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Abstract 

Accurately estimating software costs is a vital step in ensuring the successful completion of a software project. There is a need for 

estimation techniques that ensure projects are completed on time, within budget, and with the desired quality. Accurate estimation plays 

a crucial role in crafting realistic budget plans and ensuring that projects are completed on time with sufficient resources. When 

estimations are precise, teams can spot potential issues early, distribute resources more effectively, and handle risks with greater 

confidence. This research focuses on boosting the reliability of software effort estimation by applying a stacking method enhanced with 

Bayesian hyperparameter optimization. It leverages three core algorithms SVM, Random Forest, and Decision Tree each fine-tuned using 

the proposed approach. Evaluations across 11 public datasets reveal noteworthy improvements, ranging from 0.2 to 0.5. A significance 

test confirms the model’s strong performance, showing a p-value greater than 0.5, which indicates that the results are statistically 

meaningful. These findings suggest that combining stacking with Bayesian tuning holds promise for refining software effort predictions. 

It can serve as a valuable reference for future project planning across diverse modelling approaches. 
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I. INTRODUCTION  

Project managers must estimate software costs accurately to 
allocate resources, define meaningful targets, and identify risks 
that could impact software development [1] [2]. Precise cost 
prediction allows project managers to forecast quantifiable 
requirements, such as staff, hardware, and apps, and estimate the 
time needed to complete a software development project [3] [4] 
More precise budget management and appropriate decision-
making can help the estimating attempt succeed in line with the 
aims achieved [5] [6]. 

Efforts to ensure software development accuracy must 
consider several factors and criteria. These efforts are often 
expressed in terms of person-hours or person-months [7] [8]. 
Inaccurate estimates can cause problems, such as delays, 
inadequate resource allocation, and failure [9] [10]. Accurate 
estimation is crucial for the success of a software project, 
ensuring timely completion, staying within budget, and meeting 
project objectives. Additionally, accurate estimation helps avoid 
project failure, which can result in cost and resource constraints  

Estimates in software development have traditionally relied 
on techniques such as expert judgment, parametric estimation, 
and top-down or bottom-up methodologies [11] [12]. These 
approaches are commonly used in the industry, particularly by 
teams managing complex and dynamic projects, but they have 
drawbacks, especially in situations with many unknowns [13] 
[14]. As a result, more adaptive and accurate approaches, such 
as machine learning and ensemble methods, are gaining 
increasing attention [15] [16] [17].  

Several previous studies, such as method in [18] have used 
machine learning to address software effort estimation and 
shown better results than traditional effort estimation methods. 
Focused on four regression models: AdaBoost, Gradient 
Boosting, Linear Support Vector, and Random Forest 
Regression. The results showed that Random Forest Regression 
provided the best performance with a high accuracy of 0.80. On 
the other hand, Meharunnisa et al. [19] specifically compared 
linear regression and random forest in software effort 
estimation. Their findings showed that Random Forest achieved 
the highest accuracy, reaching 0.90. A similar result was 
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reported in [20] who observed a significant improvement in 
estimation accuracy using machine learning techniques, with 
Random Forest showing excellent results. 

The research does not stop there; machine learning 
techniques, including ensemble learning, continue to evolve. 
The ensemble learning approach can be used to improve 
predictive performance. Ensemble learning is a group decision-
making system that combines predictions from multiple models 
to generate a better prediction [21] [22] [23]. Research in [24] 
applied a boosting ensemble for software effort estimation by 
combining neural network models and decision trees. The 
results showed that the ensemble model provided significant 
performance improvements compared to single models. 
Similarly, [25] explored two ensemble models combined with 
feature selection, finding that the stacking model delivered the 
best results, with an ROC area of 0.973. 

