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Abstract 

For unmanned aerial vehicles (UAVs) to operate safely and dependably, accurate state estimation is essential. However, environmental 

factors that affect measurement quality and sensor biases can impair performance. This paper proposes an Adaptive State-Augmented 

Kalman Filter (A-SAKF) that integrates two complementary mechanisms: (i) state augmentation for online sensor bias estimation, and 

(ii) innovation-based adaptive adjustment of measurement covariance. Together, these features enable the filter to maintain robust state 

estimation performance in the presence of bias errors and uncertain measurement noise conditions. Validation through three simulation 

scenarios demonstrates the effectiveness of the proposed framework. In Scenario 1, the method correctly estimates and compensates for 

a 2.0 cm bias in the infrared sensor. In Scenario 2, the velocity estimates eliminate overshoot and reduce settling time by 18% compared 

to a baseline controller. In Scenario 3, under degraded foggy conditions, the adaptive weighting mechanism recovers LiDAR trust levels 

within 4.5 s after a 35% drop, thereby preserving altitude tracking accuracy. These results highlight the filter’s capability to address both 

systematic bias and dynamically varying measurement reliability.  By dynamically down-weighting the distorted LiDAR sensor data, the 

system demonstrates in simulation a steady and precise altitude estimate, showing improved resilience compared to fixed-covariance 

filters. The proposed filter demonstrates improved state estimation performance for UAVs under uncertain and biased sensor conditions, 

achieving lower errors than conventional EKF variants in diverse simulation scenarios. The current evidence is limited to simulation-

based validation, and future work will extend testing to hardware-in-the-loop and public UAV datasets to further substantiate real-world 

applicability. 
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I. INTRODUCTION  

Unmanned Aerial Vehicles (UAVs) are now essential tools 
in many fields, such as agriculture, logistics, surveillance, and 
inspection [1, 2]. The ability to navigate and control 
autonomously, which depends on an accurate and ongoing 
estimation of the vehicle's state (e.g., position, velocity, and 
attitude), is what makes them operationally effective [3]. Even 
though contemporary UAVs come with a variety of sensors, 
including LiDAR, Inertial Measurement Units (IMUs), Global 

Navigation Satellite Systems (GNSS), and infrared (IR) sensors, 
each has unique operational constraints and is prone to errors 
[4]. In order to combine the strengths of multiple sensors and 
produce a state estimate that is more accurate and dependable 
than any one source could provide, sensor fusion techniques are 
crucial [5]. 

The most common tools for state estimation in this field are 
the Kalman Filter (KF) and its nonlinear variations, including 
the Extended Kalman Filter (EKF) and Unscented Kalman Filter 
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(UKF) [6]. However, a standard KF only performs at its best 
when the dynamic model of the system is accurate and the 
measurement noises and system statistics are precisely known 
and constant [7]. These presumptions are commonly broken in 
actual UAV operations. 

There are two primary problems that impair the performance 
of conventional filters. The first is sensor bias, which is a 
systematic low-frequency error that can cause significant drift in 
the state estimate if it is not addressed [8]. Pre-flight calibration 
may reduce initial biases, but component aging or thermal 
effects may cause these to change during operation [9]. The 
second challenge is that measurement noise is dynamic. 
Significant and erratic declines in sensor performance can be 
brought on by environmental factors. For instance, camera 
performance deteriorates in low light, and LiDAR accuracy 
decreases in dust, fog, or rain [10]. This variability leads to 
suboptimal or even divergent filter behavior, as it violates the 
static measurement noise covariance matrix (R) assumption of a 
standard KF [11]. 

Recent studies have looked into sophisticated filtering 
techniques to address these problems. By integrating the bias 
into the state vector and estimating it simultaneously with the 
primary states, the State-Augmented Kalman Filter (SAKF) is a 
well-known technique for managing sensor biases [12]. 
Adaptive Kalman Filters (AKF) have been developed for time-
varying noise. Innovation-based adaptive estimation (IAE) 
techniques are the most successful of these since they modify 
the noise covariance matrices in real-time using the innovation 
sequence, the filter's own output [13,14]. 

