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Abstract 

Federated learning in collaborative intelligence (CI) environments introduces critical privacy risks, including model inversion and 

gradient leakage, particularly in sensitive domains such as healthcare and finance. This paper presents FedGuard-CI, a novel privacy-

preserving framework that integrates dual-stage differential privacy, trust-aware secure aggregation, and a Model Inversion Risk 

Estimator (MIRE) to mitigate these threats. Experimental evaluation across multiple datasets demonstrates that FedGuard-CI achieves 

93.1% accuracy at a privacy budget of ϵ=3, outperforming FLAME and DP-FedAvg in both utility and privacy preservation. The 

framework reduces inversion success rate by 85% compared to FedAvg, with a 9.6% ISR and a 0.18 SSIM score, while maintaining low 

communication overhead (585 KB) and efficient runtime (30.2s per round). Ablation studies confirm the importance of MIRE and trust 

aggregation in enhancing both security and model performance. These results highlight FedGuard-CI’s practicality, scalability, and 

effectiveness as a foundation for secure and trustworthy federated intelligence. FedGuard-CI showed usability in edge-based CI 

environments. FedGuard-CI was evaluated across four heterogeneous datasets (MNIST, CIFAR-10, ChestX-ray14, UCI Loan Default) 

under non-IID federated settings using the Flower orchestration framework and PyTorch 2.1. The experiments were executed using 

multiple independent client groups to reflect realistic collaborative intelligence (CI) scenarios. Performance was assessed through 

accuracy, privacy budget, inversion success rate, communication overhead, and training time per round, enabling a multi-dataset and 

multi-client evaluation of the proposed system. 
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I. INTRODUCTION  

Federated Learning (FL) has emerged as a powerful 
paradigm for training machine learning models on distributed 
data without requiring centralized data aggregation, effectively 
addressing privacy and communication concerns in 
collaborative settings [1]. Despite FL’s promise, recent research 
has revealed that shared gradients or model updates can be 
exploited by adversaries to perform model inversion attacks 
(MIAs), reconstructing private training data with surprising 
fidelity [2]. These MIAs constitute a serious privacy threat in 
real-world applications such as healthcare and finance, where 

reconstructed data may expose sensitive personal or proprietary 
information [3]. Existing defense mechanisms include secure 
aggregation [4], differential privacy [5], and adversarial 
perturbation provide partial protection; however, they often 
impose substantial utility loss, elevate communication overhead, 
or lack theoretical guarantees against inversion attacks [6]. 
Moreover, current aggregation protocols assume an honest but 
curious server, leaving Federated Learning vulnerable when 
facing malicious participants or adversarial aggregators [7]. In 
response, there is a pressing need for a holistic defense 
architecture that combines rigorous privacy guarantees, efficient 

http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt71364
https://jastt.org
https://ipacademia.org/
mailto:hssnkd@gmail.com
mailto:ghada.emad@uoitc.edu.iq
mailto:maad.m.mijwil@aliraqia.edu.iq
mailto:alkattan.hussein92@gmail.com
mailto:alkattan.hussein92@gmail.com
mailto:maad.m.mijwil@aliraqia.edu.iq
https://orcid.org/0000-0001-9845-6599
https://orcid.org/0000-0001-8600-5344
https://orcid.org/0000-0002-2884-2504
https://orcid.org/0000-0002-0281-082X


Al-Mahdawi et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 82 –94 (2026) 

 

83 

secure aggregation, and real-time risk assessment of inversion 
threats. 

In this work, we introduce FedGuard CI, a federated defense 
architecture that incorporates dual-stage differential privacy, 
secure aggregation with adaptive trust weighting, and a novel 
Model Inversion Risk Estimator (MIRE). Together, these 
components synergistically reduce inversion attack success 
while preserving model utility and scalability. To support real-
world deployment, FedGuard CI is optimized for edge-based 
and mobile collaborative systems, ensuring minimal 
computational and communication overhead. Finally, we 
validate our design across diverse cross domain datasets 
showing an 85% reduction in inversion success while 
maintaining comparable model performance to state of the art 
baselines.  

The remainder of this paper is structured as follows: Section 
2 outlines the background and related work on federated 
learning, collaborative intelligence, and associated privacy 
threats. Section 3 presents the system model and threat 
assumptions. Section 4 details the FedGuard-CI framework, 
including its architecture, differential privacy mechanisms, and 
trust-aware aggregation. Section 5 offers a formal analysis of 
privacy and security guarantees. Section 6 describes the 
experimental setup, while Section 7 discusses the evaluation 
results. Finally, Section 9 concludes the paper with a summary 
of key findings and contributions. 

Recent top-venue studies further motivate our design. 
Robust federated learning frameworks with secure aggregation 
have been investigated to mitigate poisoning risks, while dual-
defense strategies jointly improve privacy and robustness, and 
recent ICML work explores defenses under non-IID settings 
with many attackers. These trends align with FedGuard-CI’s 
dual-stage privacy control and trust-aware aggregation. 

In this paper, we propose FedGuard-CI as a holistic 
federated protection framework which extends privacy-
preserving collaborative intelligence with multiple innovative 
solutions. The presented framework employs a quadratic dual-
stage differential privacy mechanism that ensures both local 
noisy gradients as well as the aggregated updates are protected, 
leading to strong defense against model inversion despite 
achieving high utility. It also adopts a resistive aggregation 
scheme which is enhanced with adaptive trust weighting to 
avoid contaminating the global model by poisoning clients or 
from providing unreliable contributions. Challenging these 
norms, we also study the train-time sensitive privacy scenario 
and develop a Model Inversion Risk Estimator that tracks 
information-leakage signals directly in the training process and 
adapts the privacy parameters in an online fashion when facing 
enhanced risk. The general architecture is optimized for scalable 
and resource limited CI environments and makes deployment at 
different settings such as medical imaging, finance, or vision 
based edge systems efficient. Extensive empirical results on 
disparate datasets show significant improvements of FedGuard-
CI in inversion-attack resistance, accuracy preservation and 
communication efficiency over prior work in the context of 
federated learning. Cumulatively, these contributions situate 
FedGuard-CI as a mature and strong basis for secure, privacy-
aware, trustworthy federated intelligence. 

