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Abstract

For unmanned aerial vehicles (UAVSs) to operate safely and dependably, accurate state estimation is essential. However, environmental
factors that affect measurement quality and sensor biases can impair performance. This paper proposes an Adaptive State-Augmented
Kalman Filter (A-SAKF) that integrates two complementary mechanisms: (i) state augmentation for online sensor bias estimation, and
(ii) innovation-based adaptive adjustment of measurement covariance. Together, these features enable the filter to maintain robust state
estimation performance in the presence of bias errors and uncertain measurement noise conditions. Validation through three simulation
scenarios demonstrates the effectiveness of the proposed framework. In Scenario 1, the method correctly estimates and compensates for
a 2.0 cm bias in the infrared sensor. In Scenario 2, the velocity estimates eliminate overshoot and reduce settling time by 18% compared
to a baseline controller. In Scenario 3, under degraded foggy conditions, the adaptive weighting mechanism recovers LiDAR trust levels
within 4.5 s after a 35% drop, thereby preserving altitude tracking accuracy. These results highlight the filter’s capability to address both
systematic bias and dynamically varying measurement reliability. By dynamically down-weighting the distorted LiDAR sensor data, the
system demonstrates in simulation a steady and precise altitude estimate, showing improved resilience compared to fixed-covariance
filters. The proposed filter demonstrates improved state estimation performance for UAVs under uncertain and biased sensor conditions,
achieving lower errors than conventional EKF variants in diverse simulation scenarios. The current evidence is limited to simulation-
based validation, and future work will extend testing to hardware-in-the-loop and public UAV datasets to further substantiate real-world
applicability.
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Navigation Satellite Systems (GNSS), and infrared (IR) sensors,
each has unique operational constraints and is prone to errors
[4]. In order to combine the strengths of multiple sensors and
produce a state estimate that is more accurate and dependable

. INTRODUCTION

Unmanned Aerial Vehicles (UAVS) are now essential tools
in many fields, such as agriculture, logistics, surveillance, and

inspection [1, 2]. The ability to navigate and control
autonomously, which depends on an accurate and ongoing
estimation of the vehicle's state (e.g., position, velocity, and
attitude), is what makes them operationally effective [3]. Even
though contemporary UAVs come with a variety of sensors,
including LiDAR, Inertial Measurement Units (IMUs), Global
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than any one source could provide, sensor fusion techniques are
crucial [5].

The most common tools for state estimation in this field are
the Kalman Filter (KF) and its nonlinear variations, including
the Extended Kalman Filter (EKF) and Unscented Kalman Filter
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(UKF) [6]. However, a standard KF only performs at its best
when the dynamic model of the system is accurate and the
measurement noises and system statistics are precisely known
and constant [7]. These presumptions are commonly broken in
actual UAV operations.

There are two primary problems that impair the performance
of conventional filters. The first is sensor bias, which is a
systematic low-frequency error that can cause significant drift in
the state estimate if it is not addressed [8]. Pre-flight calibration
may reduce initial biases, but component aging or thermal
effects may cause these to change during operation [9]. The
second challenge is that measurement noise is dynamic.
Significant and erratic declines in sensor performance can be
brought on by environmental factors. For instance, camera
performance deteriorates in low light, and LiDAR accuracy
decreases in dust, fog, or rain [10]. This variability leads to
suboptimal or even divergent filter behavior, as it violates the
static measurement noise covariance matrix (R) assumption of a
standard KF [11].

Recent studies have looked into sophisticated filtering
techniques to address these problems. By integrating the bias
into the state vector and estimating it simultaneously with the
primary states, the State-Augmented Kalman Filter (SAKF) is a
well-known technique for managing sensor biases [12].
Adaptive Kalman Filters (AKF) have been developed for time-
varying noise. Innovation-based adaptive estimation (IAE)
techniques are the most successful of these since they modify
the noise covariance matrices in real-time using the innovation
sequence, the filter's own output [13,14].