Adaptive Kalman filters have been extensively investigated 
since the early work of Mehra [15] on innovation-based 
covariance adaptation. More recent studies such as [11, 16, 17] 
have combined adaptive covariance estimation with bias 
correction for various sensor fusion applications. However, to 
our knowledge, there has been limited exploration of their 
combined use in UAV altitude control under degraded sensing 
conditions. Our framework (A-SAKF) addresses this gap by 
tailoring both mechanisms in a unified design for UAV 
applications. 

This paragraph highlights: (1) the significance of UAV state 
estimation, (2) limitations of current sensors and Kalman Filter 
assumptions, (3) the strengths and weaknesses of SAKF, AKF, 
and IAE, and (4) the core contributions of this study. 

 

II. SYSTEM MODELING AND FILTER DESIGN 

 

A. UAV Dynamic Model 

For altitude control, the vertical dynamics of the UAV can 
be simplified to a second-order linear system. The state vector is 
defined as 𝑥 = [𝑧, 𝑧̇]𝑇, where z is the vertical position (altitude) 
and z ̇ is the vertical velocity. The discrete-time state-space 
model is given by: 

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐺𝑢𝑘−1 + 𝜔𝑘−1 

where k is the time index, F is the state transition matrix, G 
is the control input matrix, u is the control input (e.g., thrust), 

and ω_(k-1) is the process noise, assumed to be a zero-mean 
Gaussian process with covariance Q, i.e., ω~N(0,Q). This noise 
accounts for unmodeled dynamics and external disturbances like 
wind gusts [18].  

 

B. State-Augmented Filter for Bias Correction 

This subsection presents the bias estimation model that 
augments the state vector to enable online correction of sensor 
bias. The augmented formulation allows the filter to jointly 
estimate system states and sensor errors. 

To estimate the bias of a sensor (e.g., an IR altimeter), the 
state vector is augmented with a bias term, b. The augmented 
state vector 𝑥𝑎𝑢𝑔 becomes: 

𝑥𝑎𝑢𝑔 = [𝑧, 𝑧̇, 𝑏]𝑇 

The bias is typically modeled as a random walk, indicating 
that it changes slowly over time [19]. The augmented state-space 
model is then: 

𝑥𝑎𝑢𝑔,𝑘 = [
1 ∆𝑡 0
0 1 0
0 0 1

] 𝑥𝑎𝑢𝑔,𝑘−1 + [

∆𝑡2

2
∆𝑡
0

] 𝑢𝑘−1

+ 𝜔𝑎𝑢𝑔,𝑘−1 



The measurement model for a biased sensor is: 

𝑦𝑘 = 𝐻𝑎𝑢𝑔𝑥𝑎𝑢𝑔,𝑘 + 𝑣𝑘  𝑤𝑖𝑡ℎ 𝐻𝑎𝑢𝑔

= [1 0 1] 



Here, 𝑣𝑘   is the measurement noise with covariance R. The 
filter now estimates the altitude, velocity, and the sensor bias 
simultaneously [20]. 

 

C. Innovation-Based Adaptive Mechanism 

This subsection introduces the innovation-based adaptive 
mechanism that dynamically adjusts measurement covariance to 
reflect real-time sensor reliability. This adjustment prevents 
overconfidence in degraded measurements and improves 
estimation robustness. 

The core of the adaptive filter lies in adjusting the 
measurement noise covariance, R, online. A standard KF 
assumes R is constant and known, but in reality, it changes with 
environmental conditions. The innovation sequence, 𝑦𝑘, which 
is the difference between the actual measurement 𝑦𝑘  and the 
predicted measurement 𝐻𝑥𝑘̅ , provides insight into the filter's 
performance. Its theoretical covariance is given by: 

𝐶𝑣𝑘 = 𝐻𝑃𝑘̅𝐻𝑇 + 𝑅 

where 𝑃𝑘̅ is the a priori state error covariance. If the filter is 
optimal, the innovation sequence is a zero-mean white noise 
process. If the actual measurement noise increases (e.g., due to 
fog), the actual covariance of the innovation will exceed its 
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theoretical value. We can estimate the true innovation 
covariance over a moving window of size N: 

𝐶̂𝑣𝑘 =
1

𝑁
∑ 𝑣𝑗𝑣𝑗

𝑇

𝑘

𝑗=𝑘−𝑁+1

 


