

Vol. 06, No. 02, pp. 161 –168 (2025)
ISSN: 2708-0757

JOURNAL OF APPLIED SCIENCE AND TECHNOLOGY TRENDS

www.jastt.org

161

doi: 10.38094/jastt62310

Software Effort Estimation Using Stacking Ensemble and

Bayesian Optimization

Muhammad Yusuf, Daniel Siahaan*

Department Informatics Engineering, Institut Teknologi Sepuluh Nopember,Surabaya Indonesia,

 6025231066@student.its.ac.id, daniel@its.ac.id

*Corresponding: daniel@its.ac.id

Abstract

Accurately estimating software costs is a vital step in ensuring the successful completion of a software project. There is a need for

estimation techniques that ensure projects are completed on time, within budget, and with the desired quality. Accurate estimation plays

a crucial role in crafting realistic budget plans and ensuring that projects are completed on time with sufficient resources. When

estimations are precise, teams can spot potential issues early, distribute resources more effectively, and handle risks with greater

confidence. This research focuses on boosting the reliability of software effort estimation by applying a stacking method enhanced with

Bayesian hyperparameter optimization. It leverages three core algorithms SVM, Random Forest, and Decision Tree each fine-tuned using

the proposed approach. Evaluations across 11 public datasets reveal noteworthy improvements, ranging from 0.2 to 0.5. A significance

test confirms the model’s strong performance, showing a p-value greater than 0.5, which indicates that the results are statistically

meaningful. These findings suggest that combining stacking with Bayesian tuning holds promise for refining software effort predictions.

It can serve as a valuable reference for future project planning across diverse modelling approaches.

Keywords: Software Estimation, Ensemble Learning, Stacking, Hyperparameter Tuning, Bayesian Optimization, Machine

Learning, Model Performance.

Received: June 14th, 2025 / Revised: July 25th, 2025/ Accepted: August 02nd, 2025 / Online: August 07th, 2025

I. INTRODUCTION

Project managers must estimate software costs accurately to
allocate resources, define meaningful targets, and identify risks
that could impact software development [1] [2]. Precise cost
prediction allows project managers to forecast quantifiable
requirements, such as staff, hardware, and apps, and estimate the
time needed to complete a software development project [3] [4]
More precise budget management and appropriate decision-
making can help the estimating attempt succeed in line with the
aims achieved [5] [6].

Efforts to ensure software development accuracy must
consider several factors and criteria. These efforts are often
expressed in terms of person-hours or person-months [7] [8].
Inaccurate estimates can cause problems, such as delays,
inadequate resource allocation, and failure [9] [10]. Accurate
estimation is crucial for the success of a software project,
ensuring timely completion, staying within budget, and meeting
project objectives. Additionally, accurate estimation helps avoid
project failure, which can result in cost and resource constraints

Estimates in software development have traditionally relied
on techniques such as expert judgment, parametric estimation,
and top-down or bottom-up methodologies [11] [12]. These
approaches are commonly used in the industry, particularly by
teams managing complex and dynamic projects, but they have
drawbacks, especially in situations with many unknowns [13]
[14]. As a result, more adaptive and accurate approaches, such
as machine learning and ensemble methods, are gaining
increasing attention [15] [16] [17].

Several previous studies, such as method in [18] have used
machine learning to address software effort estimation and
shown better results than traditional effort estimation methods.
Focused on four regression models: AdaBoost, Gradient
Boosting, Linear Support Vector, and Random Forest
Regression. The results showed that Random Forest Regression
provided the best performance with a high accuracy of 0.80. On
the other hand, Meharunnisa et al. [19] specifically compared
linear regression and random forest in software effort
estimation. Their findings showed that Random Forest achieved
the highest accuracy, reaching 0.90. A similar result was

http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt62310
mailto:6025231066@student.its.ac.id
mailto:daniel@its.ac.id
mailto:daniel@its.ac.id

Yusuf and Siahaan / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 161 –168 (2025)

162

reported in [20] who observed a significant improvement in
estimation accuracy using machine learning techniques, with
Random Forest showing excellent results.

The research does not stop there; machine learning
techniques, including ensemble learning, continue to evolve.
The ensemble learning approach can be used to improve
predictive performance. Ensemble learning is a group decision-
making system that combines predictions from multiple models
to generate a better prediction [21] [22] [23]. Research in [24]
applied a boosting ensemble for software effort estimation by
combining neural network models and decision trees. The
results showed that the ensemble model provided significant
performance improvements compared to single models.
Similarly, [25] explored two ensemble models combined with
feature selection, finding that the stacking model delivered the
best results, with an ROC area of 0.973.

