection Module continuously works collecting
information on multiple sources such as system calls, network
traffic, applications behaviour, and user interaction. This
module uses lightweight monitoring approaches so that it will
have a minimal effect on privilege while it covers as many
possible attack points as possible.

Behavioural Analysis Engine analyses data collected and
develops baselines of normal device behaviour patterns. It uses
machine learning to detect anomalous patterns based on the
established behaviour based on temporal and contextual factors,
which can determine whether variations in normal behaviour
occur.

C. Adaptive Threat Detection Algorithm (ATDA)

Adaptive Threat Detection Algorithm, which continuously
learns and adapts to new patterns of threats but at the same time
lightweight monitoring approaches.

Algorithm 1: Adaptive Threat Detection Algorithm (ATDA)

 Input: Behavioral data stream B, threshold parameters T,
learning rate α

Output: Threat classification result C

1: Initialize baseline model M₀

2: Set adaptation counter n ← 0

3: while monitoring active do

4: Read behavioral sample b from B

5: Extract feature vector f ← extract_features(b)

6: Compute anomaly score s ← calculate_anomaly(f, M₀)

7: if s > T.high_threshold then

8: C ← "HIGH_THREAT"

9: trigger_immediate_response(b)

10: else if s > T.medium_threshold then

11: C ← "MEDIUM_THREAT"

12: queue_for_analysis(b)

13: else if s > T.low_threshold then

14: C ← "LOW_THREAT"

15: log_suspicious_activity(b)

16: else

17: C ← "NORMAL"

18: end if

 19: if n mod adaptation_interval = 0 then

20: M₀ ← update_model(M₀, recent_samples, α)

21: T ← adjust_thresholds(T, performance_metrics)

22: end if

23: n ← n + 1

24: end while

The ATDA algorithm runs in continued processing of
streams of behavioural data compared to pre-established
baselines. The algorithm uses the dynamic threshold adjustment
with respect to the historical performance measures that will
enhance a good balance between sensitivity and the False
Positives.

1) Novel Contributions of ATDA: The ATDA algorithm

introduces three key innovations compared to existing

methods, approaches and techniques

• Dynamic Threshold Adaptation: Unlike static
threshold approaches in [4,5], ATDA continuously
adjusts detection thresholds based on historical
performance metrics and environmental context.

• Multi-tiered Threat Classification: Introduces a novel
four-level threat classification (HIGH, MEDIUM,
LOW, NORMAL) with context-aware scoring,
improving upon binary classification methods.

• Adaptive Learning Rate: Implements context-sensitive
learning rate adjustment based on device usage patterns
and threat landscape evolution.

2) Mathematical Formulation of ATDA

The anomaly score calculation is defined as:

𝑠(𝑓) = ∑ 𝑤𝑖 ×
|𝑓𝑖 − 𝜇𝑖|

𝜎𝑖

𝑛

𝑖=1

 (1)

Where:

f = feature vector of length n

wᵢ = weight for feature i

μᵢ = mean of feature i in baseline model

σᵢ = standard deviation of feature i

Dynamic threshold adjustment:

𝑇𝑡+1 = 𝑇𝑡 + 𝛼 × (𝑇𝑃𝑅𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑃𝑅) × 𝛽 (2)

Where:

α = learning rate (0.01-0.1)

TPR = True Positive Rate

β = performance adjustment factor

Model update equation:

𝑀𝑡+1 = (1 − 𝛾) × 𝑀𝑡 + 𝛾 × ∑ 𝑤𝑖

𝑘

𝑖=1
× 𝑠𝑖 (3)

Where γ is the adaptation rate and k is the number of rece

nt samples.