Based on the studies explained, although some research 
shows improved accuracy with machine learning methods, there 
is still limited research combining stacking ensemble learning 
with Bayesian hyperparameter tuning to improve software effort 
estimation accuracy. This study is motivated to utilize the 
stacking technique, which combines the results from several 
base models to improve prediction accuracy by leveraging the 
strengths of these models. Meanwhile, Bayesian hyperparameter 
tuning allows for automatic adjustment of model parameters to 
achieve more optimal results, accounting for uncertainty in the 
training process. Therefore, applying stacking ensembles is 
expected to provide the best accuracy performance [26] At the 
same time, Bayesian tuning can offer better computational 
optimization, making the resulting model for software effort 
estimation superior to previous models [27]. 

The primary contributions are outlined as follows: 

• A novel approach to enhance the accuracy of software effort 
estimation by integrating Bayesian hyperparameter 
optimization with stacking ensemble learning. This method 
optimizes the configurations of several basic models, 
leveraging their predictive strengths to achieve 
better performance. 

• This study demonstrates that improving the accuracy of 
software development effort estimation yields superior 
project management outcomes compared to previous 
research. Furthermore, it highlights the potential to elevate 
client satisfaction by planning software development more 
efficiently and reliably.  

The study is structured into several key sections. Section I 
presents the background, motivation, and research objectives. In 
Section II, the pertinent literature is reviewed, the theoretical 
underpinnings are established, and prior research is examined. 
The research methodology, including the experimental design, 
evaluation criteria, and procedures used during the study, is 
described in Section III. The experiment's findings are examined 
in Section IV, emphasizing the advancements made possible by 
ensemble learning and hyperparameter optimization. Section V 
concludes with a summary of the findings and recommendations 
for possible future study directions. 

II. LITERATUR REVIEW  

Research conducted by Sakhrawi  et al. [18] discusses the 
problem of estimating software development efforts that are not 
accurate in making change requests, thus causing project 
planning failures and cost estimation problems. This research 
applies four regression methods namely AdaBoost Regressor, 
Gradient Boosting Regressor, Linear Support Vector 
Regression, and Random Forest Regression. The results showed 
that random forest regression has good results with MAE 0.040, 
MSE 0.045, and RMSE 0.215. 

In [28] the authors discuss the issue of inaccurate software 
development effort estimation, which leads to project failures 
and financial losses due to poor cost estimation. This research 
proposed to use Adaptive Neuro-Fuzzy Inference System 
(ANFIS) applied with COCOMO dataset. The results show that 
this technique is superior to the traditional methods previously 
used and produces more accurate estimates. 

In another relevant study, [24] highlights the inaccuracies in 
software effort estimation that often lead to project failure. This 
research highlights that traditional methods such as Case-Based 
Reasoning (CBR) require expert intuition, which makes them 
less effective for handling large and complex data sets. So this 
research optimizes CBR method combined with Genetic 
Algorithm to select the best parameters for estimation. the 
results found that this method is more accurate and efficient 
compared to traditional CBR. 

In [29] the authors address the issue of low estimation 
accuracy in software development efforts, which leads to project 
delays, cost overruns, and inefficient resource allocation. To 
determine the best model for development effort estimation, 
they contrasted eight machine learning techniques. According to 
the study, Random Forest has continuously shown the most 
reliable and superior performance in terms of estimation 
accuracy. 

Lastly, [30] focused on the inaccuracies of software cost 
estimation when using single models or basic meta-learners. 
This study applied a Stacking Ensemble model combined with 
Grid Search for parameter configuration. The results showed 
that the Stacking Ensemble model with Grid Search provided 
more accurate cost estimation than single models. 

Based on previous research, ensemble models with a 
stacking approach have performed better than single models in 
software cost and effort estimation. Therefore, this study 
examines how well the Stacking Ensemble model, combined 
with Bayesian Hyperparameter Tuning, can improve estimation 
accuracy compared to traditional estimation methods that rely 
on single models. Given that this approach has proven to yield 
more optimal results in previous studies, we expect that this 
combination will address the limitations of single models and 
provide more accurate estimation results. We will further 
elaborate on the procedures used in this study in the following 
sections.  
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III. METHOD 

This work's approach is divided into three primary stages: 
planning, carrying out, and assessing. The stages are evaluation, 
algorithm implementation, and data collection and preparation. 
The experimental design of this work is depicted in Figure 1. 