Based on the studies explained, although some research
shows improved accuracy with machine learning methods, there
is still limited research combining stacking ensemble learning
with Bayesian hyperparameter tuning to improve software effort
estimation accuracy. This study is motivated to utilize the
stacking technique, which combines the results from several
base models to improve prediction accuracy by leveraging the
strengths of these models. Meanwhile, Bayesian hyperparameter
tuning allows for automatic adjustment of model parameters to
achieve more optimal results, accounting for uncertainty in the
training process. Therefore, applying stacking ensembles is
expected to provide the best accuracy performance [26] At the
same time, Bayesian tuning can offer better computational
optimization, making the resulting model for software effort
estimation superior to previous models [27].

The primary contributions are outlined as follows:

• A novel approach to enhance the accuracy of software effort
estimation by integrating Bayesian hyperparameter
optimization with stacking ensemble learning. This method
optimizes the configurations of several basic models,
leveraging their predictive strengths to achieve
better performance.

• This study demonstrates that improving the accuracy of
software development effort estimation yields superior
project management outcomes compared to previous
research. Furthermore, it highlights the potential to elevate
client satisfaction by planning software development more
efficiently and reliably.

The study is structured into several key sections. Section I
presents the background, motivation, and research objectives. In
Section II, the pertinent literature is reviewed, the theoretical
underpinnings are established, and prior research is examined.
The research methodology, including the experimental design,
evaluation criteria, and procedures used during the study, is
described in Section III. The experiment's findings are examined
in Section IV, emphasizing the advancements made possible by
ensemble learning and hyperparameter optimization. Section V
concludes with a summary of the findings and recommendations
for possible future study directions.

II. LITERATUR REVIEW

Research conducted by Sakhrawi et al. [18] discusses the
problem of estimating software development efforts that are not
accurate in making change requests, thus causing project
planning failures and cost estimation problems. This research
applies four regression methods namely AdaBoost Regressor,
Gradient Boosting Regressor, Linear Support Vector
Regression, and Random Forest Regression. The results showed
that random forest regression has good results with MAE 0.040,
MSE 0.045, and RMSE 0.215.

In [28] the authors discuss the issue of inaccurate software
development effort estimation, which leads to project failures
and financial losses due to poor cost estimation. This research
proposed to use Adaptive Neuro-Fuzzy Inference System
(ANFIS) applied with COCOMO dataset. The results show that
this technique is superior to the traditional methods previously
used and produces more accurate estimates.

In another relevant study, [24] highlights the inaccuracies in
software effort estimation that often lead to project failure. This
research highlights that traditional methods such as Case-Based
Reasoning (CBR) require expert intuition, which makes them
less effective for handling large and complex data sets. So this
research optimizes CBR method combined with Genetic
Algorithm to select the best parameters for estimation. the
results found that this method is more accurate and efficient
compared to traditional CBR.

In [29] the authors address the issue of low estimation
accuracy in software development efforts, which leads to project
delays, cost overruns, and inefficient resource allocation. To
determine the best model for development effort estimation,
they contrasted eight machine learning techniques. According to
the study, Random Forest has continuously shown the most
reliable and superior performance in terms of estimation
accuracy.

Lastly, [30] focused on the inaccuracies of software cost
estimation when using single models or basic meta-learners.
This study applied a Stacking Ensemble model combined with
Grid Search for parameter configuration. The results showed
that the Stacking Ensemble model with Grid Search provided
more accurate cost estimation than single models.

Based on previous research, ensemble models with a
stacking approach have performed better than single models in
software cost and effort estimation. Therefore, this study
examines how well the Stacking Ensemble model, combined
with Bayesian Hyperparameter Tuning, can improve estimation
accuracy compared to traditional estimation methods that rely
on single models. Given that this approach has proven to yield
more optimal results in previous studies, we expect that this
combination will address the limitations of single models and
provide more accurate estimation results. We will further
elaborate on the procedures used in this study in the following
sections.

Yusuf and Siahaan / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 161 –168 (2025)

163

III. METHOD

This work's approach is divided into three primary stages:
planning, carrying out, and assessing. The stages are evaluation,
algorithm implementation, and data collection and preparation.
The experimental design of this work is depicted in Figure 1.

A. Data Collection and Prepocessing

Eleven distinct datasets from earlier studies are used in this
investigation. The Albrecht, COCOMO81, Desharnais, and
Kemerer datasets are often used for software work estimation.
With 499 and 407 items, respectively, this study's Chinese and
Finnish datasets are relatively big. With a taxonomy of the
datasets and the independent and target variables for each
dataset included in Table I, this section provides a thorough
overview of the datasets. Every dataset has characteristics that
show the elements influencing the software project's overall
development effort. This is significant since the research
emphasizes the variety of the datasets and their differing
attributes, including the quantity of files collected by various
organizations and the data collected in the form of Lines of Code
(LOCs) and Function Points (FPs). Exploratory data analysis
(EDA) was used to examine the datasets' structure, content, and
quality. This included determining the number of unique, null,
and missing values. [31] [32] [33].