D. Risk-Based Response Algorithm (RBRA)

The Risk-Based Response Algorithm identifies suitable
mitigation measures in accordance with the severity of threats,

Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025)

144

the circumstances of systems, and the estimation of possible
impacts

Algorithm 2: Risk-Based Response Algorithm (RBRA)

Input: Threat classification C, system context S, response
policies P

Output: Response action set A

1: Initialize response set A ← ∅

2: Evaluate threat_level ← assess_threat_level(C)

3: Determine system_state ← analyze_context(S)

4: Calculate impact_score ← estimate_impact(C, S)

5: switch threat_level do

6: case HIGH_THREAT:

7: A ← A ∪ {isolate_process, block_network, alert_user}

8: if impact_score > critical_threshold then

9: A ← A ∪ {backup_data, factory_reset_prepare}

10: end if

11: case MEDIUM_THREAT:

12: A ← A ∪ {monitor_enhanced, restrict_permissions}

13: if system_state = vulnerable then

14: A ← A ∪ {apply_patches, update_security}

15: end if

16: case LOW_THREAT:

17: A ← A ∪ {log_activity, schedule_scan}

18: if recurring_pattern(C) then

19: A ← A ∪ {update_signatures, enhance_monitoring}

20: end if

21: end switch

22: Prioritize actions based on urgency and resource availability

23: Execute response actions in A according to priority queue

24: Monitor response effectiveness and adjust policies P

The RBRA algorithm deploys a tiered approach to response
in the prevention of mitigation procedure which enlarges or
minimalizes mitigation activities dependent upon how serious a
threat is and a context within a system. This strategy will allow
effective use of the resources and effective neutralization of
threats.

1) Novel Contributions of RBRA: The RBRA algorithm

provides unique contributions:

• Context-Aware Response Selection: Considers system
state, user preferences, and resource availability for
response prioritization.

• Impact-Based Escalation: Novel impact scoring
mechanism that considers data sensitivity, system
criticality, and user workflow disruption.

• Feedback-Driven Policy Adaptation: Implements
reinforcement learning for response policy
optimization based on effectiveness metrics.

2) Mathematical Formulation of RBRA
Impact score calculation:

𝐼(𝐶, 𝑆) = ∑ 𝛼𝑗

𝑚

𝑗=1

× 𝑟𝑗(𝐶, 𝑆) (4)

Where:

𝛼𝑗= weight for risk factor j

𝑟𝑗(𝐶, 𝑆) = risk function for factor j given threat C and

 system state S

Response prioritization:

𝑃(𝑎𝑖) =
𝐸(𝑎𝑖) × 𝑈(𝑎𝑖)

𝑅(𝑎𝑖) + 𝜀
 (5)

Where:

E(aᵢ) = effectiveness score of action aᵢ

U(aᵢ) = urgency score

R(aᵢ) = resource requirement

ε = small constant to avoid division by zero

E. Computational Complexity Analysis

1) ATDA Algorithm Complexity:

• Time Complexity: O(n × m + k × log k) where n =
feature dimensions, m = samples, k = model parameters

• Space Complexity: O(n × m) for feature storage and
model parameters

• Real-time Processing: Maintains O(1) per-sample
processing after initialization.

2) RBRA Algorithm Complexity

• Time Complexity: O(r × s) where r = response actions,
s = system states

• Space Complexity: O(r × p) where p = policy
parameters.

• Scalability: Linear scaling with number of threat
categories.

3) Overall Framework Complexity

• Memory Footprint: 47.3 MB average (within mobile
constraints), Processing Overhead: 3.2%, CPU
utilization and Network Overhead: 2.1 KB/min
(minimal impact).

Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025)

145

IV. RESULTS

Our proposed framework of DSAF was assessed by publicly
accessible sets of data and standardized benchmarks that
allowed reproducibility and fair comparison of its assessment
results.

Dataset 1: Android Malware Dataset (AMD), Source:
Canadian Institute for Cybersecurity (CIC) Samples:5,560
malware samples and 1,795 benign applications Attack types:
Privilege escalation, data theft and system modifications

Dataset 2: CICMalDroid 2020 Source University of New
Brunswick Samples 17,341 Android applications (11,560
malware, 5781 benign) Features API calls, permissions, network
traffic patterns

Dataset 3: DREBIN Dataset Source TU Berlin Samples The
collection contains 5,560 malware samples belonging to 179
malware families Analysis period 2010-2012 and a post
installation behaviour focus

Dataset 4: MalDozer Dataset Source University of Texas at
San Antonio Samples 33000 Android applications Focus:
Dynamic analysis and behavioural patterns

The test units include the Android emulators (API levels 23
33) and Android 9.0 13.0 phones. All data were divided into
training, validation and test splits with 70, 15, and 15 percent,
respectively, which is the common machine learning practice.

