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Abstract 

Problems pertaining to power quality, like voltage sags and swells as well as harmonics, have the potential to impact the reliability of 

contemporary power systems. An innovative approach that integrates the Composite Least Mean Fourth (CLMF) algorithm with meta-

heuristic algorithms like PSO, DE, PSODE and a hybridization Auto-Tuned PSO and DE (APSODE)—to enhance the performance of a 

Dynamic Voltage Restorer (DVR) is presented in this study. The CLMF algorithm is used mostly to mitigate voltage distortions, while the 

meta-heuristic algorithms are employed primarily to optimize the DVR's control parameters for improved operation over different power 

quality conditions. Extensive simulations, conducted in the MATLAB environment, validate the proposed method, showing a substantial 

improvement in voltage restoration, reduced Total Harmonic Distortion (THD), and faster dynamic response. The findings of the study 

highlight the effectiveness of combining CLMF with PSO, DE, PSODE and APSODE in addressing power quality issues, offering 

improved performance and higher adaptability to changing conditions of power system. The proposed APSODE algorithm introduces 

auto-tuned acceleration coefficients and hybrid velocity mutation mechanisms, offering real-time adaptability and improved convergence 

over traditional methods, thereby ensuring strong voltage compensation under dynamic power quality conditions. 
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I.  INTRODUCTION  

In today’s world, electricity is essential to every aspect of 
our lives, from powering homes to performing critical industrial 
operations. However, power quality can often be compromised 
due to various disturbances like voltage fluctuations, harmonic 
distortions, and sudden voltage dips. These issues can result in 
operational inefficiencies, equipment failures, and even 
significant financial losses. As industries and households rely 
mostly on sensitive electronic equipment, ensuring high power 
quality has become a top priority [1]. Amongst different power 
quality issues, voltage sags are mainly problematic. They affect 
industries, hospitals, and communication networks, where even 
a small drop in voltage can lead to severe consequences such as 
mal- functioning of medical equipment in emergencies, stalled 
manufacturing process, or disrupted communication [2].  

Research shows that voltage sags contribute greatly to higher 
operational costs, making it critical to develop effective 

techniques for mitigating them in time. Dynamic Voltage 
Restorers (DVRs) have proven to be an effective solution to 
voltage disturbances. These devices detect voltage fluctuations 
and restore voltage at its nominal level efficiently in real-time. 
However, achieving optimal performance of DVR requires the 
use of advanced control strategies that can quickly adapt to these 
disturbances and maintain power supply and also quality [3]. 
Voltage issues such as sags, swells, and harmonics can cause 
significant problems, ranging from damaged equipment to 
operational inefficiencies and increased costs [4], [5]. 
Conventional methods like Instantaneous Reactive Power 
Theory (IRPT) and Synchronous Reference Frame Theory 
(SRFT) [6] are commonly used to control voltage. While they 
are effective, these methods often rely on complex mathematical 
models and phase-locked loops (PLLs), which can lead to 
slower response and reduced adaptability in highly dynamic 
power systems. 
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Adaptive filtering techniques, such as the Least Mean 
Square (LMS) algorithm, have also been explored for real-time 
voltage correction. However, LMS struggles in noisy 
environments and can have slower convergence in transient 
conditions. The introduction of the Least Mean Fourth (LMF) 
algorithm improved stability and reduced noise, but challenges 
like slow response and steady-state errors in dynamic power 
grids still exist [7]. The Composite Least Mean Fourth (CLMF) 
algorithm is an advanced adaptive filtering technique that has 
shown greater potential in mitigating voltage disturbances. In a 
way to improve DVR performance, this paper proposes a fresh 
approach which fuses the CLMF algorithm with PSO, DE, a 
hybrid PSODE and APSODE algorithms in changing power 
conditions [8], [9], [10].  

Artificial intelligence (AI) has started making an impact on 
DVR systems. Techniques like neural networks, fuzzy logic, etc. 
[11] are employed to optimize DVR’s performance, leading to 
better voltage stabilization, reduced operational costs, and more 
adaptable and adjustable power systems [12]. The integration of 
machine learning and reinforcement learning has advanced 
DVR’s capabilities, enabling real-time voltage compensation 
and adaptive control in dynamic grid environments [13]. Despite 
advancement in technology, the performance of AI-based 
systems often depends on the correct tuning of parameters, 
which is typically done heuristically [14] [15]. Particle Swarm 
Optimization (PSO), motivated by the deeds of birds 
individually and collectively, offers a systematic and efficient 
way to optimize the parameters. This paper combines PSO with 
the CLMF algorithm to optimize DVR’s performance, 
improving voltage restoration in real-time [16]. The hybrid 
PSO-CLMF approach fine-tunes the control parameters of DVR 
system that ensures quickly adaptable to voltage disturbances. 
The CLMF algorithm enables rapid tracking of voltage changes 
and minimizes steady-state errors, while the PSO [17]-[21], DE 
[22]-[23] ensure that the system’s parameters are dynamically 
optimized for the best performance. Further, the PSO and DE 
are combined to have a dual advantage of PSO and DE 
algorithms [24]-[25]. This approach maintains balance amongst 
accuracy, response time, and computational efficiency that are 
not seen properly in traditional DVR control methods. 

A. Research Gap and Contributions 

Although several optimization-based DVR control strategies 
exist (PSO, DE, hybrid PSODE), limitations remain. PSO 
suffers from premature convergence, DE exhibits slower 
exploitation ability, and hybrid PSODE does not adaptively 
adjust acceleration coefficients. Moreover, most DVR works 
have not benchmarked performance against IEEE Std. 519 [28] 
harmonic limits or real-time feasibility. To address these gaps, 
this paper makes the following contributions: 

• APSODE Algorithm – introduces auto-tuned 
acceleration coefficients and hybrid velocity mutation, 
improving convergence speed and global search ability. 

• CLMF-APSODE DVR Control – enhances voltage 
sag/swell and harmonic compensation compared to 
conventional PI, PSO, DE, and PSODE-tuned DVRs. 

• Performance Validation – comprehensive simulation-
based validation with statistical analysis, convergence 

studies, and comparative benchmarks against AI-based 
DVR techniques. 

• Real-Time Feasibility – run-time analysis indicates the 
feasibility for implementation of Digital Signal 
Processor (DSP) and Machine Learning (ML) classifiers 
for iterative large and small dataset adaptability, making 
APSODE, a practical tool for real-world deployment 
[29], [30]. 