Fig 1. Methodology

TABLE I. DESCRIPTION DATASET

Dataset

No of

Attrubut

e

No of

Observas

i

Target

X

Target

 Y

Albertch 8 24 FPAdj, RawFPCOunt, AJFP,Input,Output, Inquire and File Effort

China 11 499 Interface, Included, Modified, Removed,Resource,Dev, Type,Duration, PDR_APP, PDR_UFP,

NPDR_APP,NPDU_UFP

Effort

Cocomo81 15 63 Acap,Aexp,Pcap,Vecp,Mcdp,Tool,Sced,Loc,Rely,Data,Cplx,Time,Stor,Virt,Turn Effort

Deshernais

e

9 81 TeamExp,ManagerExp,Length,Languange,Transaction,Entities,Adjusment,PointAdjust,PointNonAdj

ust.

Effort

Finnish 10 407 Size, pgpspp90, StafCost,T01-T021,Int, top,Int_prp,Int_app,Int_out,Out_ Workup

Kemeker 6 15 Hardware, Duration, AdjFP, RAWFP, KSLOC, and Language Effort

Kitchenha

m

6 145 Project, Actual Duration, Client.code, Modified. First, function.points estimates Actual

Effort

Maxwell 26 62 Time, Size, Duration, Har, Dia, Ifc, Source, Nlan, Total Lines, T01-T15 MM

Miyazaki 7 48 FORM, FILE, ESCRN, EFORM, EFILE, KLOC, and SCRN Measured

Effort

Telecom 4 18 ACT_DEV, ACT_TEST, CHNOS, FILES Act

Nasa93 3 18 KLOC, Methodology(MB)_ Act_Effor

t

B. Stacking Ensemble Learning

Ensemble learning is a technique that uses many models to
improve prediction accuracy. Preparing the dataset for training
and testing begins with preprocessing, which includes
operations like feature extraction, missing data treatment, and
normalization. The dataset is split into training and testing sets
at an 80:20 ratio. During the training stage, three distinct
modelsRandom Forest (RF), Support Vector Machine (SVM),
and Decision Tree (DT) are created. Each model is trained using
data to produce predictions. Once the models are trained, they
generate predictions on the testing data. All three models' results
are combined for a more stable and accurate prediction.

Depending on the specific ensemble technique used, this
combination can be done through methods like averaging or
voting. The combined forecasts are then sent to a meta-learner,
a higher-level model that maximizes the merging of the
underlying models' predictions.

 To improve performance, hyperparameter tuning is
performed, where parameters of the models, such as the number
of trees in Random Forest or the kernel in SVM, are adjusted to
find the best configuration. The model's performance is assessed
after tuning to identify the best outcomes. If not, more changes
are performed. Lastly, as seen in Fig. 2, the model's

Yusuf and Siahaan / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 161 –168 (2025)

164

performance is evaluated using measures such as accuracy,
MEA, MAE, or RMSE to ascertain how well the ensemble
model performs in comparison to single model

Fig 2. Proposed Stacked Ensemble Learning

C. Bayesian Hyperparameter Tuning

Once the stacking ensemble model has been constructed, its
performance is optimized through hyperparameter adjustment.
.In this study, Optuna is used for hyperparameter tuning as it can
efficiently identify the best parameters, saving time compared to
other methods. The parameters optimized in this study include
those listed in Table II.

TABLE II. PARAMETERS VALUE BAYESIAN TUNING

ALGORITMS PARAMETER

SVR

Penalty parameter (C): 0.01 to 1000

Kernel coefficient (gamma): 0.0001 to 0.1
Kernel type: 'rbf'

RF

Number of estimators: 50 to 200

Maximum tree depth: 2 to 10
Minimum samples for split: 2 to 10

DT

Maximum tree depth: unrestricted, 5 levels, 10 levels

Minimum samples for split: 2, 5, 10
Minimum samples per leaf: 1, 2, 4

STACKING

Base models: SVR, Random Forest, Decision Tree (DT)

Meta-model: Best base model (selected based on
Optuna)

This step seeks to determine the optimal parameters for each
model in the ensemble (Random Forest, SVM, and Decision
Tree) to increase accuracy and stability. In this study, Optuna is
used for hyperparameter tuning as it can efficiently identify the
best parameters, saving time compared to other methods Each
model has specific parameters, such as tree depth for Decision

Trees or kernel type for SVM, which are adjusted for better
performance. The meta learner settings are also customized to
improve the integration of the predictions.

• Step 1 : Define the Search Space (For each base
modeland for the meta-learner)

• Step 2 : Create an Objective Function (Instantiate and
cross-validate the model on the training set 5-fold CV)

• Step 3 : Run the Optuna Study

• Step 4 : Retrive Best Hyperpameters (after optimatizon,
extract study.best_params for each models)

• Step 5 : Refit Base Models (Train each base learner on
the full training set using its Optuna-optimized
hyperparameters)

D. Evaluation Metrics

To evaluate the performance of the built model, several
measures are used to test its prediction accuracy. These metrics
show how effectively the model captures the relationship
between the input data and the final output.

