
 

 

Vol. 06, No. 02, pp. 277 –289 (2025) 
ISSN: 2708-0757 

 

JOURNAL OF APPLIED SCIENCE AND TECHNOLOGY TRENDS 
 

www.jastt.org  

 

                    277 
doi: 10.38094/jastt62304  

 

A Hybrid CBIR Framework Using Vision Transformers and 

Genetic Algorithm for Enhanced Image Retrieval 

 

 

P. Deekshita1, Vandana Bonu2, Areman Ramyasri3 , Vaddadi Vasudha Rani 2 , Bodduru Keerthana4* , Nagarjuna 

Karyemsetty5 

1Department of Artificial Intelligence and Data Science, Vignan's Institute of Information Technology(A), Visakhapatnam,  

Andhra Pradesh, India, deekshitaputta17@gmail.com  
2Department of Information Technology, GMR Institute of Technology(A), Rajam, Andhra Pradesh, India, 

vandanabonu4@gmail.com, vasudharani.v@gmrit.edu.in  
3Department of Humanities and Management, G. Narayanamma Institute of technology and Sciences (for women),  

Hyderabad, Telangana, India, ramyasrir888@gnits.ac.in   
4Department of Information Technology, Anil Neerukonda Institute of Technology and Sciences(A), Sangivalasa, Visakhapatnam, 

Andhra Pradesh, India, keerthana.it@anits.edu.in  
5Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur,  

Andhra Pradesh, India, nagarjunak@kluniversity.in  
 

*Corresponding: keerthana.it@anits.edu.in  

 

Abstract 

Content-Based Image Retrieval (CBIR) is an essential tool for arranging and acquiring visual content from large-scale image databases. 

This research presents a robust hybrid CBIR structure that combines transformer-based deep feature extraction with Genetic Algorithm 

(GA) optimization to significantly improve retrieval accuracy and efficiency. The proposed system introduces Vision Transformers (ViT) 

to efficiently capture intricate, global visual figures over the distinctive image categories, supporting both single and multi-object image 

retrieval scenarios. By influencing the long-range dependency modelling abilities of transformers, the system extracts highly different 

feature representations. These elements are further optimized with the help of Genetic Algorithm, a powerful adaptive technique that 

efficiently enhances feature selection and matching through iterative selection, crossover, and mutation processes. Comprehensive 

experiments were performed on the Corel 1K benchmark dataset illustrates the proposed hybrid model surpasses conventional CBIR 

model in terms of precision, recall, accuracy, and F1-score. The system achieves a retrieval accuracy of 99.38%, an F1-score of 95.12%, 

and a reduced error rate of 0.62%, showcasing its superior retrieval performance and computational efficiency. The results highlight the 

potential of integrating transformer-based deep learning with evolutionary optimization in advancing modern CBIR systems. 
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I. INTRODUCTION  

The intensive growth of digital visual information over the 
domains like social media, surveillance, medical imaging, and 
satellite data have created a critical need for intelligent systems 
that can retrieve images quickly, efficiently, and accurately. 
CBIR has appeared as a key content, focusing on acquiring 
images based on their intrinsic visual features rather than relying 
on textual metadata.  

Although significant breakthroughs, existing CBIR systems 
are  facing significant challenges: 

• Managing high-dimensional feature spaces 

• It creates a bridge to addresses the semantic gap 

between low – level image features and high -level 

human perceptions. 

• Ensuring scalability when handling large-scale 

datasets. 

CBIR has revolutionized image search and retrieval in 
critical fields such as medical diagnostics, remote sensing, and 
multimedia applications. The exponential growth of digital 
image collections in these industries necessitates the 
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development of more effective retrieval strategies that directly 
analyse visual content, as older text-based image retrieval 
systems are impractical due to their dependence on manual 
annotations. In the past, CBIR systems mostly used simple 
visual features like colour, texture, and shape. These studies set 
significant criteria by testing recall, response time, and accuracy 
with different combinations of features. But these traditional 
methods often didn't work well for finding complex semantic 
relationships in images. Even though combining different types 
of features made retrieval work better, it was still slow and 
inefficient. 

As deep learning got better, researchers started using more 
advanced ways to extract features. But deep features often lead 
to high-dimensional representations that may have extra or 
insufficient data, which makes computations take longer and 
makes it harder to find suitable information. Feature selection 
and reduction in dimensionality methods are important for 
improving feature vectors in order to solve these problems. 
Meta-heuristic optimization algorithms have shown a lot of 
potential in solving these problems by quickly finding their way 
through large, complicated search spaces. 

In this work, we suggest a new hybrid CBIR framework that 

integrates: 

• Transformer-Based Deep Feature Extraction: Using 
Vision Transformers (ViT) to find complicated global 
relationships and semantic patterns in a wide range of 
image categories. 

• Genetic Algorithm (GA) Optimization: Using an 
efficient evolutionary algorithm to choose the most 
useful feature subsets, reduce duplication, and improve 
retrieval accuracy. 

By refining deep feature vectors through an intelligent 
evolutionary process, the proposed framework gets around the 
problems with high-dimensional raw deep features and 
improves both retrieval accuracy and computational efficiency. 
The current issues in CBIR are generating a lot of study in hybrid 
methods that integrate optimization algorithms with deep 
learning. The goal of these techniques is to find an equilibrium 
between deep networks' outstanding representational abilities 
and the requirement for small, meaningful feature spaces that 
enable precise and rapid retrieval. To improve retrieval speed 
without adding processing effort, features can be intelligently 
selected and refined. When dealing with massive datasets, 
striking this balance is absolutely essential for ensuring both 
system responsiveness and accuracy. 