Unlike conventional methods, which rely on static parameter 
settings, this PSO-optimized CLMF system with perturbed 
velocities (APSODE) [26]-[27] can adapt to changing power 
conditions, improving robustness of voltage compensation, etc. 
By leveraging swarm intelligence, the system can rapidly adjust 
to grid changes and supply high-quality power to consumers 
with minimal computational cost. Simulations conducted in the 
MATLAB environment validate the effectiveness of this hybrid 
approach which demonstrates improvements in voltage 
compensation, reduced Total Harmonic Distortion (THD), and 
faster dynamic response compared to traditional methods. 
 

II.  RELATED WORK 

The preliminary work for the study relates to the working 
mechanism of the DVR in the utility system, control system of 
DVR, the CLMF control algorithm for DVR system and the 
methodology for selecting the DC bus voltage and the approach 
for designing filtering system. These are presented below: 

A. Working Mechanism 

DVR which is a series-connected solid-state device is 
primarily responsible for injecting the necessary compensating 
voltage and abnormal regulation of voltage at load side. This 
compensates active/reactive power in the utility system and 
improves working of DVR. Figure 1 (a) illustrates DVR’s 
configuration, whereas its equivalent circuit diagram is shown 
in Figure 1(b). The mathematical formula is given below: 

𝑉𝐷𝑉𝑅 = 𝑉𝐿 + 𝑍𝑆𝐼𝐿  +  𝑉𝑆                (1) 

where, VL represents required voltage at the load side, VS 

denotes voltage under fault conditions, IL is the current drawn 

by the load, ZSindicates the load impedance.  

The expression for the load current IL is mentioned below: 

𝐼𝐿 =
𝑃𝐿 + 𝑗𝑄𝐿

𝑉𝐿

                                          (2) 

 Where, PL and QL represent active and reactive power supplied 

to load respectively. 
With reference to load voltage, the DVR’s voltage is given 

by: 

𝑉𝐷𝑉𝑅∠𝛼 = 𝑉𝐿∠0 +  𝑍𝑆𝐼𝐿∠(𝛽 −  𝜃) +  𝑉∠𝛿        (3) 

 

 Where, α is injection angle of DVR, β is load impedance angle, 

δ is faulty voltage angle and θ is the power angle from load side. 

𝜃 = tan−1
𝑄𝐿  

𝑃𝐿  
                                                (4) 

The injection power phenomenon of the DVR in action is 

represented by: 

Where,         SDVR=VDVRIL
*                                                        (5) 
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Fig. 1. (a) A diagram with DVR’s configuration; (b) Equivalent circuit of the 

DVR 

B. Control System  

Figure 2 indicates the flow chart of the control scheme of 
DVR in which the DVR shows its functioning for compensation 
purpose under conditions of unexpected load and fault 
conditions. 

 

Fig. 2. Flow chart of the control scheme of DVR. 

 

At the outset, the supply voltage (Vs) and the initial load 
voltage (Vl1) at the point of disturbance are measured, and under 

normal conditions, these two values are becoming equal. When 
a sudden load change or fault occurs, the load voltage shifts to a 
new value (Vl2), often resulting in a voltage sag or swell. The 
DVR continuously monitors this change in load voltage. If Vl2 
remains equal to Vl1, the DVR remains inactive, indicating that 
no significant voltage compensation is needed—this state is 
referred to as standby mode. However, if Vl2deviates from Vl1, 
the DVR switches to active mode, injecting or absorbing voltage 
as needed. For sag, the DVR compensates by injecting voltage 
such that Vl1=Vl2+Vsag; for swell, it absorbs excess voltage, 
following Vl1=Vl2−Vswell. The DVR maintains this corrective 
action until the voltage level is restored to normalcy. The DVR’s 
control system is crucial in determining the appropriate 
compensating voltage at the right time.  

C. CLMF Control Algorithm 

The CLMF control algorithm serves as the core control 
strategy of DVR, utilizing its adaptive filtering capabilities to 
mitigate voltage distortions efficiently. By iteratively updating 
the filter coefficients, the algorithm minimizes error function 
and ensures improved voltage stability (Figure 3). 

D. System Specifications 

A power supply system with a three-phase having 415V and 
50Hz is a transmission utility where dynamic voltage restorer 
(DVR) and a non-linear load is designed in MATLAB / 
Simulink. The DVR system specifications are given in Table I. 
The methodology for selecting DC bus voltage and the 
approach for designing filtering system are briefed. 

a) Capacitor voltage: The voltage across the synchronizing 

capacitor is given by: 

𝑉𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 > 2√2 × 𝑉𝐷𝑉𝑅                     (6) 

 

b) Voltage rating: The peak voltage to be injected under 

fluctuations of voltage at the load side is applied for measuring 

rating of voltage. The voltage injected is approximated as: 

𝑉𝐶 = √𝑉𝑠
2 − 𝑉𝐿

2                    (7) 

 

c) Ripple filter: Rr and Cr of ripple filter series which suppresses 

switching frequency ripples are achieved by: 

 

𝑓𝑟 =  
1

2𝜋 × 𝑅𝑟 × 𝐶𝑟

                         (8) 

 
where fr is considered to be fifty percent of switching 
frequency, which ranges from 5 kHz to 20 kHz. 

d) Transformer KVA rating: The voltage-source converter 

(VSC) rating of DVR which is also the injection transformer is 

obtained by: 

𝑆 =
3𝑉𝑆 × 𝐼𝑆

1000
                                  (9) 

 

e) DC bus capacitance: The capacitance required by DVR 

indicates the energy needed to compensate the change in load 

voltage which is derived below:  
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𝐸 =
1

2
× 𝐶𝑑𝑐(𝑉𝑑𝑐

2 − 𝑉𝑑𝑐1
2 )                                     (10) 

VDC  represents the nominal DC bus voltage, and VDC1 denotes 
change in DC bus voltage under abnormal conditions. 

𝑃 × ∆𝑡 =
1

2
× 𝐶𝑑𝑐(𝑉𝑑𝑐

2 − 𝑉𝑑𝑐1
2 )          (11) 

where, 𝑃 =  3 × 𝑉𝐶 × 𝐼𝑆   

 

Fig. 3: (a) Composite least mean fourth (CLMF) control algorithm for DVR System; (b) CLMF phase ‘a’ fundamental active component extraction / retrieval.  

 

TABLE I.        DVR SYSTEM SPECIFICATIONS 

Parameter Specification 

System Voltage 415 V (line-to-neutral), 50Hz 

Line Impedance Ls=3 mH, Rs=0.0001 Ω 

Linear Load Resistance RL=50 Ω 

Non-linear Load R-L load of 50 Ω- 1 mH 

Series VSI Specifications 
Cdc=1000 μ F, Cse=10 μF, 

Lse=2.1 mH,6 IGBTs 

Series Injection Transformer 1:1 ratio, 200/300V, 10 kVA 

Series Ripple Filter Cf=100 μF, Rf=4.8 Ω 

DVR DC Voltage 300V 

PWM Switching Frequency 10 kHz 

 

III.    METHODOLOGY 

The methodology used in the study employs both an 
objective function and a fitness function, aimed at minimizing 
the current and voltage harmonics and voltage sag/swell error. 