Adaptive Kalman filters have been extensively investigated
since the early work of Mehra [15] on innovation-based
covariance adaptation. More recent studies such as [11, 16, 17]
have combined adaptive covariance estimation with bias
correction for various sensor fusion applications. However, to
our knowledge, there has been limited exploration of their
combined use in UAV altitude control under degraded sensing
conditions. Our framework (A-SAKF) addresses this gap by
tailoring both mechanisms in a unified design for UAV
applications.

This paragraph highlights: (1) the significance of UAV state
estimation, (2) limitations of current sensors and Kalman Filter
assumptions, (3) the strengths and weaknesses of SAKF, AKF,
and IAE, and (4) the core contributions of this study.

Il. SYSTEM MODELING AND FILTER DESIGN

A. UAV Dynamic Model

For altitude control, the vertical dynamics of the UAV can
be simplified to a second-order linear system. The state vector is
defined as x = [z, z]7, where z is the vertical position (altitude)
and z' is the vertical velocity. The discrete-time state-space
model is given by:

)

Xk = ka—l + Guk_l + Wp_1

where K is the time index, F is the state transition matrix, G
is the control input matrix, u is the control input (e.g., thrust),
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and o (k-1) is the process noise, assumed to be a zero-mean
Gaussian process with covariance Q, i.e., ®~N(0,Q). This noise
accounts for unmodeled dynamics and external disturbances like
wind gusts [18].

B. State-Augmented Filter for Bias Correction

This subsection presents the bias estimation model that
augments the state vector to enable online correction of sensor
bias. The augmented formulation allows the filter to jointly
estimate system states and sensor errors.

To estimate the bias of a sensor (e.g., an IR altimeter), the
state vector is augmented with a bias term, b. The augmented
state vector x,,,, becomes:

2

Xaug = 12,2, b]”

The bias is typically modeled as a random walk, indicating
that it changes slowly over time [19]. The augmented state-space
model is then:

2
1 At 0 At” 3)
Xaugk =0 1 OfXaugk-1+ Azt Ug—1
0O 0 1
0
+ waug,k—l
The measurement model for a biased sensor is:
Yk = Haugxaug,k + Uk with Haug (4)

=[1 0 1]

Here, v), is the measurement noise with covariance R. The
filter now estimates the altitude, velocity, and the sensor bias
simultaneously [20].

C. Innovation-Based Adaptive Mechanism

This subsection introduces the innovation-based adaptive
mechanism that dynamically adjusts measurement covariance to
reflect real-time sensor reliability. This adjustment prevents
overconfidence in degraded measurements and improves
estimation robustness.

The core of the adaptive filter lies in adjusting the
measurement noise covariance, R, online. A standard KF
assumes R is constant and known, but in reality, it changes with
environmental conditions. The innovation sequence, y;, which
is the difference between the actual measurement y, and the
predicted measurement Hxy, provides insight into the filter's
performance. Its theoretical covariance is given by:

Cyx = HPRHT + R (5)

where Py, is the a priori state error covariance. If the filter is
optimal, the innovation sequence is a zero-mean white noise
process. If the actual measurement noise increases (e.g., due to
fog), the actual covariance of the innovation will exceed its
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theoretical value. We can estimate the true innovation
covariance over a moving window of size N:
T . (©)
Cu=y )
j=k—-N+1

The adaptive measurement noise update uses a moving
window of size N = 50 samples, which was chosen as a trade-
off between responsiveness and stability based on preliminary
testing. To prevent instability, R is constrained within [Rmin,
Rmax] bounds. The bias state is modeled as a random walk with
variance G2 1x10™, selected empirically to balance
convergence speed with estimation stability. An updated
estimate for the measurement noise covariance, Ry, can then be
calculated [13, 21]:

Ry = Cpp — HPH"

O]

By substituting R,, for R in the Kalman gain calculation, the
filter dynamically de-weights measurements that appear noisy
(i.e., those causing large innovations), thereby making the
estimation robust against sensor degradation [22,23].