The applications of Vision Transformers (ViT) in visual 
retrieval are particularly effective since they are able to detect 
global frameworks and long-range dependencies that ordinary 
Convolutional Neural Networks (CNNs) could lack.  Through 
improved understanding of the image's content, ViTs allow 
users to bridge the semantic gap between visual features and 
their expectations.  The high-dimensional feature 
representations created through ViTs, however, necessitate 
careful augmentation and selection before they can be applied 
practically in massive databases. 

To accomplish this, the Genetic Algorithm (GA) is a potent 
instrument for feature selection; it replicates natural selection 
mechanisms to find the most helpful characteristics and get rid 
of those that are not needed.  This improves the accuracy and 
speed of retrieval while simultaneously reducing the 
computational complexity. By merging the ViT's deep feature 
extraction capabilities with the GA's optimization power, the 
suggested hybrid CBIR framework offers a robust, scalable, and 
intelligent resolution to modern visual retrieval problems in a 
wide range of complicated domains. 

It has become vital to develop systems capable of handling 
the varied and growing diversity of visual data due to the 
increasing importance of accurate and efficient information 
retrieval in sectors such as healthcare, security, and e-commerce. 
The capacity to quickly recall identical conditions, for example, 
can help doctors make more accurate and timely diagnoses in 
medical diagnostics. Combining appropriate images from 
massive video feeds helps improve surveillance threat detection 
and reaction times. Similarly, efficient image retrieval improves 
the online shopping experience by recommending items that 
appear visually similar. These practical applications show how 
crucial CBIR systems are for efficient processing, adaptability, 
and reliable retrieval.   Conventional methods will always fall 
short of meeting these immediate requirements in real time when 
confronted with dynamic and ever-expanding datasets. In order 
to better meet the needs of modern data-driven organizations, 
the proposed hybrid framework integrates evolutionary 
algorithms for feature selection with transformer-based designs 
for rich feature extraction. Improving the responsiveness, 
adaptability, and performance of the CBIR system is the main 
objective. 

II. LITERATURE SURVEY 

An important field called CBIR looks for images in big 
multimedia databases based on their visual content rather than 
just their text. The authors [1] explore CBIR using three machine 
learning methods: Support Vector Machine (SVM), K-Nearest 
Neighbours (KNN), and Convolutional Neural Networks 
(CNN). The study uses the Corel image databases (with 1K, 5K, 
and 10K images) and splits the data into 80% for training and 
20% for testing. The main goal is to compare how accurate and 
efficient each method is at retrieving the correct images. The 
final outcomes provides insight into which techniques like deep 
learning, KNN, or CNN is the most effective for image retrieval 
tasks. 

With the increasing popularity of the internet and digital 
devices, CBIR has developed rapidly and is now widely used in 
domains such as computer vision and artificial intelligence. We 
can quickly find related visuals from massive archives using 
only an input image and CBIR [2]. In an effort to make this 
process more accurate and efficient, several new CBIR models 
and methodologies have been developed in the past decade. 
Previously, CBIR would compare retrieve and analyse visuals 
based on attributes like as shape, texture, and colour that were 
manually created. However, new innovations are making their 
way into deep learning, a discipline that can both automatically 
and manually extract useful information from images. A 
structured overview of different retrieval strategy, classification 
types, and feature descriptors is provided, along with a review 
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of the most recent advances in CBIR and an explanation of 
modern approaches. 

The primary goal of this research is to help computers 
efficiently search through extensive collections for images that 
match a user's search criteria [3]. Conventional systems that rely 
on labels or precisely matching pixels don't work well because 
visuals can vary widely in patterns, storage, and angles. On the 
other hand, CBIR looks at image characteristics to find similar 
ones more quickly. The researchers combined machine learning 
and deep learning techniques to develop a novel CBIR system. 
They use two pre-trained deep learning models to extract the 
most information from images: ResNet50 and VGG16. A 
machine learning model called K-Nearest Neighbours (KNN) 
then compares these characteristics and finds the images that are 
most similar to one another using the Euclidean distance as a 
distance metric. They also created a simple web interface to 
display the results. Their method performed admirably with 
perfect accuracy (i.e., finding matching photos). Digital 
libraries, historical research, fingerprint matching, and criminal 
prevention are just a few of the uses for this novel strategy. It 
performs better than previous approaches. 

A deep learning-based CBIR system is proposed in this 
study [4] to make it easier to analyse complex multi-spectral 
healthcare images, particularly chest X-rays. Numerous 
sophisticated neural networks, such as Xception, VGG-16, and 
VGG-19, were refined and put to the test. The system employs 
feature extraction for image retrieval after classifying images to 
assess model performance. Using a chest X-ray dataset 
containing COVID-19, pneumonia, and normal cases, VGG-16 
was attain 99% accuracy and 94.34% MAP in its tests. Its 86% 
mean precision was impressive even when applied to photos 
with rotational variations. 

To improve the Content-based medical image retrieval 
(CBMIR) the authors tests 8 different categories of 2D and 3D 
medical images that compares conventional CNN-based 
approaches with improved foundation models [5]. On 2D 
datasets, foundation models, particularly the UNI model, deliver 
best performance than standard CNNs. However, on 3D 
datasets, both methods gives comparative results, with the 
CONCH model got the best performance. The study also 
highlights that while larger images generally improve retrieval 
accuracy, smaller images can still provide satisfactory results. 

Hexagonal Local Binary Pattern (HLBP) is a new texture 
extraction technique for CBIR that is showed in this study [6]. 
HLBP offers more concise and informative features than 
conventional techniques, which result in longer feature vectors 
and reduced accuracy. To increase robustness, it makes use of 
rotation-invariant patterns derived from cyclic set theories. Five 
image datasets were used for testing, and HLBP performed 
better than the conventional Square Local Binary Pattern 
(SLBP), particularly in noisy images. Its shorter feature vector 
length of 64 allowed for faster retrieval. When compared to 
other approaches, the method produced the highest precision and 
the best results on texture datasets. 

