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Abstract 

Apple leaf diseases endanger global apple production at such an intensity that it demands precise detection systems to control disease 

spread effectively. Traditional inspection methods and Convolutional Neural Network (CNN)-based models face challenges when 

processing extended image dependencies in leaf images, which subsequently affects their ability to identify diseases accurately. This 

research develops AppleViT, a lightweight Vision Transformer (ViT)-based model that applies Vision Transformer technology with self-

attention approaches to enhance leaf disease classification accuracy and feature extraction within apple leaf detection systems. AppleViT 

was trained using a public dataset comprising 9,714 apple leaf images, categorized into four classes: Apple Scab, Black Rot, Cedar Apple 

Rust, and Healthy. The accuracy rate of AppleViT reached 97.8%, which exceeded the ResNet-50 and EfficientNet-B3 and MobileNetV3 

models while operating with 1.3 million parameters suitable for precision agriculture real-time usage. The proposed approach 

demonstrates both high generalization skills alongside precise precision and recall value measurements for disease categories. Future 

research will create attention visualization features and mobile application compatibility before expanding the architecture to identify 

multiple diseases across different plant types. AppleViT highlights the potential of Vision Transformer (ViT) technology as a powerful 

tool to revolutionize plant disease detection for improving crop yield and disease management worldwide. 
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I. INTRODUCTION  

The global need for food security depends heavily on apple 
cultivation due to its important delivery of essential nutrients 
including vitamins as well as minerals and antioxidants [1]. 
Sustainable apple cultivation struggles from leaf diseases that 
result in major harvest losses unless proper disease control 
methods exist[2].The three pathogenic microbes Botryosphaeria 
obtusa and Venturia inaequalis together with 
Gymnosporangium juniperi-virginianae are known to cause 
severe damage through blemishes and lesions which disrupt 
photosynthetic functions and fruit development [3]. Growers 
need correct disease identifications at right times to activate 
proper control methods and limit economic damage [4].  

A. Limitations of Traditional Disease Identification 

Crop disease identification has traditionally relied on 
physical inspection by agricultural experts. While feasible for 
small-scale farming, these methods demand excessive human 

labor and time, and they are prone to errors [5]. Early symptom 
detection is challenging because visible symptoms often appear 
only after disease progression. Moreover, disease symptom 
expression can vary with environmental conditions, making 
consistent classification difficult [6]. 

B. Apple Leaf Disease Classification using Deep Learning 

Automated deep learning methods, particularly 
Convolutional Neural Networks (CNNs), have revolutionized 
plant disease identification [7]. Apple leaf disease detection 
becomes successful with the application of three widely used 
CNN-based models including ResNet [8], EfficientNet [9] and 
MobileNet [10]. These models automatically learn relevant 
image features and outperform traditional machine learning 
classifiers. However, CNNs have fundamental constraints in 
capturing long-range dependencies in images. The localized 
receptive fields of CNNs make it difficult to learn global 
relationships between distant leaf regions [11]. Pooling 
operations may further reduce fine-grained spatial details, 
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lowering accuracy for complex or overlapping disease patterns. 
Moreover, CNNs typically require large labeled datasets and 
high computational resources, limiting their deployment in real-
time, resource-constrained agricultural environments. 

C.  Vision Transformers (ViTs) for Image Analysis 

Vision Transformers (ViTs) have emerged as a promising 
alternative, employing self-attention mechanisms to capture 
both local and long-range dependencies in images. ViTs divide 
an image into patches and process them using global self-
attention, thereby retaining holistic contextual information—
something CNNs struggle to achieve [12]. Preliminary research 
suggests ViTs can improve apple leaf disease detection, but 
most existing ViT models remain computationally heavy and are 
rarely optimized for deployment in agricultural edge 
environments. Recent works have proposed lightweight and 
hybrid ViT models that integrate CNN-based feature extraction 
to improve efficiency [13] however, these typically exceed 5–
10M parameters, which still poses a challenge for mobile 
deployment. 

D. Proposed AppleViT Model 

To address these limitations, this study proposes AppleViT, 
a lightweight Vision Transformer model for apple leaf disease 
classification that achieves 97.8% accuracy with only ~1.3M 
parameters. AppleViT is designed to: 

1) Overcome CNN limitations by leveraging global 

feature learning through self-attention, 

2) Enhance classification accuracy by capturing long-

range dependencies while maintaining low 

computational overhead, 

3) Enable real-time deployment on resource-constrained 

devices, and 

4) Provide interpretability via Layer-wise Relevance 

Propagation (LRP) and attention maps for 

transparent decision-making. 

Unlike prior works, AppleViT is explicitly optimized for 
both high performance and mobile feasibility, making it suitable 
for in-field agricultural applications. By integrating efficient 
transformer-based techniques with interpretability, AppleViT 
offers a scalable, transparent, and computationally efficient 
solution for apple leaf disease detection. This contributes to 
sustainable apple farming by enabling earlier and more accurate 
interventions, ultimately supporting global food security. 

 

II. RELATED WORK 

Global apple production relies on effective classification and 
management strategies for apple leaf diseases. Early research in 
this domain started with manual inspection and rudimentary 
image processing, but it has now shifted to advanced deep 
learning methods. Below, we review the progression from 
traditional techniques to modern deep learning and transformer-
based approaches. 

A. Traditional Approaches 

Early plant disease classification methods used hand-crafted 
features such as color segmentation, texture analysis, and edge 

detection[14]. These approaches had limited success, as they did 
not generalize well to diverse conditions and required expert 
knowledge to extract features. Classical machine learning 
classifiers (Support Vector Machines, Random Forests, k-
Nearest Neighbors) were applied with these features, but they 
demanded extensive manual feature engineering and proved 
difficult to scale beyond small datasets. 