II. RELATED WORK 

A. Foundations of Federated Learning 

Chen et al. [8] define "trustworthy FL" as a unifying 
framework that combines privacy, security, resilience, and 
fairness together with lifecycle control, e.g., auditing and 
accountability. Han et al. [9] and Manzoor et al. [10] categorize 
native federated learning architectures client/server 
orchestration, synchronous vs. asynchronous aggregation, and 
personalization on non-IID data and identify implementation 
challenges like stragglers and device churn. Bouacida and 
Mohapatra [11] point out the architectural assumptions that form 
vulnerability surfaces, whereas Erdal et al. [12] and Yurdem et 
al. [25] link root principles to edge and mobile settings, 
describing stacks, tools, and application boundaries. Zhang et al. 
[14] and Li et al. [21] provide contrary views to the impact of 
the fact that "foundations" must encompass quantifiable 
guarantees throughout the whole federated learning period and 
not merely training rounds. 

B. Privacy Risks in Federated Learning 

Lyu et al. [15] document update-level leakage 
(membership/property inference, gradient inversion) and 
describe how heterogeneity and partial participation compound. 

Lyu, Yu, and Yang [16], [18] further establish threats across 
protocol and system layers, with Zhang et al. [17] explaining 
challenges and attack requirements in practical 
implementations. Hasan [13] provides an in-depth overview of 
typical risks for practitioners, whereas Neto et al. [22] associate 
the risks with domain-specific situations characterized by 
different levels of trust and regulation. 

These research studies collectively demonstrate how privacy 
in federated learning relies on the shared information type, 
sharing time, and accompanying aggregation and visibility laws. 

C. Collaborative Intelligence and Model Inversion Attacks 

Zhou et al. [23] characterize cloud–edge federated learning 
as a collaborative-intelligence system in which multi-tier 
orchestration (cloud/edge/device) transforms performance as 
well as vulnerability to attack. 

Shao et al. [26] examine "what-to-share" policies gradients, 
deltas, representations, and show how choices in 
communications trade off utility, bandwidth, and inversion 
leakage. 

Manzoor et al. [10] and Han et al. [9] opine that, in the 
absence of CI constraints (bandwidth/latency), partial sharing 
and compression are likely to cause increased model inversion 
and attribute inference unless designed with aggregation or 
differential privacy. Chen et al. [8] suggest integrating CI 
scheduling with trust measurements to mitigate cross-tier 
leakage. 

D.  Defence Mechanisms and Limitations 
Limitations (Coordinated Poisoning via Trust 

Manipulation).  

Although trust-aware aggregation improves robustness 
against unreliable clients, coordinated adversaries may attempt 
to manipulate trust scores by submitting updates that appear 
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statistically benign while gradually steering the global model 
(collusive poisoning). This risk is amplified when attackers 
synchronize behavior across rounds to evade simple trust-decay 
mechanisms. In such cases, stronger defenses may be required, 
including cross-round consistency checks, robust trust 
calibration (e.g., median-of-means scoring), Sybil-resistance 
constraints, and secure attestation for client integrity. These 
extensions are complementary to FedGuard-CI and represent an 
important direction for future work toward fully adversarial 
deployments. 

Scalability Note. FedGuard-CI is architected for scalability 
through lightweight client-side perturbation and linear secure 
aggregation. However, extensive stress-testing with very large 
client populations (e.g., 100–1000 clients) remains future work, 
as such settings may introduce additional systems challenges 
including client churn, straggler effects, and trust-score stability. 

Chen et al. [8] and Lyu et al. [15] categorize approaches as 
differential privacy (central/local), cryptographic/robust and 
secure aggregation, outlier detection, and policy-level sharing 
control among defenses.  Hallaji et al. [27] and Gholami et al. 
[28] explore decentralized federated learning to solve server 
trust issues, highlighting the coordination and convergence 
costs. 

Convergence Clarification. Under standard assumptions that 
the global objective 𝐹(𝑤) is 𝐿-smooth and 𝜇 strongly convex, 
i.e., 

‖∇𝐹(𝑢) − ∇𝐹(𝑣)‖ ≤ 𝐿‖𝑢 − 𝑣‖ (1) 

𝐹(𝑣) ≥ 𝐹(𝑢) + ∇𝐹(𝑢)⊤(𝑣 − 𝑢) +
𝜇

2
‖𝑣 − 𝑢‖2 

(2) 

and assuming bounded gradient variance 𝔼[‖𝑔𝑟 −
∇𝐹(𝑤𝑟)‖2] ≤ 𝜎2, the expected optimization error of SGD-type 

updates satisfies 

𝐸[𝐹(𝑤𝑇) − 𝐹(𝑤∗)] = 𝑂 (
1

𝑇
) 

(3) 

 
FedGuard- Cl preserves this rate since trust-weighted 

aggregation reduces the variance contribution of unreliable 
clients, while the dual-stage DP perturbations remain controlled 
through clipping and adaptive noise scheduling. For general 
convex (non-strongly convex) objectives, the rate relaxes to 

𝐸[𝐹(𝑤𝑇) − 𝐹(𝑤∗)] = 𝑂 (
1

√𝑇
) 

(4) 

Orabi et al. [24] explore blockchain-based orchestration of 
incentive alignment and auditability centered on latency vs. 
overhead trade-offs.  

Han et al. [9] and Zhang et al. [14] advise that single-defense 
solutions hardly last long against adaptive attackers; strong 
systems combine differential privacy with resistant aggregation 
and monitoring but are still vulnerable to accuracy loss under 
strict privacy budgets and to non-IID drift. 

E. Research Gap and Positioning of FedGuard-CI 
Li et al. [21] favor comprehensive, composable guarantees 

from cradle to grave; Shao et al. [26] emphasize adaptive "what-
to-share" approaches; and Neto et al. [22] advocate operational 
realism for a variety of applications. We plan to deploy 
FedGuard-CI to (i) enable dual-stage differential privacy (client 

+ aggregator) on the lines of trust-layered architecture principles 
proposed by Chen et al. (i) perform trust-aware robust 
aggregation under edge/CI constraints per Zhou et al., (ii) 
incorporate an online inversion-risk monitor dynamically 
modulating sharing and aggregation in real time—solving 
outlined limitations in scalability, accuracy within strict privacy 
limits, and resistance to active attackers. [8-10], [21], [23], 
[26][29-32]. 

TABLE I.  COMPARATIVE SUMMARY OF RECENT WORKS ON PRIVACY-
PRESERVING TECHNIQUES IN FEDERATED LEARNING AND COLLABORATIVE 

INTELLIGENCE. 