The weaknesses of leveraging single-feature extraction 
techniques, which might not be effective for all image types, are 
addressed by this study's proposed enhanced CBIR system[7]. A 

two-stage retrieval approach is employed by the suggested 
system: a broad (coarse) search is conducted in the first stage, 
and the search is then refined using various features in the 
second stage. Tested on common benchmark datasets, the 
system outperformed current approaches in terms of efficiency, 
and both graphical and numerical analysis validated the results. 

To expedite content-based video retrieval (CBVR), the 
research [8] introduces a refined Chio-like technique for 
computing non-square determinants. The new method is faster 
in practice because it reduces the determinant size by four orders 
simultaneously, as opposed to the old method, which reduces it 
step by step. According to MATLAB benchmarks, it 
outperforms the standard Chio-like technique by approximately 
24.5% and its modified version by 3.2%. The necessity for fast 
and precise similarity checks in large-scale or real-time video 
retrieval systems is greatly enhanced by its efficiency. 

The goal of this study is CBIR, which compares visual 
characteristics such as shape, texture, and colour to retrieve 
images that are similar to a query image from massive 
multimedia databases [9]. The semantic gap—the discrepancy 
between low-level image features and human comprehension—
is a significant obstacle in CBIR. The study emphasizes that 
machine learning, particularly the latest developments in deep 
learning (DL), presents viable ways to close this gap. It offers an 
overview of the advancements made in CBIR over the previous 
six years utilizing deep learning techniques. 

From  the above detailed earlier systems relied on 
handcrafted features and machine learning classifiers such as 
SVM and KNN, but these approaches were limited in robustness 
and scalability. With the advent of deep learning, CNN-based 
CBIR methods (ResNet, VGG, Xception) achieved higher 
accuracy but produced high-dimensional feature vectors, 
leading to storage and efficiency challenges. More recently, 
domain-specific systems, such as medical CBIR frameworks, 
demonstrated strong performance on specialized datasets but 
lacked generalizability. Novel texture-based descriptors like 
Hexagonal LBP improved robustness on noisy images but 
remained narrow in scope. Hybrid and multi-stage approaches 
attempted to combine multiple features for broader coverage but 
often increased computational cost. The latest advances—
transformers, self-supervised ViTs, and foundation models—
help to close the semantic gap by learning global semantic 
representations, but they still suffer from redundancy, scalability 
issues, and high memory requirements. 

From this review, we identified the following gaps in the 
literature: 

• persistence of the semantic gap 

• high-dimensional redundant features leading to 
storage/retrieval inefficiency 

• scalability challenges for large-scale databases, 

• limited generalization of domain-specific or single-
feature methods, and 

• high computational cost of hybrid systems. 
Our proposed ViT+GA hybrid framework addresses these 

gaps by combining Vision Transformers (for global semantic 
feature extraction) with Genetic Algorithm-based feature 
optimization (for dimensionality reduction, efficiency, and 
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robustness), thereby providing a balanced solution for both 
accuracy and scalability. 

III. METHODOLOGY 

In this work, we explore a hybrid CBIR system that 
combines the strengths of two effective techniques: Vision 
Transformers (ViT) for extracting deep visual features and the 
Genetic Algorithm (GA) for selecting the most important 
features along with preprocessing. The primary goal of this 
framework is to increase the accuracy and speed of image 
retrieval by making sure we use the most meaningful features 
while removing any outliers or unnecessary features that could 
slow down the system[10]. 

A. Dataset:  

Experiments are conducted on the Corel 1K dataset, which 
contains 1000 images categorized into 10 classes names as 
Beaches, Bus, Dinosaurs, Elephants, Flowers, Food, Horses, 
Monuments, Mountains and glaciers, Africa people. The below 
Fig.1 shows the samples images of each class in Core1k dataset. 
The dataset represents a balanced set of diverse image categories 
suitable for evaluating CBIR systems. Experiments are also 
conducted on datasets like 5,062 images of Oxford landmarks, 
6,412 images of Paris landmarks, 60,000 images across 10 
object categories, CIFAR-10 and 60,000 images from 100 fine-
grained categories. 

 

Fig. 1. Sample Dataset Representation 

B. Pre-Processing of the Raw Image Data 

Pre-processing is a basic procedure in any CBIR system, 
particularly when we use deep learning architectures such as the 
Vision Transformer (ViT). In our research, the primary motive 
is to minimize feature extraction and similarity matching by 
ensuring that the input images are consistently and appropriately 
prepared before being fed into the feature extraction and 
optimization pipeline. The following steps outline the pre-
processing strategy adopted in this work. 

• Image Resizing to 224×224 Pixels: All input images are 
resized to a fixed spatial   resolution of 224x224 pixels. 
This resizing serves multiple purposes:  

o It ensures uniformity in input dimensions, which is 

a prerequisite for transformer-based architectures 

such as ViT that expect a consistent input size. 

o It enables batch processing during inference, which 

is computationally more efficient. 

o While resizing may lead to minor distortion, it is a 

necessary trade-off to make the data compatible 

with pre-trained ViT models, which are typically 

trained on ImageNet with this resolution. 