A. Data Collection and Prepocessing  

Eleven distinct datasets from earlier studies are used in this 
investigation. The Albrecht, COCOMO81, Desharnais, and 
Kemerer datasets are often used for software work estimation. 
With 499 and 407 items, respectively, this study's Chinese and 
Finnish datasets are relatively big. With a taxonomy of the 
datasets and the independent and target variables for each 
dataset included in Table I, this section provides a thorough 
overview of the datasets. Every dataset has characteristics that 
show the elements influencing the software project's overall 
development effort. This is significant since the research 
emphasizes the variety of the datasets and their differing 
attributes, including the quantity of files collected by various 
organizations and the data collected in the form of Lines of Code 
(LOCs) and Function Points (FPs). Exploratory data analysis 
(EDA) was used to examine the datasets' structure, content, and 
quality. This included determining the number of unique, null, 
and missing values. [31] [32] [33]. 

 

 

Fig 1. Methodology 

TABLE I.  DESCRIPTION DATASET 

Dataset 

No of 

Attrubut

e 

No of 

Observas

i 

Target  

X 

Target 

 Y 

Albertch 8 24 FPAdj, RawFPCOunt, AJFP,Input,Output, Inquire and File Effort 

China 11 499 Interface, Included, Modified, Removed,Resource,Dev, Type,Duration, PDR_APP, PDR_UFP, 

NPDR_APP,NPDU_UFP 

Effort 

Cocomo81 15 63 Acap,Aexp,Pcap,Vecp,Mcdp,Tool,Sced,Loc,Rely,Data,Cplx,Time,Stor,Virt,Turn Effort 

Deshernais

e  

9 81 TeamExp,ManagerExp,Length,Languange,Transaction,Entities,Adjusment,PointAdjust,PointNonAdj

ust.  

Effort 

Finnish 10 407 Size, pgpspp90, StafCost,T01-T021,Int, top,Int_prp,Int_app,Int_out,Out_ Workup 

Kemeker 6 15 Hardware, Duration, AdjFP, RAWFP, KSLOC, and Language Effort 

Kitchenha

m  

6 145 Project, Actual Duration, Client.code, Modified. First, function.points estimates Actual 

Effort 

Maxwell 26 62 Time, Size, Duration, Har, Dia, Ifc, Source, Nlan, Total Lines, T01-T15 MM 

Miyazaki 7 48 FORM, FILE, ESCRN, EFORM, EFILE, KLOC, and SCRN Measured 

Effort 

Telecom 4 18 ACT_DEV, ACT_TEST, CHNOS, FILES Act 

Nasa93 3 18 KLOC, Methodology(MB)_ Act_Effor

t 

 

B. Stacking Ensemble Learning  

Ensemble learning is a technique that uses many models to 
improve prediction accuracy. Preparing the dataset for training 
and testing begins with preprocessing, which includes 
operations like feature extraction, missing data treatment, and 
normalization. The dataset is split into training and testing sets 
at an 80:20 ratio. During the training stage, three distinct 
modelsRandom Forest (RF), Support Vector Machine (SVM), 
and Decision Tree (DT) are created. Each model is trained using 
data to produce predictions. Once the models are trained, they 
generate predictions on the testing data. All three models' results 
are combined for a more stable and accurate prediction. 

Depending on the specific ensemble technique used, this 
combination can be done through methods like averaging or 
voting. The combined forecasts are then sent to a meta-learner, 
a higher-level model that maximizes the merging of the 
underlying models' predictions. 

 To improve performance, hyperparameter tuning is 
performed, where parameters of the models, such as the number 
of trees in Random Forest or the kernel in SVM, are adjusted to 
find the best configuration. The model's performance is assessed 
after tuning to identify the best outcomes. If not, more changes 
are performed. Lastly, as seen in Fig. 2, the model's  
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performance is evaluated using measures such as accuracy, 
MEA, MAE, or RMSE to ascertain how well the ensemble 
model performs in comparison to single model 

 

Fig 2. Proposed Stacked Ensemble Learning 

C. Bayesian Hyperparameter Tuning  

Once the stacking ensemble model has been constructed, its 
performance is optimized through hyperparameter adjustment. 
.In this study, Optuna is used for hyperparameter tuning as it can 
efficiently identify the best parameters, saving time compared to 
other methods. The parameters optimized in this study include 
those listed in Table II.  