• R-squared metric is used to determine how well a model
fits your data. It’s a statistical measure of how well a
regression model. This approximates the actual data in
the context of regression.

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

 (1)

• Mean Absolute Error (MAE) is the average of the total
absolute error at each data point. The absolute error
itself is the absolute difference between the actual target
value and the value predicted by the model.

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1 (2)

• Mean Squared Error (MSE) is the average sum of the
squares of the differences. The differences are
between the actual target value and the predicted
value.

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2 𝑛

𝑖=1 (3)

• Root Mean Squared Error (RMSE) is the standard
deviation of the predicted deviation.

𝑅𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1 (4)

IV. RESULT AND DISCUSSION

 This section further discusses our research on software effort
estimation through the proposed purposed method of stacking
ensemble learning optimized by Bayesian hyperparameter
tuning. The experimental results begin with a discussion of
evaluating the performance of the model with a single model
without the proposed method, then evaluating the performance
of the model with the proposed method. Finally, the overall
results achieved from this research are discussed.

Yusuf and Siahaan / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 161 –168 (2025)

165

A. Model Without Proposed Method

In this study, we compared three of the best machine learning
models selected based on previous research, namely Support
Vector Machine (SVM), Random Forest (RF), and Decision
Tree (DT). These three prototypes were regarded as the most
efficient and sturdy among the five prototypes examined earlier.
The selection of these models is crucial in supporting the
stacking ensemble process. Combining the strengths of these
three models makes the stacking ensemble process more
powerful because these models have proven to perform
optimally on various datasets. Compared to approaches that use
more models, the results of this study show that using these three
models as the foundation for the ensemble gives better
performance. Without hyperparameter tuning and using default
settings, we can evaluate the baseline performance of each
model without further tuning.

From Table III, generally, RF performs better on most
datasets, with higher R2 values compared to SVM and DT on
many datasets. However, SVM performs better on the Cocomo
81 and China datasets, with higher R2 values than RF and DT.
On the other hand, DT shows weaker performance on datasets
such as Cocomo 81, Deserhanis, and Kitchenham, indicating
weaknesses in this model on specific datasets.

In Table IV, which shows the MAE values, RF consistently
has lower MAE values than SVM and DT on most datasets,
tindicating that RF is more accurate in predicting values with
fewer errors. Although SVM performs well on the China and
Cocomo 81 datasets, RF remains superior in many cases,
particularly on the Deserhanis and Maxwell datasets, showing
RF's advantage in prediction precision.

TABLE III. RESULT R2
 WITHOUT PROPOSED METHOD

DATASET SVM RF DT

Albertch 0.9047 0.8211 0.8057

China 0.6437 0.7002 0.6502

Cocomo81 -3.0020 0.2949 -0.0035

Deshernaise 0.5464 0.4165 0.5406

Finnish 0.3690 0.4790 -0.4757

Kemeker 0.3786 0.2683 0.0966

Kitchenham -1.1230 0.8640 0.7770

Maxwell 0.7081 0.8379 0.4311

Miyazaki 0.5289 0.7310 0.2849

Telecom 0.0350 0.0369 0.2006

Nasa93 -0.3870 0.1789 0.1755

Albertch 0.9047 0.8211 0.8057

Regarding MSE, RF performs better on most datasets, with
lower MSE values than SVM and DT, especially on the Cocomo
81 and Maxwell datasets. However, DT shows less stable
performance on other datasets, particularly on the Telecom and

NASA 18 datasets, indicating weaknesses in handling more
complex data.

In Table V, which shows the RMSE values, RF performs
best on most datasets again. While SVM and DT show lower
RMSE values on specific datasets like China and Cocomo 81,
RF overall has more consistent and lower RMSE values on most
datasets. This indicates that RF is better.

B. Model With Proposed Method

In this section, we evaluate the performance of the machine
learning models with Stacking Ensemble and Bayesian
Hyperparameter Tuning applied. The stacking method, with the
advantage of a meta learner built from base models, can enhance
overall performance. Additionally, by incorporating Bayesian
optimization, the parameters of each base model can be fine-
tuned to further improve the ensemble's effectiveness.

Table VI shows that the stacking ensemble with Bayesian
hyperparameter tuning has improved R2 for most datasets
compared to single models. For example, in the Albert dataset,
the stacking ensemble achieved a significantly higher R2 value
of 0.9140 compared to SVM (0.9047), RF (0.8211), and DT
(0.8057). This shows that the combination of models has
improved prediction accuracy.