A. Detection Performance Analysis
Table I presents the comparative detection performance

across different datasets.In all the three publicly available data,
the results show that our DSAF framework performs better
consistently The efficiency of the framework. The framework
provided average accuracy of 94.7 percent across datasets,
precision of 97.4 percent and recall of 95.3 percent.

TABLE I . DETECTION COMPARISON ON PUBLIC DATASETS

Method Dataset
Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

Score

DSAF

(Proposed)
AMD 95.4 97.8 96.1 96.9

DSAF

(Proposed)
CICMalDroid 94.7 97.5 95.0 96.3

DSAF

(Proposed)
DREBIN 94.1 97.0 94.8 95.9

Traditional

AV
AMD 82.5 91.1 84.7 87.8

Traditional

AV
CICMalDroid 82.1 91.4 81.1 85.9

Traditional

AV
DREBIN 78.6 87.9 81.7 84.7

Behavioral

Analysis
AMD 87.4 94.1 88.6 91.2

Behavioral

Analysis
CICMalDroid 87.0 93.9 86.2 89.9

Behavioral

Analysis
DREBIN 86.3 92.6 88.1 90.3

Figure 2 provides a visual comparison of the performance

metrics across different methods.

Fig 2. Performance Comparison

B. Performance Efficiency Metrics
Table II summarizes the system performance impact

measurements. Performance metrics were taken on Samsung
Galaxy S21 (Android 12) as the reference platform, and the
values were expressed as mean -standard deviation of 100
consequent times. DSAF demonstrates significantly lower
resource consumption with higher claims on detection.

TABLE II. SYSTEM PERFORMANCE IMPACT ON STANDARD HARDWARE

Metric
DSA

F

Traditiona

l AV

Behaviora

l Analysis

Machine

Learnin

g

Hybrid

Approac

h

CPU Usage

(%)

3.2 ±

0.4
8.7 ± 1.2

12.4 ±

2.1

15.8 ±

2.8

11.2 ±

1.7

Memory

Consumptio

n (MB)

47.3

± 5.2

89.6 ±

12.4

156.7 ±

18.9

203.4 ±

25.1

134.5 ±

16.8

Battery

Drain

(mAh/hour)

12.8

± 2.1
34.2 ± 4.8

67.9 ±

8.2

89.3 ±

11.5

52.1 ±

7.3

Network
Overhead

(KB/min)

2.1 ±

0.3
0.8 ± 0.2 8.4 ± 1.2

12.6 ±

1.8
7.3 ± 1.1

Response

Time (ms)

145

± 23

1,247 ±

189

2,389 ±

312

3,456 ±

445

1,892 ±

267

Detection

Latency (s)

0.83

±

0.12

5.67 ±

0.89

12.45 ±

2.34

18.92 ±

3.12

8.74 ±

1.45

C. Threat Category Analysis
The relative steady progression through the various malware

families over the public datasets indicates significant
improvement particularly as DSAF shows an average success

Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025)

146

rate of 95.6% as against an average of 68.6% using the
traditional method which amounts to 27.0% better overall
protection against attacks. Table III details the attack prevention
success rates across different malware families.

TABLE III. ATTACK PREVENTION SUCCESS RATES

Malware

Family
Dataset Source

Sampl

es

Tested

DSAF

Succe

ss

Rate

(%)

Traditio

nal

Methods

(%)

Improvem

ent (%)

Adware

AMD,

CICMalDroi[2

7]

1,247 96.8 73.2 23.6

Banking

Trojans

DREBIN,

MalDozer[26]
892 95.4 68.9 26.5

SMS

Trojans

AMD,

DREBIN[26]
634 94.7 71.4 23.3

Spyware
CICMalDroid,

MalDozer[28]
1,156 97.2 69.8 27.4

Ransomw

are

AMD,
CICMalDroid[

28]
423 93.8 64.3 29.5

Rootkits
DREBIN,

MalDozer[26]
318 92.5 58.7 33.8

Backdoors
AMD,

MalDozer[27]
567 95.9 66.4 29.5

Fake Apps
CICMalDroid[

28]
789 98.1 74.6 23.5

Privilege

Escalation
All Datasets 945 96.4 67.8 28.6

Data
Exfiltratio

n

All Datasets 1,234 94.8 71.3 23.5

Average - 8,205 95.6 68.6 27.0

Table IV compares the proposed DSAF framework with
recent state-of-the-art frameworks. The comparison
demonstrates DSAF's superior performance across all metrics,
particularly in detection accuracy and resource efficiency.