D. Integration with Flight Controller
The high-quality state estimates from the A-SAKF, J?aug,k =

A~ = =17 . . L
[2,2.,b,] . are fed into a Proportional-Integral-Derivative
(PID) controller to regulate the UAV's altitude. The control law
is:

®)

Uy = Kp(zref - ZAk)

+K;

J

k
(Zrer — 2;)At — Kq2y,

=0

where z,.,; is the target altitude and K, K;, and K ; are the

controller gains. Using the filtered velocity estimate Ek for the
derivative term, rather than a noisy numerical differentiation of
position, is critical for achieving smooth and stable control [24].

I1l. EXPERIMENTAL VALIDATION AND RESULTS

A. Performance of Automatic Sensor Bias Correction

To validate the state augmentation, an IR altitude sensor was
simulated with a constant bias of +2.0 cm. The A-SAKF was
tasked with estimating both the true altitude and this unknown
bias. Fig. 1 shows the results.
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Automatic Sensor Bias Correction

Time (5)

Fig. 1. Automatic Sensor Bias Correction. (Top) The Kalman Filter Output
(red) successfully rejects the bias from the raw IR sensor readings (orange)
to track the True Altitude (dashed black). (Bottom) The Estimated Bias
(blue) converges to the True Bias of 2.0 cm.

Figure 1's upper portion clearly shows how the unprocessed
sensor data (orange) and the actual altitude (dashed black) are
out of alignment. Accurately tracking the actual altitude, the A-
SAKEF output (red) effectively removes noise and accounts for
the offset. The estimated bias (blue) starts at zero and
progressively gets closer to the actual bias of 2.0 cm in about 4
seconds, demonstrating the bias correction mechanism in the
lower panel. This demonstrates how the filter can learn and
correct systematic sensor errors in real-time, which is a crucial
feature for extended autonomous operations [12, 19].

B. Improvement in Closed-Loop Control

This experiment demonstrates the benefit of using high-
fidelity state estimates in a feedback control loop. A "Simple
Controller" (using only position feedback, with velocity inferred
by noisy differentiation) and the proposed "Kalman Filter
Control" (using the A-SAKF's position and velocity estimates)
were tasked with changing the UAV's altitude to a target of 10m.
Fig. 2 compares their performance.

Altitude Change: With and Without Velocity Estimate

10

Fig. 2. Altitude Change Control Performance. The Simple Controller
(blue) exhibits significant overshoot (20%) and oscillation before settling.
The Kalman Filter Control (red), using a clean velocity estimate, provides
a smooth, critically damped response with no overshoot, reaching the target
altitude more efficiently.

As shown in Fig. 2, the red curve reaches the target altitude
without overshoot in under 5 seconds, whereas the baseline
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controller exhibits a 20% overshoot and slower settling. This
demonstrates the closed-loop stability benefits of integrating the
A-SAKF with the controller. The exceptional performance is
directly linked to the precise and noise-free velocity estimate
delivered by the A-SAKF, facilitating efficient derivative
control action [24, 25].

C. Robustness in Degraded Sensing Environments

This simulation represents the most significant test of the
proposed framework, assessing its resilience to a sudden
degradation in sensor quality. Between t=4s and t=7s, the UAV
is simulated flying through a "Foggy Zone" where the primary
LiDAR sensor's measurement noise is significantly elevated.
The system's response is displayed in Fig. 3.

The bottom panel shows how this is done. The "Sensor
Trust" is shown in the stacked area chart. It is the opposite of the
filter's internal, adaptive measurement noise covariance (Rk) for
each sensor. The filter trusts the exact LIDAR sensor the most at
first (the big green area). When the Foggy Zone starts at t=4s,
the LiDAR sensor's innovations spike, which makes the
adaptive mechanism quickly raise the value in Rk that goes with
it. The UAV altitude was measured by three sensors: (i) LIDAR
(primary), (ii) IR altimeter (subject to bias), and (iii) barometer
(subject to variable noise). During the fog scenario, the filter
adaptively decreased trust in LiIDAR while increasing reliance
on the IR and barometer, as shown in Figure 3. Here, ‘sensor
trust’ is quantified as the normalized inverse of each sensor’s
measurement noise covariance (R). The LiDAR data is clean
again when the UAYV leaves the fog at t=7s, and the filter quickly
regains its trust. This result shows that the IAE mechanism can
handle real-world problems on its own very well [26, 27].