TABLE IV. RESULT MAE WITHOUT PROPOSED METHOD

DATASET SVM RF DT

Albertch 0.0721 0.1312 0.1245

China 0.0460 0.0220 0.0350

Cocomo81 0.0460 0.0222 0.0160

Deshernaise 0.0250 0.0027 0.0280

Finnish 0.0435 0.0231 0.0423

Kemeker 0.0335 0.0345 0.0365

Kitchenham 0.0070 0.0250 0.0260

Maxwell 0.0277 0.0345 0.0623

Miyazaki 0.0435 0.0231 0.0423

Telecom 0.0334 0.0245 0.0376

Nasa93 0.0570 0.0676 0.0735

China dataset shows significant improvement, achieving an
R² score of 0.7725 through the stacking ensemble substantially
outperforming each individual model. The ensemble models
performed better than the single models. However, in some
datasets like Deserhanise and Telecom, the improvements in R2
are more modest, indicating that the stacking ensemble's impact
varies across different datasets. Nevertheless, the ensemble
model has consistently outperformed the single models,
confirming the effectiveness of stacking and hyperparameter
tuning.

In Table VII, we compare the results of the same stacking
ensemble approach with results from previous research [29].
The previous research shows different performances for the
single models and the stacking ensemble when applied to

Yusuf and Siahaan / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 161 –168 (2025)

166

various datasets. Meanwhile, in Table VIII, we compare the
MAE values with state of the art results, where this study
demonstrates superior performance compared to previous
research.

TABLE V. RESULT MSE WITHOUT PROPOSED METHOD

DATASET SVM RF DT

Albertch 0.0230 0.2130 0.1230

China 0.0060 0.0048 0.0063

Cocomo81 0.0360 0.0030 0.0041

Deshernaise 0.0170 0.0187 0.0175

Finnish 0.0325 0.0245 0.0543

Kemeker 0.0425 0.0725 0.0643

Kitchenham 0.0222 0.0170 0.0320

Maxwell 0.2456 0.0324 0.0434

Miyazaki 0.0325 0.0245 0.0543

Telecom 0.0045 0.0789 0.0234

Nasa93 0.0425 0.0243 0.0256

TABLE VI. RESULT RMSE WITHOUT PROPOSED METHOD

DATASET SVM RF DT

Albertch 0.0623 0.2345 0.1678

China 0.0070 0.0690 0.1670

Cocomo81 0.0600 0.0560 0.0246

Deshernaise 0.1675 0.1435 0.1656

Finnish 0.0879 0.0689 0.0790

Kemeker 0.0679 0.0489 0.0690

Kitchenham 0.1339 0.1434 0.1345

Maxwell 0.0413 0.0576 0.0789

Miyazaki 0.0879 0.0689 0.0979

Telecom 0.0689 0.0800 0.0916

Nasa93 0.0776 0.0456 0.0967

For instance, in the Albert dataset, previous research
reported an R2 of 0.8852 for SVM, 0.9202 for RF, and 0.1877
for DT, while the stacking ensemble achieved 0.9140. Although
the stacking ensemble result is similar to the previous research,
it is noteworthy that the RF model performed slightly better in
the previous research, with an R2 of 0.9202, compared to the
0.8211 achieved in the current study. This suggests that while
stacking still benefits, the specific choice of base models can
influence the results.

For Cocomo 81, previous research had a much lower
performance in R2 with SVM and RF (both negative values),
with the stacking ensemble still outperforming the single models
at 0.4944. This highlights that stacking can significantly
improve the performance even when the single models perform
poorly on specific datasets.

TABLE VII. RESULT R2
 WITH PROPOSED METHOD

DATASET SVM RF DT
PROPOSED

METHOD

Albertch 0.9047 0.8211 0.8057 0.9140

China 0.6437 0.7002 0.6502 0.7725

Cocomo81 -3.0200 0.2949 -0.0325 0.4944

Deshernaise 0.5464 0.4165 0.5406 0.5505

Finnish 0.3690 0.4790 -0.4757 0.7410

Kemeker 0.3786 0.2683 0.0966 0.4000

Kitchenham -1.1230 0.8640 0.7770 0.8506

Maxwell 0.7081 0.8379 0.4311 0.7785

Miyazaki 0.5289 0.7310 0.2849 0.8413

Telecom 0.0350 0.0369 0.2006 0.7877

Nasa93 -0.3870 0.1789 0.1755 0.4083

TABLE VIII. COMPARISON MAE STATE OF THE ART

DATASET CHINA COCOMO81 MAXWELL KEMEKER

RF [29] 0,0184 0,0235 0,0260 0,0487

DT [29] 0,0366 0,0168 0,0547 0,0801

SVM [29] 0,0441 0,0478 0,0501 0,0688

SENSE [32] 0,0437 - 0,0405 0,0215

NEMAEP [31] 0,0154 0,0130 - -

FCNN [33] 0,0310 0,1158 0,1157 0,2021

GWO+FCNN
[33]

0,0218 0,0130 0,0037 0,0003

PROPOSED

METHOD
0,0058 0,0062 0,0038 0,0042

Another interesting observation is the Miyazaki dataset,
where the stacking ensemble results from both studies are the
same (0.8413). However, previous research had a very low R2
for SVM (-7.5835) and a modest result for RF (0.2435). This
suggests that stacking can stabilize the performance even in
cases where single models might produce unreliable or erratic
predictions.