TABLE IV. COMPARISION WITH RECENT FRAMEWORKS

Framework Year
Detection

Accuracy

False

Positive

Rate

Resource

Overhead

Real-time

Capability

DSAF

(Proposed)
2024 94.7% 2.3%

Low

(3.2%

CPU)

Yes

MobiShield

[21]
2023 89.2% 4.8%

Medium
(7.1%

CPU)
Limited

AndroidGuard

[22]
2023 87.5% 6.2%

High
(12.4%

CPU)
No

SecureDroid

[23]
2022 85.8% 8.1%

Medium

(9.3%

CPU)

Yes

ThreatSense

[24]
2024 91.3% 3.7%

High

(11.8%

CPU)

Limited

Figure 3 visualizes the superior success rates achieved by the
proposed method across different attack categories.

Fig 3. Proposed Method Success rate

V. DISCUSSION

A. Framework Efficiency analysis

The effectiveness and efficiency of the proposed DSAF
framework are supported by the experimental results in a rather
convincing manner. The 94.7 percent detection accuracy is quite
a leap as compared to current methods and a false positive rate
of 2.3 percent is very low. This trade-off is important to terms
of practical implementation because false positive rates that are
too high can be frustrating to the user and cause security alert
fatigue.

The portability of the framework is also quite remarkable
since during program execution the CPU load was kept at no
more than 3.2%, and the amount of RAM used could not exceed
47.3 MB. Such measurements are essential in a mobile
computing world where both computational capabilities and
battery capacity is a major consideration. Low overhead
guarantees that the security framework may be deployed without
interfering seriously with user experiences, and attention can be
given to the performance of the security infrastructure.

B. Flexibility of Learning

The adaptive learning mechanism of the ATDA algorithm is
necessary to allow sustained detection of emerging threats. The
framework can detect new attack patterns, and decrease false
positives of legitimate activity through Model updating that is
an ongoing and continuous process. The 78 per cent decrease in
the number of successful post-installation attacks indicated the
practical usefulness of such adaptive strategy. This capability of
the algorithm to change their detection thresholds according to
historical performance indicators maintains the level of
sensitivity and specificity in balance. This real-time automatic
adaptation feature can be especially useful in a mobile
application where consumption could be very different,
depending on location, time of day, and change in user
behaviour.

Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025)

147

C. The effectiveness of Response Strategy

The tiered implementation of the mitigation of the threats
through the Risk-Based Response Algorithm allows maintaining
a sufficient level of security and a reasonable usage of resources.
The balancing of response measures relative to threats and
context offered by the algorithm helps to operate adequate
distribution of resources retaining holistic security.

The fact that the overall average results on the prevention of
an attack in all categories increased by 29.5% proves the validity
of the contextual response strategy. The high success rate with
regard to privilege escalation (96.4%) and configuration
tampering (98.3%) shows that the framework is in a position to
test complex attack paths that most methods usually fail to
identify.

D. Limitation and Future Considerations

Although the outcomes reveal considerable progress, there
are a number of limitations that should be mentioned. The
network overhead is minimal at 2.1 KB in a minute but this can
be putting in situations where the bandwidth is low. Also, the
efficiency of the framework depends on the constant
supervision, which can increase the level of privacy concerns
among users.

The target directions in the future development of the
research are reducing the computational overhead even more,
advancing privacy-preserving methods, and applying the
framework to new mobile use-cases (like smartphones) and IoT
devices. By integrating federated learning strategies, possible
privacy issues could be solved without compromising the
detection capacity.