• Pixel Value Normalization: After resizing, pixel values 
of the images are normalized to meet the input 
requirements of the Vision Transformer model: 

o Pixel intensities are scaled to a range of [0, 1] by 

dividing by 255 if the raw values are in 8-bit format. 

o Further, mean and standard deviation 

normalization is applied based on the original 

training configuration of the pre-trained ViT model 

(e.g., using ImageNet statistics: mean = [0.485, 

0.456, 0.406], std = [0.229, 0.224, 0.225]). 

o This normalization centres data distribution and 

accelerates convergence while preserving the 

relative colour and texture features critical for 

effective representation learning. 
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• No Data Augmentation during Feature Extraction: In 
traditional computer vision tasks, data augmentation is 
used to increase dataset variability and improve model 
generalization. However, in the context of CBIR, the 
goal is not to generalize but to extract consistent and 
discriminative features from the original image content. 
Therefore: 

o No additional data augmentation (such as flipping, 

cropping, or rotation) is applied during the feature 

extraction phase. 

o This ensures that the extracted features are 

representative of the true image content, thereby 

improving retrieval accuracy and consistency 

across queries. 

C. Vision Transformer-Based Feature Extraction 

The Vision Transformer (ViT) is a deep learning model that 
has recently gained popularity because of its ability to capture 
global image relationships much better than traditional methods 
like Convolutional Neural Networks (CNNs) [11][12]. While 
CNNs focus mainly on small parts of the image at a time (called 
local features), Vision Transformers look at the entire image and 
understand how different regions relate to each other. 

 

 

 
Fig. 2. Architecture of Vision Transformer in CBIR Image Retrieval 

Here’s how the ViT works in this system shown in Fig.2: 

• First, every input image is resized to a fixed size, usually 
224 x 224 pixels, to keep the input consistent. 

• Then, the image is divided into small square patches, for 
example, 16 x 16 pixels per patch. Each patch is treated 
like a separate piece of the image. 

• These image patches are then flattened and passed into 
the transformer as a sequence, similar to how words are 
fed into natural language models. 

• Each patch is assigned a positional embedding, which 
helps the model remember where each patch was located 
in the original image. 

• These sequences of patches and positions are then 
processed by multiple self-attention layers (MSA) 

•  in the transformer. This self-attention mechanism helps 
the model understand which parts of the image are most 
connected to each other, even if they are far apart. 

• Finally, the model outputs a feature vector that represents 
the entire image in a rich, high-level form. Specifically, 
we use the vector linked to the special classification 
token ([CLS]) because it summarizes the entire image’s 
content. 

The result of this process is a detailed feature vector that 
captures both the fine details and the overall structure of the 
image. This helps the retrieval system find images that are truly 
similar, even if they look different at a glance. 

The proposed system works in two main phases: 

• In the first phase, we use a pre-trained Vision 
Transformer (ViT) to automatically extract detailed and 
high-level features from input images. These features are 
deep representations that capture not just the basic colour 
or shape, but the overall structure and relationships 
between different parts of the image. 

• In the second phase, these deep features are passed to a 
Genetic Algorithm (GA). Since deep learning models 
usually produce feature vectors with hundreds or even 
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thousands of numbers (dimensions), some of these 
features may not actually help in identifying similar 
images. The Genetic Algorithm is used here to carefully 
search for and select the most useful features. This helps 
improve retrieval results while reducing computation 
time. 

D. Genetic Algorithm for Feature Selection: 

Although Vision Transformers are excellent at extracting 
useful features, they usually generate very large feature 
vectors—often containing hundreds or thousands of features 
[13]. However, not all these features are necessary for accurate 
image retrieval. Some features might be redundant or unrelated 
to the actual image content we care about. Keeping these extra 
features increases both computational cost and retrieval time 
[14][15]. 

To solve this, we apply the Genetic Algorithm (GA), a 
popular optimization technique inspired by natural selection and 
the process of biological evolution. GA helps us automatically 
select the most relevant features while removing the less useful 
ones [16][17]. 

 

Fig. 3. Workflow of Genetic Algorithms in CBIR image Retrieval. 

Here’s how the GA works step by step shown in Fig.3: 

• Encoding: Each possible solution is called a 
chromosome. In our case, each chromosome is a string 
of binary values (1s and 0s). A ‘1’ means that the feature 
at that position is selected, and a ‘0’ means it is not. 

• Initial Population: We start by creating a group 
(population) of random chromosomes. Each of these 
represents a different combination of selected features. 

• Fitness Function: To know which feature sets are better, 
we use a fitness function. This function checks how 
accurately each feature combination can retrieve relevant 
images. A higher retrieval accuracy or F1-score means 
higher fitness. 

• Selection: The best-performing chromosomes (feature 
sets) are selected to pass their "genes" (features) to the 
next generation. 

• Crossover: In this step, selected pairs of chromosomes 
are combined to create new chromosomes. This process 

mixes features from two different solutions, just like 
genetic crossover in nature. 

• Mutation: Sometimes, a small random change is made to 
a chromosome. This step helps introduce variety into the 
population and prevents the algorithm from getting stuck 
in poor solutions. 

• Termination: The Genetic Algorithm continues this 
process of selection, crossover, and mutation for many 
generations until we either reach a set number of 
generations or the retrieval performance stops improving 
[18]. 

a. GA Parameter settings: The GA was implemented with 

the following configuration:  

▪ Population size: 50 

▪ Number of generations: 100 

▪ Crossover probability (Pc): 0.8 

▪ Mutation probability (Pm): 0.05 

▪ Selection strategy: Tournament selection (size = 3) 

▪ Encoding scheme: Binary representation for feature 

subset selection 

▪ Fitness function: Combination of retrieval accuracy 

and feature reduction ratio, formulated as: 

Fitness = ∝ × Precision + (1−∝) × (1 −
𝑑𝑠𝑒𝑙

𝑑𝑡𝑜𝑡𝑜𝑎𝑙

)    (1) 

Where ∝ =0.7, dsel  is the number of selected features, and 

dtotoal is the total dimensionality. 

b. Convergence Analysis: We monitored the fitness score 

across generations on Corel-1K and CIFAR-10 to assess 

convergence behavior. 

• The GA consistently converged within ~60 generations, 
with fitness improvements plateauing afterward. 