B. CNN-Based Approaches 

The advent of convolutional neural networks (CNNs) 
enabled automatic feature extraction for plant disease detection, 
yielding higher accuracy and rendering manual feature 
engineering obsolete. Numerous studies have confirmed the 
effectiveness of CNNs: for example, an ensemble of CNN and 
Vision Transformer (ViT) achieved 96% accuracy in olive leaf 
disease detection [15]; a CNN with GAN-based augmentation 
improved tomato leaf disease classification [16]; and a compact 
CNN (RegNet) outperformed other models in apple leaf disease 
detection [17]. A data augmentation approach using background 
removal for apple leaf disease classification with MobileNetV2 
was proposed, highlighting the importance of background 
preprocessing in improving model robustness under real-world 
conditions [13].Despite their success, CNNs have limitations in 
capturing global dependencies due to local receptive fields and 
in retaining fine-grained spatial details due to pooling layers. 

C. ViT-Based Approaches 

Recent studies have explored Vision Transformers (ViTs) 
for plant disease classification, leveraging self-attention to 
improve feature representation by retaining both global and 
local context. Notable examples include the use of a MaxViT 
transformer model achieving ~97% accuracy on tomato leaf 
diseases [18], an attention-based ViT mapping approach that 
outperformed CNNs with test accuracies of 85.9%, 89.2%, and 
94.2% on different plant disease datasets [19], and an SEViT 
model which improved fine-grained plant disease classification 
accuracy [20]. These works demonstrate the strength of ViTs in 
modeling long-range interactions. However, vanilla ViTs can be 
computationally heavy, making them less suitable for real-time 
agricultural applications without modifications or efficiency 
improvements. 

 

D. Hybrid CNN -ViT Based Approaches 

Given the complementary strengths of CNNs and ViTs, 
researchers have developed hybrid architectures that combine 
both. For instance, SLViT, a shuffle-convolution-based 
lightweight ViT, was introduced by integrating a CNN stem 
with transformer blocks. SLViT demonstrated improved speed, 
reduced model size, and high precision on benchmark leaf 
disease datasets such as PlantVillage and a sugarcane leaf 
disease dataset, highlighting the benefit of hybrid designs [21]. 
PlantXViT, a CNN–ViT hybrid model, achieved high 
accuracies (93–98%) on apple, maize, and rice leaf disease 
datasets [22]. Former Leaf, an efficient ViT model optimized for 
cassava leaf disease detection through attention pruning and 
sparse operations, further improved efficiency for crop-specific 
tasks [23]. AppViT, a hybrid model stacking CNN 
convolutional blocks with ViT blocks, achieved 96.38% 
precision on the challenging Plant Pathology 2021 apple leaf 
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dataset with only ~1.3 million parameters, outperforming 
ResNet-50 and EfficientNet-B3 by 11.3% and 4.3% 
respectively, underscoring the power of lightweight hybrid 
transformers [24]. Similarly, MobilePlantViT, a mobile-friendly 
hybrid ViT model with only 0.69M parameters, achieved 80–
99% accuracy across diverse crop disease datasets [25]. 
TrIncNet, a transformed Inception-ViT network, was also 
introduced as a lightweight ViT-based model for crop disease 
identification [26]. In parallel, TinyResViT, a hybrid of ResNet 
and ViT designed for on-device corn leaf disease detection, 
demonstrated efficient performance in real-world field settings 
[27]. From a data augmentation perspective, InViT-Mixup, a 
convolutional ViT with Mixup augmentation, showed improved 
classification accuracy on tomato leaf diseases [28].  

Additionally, recent works from 2025 further demonstrate 
the importance of lightweight and hybrid ViTs in agriculture: 

 

• ViT integration with spectral imaging was 

demonstrated for precision crop monitoring [29] 

• A ViT-based explainable AI framework for maize leaf 

disease classification achieved 94.97% accuracy with 

only 1.22 million parameters, enabling real-time 

mobile deployment and enhancing model 

transparency through explainable AI [30]. 

• A hybrid deep learning model for maize leaf disease 

classification with explainable AI, combining 

convolutional feature extraction with transformer-

based attention layers. Their approach achieved high 

accuracy while offering interpretability through Grad-

CAM visualizations, demonstrating the potential of 

hybrid architectures in balancing efficiency, accuracy, 

and transparency in agricultural AI [31]. 

 
These examples illustrate a clear trend toward lightweight 

and hybrid ViT models that balance CNN’s inductive biases 
with Transformers’ global attention, achieving high accuracy 
with fewer parameters. 

Our proposed AppleViT aligns with this trend but is tailored 
specifically for apple leaves, introducing an attention-based 
architecture with only 1.3M parameters and adding 
interpretability features (Layer-wise Relevance Propagation) 
not seen in prior models. This focus on apple-specific disease 
patterns and model explainability distinguishes AppleViT from 
similar-accuracy models like SLViT and PlantXViT. A 
comparative summary of related studies is presented in Table I.  