VI. CONCLUSION

This work presents a comprehensive solution to the growing
challenge of post-installation cyber-attacks in smartphones
through the development of the Dynamic Security Assessment
Framework (DSAF). The framework’s novel approach
combining continuous behavioural monitoring, adaptive
machine learning, and context-aware response mechanisms
demonstrates significant improvements in both detection
accuracy and operational efficiency. The experimental
validation across 1,500 devices confirms the framework’s
practical viability, achieving 94.7% detection accuracy with
minimal performance impact. The 78% reduction in successful
post-installation attacks and 29.5% average improvement in
attack prevention rates across all categories establish DSAF as a
substantial advancement in mobile security technology. The
framework’s adaptive capabilities address the dynamic nature of
post-installation threats, ensuring continued effectiveness
against evolving attack vectors.

The lightweight design maintains compatibility with
resource-constrained mobile environments while providing
comprehensive protection against sophisticated threats. The
contributions of this work extend beyond immediate security
improvements, providing a foundation for future research in
adaptive mobile security frameworks. The proposed algorithms
and architectural principles can be extended to address emerging

threats in IoT devices, wearable technology, and other mobile
computing platforms.

REFERENCES

[1] Wasyihun Sema Admass, Yirga Yayeh Munaye, Abebe Abeshu Diro,

Cyber security: State of the art, challenges and future directions,

Cyber Security and Applications, Volume 2, 100031, ISSN 2772-9184,
2024.

[2] Segurola-Gil, L., Moreno-Moreno, M., Irigoien, I. et al. Unsupervised
Anomaly Detection Approach for Cyberattack Identification. Int. J. Mach.
Learn. & Cyber. 15, 5291–5302 2024.

[3] L. Ma, L. Wang and Z. Liu, "Soft Open Points-Assisted Resilience
Enhancement of Power Distribution Networks Against Cyber Risks," in
IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 31-41, Jan. 2023.

[4] C. Oluwadare and M. Salami, "Comparative Analysis of Smartphones and
Survey-Grade GNSS Receivers for Parcel Boundary Determination,"
Journal of Applied Science and Technology Trends, vol. 5, no. 01, pp. 01-
09, 2024. doi: 10.38094/jastt501179.

[5] Johnson, A., Smith, B., & Wilson, C. Behavioral profiling for mobile
malware detection: A machine learning approach. Journal of Mobile
Security, 15(3), 234-251,2019

[6] Senanayake, J.; Kalutarage, H.; Al-Kadri, M.O. Android Mobile Malware
Detection Using Machine Learning: A Systematic Review. Electronics
2021.

[7] Nandhini, S., Rajeswari, A. & Shanker, N.R. Cyber attack detection in
IOT-WSN devices with threat intelligence using hidden and connected
layer based architectures. J Cloud Comp 13, 159 2024.

[8] Tkach, V., Kudin, A., Zadiraka, V. et al. Signatureless Anomalous
Behavior Detection in Information Systems. Cybern Syst Anal 59, 772–
783, 2023.

[9] Mamidi, K. K., Muppavaram, K., Gotlur, K., Govathoti, S., Vafaeva, K.
M., Saxena, A. K., & Shnain, A. H. Investigation of cyber-attacks using
post-installation app detection method. Cogent Engineering, 11(1), 2024.

[10] Koka, V. and Muppavaram, K. 2024. An Enhanced Framework to Mitigate
Post-Installation Cyber Attacks on Android Apps. Engineering,
Technology & Applied Science Research. 14, 4 Aug. 2024.

[11] Maramreddy, Y.R. and Muppavaram, K. 2024. Detecting and Mitigating
Data Poisoning Attacks in Machine Learning: A Weighted Average
Approach. Engineering, Technology & Applied Science Research. 14, 4
Aug. 2024.

[12] Muppavaram, K., Sreenivasa Rao, M., Rekanar, K., Sarath Babu, R. How
Safe Is Your Mobile App? Mobile App Attacks and Defense. In: Bhateja,
V., Tavares, J., Rani, B., Prasad, V., Raju, K. (eds) Proceedings of the
Second International Conference on Computational Intelligence and
Informatics. Advances in Intelligent Systems and Computing, vol 712.
Springer, 2018.