Ref. Contribution Methodology Limitation 

[8] Chen 
et al., 

2025 

Trustworthy FL 
(privacy, security, 

robustness, fairness) 

Comprehensive 
survey/taxonom

y; lifecycle 

view; 
governance & 

auditing 

considerations 

Calls for 
standardized 

benchmarks 

and 
composable 

guarantees 

across the 
lifecycle 

[9] Han 

et al., 
2024 

Privacy-preserving & 

secure robust FL 

Systematic 

survey; 
organizes 

threats/defenses; 

practitioner-
oriented 

guidance 

Limited 

empirical 
head-to-head 

comparisons; 

generalizabilit
y across 

domains not 

fully tested 
[10] 

Manzoor 

et al., 
2024 

Security strategies for 

defending models, 

data, privacy 

Defensive 

taxonomy across 

protocol/model/d
ata layers; 

implementation 

notes 

Cross-layer 
integration and 

end-to-end 

evaluations are 
limited 

[11] 

Bouacida 

& 
Mohapatr

a, 2021 

Core vulnerabilities in 

FL 

Early 

comprehensive 

vulnerability 
analysis 

(poisoning, 

inference, 
Byzantine) 

Pre-2022 

snapshot; 
fewer insights 

on modern 

CI/edge stacks 

[12] 

Erdal et 
al., 2024 

Security & privacy in 

mobile networks FL 

Domain-specific 

survey; 
mobile/edge 

constraints 

Focused on 

mobile 
context; 

broader 

applicability 
may vary 

[13] 

Hasan, 
2023 

Practitioner primer on 

security & privacy 
issues 

Tutorial/overvie

w (arXiv) 

Not peer-

reviewed; 
limited 

experimental 
depth 

[14] 

Zhang et 
al., 2023 

Trustworthy FL 

perspectives (security, 
robustness, privacy) 

WebConf 

companion 
survey; research 

agenda 

Limited 

system-level 
benchmarking; 

mainly 

conceptual 
framing 

[15] Lyu 

et al., 
2022 

Attacks & defenses in 

FL (privacy + 
robustness) 

TNNLS survey; 

formalizes 
attack/defense 

families 

Rapidly 

evolving 
threats; limited 

CI/edge-

specific 
evaluation 

[16] Lyu, 

Yu & 
Yang, 

2020 

Threats to FL (survey) arXiv survey; 

foundational 
taxonomy 

Early 

snapshot; 

fewer 
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countermeasur

e integrations 

[17] 
Zhang et 

al., 2022 

Security & privacy 
threats-

issues/methods/challe

nges 

SCN survey; 
organizes attacks 

& mitigations 

Lacks 
standardized 

benchmarks 

and unified 
metrics 

[18] Lyu 

et al., 
2020 

Threats to FL (book 

chapter) 

Springer chapter; 

lifecycle threat 
articulation 

Focus on 

threats more 
than 

deployable 

defenses 
[19] 

Myakala 

et al., 
2024 

FL & data privacy-

challenges/opportuniti

es 

Broad 

tutorial/overview 

High-level 

treatment; 

limited 
technical 

rigor/experime

nts 
[20] 

Aggarwal 

et al., 
2024 

Methods, applications 

& challenges in 

privacy-preserving FL 

Concise review 

of methods and 

use cases 

Short format 

restricts depth 

and 
quantitative 

synthesis 

[21] Li et 
al., 2025 

Lifecycle threats & 
defenses; fairness + 

robustness + privacy 

TNNLS survey; 
end-to-end view 

and challenge 

agenda 

Proposed 
directions need 

empirical 

validation at 
scale 

 

III. THREAT MODEL AND SYSTEM ASSUMPTIONS 

A. Adversarial Goals and Capabilities 

The proposed system considers a powerful adversarial 
model, where attackers may be semi-collusive and active, 
aiming to compromise the confidentiality and integrity of the 
federated learning process. Specifically, adversaries may 
attempt to reconstruct private training data through model 
inversion attacks, inject malicious updates to poison the global 
model, or interfere with the aggregation mechanism to 
manipulate outcomes. These threats may originate from 
compromised clients or the server itself, and adversaries are 
assumed to possess the capability to perform inference attacks, 
gradient analysis, or parameter manipulation. The model also 
allows adversaries to coordinate attacks across multiple 
compromised nodes, increasing the complexity of detection and 
defense. 

B. Attack Surface in CI Systems 

Collaborative Intelligence (CI) systems broaden the 
traditional attack surface found in FL. Threat vectors exist at 
multiple levels, including: 

 Local Client Training: Adversaries may exploit the 

information encoded in gradients during local model 

training to infer sensitive input features. 

 Communication Channel: Man-in-the-middle, replay, or 

injection attacks may be launched to tamper with updates 

exchanged between clients and the server. 

 Aggregation Process: The aggregation phase is vulnerable to 

poisoning attacks, where compromised clients submit 

manipulated updates to corrupt the global model. 

 Published Global Model: Repeated querying of the global 

model may enable adversaries to perform model extraction 

or inversion through inference techniques. 
These attack vectors highlight the necessity of an integrated 

defense architecture that ensures robustness across all stages of 
the federated training pipeline. 

 
Fig. 1. Architectural Overview of FedGuard-CI Framework. 

C. System Assumptions  

To design and evaluate FedGuard CI, the following system 
assumptions are made: 

 Clients are assumed to be equipped with trusted execution 
environments or secure hardware modules that protect local 
computation and enforce protocol compliance. 

 The Server is semi-trusted it is expected to follow the 
aggregation protocol but may be curious or malicious in 
attempting to infer sensitive information from updates. 

 Communication Channels between participants and the 
server are secured through authentication and encryption 
mechanisms; however, the model remains resilient against 
active adversaries attempting tampering or interception. 

 Adversary Bound: A limited number of clients may be 
compromised at any point in time, but the majority are 
assumed to behave honestly. Simultaneous compromise of 
both clients and server is considered out-of-scope. 
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This threat model establishes the foundation for evaluating 
FedGuard CI under realistic and adversarial conditions, ensuring 
that the proposed system is equipped to handle a broad spectrum 
of security and privacy threats in collaborative intelligence 
environments. 

 Numerical Constraints in Threat Model: We assume that at 
most 𝑓 ≤  20%  of clients may be compromised in any 
training round. This parameterization aligns with typical CI 
deployments where a minority of participants may be 
malicious or unreliable. The aggregation protocol preserves 
correctness as long as the honest majority assumption holds 
( 𝑖. 𝑒. , ≥ 80%  uncompromised clients). This f-bound 
ensures analytical tractability and reflects realistic 
adversarial exposure. 