The objective function for minimization of a multi-objective 
weighted case is defined as: 

f = (w1)×(THD of Is)+(w2)×(THD of VL)+(w3)×(VsERROR)    (12) 

Where, w1, w2, w3 are the respective weighting factors; THD 
of Is is the total harmonic distortion of the source current, THD 
of VL is the total harmonic distortion of the load voltage, and 

VsERROR denotes the deviation from the desired voltage level. 
This objective function serves as a foundation for the meta-
heuristic algorithms used in the study to aim at enhancing DVR 
control and overall power quality. In this work, a weighted 
optimization approach is used to handle multi-dimensional 
objectives of power quality. The fitness function (F) is defined 
to minimize the combined effects of voltage sag error and 
current/voltage harmonic distortion.  This function ensures both 
transient and steady-state performance improvements in the 
DVR system. 

 

Minimize,𝐹 = 𝑓(𝐼𝑇𝐻𝐷) + 𝑓(𝑉𝑠𝑎𝑔/𝑠𝑤𝑒𝑙𝑙) + 𝑓(𝑉𝑇𝐻𝐷)       (13) 

 

The optimal tuning parameter in this context relates to 
proportional (KP) and integral (KI) gains of the PI controller.  
The mathematical expression is represented as: 

𝐺𝑐(𝑆) = 𝐾𝑝 +
𝐾𝑖

𝑆
                                 (14) 

 

The best values of the PI controller gains are found by the 
PSO, DE, PSODE and APSODE algorithms. The algorithm 
tracking phenomenon is shown in Figure 4. 

Outputs of the controlled voltage u (t) are expressed as: 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

                      (15) 
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Fig.4. Example of PI Controller in action.  

IV. META-HEURISTIC ALGORITHMS 

Adaptive tuning of parameters is most essential to achieve 
the desired performance of the power system in differing 
operating conditions. Therefore, in this section, the meta-
heuristic family of PSO, DE, PSODE and APSODE algorithms 
is implemented to the system network concerned that enhances 
the efficiency of the DVR. The structure of meta-heuristic 
algorithms and the related mathematical equations are 
mentioned hereunder: 

A. Particle Swarm Optimization 

The PSO algorithm is a population-based, stochastic 
optimization method motivated by a group of movement 
patterns that relate to bird flocks and fish schools.  The algorithm 
operates by learning from environmental interactions and 
leveraging the knowledge to address optimization problems. 
Each particle is associated with a fitness value, evaluated using 
an objective function that is either maximized or minimized.  In 
addition, particles are assigned velocities that influence their 
direction and speed of movement within the search space. The 
mathematical expression for position update which relates to 
particle over time is expressed as: 

)1()()1(

))(())(()()1(
2211

++=+

−+−+=+

ttt

tttwt

VXX

xGrcxprcVV

sss

sbestsbestss

(16) 

Where: VI(t) denotes the velocity vector of the ith particle 
over time t, Xi(t) reflects position vector that relates to ith particle 
over time t, Pbest represents best position observed by the 
particle (personal best), Gbest represents best global position 
given by the entire swarm, Wis the inertia weight that controls 
the impact of both past velocity, C1 and acceleration coefficient, 
C2 called cognitive and social parameters. All are typically 
chosen to ensure that C1+C2=4 andr1 and r2, the numbers at 
random divided equally between 0 to 1. These are meant 
specifically for enhancing the stochastic behaviour of the 
algorithm for better optimization performance. 

B. Differential Evolution (DE) 

A stochastic optimization algorithm known as DE was 
recently introduced. Efficiency, simplicity, local search 
property, and speediness are the major advantages of DE. In this 
algorithm, two generations, i.e. old and new, of the population 
are considered for analysis.  

Initially, mutation operation is expressed below: 

𝑉𝑖
𝐺+1 = 𝑉𝑖

𝐺 +  𝐹 (𝑉𝑏𝑒𝑠𝑡
𝐺 − 𝑉𝑖

𝐺) + 𝐹 (𝑉𝑟1
𝐺 − 𝑉𝑟2

𝐺 )             (17) 

F: mutation constant, r1, r2 arbitrary values, i=1,2,...,np  
represents index of population. 

This is followed by the crossover operation, in which each jth 
component of the ith offspring is generated by combining the 
current offspring vector Vi

Gand its mutated version Vi
G+1. The 

crossover process is mathematically described as:  

V̂ij
G+1 = {

Vij
G+1, if rand (0,1) < 𝐶𝑅

Vij
G, otherwise

   (18) 

and i=1,2,.....np ; j=1,2,3....n 

C. Particle Swarm Optimization and Differential Evolution 

(PSODE) 

This new hybrid algorithm has been developed by integrating 
the differential operator of the DE algorithm with perturbed 
velocity and update mechanism of PSO jointly. This 
combination aims at executing the strengths of both PSO and 
DE algorithms to enhance overall optimization performance. In 
this approach, the differential operator is applied to a randomly 
chosen particle, which does not necessarily correspond to the 
best-known position. This integration introduces a selection 
strategy within the group, effectively guiding a particle toward 
a new and a potentially more optimal position. Velocity update 
relating to PSO is adapted by incorporating the position vector 
strategy from DE that gives a flexible search capability.  

𝛿
→

= 𝑋⃗𝑘 − 𝑋⃗𝑗              (19) 

 Updated dth velocity component of ith particle at target using 
the PSODE approach is as follows: 

𝑉𝑖𝑑(𝑡 + 1)

= {
𝜔𝑉𝑖𝑑(𝑡) + 𝛽𝛿𝑑 + 𝐶2𝜑2 (𝑃𝑔𝑑 − 𝑋 𝑖𝑑(𝑡)) 𝑖𝑓 𝑟𝑎𝑛𝑑 (0,1 ) ≤ 𝐶𝑅

𝑉𝑖𝑑(𝑡)                                                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

                                                                                                     (20) 

Where, CR: accelerated crossover operation, 𝛿𝑑 : vector 
difference of dth velocity component of the ith target particle and 
𝛽 : the feature of scaling ranging in between 0 to 1.  

By combining the differential operator of the DE algorithm 
with the velocity update of PSO algorithm, the system gains 
increased exploration capabilities. This update process allows 
the velocity to retain its previous values, especially when the 
differential component has little impact, ensuring the particle 
continues its search effectively under 𝐶𝑅 ≤ 1.  