• Early generations exhibited rapid improvements due to 
exploration, while later generations refined solutions via 
exploitation. 

• Across multiple runs, convergence curves were smooth 
with minimal oscillation, confirming algorithmic 
stability. 

 

Fig. 4. Genetic Algorithm Convergence Analysis. 
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The parameter settings and convergence plots Fig.4 
demonstrate that GA optimization is both efficient and stable, 
with convergence achieved well before the maximum 
generation limit. This analysis further supports the role of GA in 
refining ViT feature subsets for improved CBIR performance. 
 

IV. RESULTS AND DISCUSSION 

We evaluate the CBIR system using standard retrieval 

metrics: 

• Precision: Percentage of relevant images among the 

retrieved. 

Precision =  
TP

TP + FP
                              (2) 

• Recall: Percentage of relevant images retrieved out 

of all relevant images. 

Recall =  
TP

TP + FN
                                            (3) 

• F1-Score: Harmonic mean of precision and recall. 

F1 score =  2 ×
Precision.  Recall

Precision + Recall
                (4) 

• Accuracy: Overall correctness of retrieval. 

           Acc =  
TP+TN

TP+TN+FP+FN
                              (5) 

• Error Rate: Percentage of incorrect retrievals.  

Error Rate =  
Number of requests with errors

Total number of requests 
× 100          (6) 

• Mean Average Precision: Average of the Average 

Precision (AP) scores calculated for each class  

   mAP =
1

n
∑ APk

k=n
k=1                  (7) 

TABLE I shows a comparative evaluation of three approac
hes for CBIR: ResNet without optimization, CNN with 
Quantum Grey Wolf Optimizer (QGWO) feature selection, and 
the proposed method using Vision Transformer (ViT) combined 
with Genetic Algorithm (GA). The performance is assessed 
using five key metrics: Accuracy, Precision, Recall, F1-Score, 
and Error Rate. The baseline ResNet model, lacking any 
optimization, achieves modest performance with an accuracy of 
92.50% and an error rate of 7.50%. The CNN + QGWO 
approach significantly improves results, attaining 97.80% 
accuracy and reducing the error rate to 2.20%, demonstrating the 
benefits of feature selection. However, the proposed ViT + GA 
method outperforms both alternatives, achieving the highest 
accuracy (99.38%), precision (95.70%), recall (94.60%), and 
F1-Score (95.12%) while maintaining the lowest error rate 
(0.98%). These results highlight the effectiveness of combining 
the advanced feature representation capabilities of Vision 
Transformers with the optimization efficiency of Genetic 
Algorithms, making the proposed model highly suitable for 
accurate and robust image retrieval tasks.

TABLE I.   COMPARATIVE RESULTS WITH EXISTING MODELS 

Dataset Metric ResNet (No optimization) CNN + QGWO Feature Selection Proposed (ViT + GA) 

 

 

Corel-1k 

Accuracy (%) 92.50 97.80 99.38 

Precision (%) 89.20 93.10 95.70 

Recall (%) 88.50 92.45 94.60 

F1-Score (%) 88.85 92.77 95.12 

Error Rate (%) 7.50 2.20 0.62 

 

 

Oxford5K 

Accuracy (%) 70.1 75.2 80.92 

Precision (%) 71.23 76.4 81.46 

Recall (%) 68.9 74.1 79.1 

F1-Score (%) 70.05 75.25 80.27 

Error Rate (%) 29.9 24.8 19.08 

 

 

Paris6K 

Accuracy (%) 68.4 73.4 79.65 

Precision (%) 69.85 74.0 80.12 

Recall (%) 67.2 72.3 78.75 

F1-Score (%) 68.5 73.15 79.42 

Error Rate (%) 31.6 26.6 20.35 

 

 

CIFAR-10 

Accuracy (%) 81.0 85.2 89.35 

Precision (%) 82.45 86.6 90.24 

Recall (%) 80.25 84.4 88.75 

F1-Score (%) 81.3 85.45 89.45 

Error Rate (%) 19.0 14.8 10.65 

 

 

CIFAR-100 

Accuracy (%) 65.5 68.3 73.9 

Precision (%) 66.82 69.6 74.98 

Recall (%) 64.0 67.1 72.8 

F1-Score (%) 65.38 68.35 73.85 

Error Rate (%) 34.5 31.7 26.1 

The existing well-known methods such as ResNet (without 
optimization), CNN with QGWO feature selection, DELF, and 
DELG achieve solid performance levels, but none surpass the 
proposed ViT + GA model across datasets and metrics. ResNet 

typically attains accuracy around 65-92% depending on the 
dataset, with associated precision, recall, and F1-scores typically 
in the 65-89% range. CNN + QGWO improves these metrics 
moderately, generally by 5-6%, while DELF and DELG 
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methods on Oxford5K and Paris6K achieve mean average 
precision (mAP) values mostly in the 60-88% range [19]. 

Transformer models such as DeiT and Swin Transformer 
show strong results on classification tasks like CIFAR-10 and 
CIFAR-100, with accuracies in the low to mid-90s for DeiT and 
around 90% for Swin Transformer, yet these are still under the 
proposed ViT + GA which reaches above 95% precision and 
accuracy on related tasks. Similar DINO and DINOv2 
performance on CIFAR datasets is also generally lower or 
comparable but never exceeding the proposed approach [20]. 

Regarding deep hashing methods like DPSH, DSH, and 
CSQ on CIFAR datasets, the F1-scores are around 71-91%, with 
mAP similarly competitive but lower than the state-of-the-art 
proposed model. CLIP has competitive retrieval mAPs around 
77-83% on Oxford5K and Paris6K, still below the values 
achieved by the proposed ViT + GA [21]. 