C. Intertability Analysis

The performance of single models is contrasted with the

suggested approach for effort estimate in this interpretability

investigation. By comparing the absolute residuals of each

model pair, the Wilcoxon statistical test is used to assess how

well these models compare to one another. The test results are

illustrated in Table IX.

Yusuf and Siahaan / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 161 –168 (2025)

167

TABLE IX. PARAMETERS VALUE BAYESIAN TUNING

MODEL

COMPARISION

P

VALUE

STATISTICAL

SIGNIFICANCE

RF Vs PROPOSED

METHOD
0,0432

SIGNIFICANT

(P < 0.05)

DT Vs PROPOSED

METHOD
0,0132

SIGNIFICANT

(P < 0.05)

SVM Vs PROPOSED

METHOD
0,0354

SIGNIFICANT

(P < 0.05)

When compared to single models, the suggested approach
performs well and is statistically significant, according to the
data above. It is important to note that a p-value greater than 0.5
does not indicate statistical significance. However, as shown in
the results from Table IX, the p-value is less than 0.5, which
confirms the statistical significance of the suggested approach.
This finding supports the idea that the proposed approach is a
better substitute for effort estimation across different datasets.

D. Discussion

The results presented in this study show that Random Forest
(RF) outperforms Support Vector Machine (SVM) and Decision
Tree (DT) on most datasetsRandom forest proved superior for
other evaluation metrics such as R², MAE, MSE, and RMSE.
This shows that the random forest model is reliable and stable.
In terms of making accurate predictions, this method is reliable.
Although other models such as SVM and Decision Tree
performed well on certain datasets, Random Forest was the most
consistent of the models.

However, it is important to realize that the dataset's IT
properties greatly impact how well these models function. For
example, SVM and DT perform better than RF on datasets such
as NASA 93, Deserhanis, and Cocomo 81, which have smaller
effect sizes. This study emphasized a crucial discovery: no
model is outperformed by the others on every dataset. Because
of this, selecting a model needs to be customized for each
dataset. Thus, there is no one-size-fits-all method for selecting
models.

The stacking ensemble technique is useful when Random
Forest is used as the core model because it can accommodate a
wide range of data types. Random Forest's ability to generate
more accurate predictions than Support Vector Machine (SVM)
and Decision Tree algorithms further emphasizes the
importance of selecting the appropriate base model for the
ensemble. Overall, the stacking ensemble technique performs
better and generates more dependable and consistent predictions
across datasets by leveraging the strengths of Random Forest.

V. CONCLUSION

Accurate estimation of software development effort can
make project planning successful and effective. But on the
contrary, inaccurate estimation can lead to failure in project
management. This research proves successful in effort
estimation with the solution of applying stacking ensemble
optimized by Bayesian hyperparameter tuning. This is achieved
due to the utilization of meta learner in stacking and optimal
parameter configuration in Bayesian. These results show how

useful this method is in creating accurate software effort
estimation tools and also provide ideas for further research.

The dataset used in this study may not be fully applicable to
other types of projects with different characteristics, such as
those with high complexity or limited data. As such, further
evaluation is necessary to ensure the generalizability of the
study's findings. For future research, it is recommended to
employ diverse datasets to reinforce the conclusions drawn and
to enhance the understanding of software effort estimation.
Additionally, comparative analyses of various optimization
strategies particularly for regression problems are essential. It is
also critical to examine the effectiveness of different feature
selection techniques, and to address issues related to scalability
and computational complexity, especially when these
approaches are applied to larger datasets within the domain of
software effort estimation.

ACKNOWLEDGMENT

Authors would like to thank to Lembaga Pengelola Dana
Pendidikan (LPDP) and Department of Informatics, Institut
Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia, for
supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

Data availability : The dataset used in the work are available at
https://github.com/Derek-Jones/Software-estimation-datasets

Author Contributions: Muhammad Yusuf: Conceptualization,
Methodology, Investigation, Writing – original draft, Data
curation, Formal analysis, Visualization, Funding acquisition.
Daniel Siahaan: Project administration, Resources, Writing –
review & editing, Validation.

REFERENCES

[1] J. Leong, K. May Yee, O. Baitsegi, L. Palanisamy, and R. K. Ramasamy,
“Hybrid Project Management between Traditional Software

Development Lifecycle and Agile Based Product Development for Future

Sustainability,” Sustainability, vol. 15, no. 2, p. 1121, Jan. 2023, doi:
10.3390/su15021121.

[2] P. G. F. Matsubara, B. F. Gadelha, I. Steinmacher, and T. U. Conte,

“SEXTAMT: A systematic map to navigate the wide seas of factors
affecting expert judgment software estimates,” Journal of Systems and

Software, vol. 185, p. 111148, Mar. 2022, doi:

10.1016/j.jss.2021.111148.
[3] A.-E. Iordan, “An Optimized LSTM Neural Network for Accurate

Estimation of Software Development Effort,” Mathematics, vol. 12, no.