 

E. Research Gaps 

Despite the progress in plant disease AI models, multiple 
gaps remain. Many studies prioritize highest accuracy on closed 
datasets, sometimes at the expense of practical considerations 
like model interpretability and robustness. The opaque “black-
box” nature of ViTs and deep models makes it hard for farmers 
to trust their outputs. Without clear explanations of how 
decisions are made, user acceptance in agricultural practice is 

limited. Additionally, most models are trained on limited 
datasets (often with lab-controlled images), so they risk 
overfitting and may not generalize to new diseases or field 
conditions (e.g., different lighting, backgrounds). Thus, a need 
exists for models that maintain high accuracy and provide 
transparent reasoning and reliable performance in diverse real-
world scenarios. To address these challenges, we propose 
AppleViT, a lightweight Vision Transformer tailored for apple 
leaf disease classification. AppleViT leverages self-attention for 
long-range feature modeling, integrates interpretability 
mechanisms, and achieves state-of-the-art accuracy with 
minimal parameters. 

F. Contributions of AppleViT 

The key contributions of this work are: 

1) Lightweight Vision Transformer (AppleViT): A novel 

ViT-based model with only 1.3M parameters, 

achieving 97.8% accuracy in apple leaf disease 

classification. 

2) Interpretability: Integration of Layer-wise Relevance 

Propagation (LRP) and attention visualizations to 

highlight decision-relevant regions and improve 

model trust. 

3) Generalization: Robust performance across real-world 

environments through augmentation, transfer 

learning, and external validation on the Plant 

Pathology 2021 dataset. 

4) Practical Deployment: Demonstration of AppleViT’s 

competitiveness with state-of-the-art CNNs at lower 

computational cost, underscoring its suitability for 

real-time mobile and edge applications. 

By addressing these gaps, AppleViT provides an 

interpretable, efficient, and scalable framework for precision 

agriculture and plant disease management. 

 

III. MATERIALS AND METHODOLOGY 

A. Dataset Description 

We utilized a dataset of 9,714 apple leaf images to develop 
and evaluate the AppleViT model. The images are categorized 
into four classes: Apple Scab (2,016 images), Black Rot (1,987 
images), Cedar Apple Rust (1,760 images), and Healthy leaves 
(2,008 images). These high-resolution images were collected 
from varied environments (both lab and orchard settings) to 
ensure diversity in background and lighting. Prior to training, all 
images underwent preprocessing to improve generalization. The 
preprocessing steps included:(a) Data Augmentation – random 
rotations, flips, scaling, and brightness adjustments were applied 
to simulate different angles and lighting conditions; (b) 
Normalization – pixel values were standardized (zero mean, unit 
variance) per channel; and (c) Dataset Splitting – the dataset was 
divided into 80% for training and 20% for validation/testing. 
Table II provides the detailed class-wise split. Sample images 
from each category, illustrating the kind of leaf and background 
variations, are shown in Figure 1. 
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TABLE I.  PLANT LEAF DISEASE DETECTION COMPARISON OF PREVIOUS WORK 

Reference Year Dataset Methodology Accuracy Limitation 

[13] 2024 Apple leaves CNN (lightweight) 
98.72% 

(Precision) 

Focused only on apples; limited 

generalization 

[15] 2022 Olive leaves (olive leaf disease) CNN + ViT ensemble 96% Limited to olive leaf disease 

[16] 2022 Mixed plant leaves 
Deep CNN (with GAN 

augmentation) 
High (improved) 

Requires data augmentation for best 

performance 

[20] 2022 (Not specified) 
SEViT (Squeeze-and-Excitation 

ViT) 
88.34% Requires large-scale computing 

[22] 2022 Apple, maize, rice leaves PlantXViT (CNN–ViT hybrid) 93.55–98.33% Limited dataset diversity 

[23] 2023 Cassava leaves (not specified) FormerLeaf (efficient ViT) (Not reported) Optimization strategy unclears 

[29] 2025 Multi-spectral crop images 
ViT with spectral imaging 

integration 
~95% Requires specialized spectral hardware 

[32] 2022 Various plant diseases & pests 
ViT-based automated pest 

identification 
96.71% High computational demand 

[33] 2023 Mango leaves Federated learning-based CNN 97–98% Requires extensive data for federation 

[34] 2023 
Citrus, cucumber, grape, tomato 

leaves 

DLMC-Net (deeper lightweight 

CNN) 
92.34–99.50% 

Performance varies with lighting 

conditions 

[35] 2025 PlantVillage subset (multi-crop) Mobile-friendly hybrid ViT ~95% 
Edge deployment tested, but dataset 

limited 

[36]  2025 Corn leaves Lightweight ResNet + ViT hybrid ~94% Evaluation limited to a single crop 

[37] 2024 Multiple plant species 
CNN–ViT hybrid with Mixup 

augmentation 
93–97% Needs large-scale augmented data 

 
Fig. 1. Sample images of apple leaves from each disease category in the dataset. 

TABLE II.  PARTITION OF THE APPLE LEAF DATASET INTO TRAINING, 
VALIDATION, AND TESTING SETS.. 

Class Training Validation Testing 

Apple Scab 2016 453 51 

Black Rot 1987 447 50 

Cedar Apple Rust 1760 396 47 

Healthy 2008 451 51 
 

This balanced partition ensures that the model learns distinct 
patterns associated with each leaf disease class, reducing bias 
toward any single category. The presence of diverse 
backgrounds (e.g., natural foliage vs. plain backgrounds) in the 

training set helps AppleViT remain robust to real-world 
scenarios. 

B. Overview of the Proposed Model 

The proposed AppleViT model is a Vision Transformer 
(ViT)-based architecture designed for apple leaf disease 
classification. It comprises three major components: 

1) Patch Embedding Module 

2) Stacked Transformer Encoder Blocks 

3) Classification Head 

The following subsections detail each component and 

present the corresponding mathematical formulations. 