While all these methods demonstrate strong capabilities in 
image classification and retrieval tasks, their reported values for 
accuracy, precision, recall, F1-score, and retrieval performance 
metrics consistently remain below those of the proposed ViT + 
GA model, which leads in nearly all evaluated metrics, 
demonstrating superior performance across Corel-1k, 
Oxford5K, Paris6K, CIFAR-10, and CIFAR-100 datasets. 

A. Baseline Methods and Quantitative Results 

The proposed method is compared against: 

• CNN-based CBIR systems (e.g., ResNet, Inception 

variants) with no optimization. 

• CBIR with CNN + Grey Wolf Optimizer (QGWO) 

for feature selection. 

• Other metaheuristic optimizers combined with CNN 

features. 

B. ResNet (No Optimization) 

It is a DeepCNN pretrained model designed to solve the 
issues of vanishing gradients in deep neural networks [22,23]. It 
introduced skip connections that allow the network to pass 
information directly to all the layers, enabling the training of 
extremely deep models like ResNet-50, etc [24,25].  

The major drawbacks in ResNet are: 

• High-Dimensional Feature Vectors leads to 

increase the memory size and slower retrieval 

times. 

• Many features extracted by deep CNNs may not 

contribute significantly to retrieval accuracy. 

• CNNs primarily focus on local spatial patterns 

and might miss long-range dependencies or 

global image context. 

• Full feature vectors are used without refinement, 

increasing the search space during retrieval. 

C. CNN + QGWO Feature Selection  

This approach improves upon basic ResNet-based systems 
by adding a feature selection layer using the Quantum Grey 
Wolf Optimizer (QGWO). Models like Inception ResNet V2 are 
used to extract initial feature vectors. The high-dimensional 

feature vectors are passed to the QGWO, a metaheuristic 
algorithm inspired by the hunting behavior of grey wolves and 
enhanced using quantum computing concepts to optimize the 
features. QGWO attempts to find the most relevant subset of 
features that contribute to improving retrieval accuracy.  

The drawbacks are: 

• Still Relies on CNNs: Which primarily extract local 

features and lack a global semantic view. 

• Premature Convergence: QGWO is prone to getting 

trapped in local optima, especially in very complex or 

high-dimensional feature spaces. 

• Limited Exploration: While QGWO improves over 

basic GWO, it still struggles with balancing 

exploration and exploitation in large search spaces. 

• Higher Dimensionality Compared to ViT+GA: Even 

after optimization, selected feature subsets from CNNs 

tend to be larger than those optimized from 

transformer-extracted features. 

• Scalability Issues: CNN + QGWO systems face 

computational challenges when scaling very large 

datasets due to the size of the initial feature vectors. 

D. Reason for Choosing ViT and Genetic Algorithm 

       As shown in TABLE II, ViT+GA was chosen over 
CNN+QGWO because it captures global semantics, reduces 
feature dimensionality, avoids premature convergence, and 
achieves both higher retrieval accuracy (99.38%) and better 
efficiency through compact feature subsets. 

TABLE II.  JUSTIFICATION FOR MODEL SELECTION 

Aspect Previous Model 

(CNN+QGWO) 

Proposed Model  

(ViT + GA) 

Feature Extraction Local features 

(limited spatial 

awareness) 

Global features (full-image 

attention) 

Semantic 

Understanding 

Moderate Strong (handles multi-object 

scenes) 

Feature 

Dimensionality 

High Lower after GA 

optimization 

Optimization 

Method 

QGWO (risk of 

local optima) 

GA (better diversity and 

search balance) 

Convergence 

Behavior 

Prone to premature 

convergence 

Stable convergence with 

larger solution space 

exploration 

Retrieval 

Accuracy 

Up to ~98.20% Improved to 99.38% 

Computational 

Efficiency 

Slower due to higher 

feature dimensions 

Faster due to compact 

feature subsets 
 

E. Implementation Details 

All parameters are fine-tuned via grid search for each 
dataset. This section presents the empirical results of the 
proposed framework, comparing its retrieval performance with 
baseline methods. We also analyze the impact of Vision 
Transformer on feature selection, retrieval efficiency, and 
scalability. The evaluated results for the given input query are 
shown in Fig.5 and Fig 6. 
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Fig. 5.  Single Object Retrieval images output. 

 

Fig. 6. Single Object Retrieval images output 

Now the retrieval of multi objects is tested using the proposed 

model. The input in Fig.7 contains person and dog. 

 

Fig. 7. Multi Image Retrieval outputs. 
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TABLE III.  COMPUTATIONAL COST AND RETRIEVAL TIME ANALYSIS 

Dataset Method Parameters 
Feature 

Dimension 

Training 

Time (hrs) 

Query 

Time per 

Image (s) 

Memory – 

Inference (GB) 
Memory Indexing 

(GB) 

 
Ocford5k 

ResNet (No 

optimization) 

25.6 2048 1.8 0.012 0.9 8.2 

CNN + QGWO Feature 

Selection 

25.6 1024 2.4 0.016 0.7 4.1 

Proposed (ViT + GA) 86.0 512 3.6 0.009 0.9 2.0 

 

 
CIFAR-10 

ResNet (No 

optimization) 
25.6 2048 2.0 0.013 0.9 24.6 

CNN + QGWO Feature 
Selection 

25.6 1024 2.7 0.017 0.7 12.3 

Proposed (ViT + GA) 86.0 512 3.8 0.010 0.9 6.2 

 

 
CIFAR-100 

ResNet (No 

optimization) 
25.6 2048 2.5 0.014 0.9 41.0 

CNN + QGWO Feature 
Selection 

25.6 1024 3.1 0.018 0.7 20.5 

Proposed (ViT + GA) 86.0 512 4.2 0.011 0.9 10.2 

 