IV. THE FEDGUARD-CI FRAMEWORK 

A. Architectural Overview 

FedGuard-CI presents a comprehensive privacy-preserving 
architecture tailored for secure collaborative intelligence. It is 
specifically engineered to counteract model inversion attacks 
while sustaining scalability and model utility. The framework 
comprises three core components: (1) Dual-Stage Differential 
Privacy (DS-DP), (2) Secure Aggregation with Trust-Aware 
Weights (SATW), and (3) the Model Inversion Risk Estimator 
(MIRE). Their integration delivers multi-layered protection 
from client-level gradient exposure to server-side inference 
risks. Figure 1 illustrates the system architecture and its data 
flow. 

B. Workflow of Collaborative Training  

Algorithm 1 describes the complete FedGuard-CI federated 
training process over TTT rounds. In each round, selected clients 
compute local gradients, apply clipping and add Gaussian noise 
to achieve client-side differential privacy before sending updates 
through secure aggregation. The server then combines updates 
using trust-based weights (SATW) and adds an additional 
server-side DP noise layer to further reduce leakage. Next, 
MIRE estimates inversion risk using mutual information, and if 
the risk exceeds a threshold, the privacy strength is increased 
adaptively. Finally, client trust scores are updated based on risk 
levels to suppress suspicious contributions and stabilize training. 

Algorithm 1: FedGuard-CI Training Loop 

Input: Client set 𝒞 = {1, … , 𝑁}, rounds 𝑇, learning rate 𝜂, clipping 

bound 𝐶, DP noise 𝜎𝑐, 𝜎𝑠, trust decay 𝛾, risk threshold 𝜏 

Output: Global model 𝑤𝑇 

1. Initialize global parameters 𝑤0; initialize trust scores 𝑡𝑖
0 = 1∀𝑖 

2. For each round 𝑟 = 1, … , 𝑇 : 

3. Server selects active subset 𝒮𝑟 ⊆ 𝒞 

4. For each client 𝑖 ∈ 𝒮𝑟 (parallel): 

5. Receive 𝑤𝑟−1; compute local gradient 𝑔𝑖
𝑟 on private data 

6. Clip gradient: 𝑔̃𝑖
𝑟 = 𝑔𝑖

𝑟/max(1, ‖𝑔𝑖
𝑟‖2/𝐶) 

7. Apply client DP: 𝑔̂𝑖
𝑟 = 𝑔̃𝑖

𝑟 + 𝒩(0, 𝜎𝑐
2𝐶2𝐼) 

8. Securely transmit 𝑔̂𝑖
𝑟 to server (masked update) 

9. Server performs secure aggregation with trust weights: 

10. 𝐺𝑟 = ∑  𝑖∈𝒮𝑟
𝛼𝑖

𝑟𝑔̂𝑖
𝑟, where 𝛼𝑖

𝑟 =
𝑡𝑖

𝑟−1

∑  𝑗∈𝒮𝑟  𝑡𝑗
𝑟−1 

11. Apply server DP: 𝐺‾𝑟 = 𝐺𝑟 + 𝒩(0, 𝜎𝑠
2𝐶2𝐼) 

12. Update global model: 𝑤𝑟 = 𝑤𝑟−1 − 𝜂𝐺‾𝑟 

13. Compute inversion-risk score via MIRE: 𝑅𝑟 =
1

|𝒮𝑟|
∑  𝑖∈𝒮𝑟

𝐼(𝑔̂𝑖
𝑟; 𝑥𝑖) 

14. If 𝑅𝑟 > 𝜏 : adapt privacy (increase noise / tighten clipping): 

𝜎𝑐 ← 𝜎𝑐(1 + 𝜆) 

15. Update trust scores (risk-aware decay): 𝑡𝑖
𝑟 = 𝛾𝑡𝑖

𝑟−1 + (1 −
𝛾)exp (−𝛽𝑅𝑖

𝑟) 
16. End For 

17. Return 𝑤𝑇 
 

The collaborative training workflow in FedGuard-CI 
proceeds through the following stages: 

 Clients perform local training on private data and compute 
gradient updates 𝑔𝑖. 

 Clients perturb the gradients locally using differential 
privacy: 

𝑔𝑖̀ = 𝑔𝑖 + 𝒩(0, 𝜎𝑐
2) (5) 

 Perturbed gradients 𝑔𝑖̀  are securely transmitted to the server. 

 The server aggregates all received updates: 

G =
1

𝑁
∑ 𝑔𝑖̀

𝑁

𝑖=1

 

(6) 

 Global differential privacy is enforced via noise addition at 
the server: 

𝐺̀ = 𝐺 +  𝒩(0, 𝜎𝑠
2) (7) 

 The MIRE module estimates the risk of inversion attacks 

using 𝐺̀. 

  If risk R exceeds threshold τ, the system adjusts 𝜎𝑐 , 𝜎𝑠. 

 Updated global model parameters are shared with clients. 

C. Dual-Stage Differential Privacy Scheme 

1. Gradient Perturbation 

Clients enforce local privacy by perturbing gradients: 

𝑔𝑖̀ = 𝑔𝑖 + 𝒩(0, 𝜎𝑐
2 𝐼) (8) 

The privacy guarantee 𝜖𝑐 is quantified: 

        𝜖𝑐 =
Δ2

2𝜎𝑐
2
 

(9) 

where Δ denotes gradient sensitivity. 

2. Server-Side Noise Addition 

The server applies additional privacy protection: 

𝐺̀ = 𝐺 +  𝒩(0, 𝜎𝑠
2𝐼) (10) 

The total privacy budget over k rounds is computed using 

advanced composition: 

𝜖𝑡𝑜𝑡𝑎𝑙 ≤ √2𝑘𝑙𝑜𝑔(1
𝛿⁄ )   . 𝜖𝑐 + 𝑘𝜖𝑠(𝑒𝑥𝑝(𝜖𝑠) − 1)                                 

(11) 

D. Secure Aggregation Protocol with Trust-Aware Weights  

To defend against malicious updates, the server adopts trust-

aware aggregation. Each client 𝑖  is assigned a trust score 𝑇𝑖 , 

leading to a weighted aggregation: 

                 𝐺𝑇 =
∑ 𝑇𝑖𝑔̀𝑖

𝑁
𝑖=1

∑ 𝑇𝑖
𝑁
𝑖=1

            

Trust scores are dynamically adjusted: 

 𝑇𝑖
(𝑡)

= 𝛾𝑇𝑖
(𝑡−1)

+ (1 − 𝛾)𝜙𝑖
(𝑡)
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where 𝜙𝑖
(𝑡)

 is the inversion risk from MIRE and γ∈ [0,1] is a 

decay coefficient. 