Thus, new position 𝑇⃗⃗𝑟𝑖  is calculated by adding previous 
position to updated particle velocity, resulting in the equation 
given below: 

𝑇⃗⃗𝑟𝑖 = 𝑋⃗𝑖(𝑡) + 𝑉⃗⃗𝑖(𝑡 + 1)            (21) 
 

 Depending on improved fitness value, particles are 
relocated to new position. Therefore, the objective function 
f(x⃗), the particle's relocation is performed as follows: 
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𝑋⃗𝑖(𝑡 + 1) = {
𝑇⃗⃗𝑟𝑖   

𝑋⃗𝑖(𝑡)

𝑖𝑓  𝑓(𝑇⃗⃗𝑟𝑖) ≤ 𝑓(𝑋⃗𝑖(𝑡))
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (22) 

 

Hence, updated velocity makes the particle move to another 
location that results in a better fitness value; otherwise, it 
remains only at its previous position. Unlike in traditional PSO, 
if a particle becomes stagnant, the random mutation operator 
integrated into the algorithm that shifts the particle to a new 
position, helping it avoid local minima and go forward to 
identify the search space more effectively.  

if ((𝑋⃗𝑖(𝑡) = 𝑋⃗𝑖(𝑡 + 1) = 𝑋⃗𝑖(𝑡 + 2) = ⋯ = 𝑋⃗𝑖(𝑡 + 𝑁)
    

then for 𝑟 = 1,2,3 … . , 𝑛 

𝑋𝑖𝑟(𝑡 + 𝑁 + 1) = 𝑋𝑚𝑖𝑛 +  𝑟𝑎𝑛𝑑𝑟(0,1)(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)     (23) 

f: fitness function, N: iterations’ number allowed for tolerating 
constancy and Xmax., Xmin., the upper and lower limits of the 
search space. 

 

D. Auto-tuned Particle Swarm Optimization and Differential 

Evolution (APSODE) 

A limitation of PSO is the tendency of particles to stagnate 
once they have prematurely converged to a particular region of 
the search space. On the other side, DE faces challenges such as 
weak local exploitation capability and slower convergence. To 
overcome these issues, the PSODE algorithm incorporates 
differential operator into PSO velocity update, enhancing both 
exploration and exploitation abilities. Here, differential operator 
is called to the position vectors of two particles selected at 
random from the population-members and not to the respective 
best positions. A particle is moved towards a new position 
because new position gives more fitness value.  But, auto-tuning 
particle swarm optimization with differentially perturbed 
velocity is an enhancement over PSODE algorithm. The 
APSODE’s main objective is to apply auto-tuned acceleration 
coefficient to adjust the location of particles to speed up the 
search of the global fitness value.  In this approach, the mutation 
operator from Differential Evolution is combined with the 
velocity component of PSO and created the APSODE algorithm.  
The steps involved in the APSODE algorithm are given below: 

Step 1: Initialization 

Preliminary population is generated arbitrarily and is 
represented as:  

piiii NiUUrandUU ,.....,1),(.() min,max,min,

0 =−+=  (24) 

rand () generates an equally divided number at random in 
between 0 to 1. It produces offspring arbitrarily.  In this phase, 
both control variables and their corresponding velocities are 
randomly generated within the permissible bounds. Besides, 
initialization of fitness values will be given greater importance. 

Step 2: Dynamic SIMULINK model is employed for evaluation 
purpose that leads to analysis and optimization. 

Step 3: Execute the process and examine individual’s fitness 
value. 

Step 4: Mutation operation 

Incorporate the mutation operator for velocity update stride of 
PSO. Two particles are chosen at random and the mutation 
operator is formulated below: 

𝛿𝑑 = 𝐹 (𝑈𝑘 − 𝑈𝑗),    𝑖 ≠ 𝑗 ≠ 𝑘        (25) 

Step 5: Crossover operation 

Recombination also called crossover is a procedure that seeks 
to strengthen past successes by producing offspring from 
current parent individuals. To further expand the range of 
offspring at the subsequent creation, the agitated offspring 

𝑈𝑖𝑗
(𝑡)

is produced from the current offspring 𝑋𝑖𝑗
(𝑡)

of by 

accumulation of the differentially agitated velocity to 𝑉𝑖
(𝑡)

. 

Recombination constant (CR) is employed for identifying 
whether newly produced offspring should be recombined. The 
velocity j for each parameter of the ith offspring is based on the 

altered velocity of the individual 𝑉𝑖
𝐺+1   , and the updated 

velocity of the offspring which is expressed as follows: 

𝑉𝑖𝑗
𝐺+1={

𝜔̅ 𝑉𝑖𝑗
𝐺 + 𝛿𝑑 +  𝐶2𝜑2(𝑃𝑔𝑖 −  𝑋𝑖𝑗

𝐺), 𝑖𝑓 𝑟𝑎𝑛𝑑 (0,1) < 𝐶𝑅 

 𝑉𝑖𝑗
𝐺 ,                                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                                                                                        (26) 

i=1,2...Np; j = 1, 2, n; n is number of parameters, C2 the 
acceleration coefficient,𝜑2 is the random number (0,1),𝜔̅  the 
weighting factor, and 𝛿𝑑is taken from eq. (26).  

Thus, the recombination crossover formula is given by: 

𝑈𝑖𝑗
(𝑡)

=  {
𝑉𝑖

(𝑡)
, 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅 𝑜𝑟 𝑗 =  𝑗𝑟𝑎𝑛𝑑

𝑋𝑖𝑗
(𝑡)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}      (27) 

Auto-Tuned acceleration coefficient C2 is shown in eq. (28): 

𝐶2 = (𝐶2𝑓 −  𝐶2𝑖)
𝑔𝑒𝑛

𝑔𝑒𝑛𝑚𝑎𝑥

+  𝐶2𝑖       (28) 

Where C2i, C2f, are derived acceleration constants.  

Weighting factor is expressed below: 

𝑤 =  𝑤𝑚𝑎𝑥 −  
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛 ) . 𝑔𝑒𝑛

𝑔𝑒𝑛𝑚𝑎𝑥

           (29) 

where, gen and genmax denote the current generation number 
and also maximum generation number respectively. 