TABLE III summarizes the computational cost and retrieval 
time across Oxford5K, CIFAR-10, and CIFAR-100. The results 
show that while the proposed ViT+GA framework has slightly 
higher training times due to transformer fine-tuning and GA 
optimization, it consistently delivers the lowest per-query 
latency and most compact indexing memory footprint owing to 
the reduced 512-dimensional feature representation. Inference 
memory requirements remain similar across methods (~0.7–0.9 
GB), but indexing storage is significantly reduced with ViT+GA 
(2.0 GB for Oxford5K, 6.2 GB for CIFAR-10, and 10.2 GB for 
CIFAR-100) compared to ResNet. This highlights the scalability 
and efficiency of the proposed approach for large-scale CBIR 
applications. The results across all datasets consistently 
demonstrate that: 

1) The Vision Transformer effectively extracts robust global 

features, capturing both semantic and fine-grained 

information. 

2) The Genetic Algorithm optimization significantly 

improves retrieval by selecting the most discriminative 

features, reducing redundancy, and enhancing ranking. 

3) The proposed ViT–GA framework generalizes well 

across diverse benchmarks and achieves consistent 

improvements over both conventional CNN-based 

models and unoptimized ViT models. 

These additional benchmark experiments provide strong 
empirical evidence of the scalability, adaptability, and 
superiority of our method across both landmark retrieval and 
object category retrieval tasks. 

 

 

 

 

 

TABLE IV shows the evolution of CBIR methods. While 
earlier ML and CNN-based models improved retrieval, they 
suffered from semantic gaps, redundancy, and scalability issues. 
The proposed ViT+GA framework overcomes these by 
delivering compact, efficient, and highly accurate retrieval, 
positioning it within modern deep learning paradigms. 

 

F. Statistical Testing 

To evaluate the robustness of the proposed ViT+GA 
framework, we conducted statistical significance testing on the 
smaller datasets Corel-1K and CIFAR-10, where repeated 
experimentation was computationally feasible. Each method 
(ResNet, CNN+QGWO, and ViT+GA) was executed over 30 
independent runs with different random seeds, and performance 
metrics were collected. A significance threshold of α = 0.05 was 
used. The results were then analyzed using two complementary 
tests: 

• a paired t-test, to assess differences under the assumption 
of normality, and 

• the Wilcoxon signed-rank test, a non-parametric 
alternative that does not assume normal distributions. 

As shown in TABLE V, the improvements of the proposed 
ViT+GA framework over both ResNet and CNN+QGWO on 
the Corel-1K and CIFAR-10 datasets are statistically significant 
(p < 0.001), confirming that the observed gains are robust and 
not due to random variation. 
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TABLE IV.  POSITIONING OF PROPOSED WORK WITHIN CONTEMPORARY DEEP LEARNING CBIR PARADIGMS 

Paradigm Representative Methods Strengths Limitations Position of Proposed 

Method (ViT+GA) 

Traditional ML-based 
CBIR [1] 

SVM, KNN with 
handcrafted features 

Simple, interpretable, 
easy to implement 

Limited robustness, 
semantic gap, poor 

scalability 

Outperforms CNNs in 
both accuracy and 

efficiency 

CNN-based Global 

Features (Deep 
Learning Era) [3] 

ResNet-50, VGG16, R-

MAC, NetVLAD 

Strong feature 

extraction, high 
accuracy, widely 

adopted 

High-dimensional 

vectors (2048-D), bias 
towards local features, 

memory intensive 

Outperforms CNNs in 

both accuracy and 
efficiency 

Region/Attention-
based CNN [6] 

DELF, DELG Focus on 
discriminative regions, 

strong in landmark 

retrieval 

Computationally 
heavy, not 

generalizable across 

domains 

ViT captures global 
dependencies without 

extra region-pipelines 

Transformer-based [9] DeiT, Swin Transformer Global self-attention, 
captures long-range 

dependencies 

Redundant features, 
high computation and 

storage cost 

ViT+GA reduces 
redundancy, improves 

efficiency 

Self-Supervised 
Transformers [10] 

DINO, DINOv2 Robust semantic 
representations, 

domain generalization 

Very high-dimensional 
features, slower 

retrieval 

GA optimization selects 
compact, discriminative 

subsets 

Metric Learning 

Approaches [12] 

DPSH, DSH, HashNet, 

CSQ, Proxy-NCA 

Compact binary codes, 

efficient indexing 

Lower accuracy than 

float descriptors, 
sensitive to 

hyperparameters 

ViT+GA achieves higher 

accuracy while keeping 
compact features 

Vision-Language 
Encoders [15] 

CLIP, BLIP Zero-shot transfer, 
cross-modal retrieval 

Biased to text 
supervision, not 

optimized for pure 

CBIR 

ViT+GA focuses on 
efficient image-only 

retrieval 

Hybrid/Recent 
Transformers, Metric 

Learning [26,27,28] 

PTLCH, DAAN, Hybrid 
Optimizer, Lightweight 

Secure CBIR 

Efficient, improved 
mAP, attention/hybrid 

optimization 

Trade-off between 
complexity and 

performance 

ViT+GA provides overall 
higher accuracy, 

flexibility, fastest query 
times across tested 

datasets 

Proposed Hybrid 

Framework  

ViT + GA Global semantic 

features from ViT, 

redundancy removal by 

GA, compact (512-D), 

efficient retrieval 

Slightly higher training 

cost due to GA 

optimization 

Provides state-of-the-art 

accuracy, reduced 

memory, and fastest 

query time across 

benchmarks 

 

TABLE V.  STATISTICAL SIGNIFICANCE TESTING ON SMALLER DATASETS (COREL-1K, CIFAR-10) 

Dataset Metric Methods Paired t-test (p-value) Wilcoxon test (p-value) Significant (α = 0.05) 