1) Patch Embedding: Given an input image 𝑋 ∈ ℝ𝐻×𝑊×3 of 

height 𝐻 , width 𝑊 , and three RGB channels, the image is 

divided into non-overlapping square patches of size 𝑃 × 𝑃. The 

total number of patches is calculated using (Eq. 1): 

𝑁 =
𝐻 × 𝑊

𝑃2
                               (1) 
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Each patch 𝑥𝑖 (𝑖 = 1,2, … , 𝑁) is flattened into a vector and 
projected to a 𝐷-dimensional embedding space using a trainable 

matrix 𝐸 ∈ ℝ𝑃2×𝐷as in (Eq.2): 

𝑧𝑖
0 = 𝐸 ⋅ flatten(𝑥𝑖) + 𝐸pos,𝑖                                       (2) 

where 𝐸pos,𝑖 is the positional embedding of the 𝑖-th patch. 

A learnable class token 𝑧cls
0 ∈ ℝ𝐷  is appended to the 

sequence of patch embeddings, and positional embeddings 𝐸pos 

are added as in (Eq.3): 

𝑍0 = [ 𝑧cls
0 ; 𝑧1

0; 𝑧2
0; … ; 𝑧𝑁

0  ] + 𝐸pos                       (3) 

Here, 𝑍0 ∈ ℝ(𝑁+1)×𝐷  is the initial token sequence for the 

transformer encoder. 

2) Transformer Encoder Blocks: The sequence 𝑍0  is 

processed by 𝐿 identical transformer encoder layers. Each layer 

consists of: 

a) Multi-Head Self-Attention (MHSA): In the ℓ-th layer, the 

input 𝑍ℓ−1 is linearly projected into queries 𝑄, keys 𝐾, and 

values 𝑉 for each attention head as in (Eq.4): 

𝑄 = 𝑍ℓ−1𝑊𝑄, 𝐾 = 𝑍ℓ−1𝑊𝐾 ,  𝑉 = 𝑍ℓ−1𝑊𝑉              (4) 

where 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 ∈ ℝ𝐷×𝑑ℎ  are learnable projection 

matrices, and 𝑑ℎ is the head dimension (𝐷 = ℎ × 𝑑ℎ, with 

ℎ = number of heads). 

Attention weights are computed as in (Eq.5): 

𝐴 = softmax (
𝑄𝐾𝑇

√𝑑ℎ

)                                     (5) 

where 𝐴 ∈ ℝ(𝑁+1)×(𝑁+1) contains pairwise attention scores. 

The head output is obtained as in (Eq. 6): 

 

headℎ = 𝐴 ⋅ 𝑉                                            (6) 

Outputs from all heads are concatenated and projected 

through 𝑊𝑂 ∈ ℝ𝐷×𝐷. 

b) Add & Norm: The MHSA output is added to the input 

sequence via a residual connection, followed by Layer 

Normalization ((Eq. 7): 

𝑍′ = LN(𝑍ℓ−1 + MHSA(𝑍ℓ−1))                        (7) 

c) Feed-Forward Network (FFN): The FFN transformation is 

defined in (Eq. 8): 

FFN(𝑥) = 𝑊2 𝜎(𝑊1𝑥 + 𝑏1) + 𝑏2                             (8) 

where 𝑊1, 𝑊2 ∈ ℝ𝐷×𝐷 , 𝑏1, 𝑏2  are biases, and 𝜎  is the 

GELU activation. 

The FFN output is added to 𝑍′ and normalized (Eq. 9): 

𝑍ℓ = LN(𝑍′ + FFN(𝑍′))                             (9) 

This output becomes the input for the next transformer 

layer. 

After 𝐿 layers, the final representation is: 

𝑍𝐿 = [ 𝑧cls
𝐿 ; 𝑧1

𝐿; 𝑧2
𝐿; … ; 𝑧𝑁

𝐿  ] 

where 𝑧cls
𝐿  contains the global image representation. 

 

3) Classification Head: The class token output is passed 

through a fully-connected layer to obtain prediction logits (Eq. 

10): 

𝑦̂ = softmax(𝑊𝐶
𝑇𝑧cls

𝐿 + 𝑏𝐶)                            (10) 

where 𝑊𝐶 ∈ ℝ𝐷×𝐶 , 𝑏𝐶 ∈ ℝ𝐶 , and 𝐶  is the number of classes 

(𝐶 = 4 in this study). 

The predicted class is the index j with the highest probability: 

class = argmax
𝑗

𝑦̂𝑗 

meaning the class with the largest 𝑦̂𝑗 is selected as the model’s 

prediction. 

The AppleViT architecture effectively captures long-range 
dependencies between image regions using self-attention, while 
maintaining a compact parameter count (~1.3M). Figure 2 
illustrates the complete pipeline, including: 

• Patch Embedding 

• Stacked Transformer Encoders with MHSA + FFN 

• Classification Head 

C. Training Algorithm 

We outline the training and inference procedure for AppleViT in Algorithm 1. 

This includes preprocessing, model training, validation, and deployment steps 
for clarity.  

Algorithm 1: Apple Leaf Disease Detection using AppleViT 

Input: Labeled Apple leaf image 𝑰 , number of disease classes 𝑵 . 

Output: Predicted disease class label 𝒚̂. 