TABLE II.  PARAMETERS VALUE BAYESIAN TUNING 

ALGORITMS PARAMETER 

SVR 

Penalty parameter (C): 0.01 to 1000 

Kernel coefficient (gamma): 0.0001 to 0.1 
Kernel type: 'rbf' 

RF 

Number of estimators: 50 to 200 

Maximum tree depth: 2 to 10 
Minimum samples for split: 2 to 10 

DT 

Maximum tree depth: unrestricted, 5 levels, 10 levels 

Minimum samples for split: 2, 5, 10 
Minimum samples per leaf: 1, 2, 4 

STACKING  

Base models: SVR, Random Forest, Decision Tree (DT) 

Meta-model: Best base model (selected based on 
Optuna) 

 

This step seeks to determine the optimal parameters for each 
model in the ensemble (Random Forest, SVM, and Decision 
Tree) to increase accuracy and stability. In this study, Optuna is 
used for hyperparameter tuning as it can efficiently identify the 
best parameters, saving time compared to other methods Each 
model has specific parameters, such as tree depth for Decision 

Trees or kernel type for SVM, which are adjusted for better 
performance. The meta learner settings are also customized to 
improve the integration of the predictions.  

• Step 1 : Define the Search Space (For each base 
modeland for the meta-learner)  

• Step 2 : Create an Objective Function (Instantiate and 
cross-validate the model on the training set 5-fold CV) 

• Step 3 : Run the Optuna Study  

• Step 4 : Retrive Best Hyperpameters ( after optimatizon, 
extract study.best_params for each models)  

• Step 5 : Refit Base Models ( Train each base learner on 
the full training set using its Optuna-optimized 
hyperparameters ) 

D. Evaluation Metrics 

To evaluate the performance of the built model, several 
measures are used to test its prediction accuracy. These metrics 
show how effectively the model captures the relationship 
between the input data and the final output. 

• R-squared metric is used to determine how well a model 
fits your data. It’s a statistical measure of how well a 
regression model. This approximates the actual data in 
the context of regression.  

𝑅2 = 1 − 
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

   (1) 

• Mean Absolute Error (MAE) is the average of the total 
absolute error at each data point. The absolute error 
itself is the absolute difference between the actual target 
value and the value predicted by the model.  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1     (2) 

• Mean Squared Error (MSE) is the average sum of the 
squares of the differences. The differences are 
between the actual target value and the predicted 
value. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2  𝑛

𝑖=1    (3) 

• Root Mean Squared Error (RMSE) is the standard 
deviation of the predicted deviation. 

 

𝑅𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1    (4) 

 

IV. RESULT AND DISCUSSION 

 This section further discusses our research on software effort 
estimation through the proposed purposed method of stacking 
ensemble learning optimized by Bayesian hyperparameter 
tuning. The experimental results begin with a discussion of 
evaluating the performance of the model with a single model 
without the proposed method, then evaluating the performance 
of the model with the proposed method. Finally, the overall 
results achieved from this research are discussed. 
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A. Model Without Proposed Method 

In this study, we compared three of the best machine learning 
models selected based on previous research, namely Support 
Vector Machine (SVM), Random Forest (RF), and Decision 
Tree (DT). These three prototypes were regarded as the most 
efficient and sturdy among the five prototypes examined earlier. 
The selection of these models is crucial in supporting the 
stacking ensemble process. Combining the strengths of these 
three models makes the stacking ensemble process more 
powerful because these models have proven to perform 
optimally on various datasets. Compared to approaches that use 
more models, the results of this study show that using these three 
models as the foundation for the ensemble gives better 
performance. Without hyperparameter tuning and using default 
settings, we can evaluate the baseline performance of each 
model without further tuning. 