 

E. Model Inversion Risk Estimator (MIRE) Module 

MIRE evaluates the exposure risk by estimating the mutual 

information between gradients and input data: 

              𝑅 = 𝐼(𝑔𝑖̀; 𝑥𝑖)                                                      

If R >𝜏 , the system triggers adaptive noise control to strengthen 

privacy. 

F. System Scalability and Deployment Considerations 

FedGuard-CI is built for scalable CI environments with 
resource constraints. Techniques such as gradient quantization, 
smartification, and lightweight client-side computation are 
employed to reduce overhead. The architecture supports 
asynchronous updates and is compatible with both cross-device 
and cross-silo federated learning models. Its modular design 
ensures efficient integration into edge, mobile, and IoT systems 
while preserving rigorous security standards. 

V. FORMAL PRIVACY AND SECURITY ANALYSIS  

A. Resistance to Model Inversion Attacks 

FedGuard-CI is specifically designed to counter model 
inversion attacks (MIAs), which aim to reconstruct training 
inputs from gradients or model outputs. The following 
components jointly mitigate inversion risk: 

 Gradient-level perturbation disrupts high-frequency signal 

structures critical for inversion. 

 Global noise injection masks aggregate patterns across clients, 

reducing mutual information between input features and the 

global model. 

 The Model Inversion Risk Estimator (MIRE) proactively 

monitors and adjusts privacy parameters based on observed 

information leakage scores. 

Experimental analysis (see Section 7) demonstrates that 
FedGuard-CI reduces inversion attack success rates by over 
85% compared to standard FL baselines, even under white-box 
access scenarios. This illustrates the framework’s robust 
resistance against both passive and active gradient-based 
attacks. 

B. Convergence and Utility Trade-off 

Introducing differential privacy inevitably influences model 
utility due to the added noise. However, FedGuard-CI optimizes 
this trade-off using: 

 Adaptive noise scheduling driven by MIRE feedback. 

 Trust-aware weighted aggregation that emphasizes reliable 

contributions. 

 Gradient sparsification and clipping to minimize the impact of 

extreme updates. 

Under convex loss functions and bounded gradient 
assumptions, convergence to an optimal solution is guaranteed 

in 𝑂 (1
√𝑇

⁄ ) , where T is the number of rounds. Empirical 

evaluations show that accuracy loss remains within 3–5% of the 
non-private baseline, demonstrating high fidelity learning under 
privacy constraints. 

C. Communication and Computation Overhead 

FedGuard-CI introduces minimal overhead due to its 
lightweight local noise perturbation and modular privacy 
pipeline. Key optimizations include: 

 Local DP implemented via efficient Gaussian sampling, 

requiring constant-time operations per gradient element. 

 Secure Aggregation using additive masking that scales 

linearly with the number of clients. 

 Client trust scoring and MIRE computations are maintained 

within logarithmic memory and runtime per round. 

Compared to conventional secure FL systems, FedGuard-CI 
achieves a 20–30% reduction in communication overhead 
through quantized gradient exchange and supports scalability to 
hundreds of clients in asynchronous CI environments. Overall, 
the framework maintains practical feasibility without sacrificing 
its theoretical privacy-security rigor. 

D. Dual-Stage Differential Privacy 

A federated training round satisfies (𝜀𝑐 + 𝜀𝑠) -DP if (i) 
client-side gradients are perturbed by Gaussian noise 𝜎𝑐, and (ii) 
aggregated server-side gradients are perturbed by Gaussian 
noise 𝜎𝑠. Let Δ denote gradient sensitivity, then: 

𝜖 =
Δ

𝜎𝑐

+
Δ

𝜎𝑠

 

E. Privacy Composition 

Over 𝑘 training rounds, FedGuard-Cl satisfies: 

𝜖total ≤ √2𝑘ln (1/𝛿)(𝜖𝑐 + 𝜖𝑠) 

Proof Sketch: Follows directly from the advanced 
composition theorem applied to the two sequential DP 
mechanisms executed per round. Client-side noise protects 
individual updates, while server-side noise protects aggregate 
visibility.  

Since the mechanisms operate on disjoint representations, 
their composition is additive under bounded sensitivity. 
 

VI. EXPERIMENTAL SETUP 

A. Implementation Environment 

The experimental validation of FedGuard-CI was conducted 
using a federated learning platform built with PyTorch 2.1, 
incorporating Opacus for differential privacy and Flower 
(FLWR) for orchestration. All experiments were executed on a 
high-performance computing cluster equipped with four 
NVIDIA A100 GPUs (40 GB each), an AMD EPYC 7763 64-
core processor, and 512 GB DDR4 ECC RAM. TLS 1.3 was 
enabled for secure communication, and client behavior was 
emulated with synthetic latency, dropout, and churn to reflect 
real-world collaborative intelligence (CI) deployments. 
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TABLE II.  EXPERIMENTAL ENVIRONMENT AND FRAMEWORK STACK. 

Component Specification 

Framework PyTorch 2.1 + Opacus + FLWR 

GPUs 4 × NVIDIA A100 (40 GB each) 
CPU AMD EPYC 7763, 64-core 

RAM 512 GB DDR4 ECC 

Security Protocol TLS 1.3, mutual authentication 
Deployment Simulation Latency, jitter, dropout, client churn 

 
Table II presents the computational environment used to 

implement and evaluate FedGuard-CI. The combination of high-
memory GPUs (NVIDIA A100), large-scale CPU parallelism 
(64-core AMD EPYC), and secure communication protocols 
(TLS 1.3) ensures reproducibility and reflects real-world 
deployment conditions for federated collaborative systems. The 
use of deployment simulation including latency, dropout, and 
client churn adds realism and robustness to the evaluation, 
ensuring the results generalize to practical CI use cases. This 
setup enables testing under constrained network and 
heterogeneous system conditions, simulating typical edge-cloud 
collaboration environments. 

B. Datasets and Use-Case Scenarios 

We employed four datasets spanning vision, medical, and 
financial domains to evaluate the generalizability of FedGuard-
CI. These include MNIST, CIFAR-10, ChestX-ray14, and the 
UCI Loan Default dataset. To simulate heterogeneous federated 
learning settings, data was partitioned non-IID using Dirichlet 
sampling with a concentration parameter α=0.3\alpha = 
0.3α=0.3. 

TABLE III.  DATASET CHARACTERISTICS AND CI RELEVANCE. 

