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Abstract 

Swift process in technology and widespread availability of low-cost internet have led to a substantial rise in data volume in remote sensing, 

especially for high-resolution and very-high resolution images. Still, these images contain more complex information, and it is not 

appropriate to analyze the images using a solitary scene-level label while ignoring the distinct features provided by other labels in the 

images. In multi-label image classification applications, multiple labels are assigned to an image, reflecting various objects or features 

present in the scene. The classification of these images is critically important for monitoring environmental changes over large 

geographical areas, disaster management, urban planning, agriculture and forestry management, natural resource conservation, and 

military intelligence. Nowadays, many methods are used in such image classification problems, primarily deep learning algorithms. 

However, current deep learning approaches for multi-label remote sensing images often struggle to capture both local fine-grained details 

and global contextual relationships simultaneously, leaving a gap for models that can efficiently integrate these complementary 

representations. In this study, advanced neural networks are explored and evaluated for Multi-label AID dataset which contains 3000 

images and 17 different labels; AlexNet, VGG16, DenseNet-201, Inception-v3 and ConvNeXt as the CNN models, ViT, SwinT as 

transformer models and MaxViT as the hybrid model that initially contains both CNN and transformer network. OneCycleLR as 

scheduler and AsymmetricLoss (ASL) as loss function are employed for each model to systematically evaluate their impact on model 

performance. MaxViT was chosen because its multi-scale window-based attention can jointly model local and global dependencies, making 

it particularly suitable for the complex spatial patterns in remote-sensing imagery compared with other hybrid architectures. The 

window-based MaxViT algorithm, which has not been previously applied to the Multi-label AID dataset in the current literature, has 

been evaluated. This constitutes the first application of MaxViT to this dataset and provides a novel benchmark for multi-label remote-

sensing classification. This algorithm has demonstrated superior performance on this dataset, significantly outperforming existing models 

and setting a new benchmark with an mAP of 84.98%.  
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I. INTRODUCTION   

The term "remote sensing" was initially originated by the 
United States Naval Research Officer, Ms. Evelyn Pruitt, during 
the 1950s [1]. In contemporary usage, it commonly refers to the 
scientific and artistic practice of identifying, observing, and 
quantifying an object without direct physical interaction. It is 
highly significant across multiple domains such as urban 
planning [2], forestry [3], geospatial analysis [4], ecological 
conservation of mountain grasslands [5] etc. to gather valuable 
information about the Earth's features, conditions, and changes 
over time. 

Huge amount of imagery shall be analysed to extract 
meaningful information from the aforementioned domains; the 
well-known method for this is called as image classification. For 
the purpose of evaluating and analysing the remote sensing 
images, different datasets are needed. There are plenty of multi-
class datasets available online such as EuroSAT [6], RSSCN7 
[7], UC Merced (UCM) [8], AID [9] and so on. Convolutional 
Neural Networks (CNNs) have been dominant approach for 
image understanding tasks, based on their superior performance 
on classification problems and this success has extended to 
many other image understanding tasks. ImageNet [10] dataset 
played a vital role in their success due to availability of a large 
training set. The evolution of the cutting-edge on the ImageNet 
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dataset demonstrates the advancements with CNN architectures 
and learning [11], [12]. A rising focus has emerged on 
architectures employing attention mechanisms with convolution 
networks [13]. Several attempts have been made to use 
transformers on image classification, but the performance was 
not as successful as convnets. Nonetheless, hybrid architectures 
which combine transformers and convnets, including the self-
attention mechanism, exhibited notable results in image 
classification.  

Vision Transformers (ViT) [14] have achieved SOTA (state-
of-the-art) results on ImageNet without the use of convolution. 
After ViT [14] and Swin Transformer (SwinT) [15] are 
published and many studies have been performed with these 
vision transformers, Kaselimi et al. [16] implemented vision 
transformer to take advantage of the self-attention mechanism. 
Dynamically scalable vision transformer, DSViT was published 
by Wang et al. [17] to handle the limitations correlated with the 
global information extraction capabilities of single 
convolutional models and the computational overhead 
constrains by creating dynamically scalable attention model 
which integrates convolutional features with transformer 
features. Spatial-channel feature preserving ViT (SCViT) is 
developed by Lv et al. [18] which considers the contribution of 
distinct channels and considers geometric information in the 
classification token. This method generates tokens, introduces 
lightweight channel attention, models global interactions and 
uses a multilayer perceptron. DCNNs [19], [20] extract high 
level semantic features. However, these networks are mostly 
used for the single label remote sensing applications.  