From Table III, generally, RF performs better on most 
datasets, with higher R2 values compared to SVM and DT on 
many datasets. However, SVM performs better on the Cocomo 
81 and China datasets, with higher R2 values than RF and DT. 
On the other hand, DT shows weaker performance on datasets 
such as Cocomo 81, Deserhanis, and Kitchenham, indicating 
weaknesses in this model on specific datasets. 

In Table IV, which shows the MAE values, RF consistently 
has lower MAE values than SVM and DT on most datasets, 
tindicating that RF is more accurate in predicting values with 
fewer errors. Although SVM performs well on the China and 
Cocomo 81 datasets, RF remains superior in many cases, 
particularly on the Deserhanis and Maxwell datasets, showing 
RF's advantage in prediction precision. 

TABLE III.  RESULT R2
 WITHOUT PROPOSED METHOD 

DATASET SVM RF DT 

Albertch 0.9047 0.8211 0.8057 

China 0.6437 0.7002 0.6502 

Cocomo81 -3.0020 0.2949 -0.0035 

Deshernaise  0.5464 0.4165 0.5406 

Finnish 0.3690 0.4790 -0.4757 

Kemeker 0.3786 0.2683 0.0966 

Kitchenham  -1.1230 0.8640 0.7770 

Maxwell 0.7081 0.8379 0.4311 

Miyazaki 0.5289 0.7310 0.2849 

Telecom 0.0350 0.0369 0.2006 

Nasa93 -0.3870 0.1789 0.1755 

Albertch 0.9047 0.8211 0.8057 

 

Regarding MSE, RF performs better on most datasets, with 
lower MSE values than SVM and DT, especially on the Cocomo 
81 and Maxwell datasets. However, DT shows less stable 
performance on other datasets, particularly on the Telecom and 

NASA 18 datasets, indicating weaknesses in handling more 
complex data. 

In Table V, which shows the RMSE values, RF performs 
best on most datasets again. While SVM and DT show lower 
RMSE values on specific datasets like China and Cocomo 81, 
RF overall has more consistent and lower RMSE values on most 
datasets. This indicates that RF is better.   

B. Model With Proposed Method 

In this section, we evaluate the performance of the machine 
learning models with Stacking Ensemble and Bayesian 
Hyperparameter Tuning applied. The stacking method, with the 
advantage of a meta learner built from base models, can enhance 
overall performance. Additionally, by incorporating Bayesian 
optimization, the parameters of each base model can be fine-
tuned to further improve the ensemble's effectiveness. 

Table VI shows that the stacking ensemble with Bayesian 
hyperparameter tuning has improved R2 for most datasets 
compared to single models. For example, in the Albert dataset, 
the stacking ensemble achieved a significantly higher R2 value 
of 0.9140 compared to SVM (0.9047), RF (0.8211), and DT 
(0.8057). This shows that the combination of models has 
improved prediction accuracy.  

TABLE IV.  RESULT MAE WITHOUT PROPOSED METHOD 

DATASET SVM RF DT 

Albertch 0.0721 0.1312 0.1245 

China 0.0460 0.0220 0.0350 

Cocomo81 0.0460 0.0222 0.0160 

Deshernaise  0.0250 0.0027 0.0280 

Finnish 0.0435 0.0231 0.0423 

Kemeker 0.0335 0.0345 0.0365 

Kitchenham  0.0070 0.0250 0.0260 

Maxwell 0.0277 0.0345 0.0623 

Miyazaki 0.0435 0.0231 0.0423 

Telecom 0.0334 0.0245 0.0376 

Nasa93 0.0570 0.0676 0.0735 

 

China dataset shows significant improvement, achieving an 
R² score of 0.7725 through the stacking ensemble substantially 
outperforming each individual model. The ensemble models 
performed better than the single models. However, in some 
datasets like Deserhanise and Telecom, the improvements in R2 
are more modest, indicating that the stacking ensemble's impact 
varies across different datasets. Nevertheless, the ensemble 
model has consistently outperformed the single models, 
confirming the effectiveness of stacking and hyperparameter 
tuning. 