Datase

t 
Domain 

Sampl

es 

Input 

Dimensio

n 

Classe

s 

Sensitivi

ty 

CI 

Applicati

on 

MNIS

T 
Vision 60,000 28×28 10 Low 

OCR in 

edge 

devices 

CIFAR

-10 
Vision 50,000 32×32×3 10 Medium 

Surveillan

ce via 

drones 

Chest

X-

ray14 

Healthca

re 

112,12

0 

1024×10

24 
14 High 

Diagnostic 

imaging at 

hospitals 

UCI 

Loan 

Defaul

t 

Finance 30,000 
28 

features 
2 High 

Credit 

scoring in 

fintech 

 
Table III outlines the datasets employed to assess FedGuard-

CI across various domains. The datasets differ in input 
dimension, class diversity, and privacy sensitivity. This 
selection ensures the framework is stress-tested on low-
dimensional structured data (MNIST), high-dimensional 
medical imaging (ChestX-ray14), and real-world tabular 
financial records (UCI Loan Default). The consistent 
performance across these domains (later shown in Table 12) 
underscores the adaptability and robustness of FedGuard-CI to 
cross-domain collaborative scenarios. 

 

Fig. 2. Comparative Dataset Sample Sizes Across CI Evaluation Benchmarks. 

Figure 2 illustrates the sample sizes across four diverse 
datasets used to evaluate FedGuard-CI. ChestX-ray14 has the 
highest volume, showcasing the framework’s applicability to 
large-scale medical data. MNIST and CIFAR-10 offer mid-sized 
image classification benchmarks, while UCI Loan Default 
represents sensitive, structured financial data. This diversity 
demonstrates FedGuard-CI’s scalability and adaptability across 
domains with varying complexity and privacy requirements. 

C. Baseline Comparison Models 

We compared FedGuard-CI against four well-established 
federated learning baselines: FedAvg (standard averaging), DP-
FedAvg (client-side DP), SecureAgg-FL (secure aggregation), 
and FLAME (adversarial perturbation for privacy). All models 
were trained under equivalent configurations for fair 
benchmarking. 

TABLE IV.  PRIVACY AND SECURITY FEATURES OF BASELINE MODELS. 

Model 
Client 

DP 

Server 

DP 

Secure 

Aggregation 

Risk 

Estimation 

Trust 

Weighting 

FedAvg ✗ ✗ ✗ ✗ ✗ 

DP-

FedAvg 
✓ ✗ ✗ ✗ ✗ 

SecureAgg-

FL 
✗ ✗ ✓ ✗ ✗ 

FLAME ✓ ✓ ✗ ✗ ✗ 

FedGuard-

CI 
✓ ✓ ✓ ✓ ✓ 

 
Table IV highlights the limitations of existing federated 

learning baselines. While DP-FedAvg applies local differential 
privacy and SecureAgg-FL offers aggregation secrecy, neither 
provides end-to-end protection. FedGuard-CI is the only model 
that integrates client-side and server-side DP, secure 
aggregation, risk estimation, and trust weighting ensuring multi-
layered defense. This unified framework distinguishes 
FedGuard-CI from isolated, single-layer protection approaches 
and contributes significantly to its superior resilience as 
demonstrated in Table IX. 
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Fig. 3. Use-Case Sensitivity Distribution for Collaborative Intelligence 

Applications. 

Figure 3 visualizes sensitivity ratings across different CI 
domains finance, healthcare, object recognition, and risk 
assessment. The high sensitivity scores for finance and 
healthcare justify the stringent privacy requirements addressed 
by FedGuard-CI. 

TABLE V.  COMPUTATIONAL AND COMMUNICATION OVERHEAD PER 

ROUND. 

Model 
Time 

(s) 

Comm. 

(KB) 

Memory 

Use 

GPU 

Load 

FedAvg 22.1 420 Low 35% 
DP-FedAvg 28.7 610 Medium 40% 

SecureAgg-

FL 

31.5 780 High 38% 

FLAME 33.9 650 Medium 42% 

FedGuard-CI 30.2 585 Medium 41% 

 
Table V quantifies the system cost of each method. Although 

FLAME and SecureAgg-FL incur significant communication 
and memory overheads, FedGuard-CI maintains a lower 
communication cost (585 KB) and efficient runtime (30.2 
seconds), despite offering more comprehensive protection. This 
result highlights the practicality of FedGuard-CI for real-world 
federated deployments, particularly in edge computing 
scenarios with limited bandwidth and device resources. 

 
Fig. 4. Training Configurations of Baseline Models in Federated Settings. 

Figure 4 compares training rounds and batch sizes across 
models. FedGuard-CI and FLAME both employ more extensive 
training parameters, suggesting deeper learning capability. The 
figure supports the design rationale for FedGuard-CI’s 
performance edge. 

D. Missing Training Parameters 

Table VI summarizes all the various training configurations 
used in our federated experiments. It lists all core 
hyperparameters including the number of clients, the number of 
active clients each mini-batch cycle, the local training epochs, 
batch size and learning rate. It specifies gradient clipping 
threshold and noise levels for both client-side and server-side 
differential privacy as well as all rounds applied globally. These 
parameters together define the operating environment of 
FedGuard-CI and ensure that it is fully explainable in design, 
reproducible on various levels for equivalent systems and easily 
understandable to other database workers. 

TABLE VI.  TRAINING CONFIGURATION 

Parameter Value 

Number of Clients 20 

Active Clients per Round 10 

Local Epochs 5 

Batch Size 32 

Learning Rate 0.01 

Gradient Clipping 1.0 

Client DP Noise (σc) 0.6 

Server DP Noise (σs) 0.4 

Rounds 100 

E. Evaluation Metrics 

The framework was assessed using a combination of utility, 
privacy, and system efficiency metrics: 

 Accuracy (ACC): Global model accuracy on the test set. 

 Inversion Success Rate (ISR): Similarity between 

reconstructed and original inputs. 

 Privacy Budget (\( \epsilon \)): Differential privacy leakage. 

 Communication Overhead: Average bytes exchanged per 

client per round. 

 Training Time per Round: Latency from local training to 

global aggregation. 

 Trust Divergence (TD): Variance in client trust scores. 

TABLE VII.  EVALUATION OF METRICS AND DESIRED OUTCOMES. 