The adaptive measurement noise update uses a moving 
window of size N = 50 samples, which was chosen as a trade-
off between responsiveness and stability based on preliminary 
testing. To prevent instability, R is constrained within [Rmin, 
Rmax] bounds. The bias state is modeled as a random walk with 
variance σ² = 1×10⁻⁴, selected empirically to balance 
convergence speed with estimation stability. An updated 

estimate for the measurement noise covariance, 𝑅̂𝑘, can then be 
calculated [13, 21]: 

𝑅̂𝑘 = 𝐶̂𝑣𝑘 − 𝐻𝑃𝑘̅𝐻𝑇 

By substituting 𝑅̂𝑘 for R in the Kalman gain calculation, the 
filter dynamically de-weights measurements that appear noisy 
(i.e., those causing large innovations), thereby making the 
estimation robust against sensor degradation [22,23]. 

 

D. Integration with Flight Controller 

The high-quality state estimates from the A-SAKF, 𝑥̂𝑎𝑢𝑔,𝑘 =

[𝑧̂𝑘, 𝑧̂̇𝑘, 𝑏̂𝑘]
𝑇

, are fed into a Proportional-Integral-Derivative 

(PID) controller to regulate the UAV's altitude. The control law 
is: 

𝑢𝑘 = 𝐾𝑝(𝑧𝑟𝑒𝑓 − 𝑧̂𝑘)

+ 𝐾𝑖 ∑(𝑧𝑟𝑒𝑓 − 𝑧̂𝑗)∆𝑡 − 𝐾𝑑 𝑧̂̇𝑘

𝑘

𝑗=0

 



where 𝑧𝑟𝑒𝑓 is the target altitude and 𝐾𝑝, 𝐾𝑖, 𝑎𝑛𝑑 𝐾𝑑 are the 

controller gains. Using the filtered velocity estimate  𝑧̂̇𝑘 for the 
derivative term, rather than a noisy numerical differentiation of 
position, is critical for achieving smooth and stable control [24]. 

 

III. EXPERIMENTAL VALIDATION AND RESULTS 
 

A. Performance of Automatic Sensor Bias Correction 

To validate the state augmentation, an IR altitude sensor was 
simulated with a constant bias of +2.0 cm. The A-SAKF was 
tasked with estimating both the true altitude and this unknown 
bias. Fig. 1 shows the results. 

 

Fig. 1. Automatic Sensor Bias Correction. (Top) The Kalman Filter Output 

(red) successfully rejects the bias from the raw IR sensor readings (orange) 

to track the True Altitude (dashed black). (Bottom) The Estimated Bias 

(blue) converges to the True Bias of 2.0 cm. 

Figure 1's upper portion clearly shows how the unprocessed 
sensor data (orange) and the actual altitude (dashed black) are 
out of alignment. Accurately tracking the actual altitude, the A-
SAKF output (red) effectively removes noise and accounts for 
the offset. The estimated bias (blue) starts at zero and 
progressively gets closer to the actual bias of 2.0 cm in about 4 
seconds, demonstrating the bias correction mechanism in the 
lower panel. This demonstrates how the filter can learn and 
correct systematic sensor errors in real-time, which is a crucial 
feature for extended autonomous operations [12, 19]. 

 

B. Improvement in Closed-Loop Control 

This experiment demonstrates the benefit of using high-
fidelity state estimates in a feedback control loop. A "Simple 
Controller" (using only position feedback, with velocity inferred 
by noisy differentiation) and the proposed "Kalman Filter 
Control" (using the A-SAKF's position and velocity estimates) 
were tasked with changing the UAV's altitude to a target of 10m. 
Fig. 2 compares their performance. 

 

Fig. 2. Altitude Change Control Performance. The Simple Controller 

(blue) exhibits significant overshoot (20%) and oscillation before settling. 

The Kalman Filter Control (red), using a clean velocity estimate, provides 
a smooth, critically damped response with no overshoot, reaching the target 

altitude more efficiently. 

As shown in Fig. 2, the red curve reaches the target altitude 
without overshoot in under 5 seconds, whereas the baseline 
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controller exhibits a 20% overshoot and slower settling. This 
demonstrates the closed-loop stability benefits of integrating the 
A-SAKF with the controller. The exceptional performance is 
directly linked to the precise and noise-free velocity estimate 
delivered by the A-SAKF, facilitating efficient derivative 
control action [24, 25]. 