A new trial position  𝑋𝑖
(𝑡+1)

for the particle is then generated by 

making an addition to the updated velocity to its previous 

position 𝑋𝑖
(𝑡)

: 

𝑋𝑖
(𝑡+1)

=  𝑋𝑖
(𝑡)

+ 𝑉𝑖
(𝑡+1)

                      (30) 

Step 6: Assessment and Assortment 

The fitness of each offspring is compared with that of its parent. 
If the offspring demonstrates better fitness, it replaces the 
parent in the next generation. However, if the offspring 
performs worse, the parent is retained. These two scenarios are 
represented as follows: 
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𝑋𝑖
(𝑡+1)

=  {
𝑈𝑖

(𝑡)
, 𝑖𝑓 𝑓(𝑈𝑖

(𝑡)
) < 𝑓(𝑋𝑖

(𝑡)
)

𝑋𝑖
(𝑡)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}       (31) 

𝑋𝑖
(𝑡+1)

= 𝑎𝑟𝑔   𝑚𝑖𝑛{𝑓(𝑋𝑖
(𝑡)

), 𝑓(𝑈𝑖
(𝑡)

}       (32) 

arg min is meant argument of minimum which is used because 
the fitness function, f = F, where F relates to objective function 
that requires minimization. 

Step 7: Repeat steps 2 to 6 up to the maximum generation 
quantity is reached. This algorithm evaluates fitness of each 
offspring for assessing its corresponding variables. An 
optimization process continues till the pre-defined generation 
numbers are arrived at successfully. The flowchart illustrating 
the suggested method is presented in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Flowchart of APSODE Algorithm 

 

V. RESULTS AND DISCUSSION 

The experimentation is carried out in the MATLAB 
environment, focusing on the problems of power disturbances 
such as sag, swell, and harmonics. The corresponding system 

response is depicted in Figure 6. As the nonlinear load generates 
current harmonics in the system, it is shown in Figure 6 (c). The 
DVR is inserted in the power transmission line, as shown in 
Figure 7. The utility power supply delivers a voltage of 415V at 
a frequency of 50Hz. Voltage swell conditions are simulated by 
introducing a sudden load change (Vl2) into the system using a 
circuit breaker, triggered at specific time interval i.e. voltage 
swell is at 0.2 sec. to 0.3 sec.. According to IEEE standards, the 
magnitude of the voltage is increased by 10% to simulate swell 
conditions. During 0.2 sec. – 0.3 sec. interval, the DVR 
immediately reacts suitably and operates in a relevant mode to 
counteract the conditions of voltage swell and restore pre-
disturbance conditions early. This is given in Figure 8. The 
proposed PSO, DE algorithms along with its hybrid models i.e. 
PSODE and APSODE are utilized to minimize voltage error, 
voltage harmonics and current harmonics. One of the key 
challenges of controlling voltage relates mainly to determine a 
suitable duty cycle. As the main objective of the study is to 
achieve effective voltage compensation during sag and swell 
conditions along with mitigating harmonic components in the 
source current, this section focuses on Total Harmonic 
Distortion (THD) analysis and the reduction of DC-link error. 

 

Fig. 6. (a) MATLAB/Simulink model showing a basic transmission line 
connected to non-linear load 

 

Fig. 6. (b). Source and load current waveforms of basic transmission line 
configuration having linear resistive load. 

 

Fig. 6. (c) Source current and load current abnormalities having non-linear 
load. 

Is the 

Terminating 
Criteria Satisfied 

Yes 

Exit 

No 

By estimation and selection, choose next generation  

Revise 

acceleration 
coefficient 

Select the individuals of the future generation 
by estimation and selection process 

Pertain mutation and crossover operations, Update particle 

velocity and position to find off springs 

Initialize the working process (variables, fitness values, velocities) 

 

Run the process to evaluate local and global fitness values 

Start evaluation process by calling Simulink Model 

Data read 

Start 
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Fig. 7. MATLAB/Simulink diagram depicting integration of DVR into the utility power system. 

 

 

Fig. 8. Functional Performance of DVR in the power utility system 

 

. 
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Fig. 9. THD analysis of source current with PI (trial and error) controlled 
DVR compensation 

Without controller, the DVR exhibits the source and load 
currents at THD of 22.29% with Fast Fourier Transform (FFT) 
analysis. This is shown in Figure 9. This analysis is mainly used 
to convert a signal from time-domain to frequency-domain 
which reveals the individual frequencies, amplitudes and phases 
of the signal.  

A. Algorithm Specifications 

 By implementing the proposed optimization-based control 
strategies, significant improvements in power quality and 
system stability are achieved. The specifications for 
implementation of the proposed algorithms are given: The 
population size is fixed at 10, and the iterations’ number is 100. 
The minimum values for the KP and KI parameters are set to 0, 
with the maximum values for KP1 and KP2 being 25, and for KI1 
and KI2 being 2. The maximum velocity for KP1 is calculated as 
KP1max/20, and similarly, the maximum velocity for KI1 is 
KI1max/20. The minimum velocities for KP1 and KI1 are the 
negative counterparts of their respective maximum velocities. 
The same calculations are applied to KP2 and KI2 also, with their 
velocities set similarly. For the algorithm, the acceleration 
constants C1 and C2 vary in such a way that C1 + C2 = 4.The 
optimal inertia (W) is constant and is obtained as follows in the 
PSO algorithm which varies according to the variability of 
iteration i.e. between 0 to 1.  

  𝑊 =
𝑚𝑖𝑛𝑖𝑡𝑒𝑟−𝑖𝑡𝑒𝑟

𝑚𝑖𝑛𝑖𝑡𝑒𝑟
          (33)  

Where, miniter: Total number of iterations considered and 
iter: current iteration. 

For DE algorithm, the CR and F are also in between 0 to 1 
as per the principles of DE and evolutionary computing. 

 

B. Performance Evaluation 

This section evaluates the voltage error and the Total 
Harmonic Distortion (THD) of the source current and the load 
voltage with the Dynamic Voltage Restorer (DVR) for different 
meta-heuristic algorithms. 

The multi-objective convergence values of fitness for 
sag/swell error and source current THD are minimized to 2.52% 
(average value after 10 runs) by using the PSO algorithm with 
the parameters: KP1 = 3.14, KI1 = 1.60, KP2 = 6.53, KI2 = 1.10, 
C1 = 3.0, and C2 = 1.0, adhering strictly to empirical relation C1 
+ C2 = 4. 

 

TABLE II.   CONVERGENCE OF CONTROL PARAMETERS (SAG/SWELL ERROR, 
SOURCE CURRENT THD) WITH DVR USING PSO  

C1 C2 KP1 KI1 KP2 KI2 IsTH

D (%) 

VsTH

D (%) 

VsERRO

R (%) 

3.

5 

0.

5 

11.5

1 

1.1

0 

15.5

5 

1.0

0 

25.62 0.2824 1.7089 

3.

0 

1.

0 

03.1

4 

1.6

0 

06.5

3 

1.1

0 

22.67 0.2519 1.5119 

2.

5 

1.

5 

12.1

5 

1.5

4 

06.0

9 

1.9

2 

24.94 0.2750 1.7505 

2.
0 

2.
0 

14.1
7 

1.2
2 

13.2
5 

1.8
1 

25.59 0.2832 1.7653 

1.