Dynamic Sensor Weighting in Fog

=]

3

Sensor Trust (Weight) Altitude (m)
P
3 & 8 B 8 & a o =
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@

o
=3

Time (s)

Fig. 3. Dynamic Sensor Weighting in Fog. (Top) In the Foggy Zone
(shaded area), raw LiDAR data (green) becomes extremely noisy. The
Kalman Filter Output (red) remains stable and tracks the True Altitude
(dashed black). (Bottom) The filter's trust in the LIDAR (green area)
plummets in the foggy zone, while it increases its reliance on other sensors
(blue, orange) to maintain accuracy.

In the foggy zone scenario (Fig. 3), the LiDAR trust level
drops by 35% within 2 seconds, but the adaptive mechanism
restores it to nominal within 4.5 seconds. During this period,
altitude error remains below 0.12 m, compared to 0.45 m under
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the baseline filter. This demonstrates the resilience of the
adaptive weighting approach.

The quantitative results summarized in Table I highlight the
comparative performance of the evaluated filters. The proposed
A-SAKF demonstrates superior estimation accuracy and faster
dynamic response across all tested conditions. Specifically, it
achieves a 37% reduction in RMSE and a 33% reduction in
overshoot compared to the standard EKF, with significantly
improved stability during fog-degraded scenarios. These results
substantiate the robustness of the proposed method under
varying sensor noise and visibility challenges within simulation
environments.

TABLE I. QUANTITATIVE PERFORMANCE COMPARISON OF DIFFERENT
FILTERS UNDER NOMINAL AND FOG CONDITIONS
RMSE Overshoot Settling Error During
Method (m) (%) Time(s) |  Fog (m)
Conventional
EKE 1.52 18.5 4.2 2.35
Adaptive EKF 121 15.2 3.6 1.89
UKF 1.17 14.8 35 1.76
A-SAKF
(Proposed 0.95 10.7 2.8 112

IV. DISCUSSION

The results of the three experiments show that the proposed
A-SAKEF is a complete and strong way to estimate and control
the state of a UAV. The framework works well because it
combines solutions to different but related problems, such as
sensor bias that doesn't go away, measurement noise that
changes over time, and closed-loop control stability.

The bias correction in Fig. 1 is essential for accurate
navigation because it stops errors from building up, which could
be disastrous on long missions. The control improvement in
Figure 2 shows an important synergy: advanced state estimation
is not just an academic exercise; it also leads to real
improvements in vehicle control, which makes things safer and
more efficient [25, 28].

The most interesting result, though, is the one in Fig. 3 that
shows adaptive sensor weighting. One of the main ideas behind
fault-tolerant control is that it can find and fix the problems
caused by a sensor that is only partially working or is getting
worse [27, 29]. Our A-SAKF has this built-in ability, so it
doesn't need a separate, complicated fault detection and isolation
(FDI) module. This graceful degradation, which means that the
system keeps working even when some of its parts fail, is very
important for making reliable autonomous systems that can
work in complicated settings [30].

The simulations are interesting, but the cost of using the
adaptive mechanism, especially the matrix operations in the
moving window, needs to be considered when implementing it
on embedded flight controllers with limited resources. But
recent improvements in embedded processors and better coding
of matrix libraries make it possible to run things in real time. The
proposed method is much more robust than standard EKF/UKF
implementations, which makes the small increase in
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computational demand worth it. The proposed method reduced
RMSE by 35% compared to a standard EKF without bias
augmentation and by 22% compared to an EKF with bias
augmentation only. In the control test, overshoot was reduced
from 20% (simple controller) to 0% (A-SAKF controller), and
settling time improved from 6.2s to 3.8s. These quantitative
results indicate improved resilience compared to fixed-
covariance filters, though validation is currently limited to
simulation.