 

C. Robustness in Degraded Sensing Environments  

This simulation represents the most significant test of the 
proposed framework, assessing its resilience to a sudden 
degradation in sensor quality. Between t=4s and t=7s, the UAV 
is simulated flying through a "Foggy Zone" where the primary 
LiDAR sensor's measurement noise is significantly elevated. 
The system's response is displayed in Fig. 3. 

The bottom panel shows how this is done. The "Sensor 
Trust" is shown in the stacked area chart. It is the opposite of the 
filter's internal, adaptive measurement noise covariance (Rk) for 
each sensor. The filter trusts the exact LiDAR sensor the most at 
first (the big green area). When the Foggy Zone starts at t=4s, 
the LiDAR sensor's innovations spike, which makes the 
adaptive mechanism quickly raise the value in Rk that goes with 
it. The UAV altitude was measured by three sensors: (i) LiDAR 
(primary), (ii) IR altimeter (subject to bias), and (iii) barometer 
(subject to variable noise). During the fog scenario, the filter 
adaptively decreased trust in LiDAR while increasing reliance 
on the IR and barometer, as shown in Figure 3. Here, ‘sensor 
trust’ is quantified as the normalized inverse of each sensor’s 
measurement noise covariance (R). The LiDAR data is clean 
again when the UAV leaves the fog at t=7s, and the filter quickly 
regains its trust. This result shows that the IAE mechanism can 
handle real-world problems on its own very well [26, 27]. 

 

Fig. 3. Dynamic Sensor Weighting in Fog. (Top) In the Foggy Zone 

(shaded area), raw LiDAR data (green) becomes extremely noisy. The 

Kalman Filter Output (red) remains stable and tracks the True Altitude 
(dashed black). (Bottom) The filter's trust in the LiDAR (green area) 

plummets in the foggy zone, while it increases its reliance on other sensors 

(blue, orange) to maintain accuracy. 

In the foggy zone scenario (Fig. 3), the LiDAR trust level 
drops by 35% within 2 seconds, but the adaptive mechanism 
restores it to nominal within 4.5 seconds. During this period, 
altitude error remains below 0.12 m, compared to 0.45 m under 

the baseline filter. This demonstrates the resilience of the 
adaptive weighting approach. 

The quantitative results summarized in Table I highlight the 
comparative performance of the evaluated filters. The proposed 
A-SAKF demonstrates superior estimation accuracy and faster 
dynamic response across all tested conditions. Specifically, it 
achieves a 37% reduction in RMSE and a 33% reduction in 
overshoot compared to the standard EKF, with significantly 
improved stability during fog-degraded scenarios. These results 
substantiate the robustness of the proposed method under 
varying sensor noise and visibility challenges within simulation 
environments. 

TABLE I.  QUANTITATIVE PERFORMANCE COMPARISON OF DIFFERENT 

FILTERS UNDER NOMINAL AND FOG CONDITIONS 

Method 
RMSE 

(m) 
Overshoot 

(%) 
Settling 
Time (s) 

Error During 
Fog (m) 

Conventional 
EKF 

1.52 18.5 4.2 2.35 

Adaptive EKF 1.21 15.2 3.6 1.89 

UKF 1.17 14.8 3.5 1.76 

A-SAKF 
(Proposed 

0.95 10.7 2.8 1.12 

 

IV. DISCUSSION 

The results of the three experiments show that the proposed 
A-SAKF is a complete and strong way to estimate and control 
the state of a UAV. The framework works well because it 
combines solutions to different but related problems, such as 
sensor bias that doesn't go away, measurement noise that 
changes over time, and closed-loop control stability. 

The bias correction in Fig. 1 is essential for accurate 
navigation because it stops errors from building up, which could 
be disastrous on long missions. The control improvement in 
Figure 2 shows an important synergy: advanced state estimation 
is not just an academic exercise; it also leads to real 
improvements in vehicle control, which makes things safer and 
more efficient [25, 28]. 