1. Preprocessing: Resize 𝐼  to 224 × 224 , apply data augmentation 

(random rotations, flips), and normalize pixel values: 

𝐼norm =
𝐼′ − 𝜇

𝜎
 

 

2. Model Initialization: Load pre-trained ViT model, freeze layers (if 

applicable), and replace the final classification head with: 

q 𝑦̂ = softmax(𝑊𝑐𝑍𝑐𝑙𝑠 + 𝑏𝑐) 

 

3. Training: Train the model for 𝐸  epochs with batch size 𝐵 . The 

forward pass extracts ViT features:  

𝑍 = 𝑓ViT(𝐼norm; 𝛩ViT) 
 

Optimize parameters using categorical cross-entropy loss: 𝐿 =
− ∑ 𝑦𝑘

𝑁
𝑘=1 log𝑦̂𝑘 and update using Adam optimizer: 𝛩ViT

𝑡+1 = 𝛩ViT
𝑡 −

𝜂
∂𝐿

∂𝛩
 

 

4. Validation: Evaluate performance using accuracy: Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 Apply early stopping or learning rate scheduling if 

necessary. 

5. Inference: For a new test image 𝐼test, compute class probabilities: 

𝑃(𝑦𝑘 ∣ 𝐼test) = 𝑓ViT(𝐼test; 𝛩ViT)  The predicted class is assigned as: 

𝑦̂ = argmax
𝑘

𝑃(𝑦𝑘 ∣ 𝐼test) 
 

End Algorithm 
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Fig. 2. Architecture of the AppleViT Model

AppleViT was trained using supervised learning with 
categorical cross-entropy as the loss function for multi-class 
predictions. The Adam optimizer facilitated gradient-based 
optimization, with a batch size of 32 and 100 epochs to ensure 
optimal performance while preventing overfitting. Training was 
conducted on Google Colab with an NVIDIA Tesla GPU, using 
an initial learning rate of 0.001 and early stopping based on 
validation loss[38]. Figure 3 illustrates the training workflow, 
covering preprocessing, training, and validation. 

 

Fig. 3. Training flowchart of the AppleViT model 

Prior to training, images were resized to 224×224, 
normalized, and augmented for consistency and improved 
generalization. The model was implemented in Python using 
TensorFlow and Keras, with built-in callbacks for early stopping 
and checkpointing.  

D. Evaluation Metrics  

To evaluate AppleViT’s performance, we use standard 
classification metrics: Accuracy, Precision, Recall, and F1-

Score for each class, as well as overall accuracy. These metrics 
are defined in Table III.  

These metrics have been extensively used in CNN-based 
plant disease classification literature. For instance, Mohanty et 
al. [39] reported CNN-based plant disease recognition using 
accuracy as the primary performance metric, while Too et al. 
[40] emphasized precision, recall, and F1-score to provide 
deeper insights into misclassifications. Similarly, Rangarajan et 
al. [41] highlighted the importance of F1-score in imbalanced 
leaf disease datasets. 

In this study, we compute these metrics on the test set for 
each disease class as well as overall, ensuring a comprehensive 
evaluation. Additionally, a confusion matrix is analyzed to 
understand misclassification trends between visually similar 
disease categories. This combination of metrics provides a 
complete picture of the CNN model’s accuracy, robustness, and 
practical reliability for apple leaf disease detection. 

TABLE III.  PERFORMANCE METRICS USED IN PROPOSED MODEL 

Metric Formula Description 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Measures the overall 
proportion of correctly 

classified cases. 

Higher accuracy 
indicates fewer 

misclassifications. 



Gupta & Jadon / Journal of Applied Science and Technology Trends Vol. 01, No. 02, pp. 219 –230 (2025) 

 

225 

Metric Formula Description 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Measures the 

proportion of correctly 

identified positive 
cases out of all 

predicted positive 

cases. High precision 
means fewer false 

positives. 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Measures how well 

the model identifies 

diseased plants, 
minimizing missed 

detections. 

F1-Score 2 ×
Precision × Recall

Precision + Recall
 

Harmonic mean of 

precision and recall, 
balancing false 

positives and false 

negatives. 

 

IV. RESULTS AND DISCUSSION 

This section presents the evaluation results of the proposed 
AppleViT model for apple leaf disease classification. We first 
report AppleViT’s performance on the primary dataset (9,714-
image apple leaf dataset) across multiple metrics. We then 
compare AppleViT against state-of-the-art CNN baselines to 
highlight its efficiency and accuracy gains. Next, we include 
additional experiments to assess AppleViT’s generalization to 
an external dataset with real-world backgrounds. We also 
provide visual analyses – including sample predictions and 
interpretability heatmaps – to demonstrate the model’s behavior, 
followed by a discussion on practical deployment 
considerations, strengths, and limitations. 

A. Model Performance Evaluation 

The AppleViT model was trained and tested on the public 
apple leaf image dataset described earlier. The performance was 
assessed using the standard evaluation metrics defined in 
Section III.D. 

1) Class-wise Accuracy, Precision, Recall, and F1-Score: 
Table IV summarizes the classification performance of 
AppleViT across all disease categories in terms of class-wise 
accuracy, precision, recall, and F1-score. 

 

TABLE IV.  CLASSIFICATION PERFORMANCE OF APPLEVIT FOR EACH 

CLASS 

Class 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Apple Scab 97.2 96.8 97.5 97.1 

Black Rot 96.5 96.0 96.9 96.4 

Cedar Apple 

Rust 
98.1 97.8 98.3 98.0 

Healthy 99.3 99.1 99.5 99.3 

Overall 97.8 97.4 98.0 97.7 

 

From these results, AppleViT achieved an overall accuracy 
of 97.8%, indicating that nearly 98 out of 100 leaves are 
correctly classified. All four classes have high precision and 
recall (mostly 96–99%), showing balanced performance. 
Notably, the model performed exceptionally well on Healthy 
leaves and Cedar Apple Rust, with F1-scores around 99%, 
implying almost no errors for those categories. Even the lowest 
metrics (e.g., Black Rot recall 96.9%) are still very high, 
demonstrating that AppleViT rarely misses diseased leaves or 
mislabels healthy ones. These strong results validate that the 
self-attention mechanism effectively captured the distinguishing 
features of each disease.  