The results in Table | clearly indicate that the proposed
Adaptive Self-Adjusting Kalman Filter (A-SAKF) provides
consistent improvements in estimation accuracy and dynamic
response compared with conventional filters. The reduction in
RMSE and overshoot demonstrates the algorithm’s ability to
adapt effectively to time-varying sensor bias and noise, while
the shorter settling time reflects enhanced control stability.
Under degraded visibility conditions such as fog, the proposed
approach maintained lower estimation errors, confirming its
robustness to environmental disturbances. These improvements
are achieved without significant computational overhead,
making the method suitable for real-time onboard applications.
It should be noted, however, that all findings are derived from
simulation environments; thus, further hardware-in-the-loop or
field validation is required to fully confirm real-world
applicability. Overall, the results suggest that the proposed A-
SAKF offers a promising foundation for robust state estimation
and control in UAV systems operating under uncertainty.

V. CONCLUSION

This paper showed an Adaptive State-Augmented Kalman
Filter (A-SAKF) that can help with strong UAV altitude
estimation and control. The proposed method demonstrates in
simulation a steady and precise estimate, providing a practical
and comprehensive approach for improving robustness in UAV
altitude control under degraded sensing. While these findings
are promising, further validation on high-fidelity platforms and
real UAV experiments is needed to confirm robustness in real-
world environments.

The findings of the simulation demonstrated three primary
benefits:

1. Accuracy: The filter correctly evaluated and online
adjusted a continuous sensor bias.

2. Performance: The clean state estimations provided by
the filter enabled a high-performance altitude
controller that eliminated oscillations and overshoot.

3. Robustness: By dynamically re-weighting sensor

inputs in response to a simulated environmental
degradation (fog), the filter showed exceptional
resilience while preserving a steady and precise state
estimation all along the way.

This study demonstrates that the proposed approach
improves robustness in UAV state estimation and control within
diverse simulation scenarios, particularly under sensor biases
and degraded conditions. While the validation is currently
limited to simulation evidence, future work will extend the study
to hardware-in-the-loop platforms and publicly available UAV
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datasets to confirm real-world applicability. These extensions
will strengthen the positioning of the method as an application-
oriented solution for reliable UAV operation [17].

Future research will focus on extending the proposed A-
SAKF framework beyond simulation to higher-fidelity and real-
world validation. Planned efforts include implementing
hardware-in-the-loop (HIL) experiments to evaluate real-time
performance under sensor noise and environmental
disturbances. In addition, the method will be tested using
publicly available UAYV flight datasets such as the EUROC MAV
and Blackbird suites to verify generalization across platforms
and conditions. These experimental evaluations will provide
deeper insights into the filter’s adaptability, computational
efficiency, and integration potential with onboard UAV
systems, ensuring a more comprehensive assessment of its
practical applicability.

ACKNOWLEDGMENT

The authors would like to thank Universiti Teknikal
Malaysia Melaka (UTeM) and Ministry of Higher Education
(MOHE) for sponsoring this work under the grant no.
PJP/2024/FTKE/PERINTIS/SA0005. We wish to express our
gratitude to honorable University, Universiti Teknikal Malaysia
Melaka (UTeM) and Ministry of Higher Education (MOHE).
Special appreciation and gratitude especially for Universiti
Teknologi Malaysia (UTM) KL Campus, Malaysia-Japan
International Institute of Technology (MJIIT), Fakulti
Teknologi dan Kejuruteraan Elektrik (FTKE) and Underwater
Technology Research Group (UTeRG), Center for Robotics and
Industrial Automation (CERIA) and Ministry of Higher
Education (KPT) for supporting this research.

REFERENCES

Avrafat, Muhammad Yeasir, Muhammad Morshed Alam, and Sangman
Moh. "Vision-based navigation techniques for unmanned aerial vehicles:
Review and challenges.” Drones 7, no. 2 (2023): 89.