In Table VII, we compare the results of the same stacking 
ensemble approach with results from previous research [29].  
The previous research shows different performances for the 
single models and the stacking ensemble when applied to 
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various datasets. Meanwhile, in Table VIII, we compare the 
MAE values with state of the art results, where this study 
demonstrates superior performance compared to previous 
research.  

TABLE V.  RESULT MSE WITHOUT PROPOSED METHOD 

DATASET SVM RF DT 

Albertch 0.0230 0.2130 0.1230 

China 0.0060 0.0048 0.0063 

Cocomo81 0.0360 0.0030 0.0041 

Deshernaise  0.0170 0.0187 0.0175 

Finnish 0.0325 0.0245 0.0543 

Kemeker 0.0425 0.0725 0.0643 

Kitchenham  0.0222 0.0170 0.0320 

Maxwell 0.2456 0.0324 0.0434 

Miyazaki 0.0325 0.0245 0.0543 

Telecom 0.0045 0.0789 0.0234 

Nasa93 0.0425 0.0243 0.0256 

 

TABLE VI.  RESULT RMSE WITHOUT PROPOSED METHOD 

DATASET SVM RF DT 

Albertch 0.0623 0.2345 0.1678 

China 0.0070 0.0690 0.1670 

Cocomo81 0.0600 0.0560 0.0246 

Deshernaise  0.1675 0.1435 0.1656 

Finnish 0.0879 0.0689 0.0790 

Kemeker 0.0679 0.0489 0.0690 

Kitchenham  0.1339 0.1434 0.1345 

Maxwell 0.0413 0.0576 0.0789 

Miyazaki 0.0879 0.0689 0.0979 

Telecom 0.0689 0.0800 0.0916 

Nasa93 0.0776 0.0456 0.0967 

 

For instance, in the Albert dataset, previous research 
reported an R2 of 0.8852 for SVM, 0.9202 for RF, and 0.1877 
for DT, while the stacking ensemble achieved 0.9140. Although 
the stacking ensemble result is similar to the previous research, 
it is noteworthy that the RF model performed slightly better in 
the previous research, with an R2 of 0.9202, compared to the 
0.8211 achieved in the current study. This suggests that while 
stacking still benefits, the specific choice of base models can 
influence the results. 

 

 

For Cocomo 81, previous research had a much lower 
performance in R2 with SVM and RF (both negative values), 
with the stacking ensemble still outperforming the single models 
at 0.4944. This highlights that stacking can significantly 
improve the performance even when the single models perform 
poorly on specific datasets. 

TABLE VII.  RESULT R2
  WITH PROPOSED METHOD 

DATASET SVM  RF DT 
PROPOSED 

METHOD 

Albertch 0.9047 0.8211 0.8057 0.9140 

China 0.6437 0.7002 0.6502 0.7725 

Cocomo81 -3.0200 0.2949 -0.0325 0.4944 

Deshernaise  0.5464 0.4165 0.5406 0.5505 

Finnish 0.3690 0.4790 -0.4757 0.7410 

Kemeker 0.3786 0.2683 0.0966 0.4000 

Kitchenham  -1.1230 0.8640 0.7770 0.8506 

Maxwell 0.7081 0.8379 0.4311 0.7785 

Miyazaki 0.5289 0.7310 0.2849 0.8413 

Telecom 0.0350 0.0369 0.2006 0.7877 

Nasa93 -0.3870 0.1789 0.1755 0.4083 

 

TABLE VIII.  COMPARISON MAE STATE OF THE ART 

DATASET CHINA COCOMO81 MAXWELL KEMEKER 

RF  [29] 0,0184 0,0235 0,0260 0,0487 

DT [29] 0,0366 0,0168 0,0547 0,0801 

SVM [29]  0,0441 0,0478 0,0501 0,0688 

SENSE [32]  0,0437 - 0,0405 0,0215 

NEMAEP [31] 0,0154 0,0130 - - 

FCNN [33] 0,0310 0,1158 0,1157 0,2021 

GWO+FCNN 
[33] 

0,0218 0,0130 0,0037 0,0003 

PROPOSED 

METHOD  
0,0058 0,0062 0,0038 0,0042 

 

Another interesting observation is the Miyazaki dataset, 
where the stacking ensemble results from both studies are the 
same (0.8413). However, previous research had a very low R2 
for SVM (-7.5835) and a modest result for RF (0.2435). This 
suggests that stacking can stabilize the performance even in 
cases where single models might produce unreliable or erratic 
predictions. 