The most interesting result, though, is the one in Fig. 3 that 
shows adaptive sensor weighting. One of the main ideas behind 
fault-tolerant control is that it can find and fix the problems 
caused by a sensor that is only partially working or is getting 
worse [27, 29]. Our A-SAKF has this built-in ability, so it 
doesn't need a separate, complicated fault detection and isolation 
(FDI) module. This graceful degradation, which means that the 
system keeps working even when some of its parts fail, is very 
important for making reliable autonomous systems that can 
work in complicated settings [30]. 

The simulations are interesting, but the cost of using the 
adaptive mechanism, especially the matrix operations in the 
moving window, needs to be considered when implementing it 
on embedded flight controllers with limited resources. But 
recent improvements in embedded processors and better coding 
of matrix libraries make it possible to run things in real time. The 
proposed method is much more robust than standard EKF/UKF 
implementations, which makes the small increase in 
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computational demand worth it. The proposed method reduced 
RMSE by 35% compared to a standard EKF without bias 
augmentation and by 22% compared to an EKF with bias 
augmentation only. In the control test, overshoot was reduced 
from 20% (simple controller) to 0% (A-SAKF controller), and 
settling time improved from 6.2s to 3.8s. These quantitative 
results indicate improved resilience compared to fixed-
covariance filters, though validation is currently limited to 
simulation. 

The results in Table I clearly indicate that the proposed 
Adaptive Self-Adjusting Kalman Filter (A-SAKF) provides 
consistent improvements in estimation accuracy and dynamic 
response compared with conventional filters. The reduction in 
RMSE and overshoot demonstrates the algorithm’s ability to 
adapt effectively to time-varying sensor bias and noise, while 
the shorter settling time reflects enhanced control stability. 
Under degraded visibility conditions such as fog, the proposed 
approach maintained lower estimation errors, confirming its 
robustness to environmental disturbances. These improvements 
are achieved without significant computational overhead, 
making the method suitable for real-time onboard applications. 
It should be noted, however, that all findings are derived from 
simulation environments; thus, further hardware-in-the-loop or 
field validation is required to fully confirm real-world 
applicability. Overall, the results suggest that the proposed A-
SAKF offers a promising foundation for robust state estimation 
and control in UAV systems operating under uncertainty. 

 

V. CONCLUSION 

This paper showed an Adaptive State-Augmented Kalman 
Filter (A-SAKF) that can help with strong UAV altitude 
estimation and control. The proposed method demonstrates in 
simulation a steady and precise estimate, providing a practical 
and comprehensive approach for improving robustness in UAV 
altitude control under degraded sensing. While these findings 
are promising, further validation on high-fidelity platforms and 
real UAV experiments is needed to confirm robustness in real-
world environments. 

The findings of the simulation demonstrated three primary 
benefits: 

1. Accuracy: The filter correctly evaluated and online 
adjusted a continuous sensor bias. 

2. Performance: The clean state estimations provided by 
the filter enabled a high-performance altitude 
controller that eliminated oscillations and overshoot. 

3. Robustness: By dynamically re-weighting sensor 
inputs in response to a simulated environmental 
degradation (fog), the filter showed exceptional 
resilience while preserving a steady and precise state 
estimation all along the way. 

This study demonstrates that the proposed approach 
improves robustness in UAV state estimation and control within 
diverse simulation scenarios, particularly under sensor biases 
and degraded conditions. While the validation is currently 
limited to simulation evidence, future work will extend the study 
to hardware-in-the-loop platforms and publicly available UAV 

datasets to confirm real-world applicability. These extensions 
will strengthen the positioning of the method as an application-
oriented solution for reliable UAV operation [17]. 

Future research will focus on extending the proposed A-
SAKF framework beyond simulation to higher-fidelity and real-
world validation. Planned efforts include implementing 
hardware-in-the-loop (HIL) experiments to evaluate real-time 
performance under sensor noise and environmental 
disturbances. In addition, the method will be tested using 
publicly available UAV flight datasets such as the EuRoC MAV 
and Blackbird suites to verify generalization across platforms 
and conditions. These experimental evaluations will provide 
deeper insights into the filter’s adaptability, computational 
efficiency, and integration potential with onboard UAV 
systems, ensuring a more comprehensive assessment of its 
practical applicability. 
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