5 

2.

5 

02.5

1 

1.3

0 

09.5

5 

1.7

9 

25.57 0.2841 1.6891 

1.
0 

3.
0 

12.3
5 

1.8
0 

13.5
3 

1.2
0 

25.86 0.2851 1.6951 

0.

5 

3.

5 

15.5

3 

1.1

8 

11.6

4 

1.3

1 

25.95 0.2829 1.7029 

 

 

Fig. 10. Multi-objective convergence of fitness (source current THD, load 
voltage THD, and voltage sag error) using PSO Algorithm. 

The maximum values relating to PSO-tuned KP1, KI1, KP2, 
and KI2 are provided to the two PI controllers of DVR to evaluate 
the problems of power disturbances.  The performance of the 
DVR is assessed by observing voltage before compensation, the 
injected or absorbed voltages, and the voltage after 
compensation. The multi-objective convergence is presented in 
Table II and Figure 10. The DE algorithm is employed 
differently for undertaking the optimization process. Based on 
literature survey and test signal verification, the best-chosen 
values for CR are between 0.8 and 0.9, while F ranges from 0.5 
to 1.0. The series active power conditioner model is aimed at 
mitigating current harmonics, voltage harmonics and sag/swell 
error and is developed in MATLAB/Simulink environment. It is 
used in the DE algorithm for optimal tuning of PI controller 
gains. With the help of optimal tuned PI controller gains 
obtained, the relevant fitness convergence data are shown Table 
III and Figure 11. 

TABLE III.  CONVERGENCE OF CONTROL PARAMETERS (SAG/SWELL ERROR, 
SOURCE CURRENT THD) OF DVR USING DE 

C

R 

F KP1 KI1 KP2 KI2 IsTH

D (%) 

VsTH

D (%) 

VsERRO

R (%) 

0.9 0.5 14.5

5 

1.4

7 

13.1

2 

1.8

2 

26.00 0.2890 1.7339 

0.9 0.6 16.1
1 

1.9
7 

16.5
5 

1.5
7 

24.02 0.2665 1.6019 
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0.9 0.7 13.4

4 

1.5

1 

18.4

4 

1.5

1 

24.69 0.2745 1.6469 

0.9 0.8 12.1
2 

1.6
2 

15.1
1 

1.6
7 

24.65 0.2740 1.6439 

0.9 0.9 10.3

5 

1.0

9 

11.5

5 

1.3

5 

26.40 0.2935 1.7609 

0.9 1.0 14.5

6 

1.5

6 

12.3

6 

1.4

0 

21.81 0.2440 1.4520 

 

 

Fig. 11. Multi-objective convergence of fitness (source current THD, load 
voltage THD, and voltage sag error) using DE Algorithm. 

The multi-objective convergence fitness value – accounting 
for sag/swell error and source current THD - was minimized to 
2.423% (average value over 10 simulation runs) using the DE 
algorithm. The optimization was achieved for controller gains of 
KP1 = 14.56, KI1 = 1.56, KP2 = 12.36, and KI2 = 1.40, with the 
crossover rate (CR) set at 0.9 and the mutation factor (F) at 1.0. 
These values were determined after extensive evaluation of CR 
and F settings. 

The optimal DE-tuned parameters of the DVR are applied to 
the PI controllers to evaluate power quality improvement. 
Specifically, the DVR’s performance was assessed in terms of 
the voltage behaviour before, during and after compensation. 

To rectify the inherent drawbacks of PSO and DE 
algorithms, a hybrid model i.e. PSODE was developed. This 
new method integrates the differential operator from DE into the 
velocity update of PSO. The PSODE algorithm improves local 
search capability and mitigates the stagnation issues associated 
with PSO. It is observed that this algorithm has not yielded same 
result for every run. Hence, it is followed to run a good number 
of times to find the average value. After running for 10 times, 
the fitness values at the respective adapted acceleration 
coefficients are presented. The fitness value is presented at 
C1=3.0 and C2 =1.0 which is the respective global best. The 
same coefficients are also deployed in the proposed algorithms 
(PSODE and APSODE) when required. The acceleration 
coefficients in the PSODE algorithm are selected such that C1 + 
C2 = 4, while the mutation constant (F) is randomized within the 
range of 0 to 1. Based on insights from the literature, the most 
effective values of CR are typically between 0.8 and 0.9, and F 
between 0.5 and 1.0.  The PSODE algorithm aims at adjusting 
optimally the PI controller gains, enhancing DVR’s 
performance. The resulting convergence of the multi-objective 

fitness function, following optimal tuning, is illustrated in Table 
IV and Fig. 12. 

TABLE IV.  CONVERGENCE OF CONTROL PARAMETERS OF FITNESS (VOLTAGE 

SAG/SWELL ERROR, SOURCE CURRENT THD) WITH DVR OF APSODE 

C1 ,C2 as 
3.0 & 1.0 

KP1 KI1 KP2 KI2 
IsTHD 

(%) 

VsTHD 

(%) 
VsERROR(%) 

CR F 

0.9 0.5 16.44 1.64 15.
24 

1.37 24.38 0.2710 1.6259 

0.9 0.6 15.45 1.83 12.
25 

1.40 26.54 0.2945 1.7699 

0.9 0.7 13.51 1.25 16.
90 

1.54 26.36 0.2930 1.7579 

0.9 0.8 12.50 1.34 12.
14 

1.74 22.94 0.2545 1.5299 

0.9 0.9 14.688 1.10 16.
421 

1.36 21.42 0.2410 1.4430 

0.9 1.0 17.64 1.68 11.
14 

1.97 22.40 0.2490 1.4939 

 

 

Fig. 12. Multi-objective convergence of fitness (source current THD, load 
voltage THD, and voltage sag error) using PSODE. 