Metric Description Goal 

Accuracy (ACC) Model performance on test data High 

ISR (%) Reconstructive success of inversion attacks Low 

Privacy Budget Total DP cost across training rounds Low 
Communication 

Cost 
Bytes transmitted per client per round 

Low 

Training Time Time per federated round Low 
Trust Divergence Variability of trust scores across clients Low 

 

Table VII formalizes the evaluation criteria used to assess 
privacy-utility trade-offs, efficiency, and trust management. It 
reflects the multidimensional requirements for secure 
collaborative intelligence systems. These metrics were selected 
not only for technical benchmarking but also to align with real-
world constraints, such as low latency, reduced client risk 
exposure, and limited network usage. 
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Fig. 5. Relative Importance Weights of Evaluation Metrics in Privacy-

Preserving CI Frameworks. 

Figure 5 ranks evaluation criteria (accuracy, ISR, SSIM, 
overhead, etc.) by their analytical weight. Accuracy and ISR 
emerge as top priorities, aligning with FedGuard-CI’s focus on 
optimizing both utility and resilience against attacks. 

TABLE VIII.  PERFORMANCE BENCHMARK ACROSS ALL MODELS. 

Model 
ACC 

(%) 

ISR 

(%) 

\( 

\epsilon 

\) 

Comm. 

(KB) 

Time 

(s) 
TD 

FedAvg ≥ 95 ≥ 60 — ≤ 500 ≤ 30 High 

DP-

FedAvg 
≥ 90 ≤ 35 ≤ 4.0 ≤ 800 ≤ 45 Medium 

FLAME ≥ 91 ≤ 20 ≤ 3.5 ≤ 700 ≤ 40 Medium 

FedGuard-

CI 
≥ 93 ≤ 10 ≤ 3.2 ≤ 600 ≤ 35 Low 

 

Table VII consolidates the core performance outcomes. 
FedGuard-CI achieves the highest accuracy (≥93%) while 
maintaining the lowest ISR (≤10%) and the most controlled 
privacy budget (ε ≤ 3.2). Furthermore, its communication and 
computation costs remain within practical thresholds. The low 
trust divergence (TD) confirms fair aggregation and secure 
model convergence, positioning FedGuard-CI as a balanced and 
reliable solution for federated learning in adversarial and 
heterogeneous settings. 

 
Fig. 6. Progressive Privacy Budget Allocation Across Federated Learning 

Rounds. 

VII. RESULTS AND EVALUATION 

A. Model Accuracy vs. Privacy Trade-off 

To assess the balance between model utility and privacy 
preservation, we evaluated the test accuracy of FedGuard-CI in 
comparison with two widely adopted privacy-preserving 
federated learning baselines: DP-FedAvg and FLAME. Each 
model was evaluated under comparable differential privacy 
budgets. 

TABLE IX.  ACCURACY VS. PRIVACY BUDGET COMPARISON. 

Model ϵ\epsilon Accuracy (%) 

DP-FedAvg 4.0 90.3 

FLAME 3.5 91.2 

FedGuard-CI 3.2 93.1 

 

Table IX demonstrates that FedGuard-CI achieves the best 
balance between privacy and accuracy, with the highest 
accuracy (93.1%) at the lowest privacy budget (ϵ=3.2\epsilon = 
3.2ϵ=3.2). Compared to DP-FedAvg and FLAME, it offers 
stronger privacy protection without compromising model 
performance, confirming its effectiveness in privacy-preserving 
collaborative intelligence. 

 

 

Fig. 7. Accuracy and Privacy Budget Comparison Across Federated Learning 

Models. 

To evaluate the privacy-utility trade-off, we measured test 
accuracy across various privacy budgets. As shown in Table 8, 
FedGuard-CI achieves the highest accuracy (93.1%) with the 
lowest privacy leakage (ϵ=3.2\epsilon = 3.2ϵ=3.2). This 
indicates that the dual-stage differential privacy scheme is both 
efficient and effective, minimising information leakage while 
preserving predictive performance. Compared to FLAME and 
DP-FedAvg, FedGuard-CI demonstrates superior resilience to 
privacy noise, reinforcing its suitability for sensitive CI 
deployments. 

B. Attack Success Rate Reduction 

We evaluated the resistance of each model-to-model 
inversion attacks (MIAs), a critical threat in federated settings. 
The inversion success rate (ISR) was measured alongside 
structural similarity (SSIM) between reconstructed and original 
samples. 

0

20
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60

80

100

ϵ\epsilonAccuracy (%)

DP-FedAvg FLAME FedGuard-CI
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TABLE X.  INVERSION SUCCESS RATE (ISR) EVALUATION. 

Model ISR (%) SSIM Score 

FedAvg 62.7 0.78 

DP-FedAvg 34.5 0.52 

FLAME 18.9 0.37 
FedGuard-CI 9.6 0.18 

 

In evaluating robustness against model inversion attacks 
(MIAs), Table X  highlights FedGuard-CI’s effectiveness in 
drastically reducing inversion success rate (ISR) to 9.6%a 
substantial drop compared to FedAvg (62.7%) and even 
FLAME (18.9%). Moreover, the structural similarity (SSIM) 
between reconstructed and real inputs is lowest for FedGuard-
CI (0.18), indicating minimal leakage of semantic content. 
These results confirm that the MIRE module and multi-layered 
DP strategy significantly strengthen the system’s resistance to 
adversarial inference. 

 

Fig. 8. Model Inversion Resistance Evaluation: ISR Reduction vs. SSIM 

Quality 

Figure 8 compares the effectiveness of various models 
against model inversion attacks. FedGuard-CI achieves the 
lowest ISR (9.6%) and SSIM (0.18), highlighting its ability to 
obscure input reconstruction and protect user data from 
adversarial recovery. 

C. Ablation Study: Role of MIRE and Trust Aggregation 

To understand the individual contribution of architectural 
components, we performed an ablation study. We evaluated 
three configurations: (1) the full FedGuard-CI system, (2) 
FedGuard-CI without the Model Inversion Risk Estimator 
(MIRE), and (3) FedGuard-CI without trust-aware aggregation. 

TABLE XI.  ABLATION STUDY OF CORE COMPONENTS. 

Configuration Accuracy (%) ISR (%) ϵ\epsilon 

FedGuard-CI (full) 93.1 9.6 3.2 

Without MIRE 91.4 16.5 3.2 

Without Trust Aggregation 90.7 14.9 3.2 

 

Table XI presents an ablation study that isolates the 
contributions of the MIRE module and trust-aware aggregation. 
Removing MIRE increases ISR to 16.5%, while excluding trust 
aggregation results in lower accuracy and increased 
vulnerability (ISR = 14.9%). The results clearly demonstrate 
that each component plays a critical role in upholding the 

system’s overall privacy and model utility. FedGuard-CI, in its 
full configuration, outperforms both ablated variants, validating 
the integrated architectural design. 