2) Training Convergence: The training and validation 
accuracy/loss curves (Figure 4) show that AppleViT converged 
smoothly. Training accuracy improved steadily and closely 
tracked validation accuracy, indicating minimal overfitting. By 
epoch ~80, the model reached a plateau near 98% accuracy. The 
validation loss also decreased and stabilized, confirming the 
model generalizes well on unseen data. 

 
Fig. 4: Accuracy and loss curve of proposed model AppleViT 

 

 

B. Comparative Analysis with CNN-Based Models 

We compared AppleViT’s performance and complexity 
against several common CNN architectures used in plant disease 
classification: ResNet-50, EfficientNet-B3, and MobileNetV3. 
Table V presents the accuracy, precision, recall, F1-score, and 
number of trainable parameters for each model on the same 
apple leaf test set. 

 

AppleViT achieved the highest accuracy (97.8%), 
substantially outperforming ResNet-50 (~92.3%) and the other 
CNNs. AppleViT’s precision and recall are ~97–98%, again 
exceeding the CNNs by several percentage points. This means 
AppleViT not only makes fewer mistakes overall, but it also 
maintains excellent balance between false positives and false 
negatives compared to CNNs. Crucially, the model size of 
AppleViT is only ~1.3M parameters, which is ~18× smaller than 
ResNet-50 and even ~4× smaller than MobileNetV3. This 
lightweight nature underscores AppleViT’s novelty: it matches 
or surpasses large CNN accuracy while being extremely 
compact. A smaller model is faster and more feasible to deploy 
on mobile or edge devices in agricultural fields. 
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TABLE V.  PERFORMANCE OF APPLEVIT VS. BASELINE CNN MODELS ON 

APPLE LEAF DATASET. 

Model 
Accurac
y (%) 

Precisio
n (%) 

Recal
l (%) 

F1-
Score 
(%) 

Trainable 
Parameter
s 

ResNet-50 92.3 91.8 92 91.9 23.5M 

EfficientNet-
B3 

94.1 93.7 94 93.8 10.7M 

MobileNetV
3 

90.7 89.9 90.5 90.2 5.4M 

Proposed 
Model 

97.8 97.4 98 97.7 1.3M 

 

In practical terms, AppleViT can run in real-time on devices 
where ResNet-50 would be too heavy. The transformer-based 
architecture, with its global attention, appears to capture disease 
patterns more effectively than CNNs that rely on local 
convolutions. AppleViT identified subtle disease features and 
their contexts, resulting in higher recall (fewer missed diseased 
leaves) and higher precision (fewer false alarms) than CNN 
baselines. These results highlight the advantage of transformer 
models for this task when carefully designed in a lightweight 
manner. 

C. Confusion Matrix Analysis 

To better understand AppleViT’s classification behavior, we 
analyzed the confusion matrix of predictions across the four 
classes (Apple Scab, Black Rot, Cedar Apple Rust, and Healthy) 
(Figure 5). Each row corresponds to the actual class and each 
column to the predicted class, with diagonal elements 
representing correctly classified samples. 

 

Fig. 5. Confusion matrix of AppleViT’s classification results on the test set 

AppleViT achieved strong per-class performance, with most 
samples falling along the diagonal, indicating correct 
predictions. Misclassifications were minimal but provide 
important biological and visual insights. For example, Black Rot 
vs. Apple Scab errors were observed in a few cases, likely 
because early-stage Black Rot lesions can visually resemble the 
dark, irregular spots of Apple Scab. Similarly, a small number 
of diseased leaves misclassified as Healthy may be attributed to 

mild infections with subtle symptoms or background noise (e.g., 
soil, shadows) masking lesion patterns. 

Interestingly, AppleViT did not confuse Cedar Rust with 
other diseases, as its distinct orange pustules provide strong 
discriminatory cues. This demonstrates that the model 
effectively captured highly separable disease characteristics, 
while subtle overlaps between Scab and Rot highlight areas for 
further dataset enrichment or augmented training. 

Overall, the confusion matrix reinforces that AppleViT is 
robust across disease categories, with remaining errors aligned 
to visually challenging edge cases rather than random 
misclassifications. 

 

D. Visual Interpretability and Prediction Examples 

While quantitative metrics confirm AppleViT’s accuracy, 
we also examined the model’s predictions and visual 
explanations to validate its decision-making process. Figure 6 
presents representative classification results with predicted 
labels and confidence scores for different apple leaf diseases. 
The model achieved very high confidence values (97–99%) 
across classes such as Black Rot, Cedar Apple Rust, and Apple 
Scab, confirming the robustness of its feature learning and 
generalization ability. These examples provide direct evidence 
that AppleViT produces reliable outputs on unseen test data.  

 

Fig. 6. Example predictions by AppleViT showing correctly classified apple 

leaf diseases with high confidence scores. 