The multi-objective fitness value- accounting for sag/swell 
error and source current THD – was minimized to 2.398% 
(average over 10 simulations) using the PSODE algorithm. This 
optimal result was achieved with PI controller gains set to KP1 = 
14.68, KI1 = 1.10, KP2 = 16.42, and KI2 = 1.36, using C1 = 3.0 
and C2 = 1.0 in line with C1 + C2 = 4, along with a crossover rate 
(CR) of 0.9 and a randomized mutation factor (F). The PSODE 
algorithm integrates the velocity vector concept of PSO with DE 
operators effectively and thus enhances global search and 
escapes trapping from local minima.The optimized PI controller 
gains derived from PSODE are applied to CLMF-based DVR 
framework to assess the system’s power quality under power 
disturbances and the corresponding functional performance of 
the DVR is evaluated.  It is observed from the analysis that to 
enhance the rate of convergence further and to intensify the 
ability to update inertial weight vector and to escape local 
minima problem, an Auto-tuned PSODE (APSODE) is 
developed.  
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TABLE V.    CONVERGENCE OF CONTROL PARAMETERS OF FITNESS 

(VOLTAGE SAG/SWELL ERROR, SOURCE CURRENT THD) WITH DVR OF PSODE 

C1, C2 as  

3.0 & 1.0 KP1 KI1 KP2 KI2 
IsTHD 

(%) 

VsTHD 

(%) 

VsERROR 

(%) 

CR F 

0.9 0.5 15.68 1.27 13.24 1.07 26.54 0.2945 1.76 

0.9 0.6 14.62 1.55 12.25 1.10 23.39 0.2595 1.55 

0.9 0.7 13.27 1.51 15.90 1.64 21.824 0.2420 1.454 

0.9 0.8 12.95 1.68 14.14 1.74 23.39 0.2595 1.55 

0.9 0.9 16.98 1.89 16.421 1.26 21.33 0.2420 1.44 

0.9 1.0 14.25 1.73 17.14 1.37 22.85 0.2535 1.523 

 

 

Fig. 13. Multi-objective convergence of fitness (source current THD, load 
voltage THD, and voltage sag error) using the APSODE Algorithm. 

This study tries to reduce the problems of power 
disturbances such as source current harmonics, load voltage 
harmonics, and sags with the help of implementing a 
MATLAB/Simulink model in conformity with APSODE 
optimization algorithm. The APSODE technique is used 
automatically to fine-tune the PI controller gains for improved 
system performance. The resulting convergence patterns of the 
optimization process are presented in Table V and illustrated in 
Figure 13. After organizing ten independent runs, the algorithm 
successfully minimized the combined fitness value based on 
sag/swell error and source current THD to 2.393%. This optimal 
performance was obtained with controller parameters set at KP1 
= 16.98, KI1 = 1.89, KP2 = 16.42, and KI2 = 1.26. The best-
performing configuration used acceleration coefficients C1 = 3.0 
and C2 = 1.0, a crossover rate CR = 0.9, and a randomized 
mutation factor F.By combining the adaptive velocity strategy 
of PSO with the differential mutation process of DE, the 
APSODE algorithm effectively avoids issues such as premature 
convergence, getting trapped in local optima, and slow search 
progress—making it a powerful tool for controller tuning in 
DVR-based power quality improvement. 

C. Comparative Analysis 

The better convergence illustrations with PSO, DE, PSODE, 
APSODE algorithms for their better acceleration coefficients are 
illustrated in Fig.14. The objective function is optimized for 100 
iterations. 

 

Fig. 14. Comparison of fitness convergence illustrations with PSO, DE, 
PSODE, APSODE algorithms 

 

TABLE VI.     PI CONTROLLER GAINS IN DVR WITH PSO, DE, PSODE, APSODE 

ALGORITHMS FOR THE BEST RUN 

Parameter 
Variable 

PSO DE PSODE APSODE 

Kp1 03.14 14.56 14.688 16.98 

KI1 1.60 1.56 1.10 1.89 

Kp2 06.53 12.36 16.421 16.421 

KI2 1.10 1.40 1.36 1.26 

Table VI shows the control parameters corresponding to the 
best-performing run that are based on the fitness function. These 
are compared with different techniques which include the 
conventional PI controller and the evolutionary algorithms i.e. 
PSO, DE, PSODE, and APSODE. This comparison highlights 
the effectiveness of each method in tuning the PI controller gains 
for enhanced performance in mitigating power quality issues. 

 

Fig. 15. Comparison of Capacitor link voltage in DVR with PSO, DE, 
PSODE, APSODE Algorithms 

Figure 15 also indicates the response relating to DC link 
capacitor during sag/swell compensation which highlights 
specifically the performance of PI controller with PSO, DE, 
PSODE and APSODE algorithms. 
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TABLE VII.   COMPARATIVE ANALYSIS OF DVR’S PERFORMANCE USING PI 

CONTROLLER (TRIAL AND ERROR) WITH PSO, DE, PSODE, APSODE 

ALGORITHMS 

Parameter 
Variable 

IsTHD(%) VsERROR(V) 
VDC (Reduced Rating) 

rating 

PI 22.29 16.852 95.832 

PSO 22.67 0.2519 160.79 

DE 21.81 0.2440 165.80 

PSODE 21.42 0.2410 169.60 

APSODE 21.33 0.2420 171.56 

 

Table VII and Figure 16 give performance of DVR with PI 
controller in PSO, DE, PSODE, APSODE algorithms after 
complete evaluation and study of the variation of acceleration 
coefficients and other parameters and are within IEEE Std 19-
2022 [28] for harmonic limits for power quality.  IEEE 519 sets 
limits for users at the Point of Common Coupling, the place 
where electrical system connects to the utility grid. This physical 
location serves as a critical interface for assessing correctly the 
power quality. Hence, at this point, limits on voltage harmonics 
are usually stricter and a total harmonic distortion (THD) of 5% 
is fixed rigorously. The limit for current harmonics, however, 
depends on how strong the systems short-circuit is. Meanwhile 
IEC standards, such as IEC 61000-3-2, also set rules for 
harmonics produced by specific equipment individually. These 
standards control the amount of current distortion allowed from 
devices that have a rated current of 16A or less, which are 
connected mainly to the low-voltage grid. 

 

 

Fig. 16. Performance of DVR with PI controller in PSO, DE, PSODE, APSODE 
algorithms. 

 

VI. SUPERIORITY AND REAL-TIME ADAPTABILITY 

It is observed that the APSODE algorithm has the adequate 
mechanism to tune the acceleration coefficients automatically.  
In addition, the hybrid approach of this algorithm has also the 
capacity for real-time adaptability.  It results in better 
convergence over other traditional algorithms of DVR control.  
As such, this algorithm ensures better voltage compensation 

under changing power conditions in an overall perspective.  
Table VIII has given the comparative results of all the 
algorithms to prove the superiority of APSODE over other 
algorithms in relation to total harmonic distortion, voltage error 
and time taken for compensation.  

TABLE VIII. COMPARISON BETWEEN APSODE AND OTHER METHODS 

Method 
IsTHD 
(%) 

VsERROR 
(%) 

Time taken 
for 
compensation 
(ms.) 