 
Fig. 9. Ablation Analysis of MIRE and Trust-Aware Aggregation 

Components in FedGuard-CI. 

Figure 9 shows the impact of removing core FedGuard-CI 
modules. Accuracy drops and ISR increase significantly when 
MIRE or trust-aware aggregation is excluded, confirming that 
both components are critical to achieving privacy resilience 
without sacrificing model performance. 

D. Runtime and Overhead in Ablation Variants 

Table XII the overhead of different ablation settings for 
FedGuard-CI: computational and communication. It compares 
scenarios in which MIRE or trust-aware aggregation has been 
removed with anall time scenario. The results show that such 
removals do slightly decrease runtime and communication costs, 
indicating that only minimal overhead from additional modules 
is introduced. This does however underline just how efficient the 
whole FedGuard-CI architecture remains even given its 

considerable trust and security enhancements. 

TABLE XII.  ABLATION OVERHEAD 

Configuration Time/Round (s) Comm. (KB) 

FedGuard-CI (full) 30.2 585 

Without MIRE 28.9 570 

Without Trust Aggregation 29.1 560 

 

E. Overhead Analysis 

We analyzed FedGuard-CI’s computational and 
communication overhead in comparison with FLAME and 
SecureAgg-FL.  

TABLE XIII.  SYSTEM OVERHEAD COMPARISON. 

Model 
Time/Round 

(s) 

Comm. 

(KB) 

Memory 

Usage 

GPU 

Load 

FLAME 33.9 650 Medium 42% 

SecureAgg-

FL 

31.5 780 High 38% 

FedGuard-

CI 

30.2 585 Medium 41% 

 



Al-Mahdawi et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 82 –94 (2026) 

 

92 

While privacy mechanisms typically introduce 
computational costs, Table XIII illustrates that FedGuard-CI 
maintains competitive efficiency. It offers the lowest 
communication overhead (585 KB per round) among the 
evaluated models while maintaining runtime (30.2s) on par with 
lighter schemes. The GPU load and memory usage remain 
within acceptable bounds, demonstrating that the proposed 
framework does not compromise system scalability or resource 
constraints key considerations for CI in edge and IoT 
environments. 

 
Fig. 10. System Overhead Comparison: Communication, Runtime, and 

Resource Utilization. 

Figure 10 despite incorporating additional privacy layers, 
FedGuard-CI maintains low communication overhead (585 KB) 
and runtime (30.2 s). This figure reinforces that the system is 
efficient and deployable in constrained environments, such as 
edge-based CI networks. 

F. Scalability and Cross-Domain Generalization 

To evaluate cross-domain generalizability, FedGuard-CI 
was tested on MNIST, CIFAR-10, ChestX-ray14, and the UCI 
Loan Default datasets. As presented in Table XIV, the model 
consistently delivered high accuracy and low ISR across all 
domains. These results validate the scalability and robustness of 
FedGuard-CI for diverse federated environments. 

TABLE XIV.  CROSS-DOMAIN GENERALIZATION RESULTS. 

Dataset Accuracy (%) ISR (%) ϵ\epsilon 

MNIST 96.2 7.5 3.0 
CIFAR-10 89.8 10.2 3.3 

ChestX-ray14 91.4 8.6 3.1 
UCI Loan Default 93.5 9.9 3.2 

 

To validate generalizability, FedGuard-CI was evaluated 
across four datasets with varying characteristics. As shown in 
Table 12, the model achieved high accuracy and low ISR across 
all domains, including healthcare (ChestX-ray14) and finance 
(UCI Loan Default). The slight variation in performance is 
expected due to input complexity and domain sensitivity, yet 
FedGuard-CI consistently delivers strong privacy-preserving 
learning. This confirms its robustness and scalability in real-
world, domain-diverse CI ecosystems. 

 
Fig. 11. Cross-Domain Generalization Performance of FedGuard-CI Across 

Diverse CI Datasets. 

Figure 11 highlights FedGuard-CI’s robustness across 
diverse datasets, including structured (UCI), visual (CIFAR-10, 
MNIST), and medical (ChestX-ray14) data. It consistently 
maintains high accuracy and low ISR, validating its scalability 
and adaptability across application domains. 

G. Statistical Stability Across Runs 

Table XIV shows the statistical variability of the major 
models by exhibiting the standard deviation of both accuracy 
and ISR. This displays how stable each model is in repeated 
races with distinct random seeds for training It has the lowest 
standard deviation in both accuracy and ISR of any federated 
learning algorithm currently existing, as the results show for 
FedGuard-CI. 

TABLE XV.  STATISTICAL MEASURES. 

Model Accuracy Std ISR Std 

FedAvg ±0.42 ±1.10 

DP-FedAvg ±0.38 ±0.92 

FLAME ±0.33 ±0.75 

FedGuard-CI ±0.29 ±0.41 

 

VIII. DISCUSSION  

FedGuard-CI ensures a trade-off between privacy and 
utility in various domains. The proposed two-stage DP 
mechanism that we apply to DP-FedAVG exhibits robustness 
against inversion attacks, whose performance is affected by data 
dimension and non-IID distribution of datasets. Although trust-
aware aggregation can enhance robustness against malicious 
clients, there could be biased opinions if the trust scores are 
improperly initialized when running in severely diverse client 
spectrum. MIRE successfully reduces leakage, but also 
introduces noise in risky stages, leading to small decreases (yet 
significant) on the utility. In addition, while the communication 
overhead is still reasonable, very bandwidth-limited IoT 
scenarios may demand further gradient compression or sparse 
exchange. These observations reveal promising strengths as well 
as limitations of deployment, encouraging us to consider 
extensions in terms of adaptive noise allocation, lightweight 
MIRE variants and self-correcting trust. 



Al-Mahdawi et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 82 –94 (2026) 

 

93 

IX. CONCLUSION 

FedGuard-CI presents a robust and efficient solution for 
securing collaborative intelligence systems, combining dual-
stage differential privacy, trust-aware aggregation, and the 
MIRE module to effectively defend against model inversion and 
related privacy threats. The framework achieves strong privacy-
utility trade-offs, low overhead, and broad scalability across 
diverse domains. Its architecture not only addresses current 
security challenges in federated learning but also offers a 
foundation for future extensions, including adaptive privacy 
mechanisms and threat-aware intelligence. As decentralised 
learning becomes integral to real-world applications, FedGuard-
CI stands as a vital step toward secure, trustworthy, and privacy-
preserving federated intelligence.  
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