To further probe the model’s reasoning, we incorporated 
Layer-wise Relevance Propagation (LRP) and attention map 
visualization into AppleViT. Figure 7 shows sample test images 
with predictions and corresponding heatmaps highlighting the 
image regions deemed important by the model. From these 
results, we observe that AppleViT consistently focused on the 
correct features: for Apple Scab, dark scabby lesions were 
emphasized; for Black Rot, the model localized the blackened 
leaf margins; and for Cedar Rust, the orange rust spots were 
strongly highlighted. In contrast, the Healthy leaf showed 
diffuse attention with no intense hotspots, which is appropriate 
as no disease cues were present. These visualizations confirm 
that the model is not relying on irrelevant background features, 
but rather learning biologically meaningful disease patterns. 
Together, Figures 6 and 7 provide both quantitative confidence 
validation and qualitative interpretability evidence, ensuring that 
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AppleViT’s predictions are not only accurate but also 
transparent and trustworthy. 

 

Fig. 7. Attention heatmaps and LRP visualizations highlighting disease-specific 

regions used by AppleViT for classification. 

E. Additional Experiment: Generalization to Plant Pathology 

Dataset 

One major concern for deploying AI models in agriculture is 
generalization to real-field conditions. To evaluate AppleViT’s 
robustness, we conducted an additional experiment using the 
Plant Pathology 2021 – FGVC8 dataset. This is an external 
benchmark of apple leaf images collected in orchards with 
complex backgrounds (e.g., tree branches, soil) and it includes 
additional disease classes (such as Frogeye Leaf Spot and 
Powdery Mildew) beyond our original four categories. We fine-
tuned AppleViT on the Plant Pathology 2021 training set 
(containing ~18,000 images across 6 classes) and evaluated on 
its test set to see how well our model adapts to new data 
distribution and disease types. 

Despite the differences, AppleViT performed impressively 
on this external dataset. It achieved an overall accuracy of 95.4% 
on the Plant Pathology test set, with class-wise accuracies: 
96.8% (Scab), 95.5% (Rust), 94.0% (Frogeye), 93.1% (Powdery 
Mildew), 97.2% (Healthy), and 94.6% (Complex/multiple 
disease). These results are on par with state-of-the-art models 
reported for the competition (which ranged around 92–98% [5]). 
Notably, AppleViT maintained high performance even for the 
two disease classes (Frogeye and Powdery Mildew) that were 
never seen in its original training – we attribute this to the 
model’s strong transfer learning capability and the general 
feature extraction of the ViT backbone.  

Overall, this external validation gives confidence that 
AppleViT is field-ready. In practical terms, a model that 
generalizes to different datasets and conditions is more likely to 
perform reliably when deployed as a mobile app for farmers or 
integrated into drone imaging systems. We stress that including 
diverse training data (as we did) and employing data 
augmentation were crucial to achieving this robustness. 

F. Practical Deployment Considerations 

For AI models like AppleViT to be useful in practice, they 
must be deployable on resource-limited devices (e.g., 
smartphones, Raspberry Pi) and robust to field variability. 
AppleViT was developed with deployment in mind. Its small 
size (1.3M parameters) already implies faster inference and 
lower memory usage than typical CNN models. On a modern 
mobile phone CPU, AppleViT can perform an inference on a 
single image in under ~50ms, which is effectively real-time for 
guiding disease scouting. 

We further discuss a few deployment considerations and 

improvements: 

• Model Quantization and Pruning: To reduce the model 

footprint even more, we can apply 8-bit quantization or 

weight pruning techniques. Quantization would convert 

AppleViT’s weights from 32-bit floats to 8-bit integers, 

potentially compressing the model size by 4× and speeding 

up inference on mobile NPUs, with minimal loss in 

accuracy. Pruning can remove redundant attention heads or 

transformer weights; given AppleViT’s high baseline 

accuracy, a pruned version might still meet required 

accuracy while using fewer computations. We plan to 

explore quantized and pruned AppleViT variants for 

deployment in low-power devices (such as solar-powered 

field sensors). 

• Edge Deployment: We tested AppleViT on a mid-range 

smartphone by converting the model to TensorFlow Lite 

format. The model loaded and ran successfully, confirming 

compatibility. The ~5MB model file (after quantization) 

easily fits in memory. We also note that AppleViT’s self-

attention operations could be accelerated by modern ML 

accelerators on devices (e.g., Neural Engine, DSP). The 

inference time was fast (a few dozens of milliseconds per 

image as noted). This suggests AppleViT is well-suited for 

a mobile app that could take a leaf photo and instantly 

return a diagnosis in the field. 

• Robustness to Environment: In real orchards, leaves might 

be partially occluded, images might have varying lighting 

(shadows, bright sunlight), and different angles. Our 

training included augmentations to mimic some of this 

variation. To further ensure robustness, one could use 

domain randomization during training (random 

backgrounds, noise) or collect additional training images 

under field conditions. Our generalization test (Section 4.5) 

is promising in this regard, as AppleViT handled real 

backgrounds well. Additionally, temporal stability and 

weather effects (wet leaves, etc.) are factors for future 

testing. We envision deploying AppleViT in a smartphone 

app where multiple images can be taken – if a single image 

is unclear, the app could request another to reduce 

uncertainty. 

• Scalability and Integration: Another practical aspect is how 

AppleViT can be integrated into a larger plant disease 
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management system. Because it’s lightweight, multiple 

instances could run on drone-mounted cameras or IoT 

devices scanning orchards. The model could also be 

combined with a detection stage (e.g., using a lightweight 

object detector to first find leaves, then AppleViT to 

classify disease on each leaf). Such an ensemble might be 

needed for large scenes where leaves must be identified in 

the image. Preliminary tests show AppleViT could classify 

patches extracted from larger images of tree canopies if the 

leaves are approximately segmented. 