Features 

APSODE 21.33 0.242 0.10 

Speedy 
convergence and 
adaptability to 
optimization 

PSODE 21.42 0.241 0.12 
Velocity 
mutation control 
strategy 

Fuzzy 
Logic 

23.15 0.289 0.20 
Suitability to 
non-linear loads 

DRL-
DVR 

21.25 0.240 0.15 
Self-learning and 
needs training 
time 

CNN-
based 
Control 

22.56 0.278 0.18 
Computationally 
heavier 

 

The proposed APSODE algorithm introduces auto-tuned 
acceleration coefficients and hybrid velocity mutation 
mechanisms, offering real-time adaptability and improved 
convergence over traditional methods, thereby ensuring strong 
voltage compensation under dynamic power quality conditions. 
This comparison highlights the significance of the APSODE 
algorithm out of all the control algorithms considered in the 
analysis. This algorithm is considered a highly competitive one 
that combines strong performance with rapid convergence and 
reduced time taken for compensation. 

TABLE IX. FITNESS VARIATION (VSERROR, VDC AND THD) OF DVR WITH 

PSO, DE, PSODE, APSODE 

Number of   
Iterations 

Population Deviation of fitness, on an average, for 
10 runs each 

100 10 PSO DE PSODE APSODE 

0.18 0.15 0.08 0.04 

 

To establish the authenticity and dependability of the results 
given in Table IX, an analysis has also been made statistically. 
The results of the statistical analysis are given in Table X. 
ANOVA test is organized to assess the significance of the 
differences in the results. The mean and standard deviation of 
the total harmonic distortion (THD) and voltage error for each 
algorithm are calculated to determine the importance of the 
algorithm. The test says that the differences in both IsTHD and 
voltage error of the optimization algorithms are found 
statistically significant (p < 0.05), indicating that APSODE’s 
improvements are not due to chance but reflect true performance 
gains. 
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TABLE X. STATISTICAL ANALYSIS OF OPTIMIZATION ALGORITHMS 

Algorithm 
Mean 
IsTHD 

(%) 

Standard 
Deviation 

Mean 
VsERROR 

(%) 

Standard 
Deviation 

PSO 22.67 0.24 0.2519 0.0051 

DE 21.81 0.21 0.2440 0.0043 

PSODE 21.42 0.15 0.2410 0.0036 

APSODE 21.33 0.11 0.2420 0.0032 

 

The comparative analysis of the different algorithms, 
parameter-wise, for DVR’s control is shown in Table XI. It 
shows clearly that the APSODE has an auto-tuned characteristic 
during conditions of deviations from a steady-state and hence, 
due to its special feature, it showed relatively better performance 
over other algorithms with regard to DVR, especially, for 
enhanced power quality. 

 

TABLE XI. COMPARATIVE SUMMARY OF ALGORITHM PARAMETERS FOR DVR CONTROL (PSO, DE, PSODE, APSODE) 

Algorithm C1 C2 CR F KP1 KI1 KP2 KI2 
Population 

Size 
Iterations Software/Hardware Details 

PSO 3.0 1.0 (C1+C2=4) – – 3.14 1.60 6.53 1.10 10 100 
MATLAB/Simulink R2023a, Intel i7, 16 GB 
RAM, Win10 

DE – – 0.9 1.0 14.56 1.56 12.36 1.40 10 100 
MATLAB/Simulink R2023a, Intel i7, 16 GB 
RAM, Win10 

PSODE 3.0 1.0 (C1+C2=4) 0.9 0.9–1.0 14.688 1.10 16.421 1.36 10 100 
MATLAB/Simulink R2023a, Intel i7, 16 GB 
RAM, Win10 

APSODE 
3.0 (auto-

tuned) 
1.0 (auto-

tuned) 
0.9 0.9–1.0 16.98 1.89 16.421 1.26 10 100 

MATLAB/Simulink R2023a, Intel i7, 16 GB 
RAM, Win10 

The performance of each optimization algorithm regarding 
average runtime, function evaluations and real-time adaptability 
is also presented in Table XII. The average execution time per 
optimization run and the number of function evaluations 
required are examined. 

TABLE XII. COMPUTATIONAL TIME, FUNCTION EVALUATIONS AND REAL-
TIME ADAPTABILITY 

Optimization 
Algorithm 

Average 
Runtime 

(sec.) 

Function 
Evaluations 

Real-Time 
Adaptability 

PSO 12.4 1000 
Adaptable with 

tuning 

DE 10.8 1000 Yes 

PSODE 14.6 1000 
Marginally 
adaptable 

APSODE 11.7 1000 Yes 

 

The APSODE algorithm, while incorporating additional 
logic for velocity perturbation, maintains acceptable 
computational complexity. Though the algorithm attracts 
slightly computational complexity, it ensures faster convergence 
i.e. 11.7 seconds. Even with velocity perturbation also, the 
algorithm is suitable for real-time adaptability when using real-
time processors or embedded systems. However, current 
validation is limited to only the present simulations.  Future 
work should implement APSODE on hardware even to validate 
performance under practical conditions. Further, it enhances 
incremental tuning capability and introduces practices of 
integrating dynamically the adjusted acceleration coefficients 
with perturbed velocities. The mechanism escapes clearly from 

early trapping into local optima and results in speedy 
convergence with global optima. 

VII. CONCLUSION 

Power quality problems, including voltage fluctuations, 
voltage harmonics and current harmonics pose greater 
challenges to the reliability and efficiency of contemporary 
power systems. Addressing these challenges requires advanced 
control strategies that enhance the performance of mitigation 
devices like the DVR. This study introduced an innovative 
approach by integrating CLMF algorithm with various 
optimization techniques like PSO, DE, a hybrid PSODE and 
APSODE. The CLMF algorithm effectively mitigated voltage 
distortions, while the optimization techniques refined the control 
parameters of the DVR, ensuring improved performance under 
dynamic operating conditions. Extensive MATLAB-based 
simulations demonstrated that the proposed methodology 
significantly enhanced voltage restoration, minimized total 
harmonic distortion (THD) and improved dynamic response 
times compared to conventional approaches. Among the 
optimization algorithms employed, APSODE algorithm 
exhibited superior performance by dynamically adjusting the 
control parameters to achieve faster convergence and better 
voltage compensation. The comparative analysis emphasized 
the advantages of integrating deep learning-based adaptation 
with meta-heuristic optimization techniques, offering a better 
and adaptable solution for power quality improvement. This 
contribution is novel in DVR optimization literature, 
establishing APSODE as a strong   base for real-time power 
quality enhancement in modern power system. The potential of 
hybrid optimization algorithms in improving DVR’s 
functionality is also highlighted. Future work may harness in 
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real-time implementation and the extension of the algorithm to 
other power systems like micro-grids, distributed generation and 
renewable energy integration. 

Declarations: Ethical Approval: Not applicable. This study 

does not involve any human or animal subjects. 

Data Availability: The MATLAB/Simulink models and 

optimization scripts used in this study are available from the 

corresponding author up 
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