2, p. 200, Jan. 2024, doi: 10.3390/math12020200.

[4] K. Rathor, J. Kaur, U. A. Nayak, S. Kaliappan, R. Maranan, and V.

Kalpana, “Technological Evaluation and Software Bug Training using

Genetic Algorithm and Time Convolution Neural Network (GA-TCN),”
in 2023 Second International Conference on Augmented Intelligence and

Sustainable Systems (ICAISS), Trichy, India: IEEE, Aug. 2023, pp. 7–12.

doi: 10.1109/ICAISS58487.2023.10250760.
[5] R. K. B. N and Y. Suresh, “Software Effort Estimation using ANN (Back

Propagation),” in 2023 7th International Conference on Computing

Methodologies and Communication (ICCMC), Erode, India: IEEE, Feb.
2023, pp. 1–2. doi: 10.1109/ICCMC56507.2023.10084264.

[6] Prisca Amajuoyi, Lucky Bamidele Benjamin, and Kudirat Bukola

Adeusi, “Optimizing agile project management methodologies in high-
tech software development,” GSC Adv. Res. Rev., vol. 19, no. 2, pp. 268–

274, May 2024, doi: 10.30574/gscarr.2024.19.2.0182.

https://github.com/Derek-Jones/Software-estimation-datasets

Yusuf and Siahaan / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 161 –168 (2025)

168

[7] B. Kapulica and K. Jurina, “Application of artificial intelligence in

project management: analysis of potentials and challenges,” Et2er, vol.

6, no. 2, pp. 115–121, Dec. 2024, doi: 10.70077/et2er.6.2.15.

[8] Ritu and P. Bhambri, “Enhancing software development effort estimation

with a cloud-based data framework using use case points, fuzzy logic,
and machine learning,” Discov Computing, vol. 28, no. 1, p. 143, Jul.

2025, doi: 10.1007/s10791-025-09668-1.

[9] K. S. Thant and H. H. Khaung Tin, “LEARNING THE EFFICIENT
ESTIMATION TECHNIQUES FOR SUCCESSFUL SOFTWARE

PROJECT MANAGEMENT,” Innovare J Eng & Tech, pp. 4–8, May

2023, doi: 10.22159/ijet.2023.v11i1.47605.
[10] B. A. Almahameed and M. Bisharah, “Applying Machine Learning and

Particle Swarm Optimization for predictive modeling and cost

optimization in construction project management,” Asian J Civ Eng, vol.
25, no. 2, pp. 1281–1294, Feb. 2024, doi: 10.1007/s42107-023-00843-7.

[11] F. Sarro, R. Moussa, A. Petrozziello, and M. Harman, “Learning From

Mistakes: Machine Learning Enhanced Human Expert Effort Estimates,”
IIEEE Trans. Software Eng., vol. 48, no. 6, pp. 1868–1882, Jun. 2022,

doi: 10.1109/TSE.2020.3040793.

[12] M. Fernandez-Diego, E. R. Mendez, F. Gonzalez-Ladron-De-Guevara, S.

Abrahao, and E. Insfran, “An Update on Effort Estimation in Agile

Software Development: A Systematic Literature Review,” IEEE Access,

vol. 8, pp. 166768–166800, 2020, doi: 10.1109/ACCESS.2020.3021664.
[13] A. Bahi, J. Gharib, and Y. Gahi, “Integrating Generative AI for

Advancing Agile Software Development and Mitigating Project

Management Challenges,” IJACSA, vol. 15, no. 3, 2024, doi:
10.14569/IJACSA.2024.0150306.

[14] A. Mahardika and A. Retnowardhani, “Effectiveness Agile Project

Management Tools For Managing Software Development Using F-AHP
Method,” in 2024 7th International Seminar on Research of Information

Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia:

IEEE, Dec. 2024, pp. 860–865. doi:
10.1109/ISRITI64779.2024.10963563.

[15] J. O. Afape et al., “Improving millimetre-wave path loss estimation using

automated hyperparameter-tuned stacking ensemble regression machine
learning,” Results in Engineering, vol. 22, p. 102289, Jun. 2024, doi:

10.1016/j.rineng.2024.102289.

[16] J. Chen, J. Xu, S. Cai, X. Wang, H. Chen, and Z. Li, “Software Defect

Prediction Approach Based on a Diversity Ensemble Combined With

Neural Network,” IEEE Trans. Rel., vol. 73, no. 3, pp. 1487–1501, Sep.

2024, doi: 10.1109/TR.2024.3356515.
[17] B. R. P. Damoto et al., “Deep Learning and Ensemble Approaches to

Misinformation Detection in Digital News: A Systematic Review,” in

2024 IEEE 10th Information Technology International Seminar (ITIS),
Surabaya, Indonesia: IEEE, Nov. 2024, pp. 151–156. doi:

10.1109/ITIS64716.2024.10845709.