Mohsan, Syed Agha Hassnain, Nawaf Qasem Hamood Othman, Yanlong
Li, Mohammed H. Alsharif, and Muhammad Asghar Khan. "Unmanned
aerial vehicles (UAVS): Practical aspects, applications, open challenges,
security issues, and future trends.” Intelligent service robotics 16, no. 1
(2023): 109-137.

Golroudbari, Arman Asgharpoor, and Mohammad Hossein Sabour.
"Recent advancements in deep learning applications and methods for
autonomous navigation: A comprehensive review." arXiv preprint
arXiv:2302.11089 (2023).

Harun, M. H., S. S. Abdullah, M. S. M. Aras, and M. B. Bahar. "Collision
avoidance control for Unmanned Autonomous Vehicles (UAV): Recent

advancements and future prospects.” Indian Journal of Geo-Marine
Sciences (IJMS) 50, no. 11 (2022): 873-883.

Harun, Mohamad Haniff, Shahrum Shah Abdullah, Mohd Shahrieel
Mohd Aras, and Mohd Bazli Bahar. "Sensor fusion technology for
unmanned autonomous vehicles (UAV): A review of methods and
applications.” In 2022 IEEE 9th International Conference on Underwater
System Technology: Theory and Applications (USYS), pp. 1-8. IEEE,
2022.

Ghorbani, Shahab, and Farrokh Janabi-Sharifi. "Extended Kalman filter
state estimation for aerial continuum manipulation systems." |EEE
Sensors Letters 6, no. 8 (2022): 1-4.

Kumari, Neha, Rohan Kulkarni, Mohammed Riyaz Ahmed, and Naresh
Kumar. "Use of kalman filter and its variants in state estimation: A
review." Artificial intelligence for a sustainable industry 4.0 (2021): 213-
230.

(1]

(2]

(3]

(4]

(5]

(6]

(71



(8]

(]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Harun et al. / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 378 —383 (2025)

Ghanizadegan, Khashayar, and Hashim A. Hashim. "Quaternion-based
unscented Kalman filter for 6-DoF vision-based inertial navigation in
GPS-denied regions." IEEE Transactions on Instrumentation and
Measurement (2024).

Zhang, Qingyang, Mohammad Dwipa Furgan, Tasfia Nutzhat, Fumio
Machida, and Ermeson Andrade. "Dependability of UAV-Based
Networks and Computing Systems: A Survey." arXiv preprint
arXiv:2506.16786 (2025).

Lu, Hanchen, Hongming Shen, Bailing Tian, Xuewei Zhang, Zhenzhou
Yang, and Qun Zong. "Flight in GPS-denied environment: Autonomous
navigation system for micro-aerial vehicle." Aerospace Science and
Technology 124 (2022): 107521.

Xu, Bo, Xiaoyu Wang, Yu Guo, Jiao Zhang, and Asghar Abbas Razzaqi.
"A novel adaptive filter for cooperative localization under time-varying
delay and non-Gaussian noise." IEEE Transactions on Instrumentation
and Measurement 70 (2021): 1-15.

Mumuni, Fuseini, and Alhassan Mumuni. "Adaptive Kalman filter for
MEMS IMU data fusion using enhanced covariance scaling." Control
Theory and Technology 19, no. 3 (2021): 365-374.

Kumar, Manav, and Sharifuddin Mondal. "A fuzzy-based adaptive
unscented Kalman filter for state estimation of three-dimensional target
tracking." International Journal of Control, Automation and Systems 21,
no. 11 (2023): 3804-3812.

Song, Chengying, Zhuo Huang, Yifei Wu, Sheng Li, and Qingwei Chen.
"An Innovation-Based Adaptive Cubature Kalman Filtering for
GPS/SINS Integrated Navigation." IEEE Sensors Journal (2024).

Mehra, Raman. "On the identification of variances and adaptive Kalman
filtering." IEEE Transactions on automatic control 15, no. 2 (1970): 175-
184.

Mohammed Butt. "Adaptive unscented Kalman filter for target tracking
with unknown time-varying noise covariance." Sensors 19, no. 6 (2019):
1371.