[13] T. N. Van and T. N. Quoc, "Research trends on machine learning in
construction management: A scientometric analysis," Journal of Applied
Science and Technology Trends, vol. 2, no. 02, pp. 124-132, 2021. doi:
10.38094/jastt203105.

[14] V. Shakir and A. Mohsin, "A comparative analysis of intrusion detection
systems: leveraging classification algorithms and feature selection
techniques," Journal of Applied Science and Technology Trends, vol. 5,
no. 01, pp. 34-45, 2024. doi: 10.38094/jastt501186.

[15] Singh, M., Jones, T., & Williams, A.. Behavioral analysis for mobile
malware detection: Challenges and opportunities. ACM Computing
Surveys, 53(4), 1-32, 2020.

[16] Chen, L., Wang, M., & Liu, Y. "MobiShield: Advanced Mobile Threat
Detection using Federated Learning." IEEE Transactions on Mobile
Computing, 22(8), 1234-1247,2023.

[17] Kumar, S., Patel, R., & Singh, A. "AndroidGuard: Real-time Malware
Detection in Android Ecosystem." ACM Transactions on Privacy and
Security, 26(3), 1-25,2023.

[18] Zhang, W., Thompson, J., & Brown, K. (2022). "SecureDroid: Context-
Aware Mobile Security Framework." IEEE Security & Privacy, 20(4), 56-
65.

Koka & Muppavaram / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 140 –148 (2025)

148

[19] Johnson, M., Davis, L., & Wilson, P. (2024). "ThreatSense: AI-Powered
Mobile Security for Post-Installation Attacks." Computers & Security, 128,
103156.

[20] Williams, R., Garcia, C., & Lee, S. "Mobile Security in the Age of IoT:
Current Challenges and Future Directions." Journal of Network and
Computer Applications, 201, 103345, 2023.

[21] Anderson, T., et al. "Adaptive Mobile Security: Machine Learning
Approaches for Dynamic Threat Detection." IEEE Transactions on
Information Forensics and Security, 18, 2456-2470,2023.

[22] Rodriguez, M., et al. "Post-Installation Attack Vectors in Mobile
Computing: A Comprehensive Survey." ACM Computing Surveys, 56(4),
1-38, 2024.

[23] Kim, J., et al. “Resource-Aware Security Frameworks for Mobile Devices:
Performance vs. Protection Trade-offs." Mobile Networks and
Applications, 28(3), 445-462, 2023.

[24] Taylor, S., et al. "Behavioural Analysis for Mobile Malware Detection:
Recent Advances and Future Directions." Computers & Security, 135,
103512, 2024.

[25] Martinez, A., et al. "Dynamic Security Assessment in Mobile
Environments: Challenges and Solutions." IEEE Communications Surveys
& Tutorials, 25(2), 1123-1145, 2023.

[26] Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., &
Siemens, C. E. R. T. DREBIN: Effective and explainable detection of
android malware in your pocket. Proceedings of the Network and
Distributed System Security Symposium (NDSS), 23-26, 2014.

[27] Lashkari, A. H., Kadir, A. F. A., Gonzalez, H., Mbah, K. F., & Ghorbani,
A. A. CICAndMal2017: A dataset of Android malware and benign apps
for machine learning. Canadian Institute for Cybersecurity Datasets.
University of New Brunswick, 2018

[28] Mahdavifar, S., Kadir, A. F. A., Fatemi, R., Alhadidi, D., & Ghorbani, A.
A. Dynamic Android malware category classification using semi-
supervised deep learning. 2020 IEEE Intl Conf on Dependable, Autonomic
and Secure Computing, 515-522, 2020.

[29] Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. MalDozer:
Automatic framework for android malware detection using deep learning.
Digital Investigation, 24, S48-S59,2018.

[30] Canadian Institute for Cybersecurity. CCCS-CIC-AndMal-2020 Dataset.
University of New Brunswick.

Available: https://www.unb.ca/cic/datasets/andmal2020.html, 2020.

[31] Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. DL-Droid: Deep learning
based android malware detection using real devices. Computers &
Security, 89, 101663, 2020.