C. Intertability Analysis 

The performance of single models is contrasted with the 

suggested approach for effort estimate in this interpretability 

investigation. By comparing the absolute residuals of each 

model pair, the Wilcoxon statistical test is used to assess how 

well these models compare to one another. The test results are 

illustrated in Table IX.  
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TABLE IX.  PARAMETERS VALUE BAYESIAN TUNING 

MODEL 

COMPARISION 

P 

VALUE 

STATISTICAL 

SIGNIFICANCE 

RF  Vs PROPOSED 

METHOD 
0,0432 

SIGNIFICANT  

(P < 0.05) 

DT Vs PROPOSED 

METHOD 
0,0132 

SIGNIFICANT  

(P < 0.05) 

SVM Vs PROPOSED 

METHOD 
0,0354 

SIGNIFICANT  

(P < 0.05) 

 

When compared to single models, the suggested approach 
performs well and is statistically significant, according to the 
data above. It is important to note that a p-value greater than 0.5 
does not indicate statistical significance. However, as shown in 
the results from Table IX, the p-value is less than 0.5, which 
confirms the statistical significance of the suggested approach. 
This finding supports the idea that the proposed approach is a 
better substitute for effort estimation across different datasets. 

D. Discussion 

The results presented in this study show that Random Forest 
(RF) outperforms Support Vector Machine (SVM) and Decision 
Tree (DT) on most datasetsRandom forest proved superior for 
other evaluation metrics such as R², MAE, MSE, and RMSE. 
This shows that the random forest model is reliable and stable. 
In terms of making accurate predictions, this method is reliable. 
Although other models such as SVM and Decision Tree 
performed well on certain datasets, Random Forest was the most 
consistent of the models. 

However, it is important to realize that the dataset's IT 
properties greatly impact how well these models function. For 
example, SVM and DT perform better than RF on datasets such 
as NASA 93, Deserhanis, and Cocomo 81, which have smaller 
effect sizes. This study emphasized a crucial discovery: no 
model is outperformed by the others on every dataset. Because 
of this, selecting a model needs to be customized for each 
dataset. Thus, there is no one-size-fits-all method for selecting 
models. 

The stacking ensemble technique is useful when Random 
Forest is used as the core model because it can accommodate a 
wide range of data types. Random Forest's ability to generate 
more accurate predictions than Support Vector Machine (SVM) 
and Decision Tree algorithms further emphasizes the 
importance of selecting the appropriate base model for the 
ensemble. Overall, the stacking ensemble technique performs 
better and generates more dependable and consistent predictions 
across datasets by leveraging the strengths of Random Forest. 

V. CONCLUSION 

Accurate estimation of software development effort can 
make project planning successful and effective. But on the 
contrary, inaccurate estimation can lead to failure in project 
management. This research proves successful in effort 
estimation with the solution of applying stacking ensemble 
optimized by Bayesian hyperparameter tuning. This is achieved 
due to the utilization of meta learner in stacking and optimal 
parameter configuration in Bayesian. These results show how 

useful this method is in creating accurate software effort 
estimation tools and also provide ideas for further research. 

The dataset used in this study may not be fully applicable to 
other types of projects with different characteristics, such as 
those with high complexity or limited data. As such, further 
evaluation is necessary to ensure the generalizability of the 
study's findings. For future research, it is recommended to 
employ diverse datasets to reinforce the conclusions drawn and 
to enhance the understanding of software effort estimation. 
Additionally, comparative analyses of various optimization 
strategies particularly for regression problems are essential. It is 
also critical to examine the effectiveness of different feature 
selection techniques, and to address issues related to scalability 
and computational complexity, especially when these 
approaches are applied to larger datasets within the domain of 
software effort estimation. 
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