[18] Z. Sakhrawi, A. Sellami, and N. Bouassida, “Software Enhancement
Effort Estimation using Machine Learning Regression Methods”.

[19] Meharunnisa, M. Saqlain, M. Abid, M. Awais, and Ž. Stević, “Analysis
of Software Effort Estimation by Machine Learning Techniques,” ISI,

vol. 28, no. 6, Dec. 2023, doi: 10.18280/isi.280602.

[20] D. K. Srivastava, A. K. Sharma, and D. Choudhary, “Software
Development Effort Estimation Using Machine Learning Techniques:

Multi-linear Regression versus Random Forest,” in 2021 International

Conference on Computing, Communication and Green Engineering

(CCGE), Pune, India: IEEE, Sep. 2021, pp. 1–5. doi:

10.1109/CCGE50943.2021.9776394.

[21] B. R. Paradisiaca Darnoto, D. Siahaan, and D. Purwitasari, “A

Comprehensive Ensemble Deep Learning Method for Identifying Native

Advertising in News Articles,” in 2023 IEEE 8th International
Conference On Software Engineering and Computer Systems (ICSECS),

Penang, Malaysia: IEEE, Aug. 2023, pp. 164–169. doi:

10.1109/ICSECS58457.2023.10256392.
[22] I.-G. Chelaru, “Enhancing the performance of software effort estimation

through boosting ensemble learning,” in 2023 25th International

Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), Nancy, France: IEEE, Sep. 2023, pp. 300–307.

doi: 10.1109/SYNASC61333.2023.00051.

[23] M. Yusuf, A. Haq, and S. Rochimah, “Integrating Adaptive Sampling
with Ensembles Model for Software Defect Prediction,” KINETIK, May

2025, doi: 10.22219/kinetik.v10i2.2191.

[24] M. Hammad and M. Amin, “Assuring Software Reuse Success Using
Ensemble MachineLearning Algorithms,” IJCDS, vol. 13, no. 1, pp. 69–

81, Jan. 2023, doi: 10.12785/ijcds/130107.

[25] Zainab Rustum Mohsin, “Investigating the Use of an Adaptive Neuro-

Fuzzy InferenceSystem in Software Development Effort Estimation,”

ijcsm, pp. 18–24, Jul. 2021, doi: 10.52866/ijcsm.2021.02.02.003.

[26] M. G. Meharie, W. J. Mengesha, Z. A. Gariy, and R. N. N. Mutuku,
“Application of stacking ensemble machine learning algorithm in

predicting the cost of highway construction projects,” ECAM, vol. 29, no.

7, pp. 2836–2853, Aug. 2022, doi: 10.1108/ECAM-02-2020-0128.
[27] H. Cho, Y. Kim, E. Lee, D. Choi, Y. Lee, and W. Rhee, “Basic

Enhancement Strategies When Using Bayesian Optimization for

Hyperparameter Tuning of Deep Neural Networks,” IEEE Access, vol. 8,
pp. 52588–52608, 2020, doi: 10.1109/ACCESS.2020.2981072.

[28] S. Hameed, Y. Elsheikh, and M. Azzeh, “An optimized case-based

software project effort estimation using genetic algorithm,” Information
and Software Technology, vol. 153, p. 107088, Jan. 2023, doi:

10.1016/j.infsof.2022.107088.

[29] A. Jadhav and S. K. Shandilya, “Reliable machine learning models for
estimating effective software development efforts: A comparative

analysis,” Journal of Engineering Research, vol. 11, no. 4, pp. 362–376,

Dec. 2023, doi: 10.1016/j.jer.2023.100150.

[30] Z. Sakhrawi, T. Labidi, A. Sellami, and N. Bouassida, “A Stacking

Ensemble Learning Model for Software Development Cost Estimation”.

[31] A. Kaushik, K. Sheoran, R. Kapur, N. Bhutani, B. Singh, and H. Sharma,
“SENSE: software effort estimation using novel stacking ensemble

learning,” Innovations Syst Softw Eng, vol. 21, no. 2, pp. 769–785, Jun.

2025, doi: 10.1007/s11334-024-00581-2.
[32] P. Srivastava, N. Srivastava, R. Agarwal, and P. Singh, “NEMAEP: A

NOVEL ENSEMBLE MACHINE LEARNING FRAMEWORK FOR

ACCURATE EFFORT ESTIMATION IN SOFTWARE PROJECTS,” .
Vol., no. 24.

[33] S. Kassaymeh, M. Alweshah, M. A. Al-Betar, A. I. Hammouri, and M.
A. Al-Ma’aitah, “Software effort estimation modeling and fully

connected artificial neural network optimization using soft computing

techniques,” Cluster Comput, vol. 27, no. 1, pp. 737–760, Feb. 2024, doi:
10.1007/s10586-023-03979-y.