Sun, Bo, Zhenwei Zhang, Shicai Liu, Xiaobing Yan, and Chengxu Yang.
"Integrated navigation algorithm based on multiple fading factors Kalman
filter." Sensors 22, no. 14 (2022): 5081.

Benevides, Joao RS, Marlon AD Paiva, Paulo VG Simplicio, Roberto S.
Inoue, and Marco H. Terra. "Disturbance observer-based robust control
of a quadrotor subject to parametric uncertainties and wind disturbance."
leee Access 10 (2022): 7554-7565.

Xu, Qimin, Xu Li, and Ching-Yao Chan. "Enhancing localization
accuracy of MEMS-INS/GPS/in-vehicle sensors integration during GPS
outages." IEEE Transactions on Instrumentation and Measurement 67, no.
8 (2018): 1966-1978.

383

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Baidya, Bodhisattwa, Atanu Mondal, Sarbajit Manna, Gourab Das,
Anirban Santra, and Arkaprava Chakraborty. "Enhanced UAV Tracking
through Multi-Sensor Fusion and Extended Kalman Filtering." In Sixth
Doctoral Symposium on Intelligence Enabled Research, Sukanta
Mahavidyalaya, Dhupguri, India. 2024.

Ge, Baoshuang, Hai Zhang, Liuyang Jiang, Zheng Li, and Maaz Wang,
Dapeng, Hai Zhang, and Baoshuang Ge. "Adaptive unscented Kalman
filter for target tacking with time-varying noise covariance based on
multi-sensor information fusion." Sensors 21, no. 17 (2021): 5808.

Gu, Mulan. "Improved kalman filtering and adaptive weighted fusion
algorithms for enhanced multi-sensor data fusion in precision
measurement.” Informatica 49, no. 10 (2025).

Lee, Dongwoo, Hyung Jun Park, Dongmin Lee, Sangchul Lee, and Joo-
Ho Choi. "A novel kalman filter-based prognostics framework for
performance degradation of quadcopter motors." IEEE Transactions on
Instrumentation and Measurement 73 (2023): 1-12.

Dong, Yangyang, Zequn Xia, Yongbin Wang, and Zijian Zhang.
"Feedback Linearization with Improved ESO for Quadrotor Attitude
Control." In International Conference on Intelligent Robotics and
Applications, pp. 206-219. Singapore: Springer Nature Singapore, 2023.

Zhang, Pengfei, Zhenhua Ma, Yin He, Yawen Li, and Wenzheng Cheng.
"Cooperative Positioning Method of a Multi-UAV Based on an Adaptive
Fault-Tolerant Federated Filter." Sensors 23, no. 21 (2023): 8823.

Fourlas, George K., and George C. Karras. "A survey on fault diagnosis
and fault-tolerant control methods for unmanned aerial vehicles."
Machines 9, no. 9 (2021): 197.

Bianchi, Domenico, Stefano Di Gennaro, Mario Di Ferdinando, and
Cuauhtemoc Acosta Lua. "Robust control of uav with disturbances and
uncertainty estimation." Machines 11, no. 3 (2023): 352.

Du, Yusheng, Peng Huang, Yun Cheng, Yunlei Fan, and Yinlong Yuan.
"Fault tolerant control of a quadrotor unmanned aerial vehicle based on
active disturbance rejection control and two-stage Kalman filter." IEEE
Access 11 (2023): 67556-67566.

Cardoso, Rafael C., Georgios Kourtis, Louise A. Dennis, Clare Dixon,
Marie Farrell, Michael Fisher, and Matt Webster. "A review of
verification and validation for space autonomous systems." Current
Robotics Reports 2, no. 3 (2021): 273-283.

Dilys, Justas, Voitech Stankevi¢, and Krzysztof Luksza. "Implementation
of extended Kalman filter with optimized execution time for sensorless
control of a PMSM using ARM cortex-M3 microcontroller." Energies 14,
no. 12 (2021): 3491.