Corel-1K Accuracy ResNet p < 0.001 p < 0.001 Yes 

Corel-1K Accuracy CNN+QGWO p < 0.001 p < 0.001 Yes 

Corel-1K F1-Score ResNet p < 0.001 p < 0.001 Yes 

Corel-1K F1-Score CNN+QGWO p < 0.001 p < 0.001 Yes 

CIFAR-10 Precision@10 ResNet p < 0.001 p < 0.001 Yes 

CIFAR-10 Precision@10 CNN+QGWO p < 0.001 p < 0.001 Yes 

CIFAR-10 Mean Average Precision ResNet p < 0.001 p < 0.001 Yes 

CIFAR-10 Mean Average Precision CNN+QGWO p < 0.001 p < 0.001 Yes 

 

V. ABLATION STUDY 

In our ablation study, we utilized Corel-1K and CIFAR-10 
to assess the impact of data augmentation, as these datasets are 
category-based, balanced, and extensively employed in CBIR 
research, where augmentation techniques such as random 
cropping, flipping, and color jitter are pertinent. In contrast, 
landmark retrieval datasets such as Oxford5K and Paris6K 
comprise structural images of distinct monuments, where 
extensive augmentation (e.g., rotation, Mixup) may compromise 
essential landmark characteristics and result in artificial 
samples, rendering augmentation unsuitable. CIFAR-100 

similarly features fine-grained categories with nuanced 
interclass distinctions, but augmentation frequently adds noise 
instead of enhancing retrieval robustness. CIFAR-10 functions 
as a representative dataset to evaluate the impact of 
augmentation in multi-class retrieval contexts, whereas Corel-
1K offers validation on a smaller yet diverse benchmark. This 
guarantees that the ablation analysis is equitable and 
enlightening, devoid of any manufactured biases in landmark or 
fine-grained retrieval tasks. 
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We have conducted ablation studies shown in TABLE VI by 
comparing three scenarios: 

a) No Augmentation (original setup): Training and 

evaluation are performed on the original images only. 

b) With Standard Augmentation: We applied common 

augmentation techniques such as random cropping, 

horizontal flipping, rotation (±15°), and color jitter during 

training. 

c) With Strong Augmentation: In addition to standard 

augmentations, we used Mixup and Cutout for increased 

variability. 

 

TABLE VI.  RESULTS OF ABLATION STUDY 
Dataset Augmentation Strategy Accuracy (%) Precision (%) Recall (%) F1-Score (%) mAP (%) 

 

 

Corel-1k 

No Augmentation 99.38 95.70 94.60 95.12 95.40 

Standard Augmentation 99.52 96.20 95.10 95.65 96.10 

Strong Augmentation 99.55 96.35 95.25 95.80 96.25 

 

 

CIFAR-10 

No Augmentation 89.35 90.24 88.75 89.45 86.49 

Standard Augmentation 91.10 91.85 90.40 91.12 88.30 

Strong Augmentation 91.25 92.05 90.55 91.30 88.65 

    Baseline ViT+GA (no augmentation) already achieves very 

high performance on all datasets (e.g., 99.38% accuracy on 

Corel-1K, 89.35% on CIFAR-10). Augmentation further 

improves performance slightly (+0.8–1.5% across most 

metrics). The relative improvement is modest, showing that the 

core gains come from ViT feature extraction and GA 

optimization, not from augmentation. Strong augmentation did 

not yield significant additional gains over standard 

augmentation, suggesting diminishing returns. 
These results confirm that our method is robust even without 

augmentation. ViT’s inherent capacity to capture long-range 
dependencies and global patterns, making it less reliant on 
artificially increased diversity. GA optimization which reduces 
redundancy and enhances discriminative features, improving 
generalization without augmentation. 

VI. CONCLUSION 

In this paper, we proposed a novel hybrid deep feature 
extraction framework that integrates Vision Transformer (ViT)-
based global feature extraction with Genetic Algorithm (GA)-
driven feature selection for enhanced Content-Based Image 
Retrieval (CBIR). By leveraging the powerful global attention 
capabilities of the Vision Transformer, our approach effectively 
captures complex semantic patterns and long-range 
dependencies within images, overcoming the limitations of 
traditional CNN-based systems that primarily focus on local 
features. The Genetic Algorithm further refines the high-
dimensional feature vectors by selecting the most informative 
feature subsets, reducing redundancy, improving computational 
efficiency, and significantly enhancing retrieval relevance. 
Extensive experiments conducted on the benchmark Corel-1K 
dataset demonstrated that the proposed ViT-GA hybrid 
framework outperforms existing CBIR models, including 
ResNet (without optimization) and CNN + QGWO-based 
systems, in terms of retrieval precision, recall, accuracy, and 
reduced feature dimensionality. Comparative analysis 
confirmed that the proposed ViT-GA method not only achieves 
superior retrieval accuracy but also ensures faster retrieval 
through efficient feature selection. The Genetic Algorithm's 
strong global search capability and balanced exploration-
exploitation dynamics effectively address the convergence and 
local optima challenges observed in previous meta-heuristic-
based approaches. While the proposed framework demonstrates 

excellent scalability and adaptability, future work can explore 
multimodal retrieval systems that incorporate textual and audio 
information using advanced models like CLIP or BLIP. 
Additionally, the integration of automated hyper-parameter 
tuning through Neural Architecture Search (NAS) or 
reinforcement learning can further improve the generalizability 
and robustness of the feature selection process across diverse 
datasets. Ultimately, the proposed ViT-GA-based CBIR 
framework offers a highly accurate, efficient, and scalable 
solution for modern image retrieval applications, with strong 
potential for deployment in real-world domains such as digital 
asset management, medical diagnostics, and surveillance 
systems. 
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