In summary, AppleViT addresses many deployment issues 
by design. The quantitative results (high accuracy, low 
parameter count) and our qualitative tests on device indicate that 
moving from research to real-world application is feasible. We 
have added the above discussion to make clear to readers the 
steps being taken to make AppleViT practically useful, as per 
reviewer suggestions. 

G. Strengths and Limitations of AppleViT 

Strengths: AppleViT achieved 97.8% accuracy, surpassing 
conventional CNN models, while maintaining high precision 
and recall across all disease categories. Its transformer-based 
self-attention mechanism enables it to efficiently capture global 
context on leaves, which enhances its ability to differentiate 
diseases that have subtle differences in spot patterns or color. 
With only ~1.3 million trainable parameters, AppleViT is 
extremely lightweight, which translates to fast inference and low 
resource usage – qualities that are essential for real-time 
deployment on drones, mobile phones, or edge devices in 
agricultural settings. The model also demonstrated strong 
generalization: it performed reliably on images with diverse 
backgrounds and was able to adapt to new disease classes with 
minimal fine-tuning (Section 4.5). Another key strength is 
interpretability: by integrating LRP and attention map 
visualization, AppleViT can provide explanations for its 
predictions, highlighting the diseased regions on the leaf. This 
transparency helps build trust with end-users (farmers, 
agronomists), bridging the gap between AI predictions and 
actionable agricultural insights. 

Limitations: Despite its high performance, AppleViT has 
some limitations. It showed minor confusion between very 
visually similar diseases (e.g., Black Rot vs Apple Scab) in a few 
cases, as seen in the confusion matrix. This suggests that if two 
diseases produce nearly identical symptoms, AppleViT might 
struggle to distinguish them, especially if they were not well-
represented in training. This could be mitigated by providing 
more labeled examples of such borderline cases or by 
incorporating spectral/field data beyond just RGB images. Like 
other deep learning models, AppleViT’s performance is 
somewhat data-dependent – it benefited from a sufficiently large 
training set with augmentations. In scenarios where a new 
disease emerges or only a handful of samples are available, the 
model might need additional techniques (few-shot learning or 
pre-training on broader plant disease data) to maintain accuracy. 
Another limitation is that AppleViT currently addresses 
classification of a single leaf image. In practice, simultaneous 
detection of multiple diseased leaves in a larger image (detection 
+ classification) is needed; integrating AppleViT with an object 

detection pipeline would introduce complexity and potential 
speed trade-offs. In terms of scope, AppleViT was designed and 
tested for apple leaf diseases – its efficacy on other crops has 
been demonstrated in concept (through transfer learning in 
Section IV, E), but a specialized model or retraining might be 
required for crops with very different leaf characteristics. We 
plan to extend and validate the approach for other crops as 
discussed below. 

Lastly, while AppleViT is lightweight, future optimizations 
such as quantization (discussed above) are necessary for ultra-
low-power devices. Adverse conditions like extremely low 
lighting at dusk or motion blur could also challenge the model; 
using image preprocessing or video stabilization in a real app 
would help in those cases. We have removed redundant 
discussions of CNN limitations and instead focused here on 
AppleViT’s own limitations to avoid repetition and provide a 
concise, relevant analysis. 

V. CONCLUSION AND FUTURE WORK 

In this study, we introduced AppleViT, a lightweight Vision 
Transformer-based model for apple leaf disease classification. 
AppleViT achieved 97.8% accuracy, outperforming several 
CNN baselines on a challenging dataset while maintaining low 
complexity (1.3M parameters), making it suitable for real-time 
agricultural applications. The model effectively captured long-
range dependencies via self-attention, enabling precise disease 
discrimination. Beyond accuracy, AppleViT incorporated 
Layer-wise Relevance Propagation (LRP) and attention 
visualizations, improving interpretability and user trust. 
Robustness was validated through external testing on the Plant 
Pathology 2021 dataset, confirming generalization beyond 
controlled settings. 

Looking forward, we identify multiple directions to advance 

this work: 

• Model Optimization for Edge Deployment: Applying 

quantization (e.g., 8-bit), pruning, and lightweight hybrid 

CNN–ViT modules to further reduce memory footprint and 

latency. 

• Cross-Crop Generalization: Extending AppleViT to a 

broader “PlantViT” framework for multiple crops (citrus, 

grape, tomato, maize) through transfer learning and 

combined datasets. 

• Data Augmentation and Rare Disease Handling: 

Leveraging GAN-based synthesis and few-shot learning 

strategies to address underrepresented diseases and 

improve robustness in complex backgrounds. 

• Federated Learning Integration: Enabling privacy-

preserving collaborative training across distributed farms 

and orchards without centralizing sensitive data. 

• Real-Time Deployment: Building a mobile app and drone-

based system to classify diseases in live video streams, 

optimizing for continuous inference and field conditions. 
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• Field Trials and Human-AI Collaboration: Partnering with 

agronomists for orchard-scale validation, comparing 

AppleViT’s predictions with expert assessments, and 

studying edge-case failures (e.g., insect bites vs. lesions). 

In conclusion, AppleViT demonstrates that lightweight 
Vision Transformers can deliver state-of-the-art accuracy, 
interpretability, and efficiency for precision agriculture. By 
combining technical innovations with real-world deployment 
pathways, AppleViT represents a significant step toward AI-
powered, farmer-friendly tools for early disease detection. As 
this framework expands across crops and integrates edge-ready 
optimizations, it will contribute to improved yields, reduced 
losses, and enhanced food security worldwide. 
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