Multiple semantic labels are not being considered, nor are 
the dependencies between labels. This situation reflects a 
broader limitation of the prevailing single-label image 
classification approaches in remote sensing. Traditional 
convolutional networks and their numerous variants have 
achieved impressive accuracy when each image is assigned only 
one dominant land-cover category, yet they are intrinsically 
designed to predict a single class per scene. As a result, they 
cannot represent scenes containing multiple co-existing objects 
or land-cover types, and they ignore the semantic relationships 
among different classes. Even when such models are applied to 
complex high-resolution satellite imagery, they tend to force a 
single ‘best’ label, which oversimplifies heterogeneous 
landscapes such as urban areas where roads, vegetation, and 
water features appear together. This structural restriction of 
single-label methods motivates the development of models that 
can explicitly handle multiple labels and their 
interdependencies.  

Hua et al. [21] utilized attention-based network to extract 
detailed semantic feature maps and used LSTM (Long-Short 
Term Memory) network to generate structured multiple object 
labels. CNN-RNN framework was proposed [22] regarding to 
multi-label image classification tasks. RNN is used following 
the CNN to capture a combined image-label representation and 

generated the label predictions.  Contextual features can be 
extracted by vision transformer (ViT) [23], but it has high 
computational complexity and limited learning ability. Swin 
Transformer (SwinT) was published by Lie et al. [15] which can 
act as an adaptable framework for various tasks such as dense 
prediction and image classification. When compared to different 
attention-based transformers architectures, MaxViT has been 
observed as the best performer by Tu et al. [24]. It has 
outperformed models like Cross-ViT [25],  DeepViT [26], DeiT 
[27], T2T [28] etc. with a top-1 accuracy of %85.2. It combines 
advantages of both enhanced CNNs and attention mechanisms 
within a novel “base-block”. Base-block is composed of 
different blocks. “MBConv” block that incorporates SE 
(Squeeze-and-excitation) module. It is followed by a multi-axis 
attention block which is specifically crafted for the purpose of 
capturing local and global relationships between pixels.  

The originators of Multi-label AID dataset, [29], created an 
attention-aware label relational reasoning network and achieved 
88.72% CF1 score (per-category F1-Score) on their own dataset. 
Li et al. [30] utilized both visual and spatial information, 
combining CNN and GNN, and obtained 88.64% CF1 score. 
Tan et al. [31] proposed a network that contains two models: 
SSM (semantic sensitive module) and SRBM (semantic 
relation-building module). SSM captures the features using 
transformer to extract semantic attentional regions from visual 
attributes by DCNN (deep convolutional neural network), and 
SRBM uses the output of SSM to obtain the relation matrix for 
final classification, and this network achieved 89.97% CF1 
score. Wu et al. [32] achieved 92.81% CF1 score by presenting 
a Transformer-based framework; SDM (Semantic 
Disentanglement Module), and MAT (Masked-Attention 
Transformer).  Ma et al. [33] proposed LD-GCN (Label-Driven 
Graph Convolutional Network), inherent correlation of labels is 
learned by the label-correlation matrix and fed into LRGCN 
(Label Recognition Graph Convolutional Network) which 
harnesses the relationship between labels and images. This 
network not only achieved 92.81% CF1 score, but also 83.49% 
of mAP is obtained. 

 

II. MATERIALS AND METHODS 

A. Dataset 

The original single-label AID dataset was developed by Xia 
et al. [9]. Google Earth imagery was the source of the high-
resolution aerial images in the dataset with sizes of 3 x 600 x 
600. A combined total of 10,000 images is grouped under 30 
classes with spatial resolution ranging between 0.5 – 8m. The 
initial dataset was relabelled in 2020, and it has become a multi-
label version of the original dataset with the same resolution of 
the images [29]. This new dataset, multi-label AID, consists of 
3000 images in total with 17 labels. Every image receives 
manual annotation, assigning up to 11 labels. Fig. 1 illustrates 
several examples from the dataset with their associated labels. 
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Fig. 1. Sample images from the Multi-label AID datase.

 

Table I shows the label distribution for training, validation 
and test sets.  

TABLE I.   LABEL DISTRIBUTION ACROSS TRAIN, VALIDATION AND TEST SETS 

Label Train Validation Test 

airplane 62 17 20 

bare-soil 934 237 304 

buildings 1372 372 417 

cars 1288 329 409 

chaparral 56 19 37 

court 212 57 75 

dock 174 47 50 

field 133 42 39 

grass 1463 366 466 

mobile-home 1 0 1 

pavement 1488 382 458 

sand 166 41 52 

sea 143 34 44 

ship 189 48 47 

tanks 85 2 21 

trees 1523 401 483 

water 525 149 178 

The Multi-label AID dataset exhibits a highly skewed label 
distribution, with some classes (e.g., mobile-home) represented 
by only a single image. We chose to keep this natural imbalance 
for two reasons: (i) the dataset is a widely used benchmark and 
altering its composition would compromise comparability with 
prior work, and (ii) generating synthetic samples for such rare 
classes risks unrealistic artifacts and would not materially 
improve model generalization. We therefore trained on the 
unaltered data and explicitly analyse the performance 
implications of this imbalance. 

B. Data Augmentation 

Because the number of images in the Multi-label AID 
dataset is limited, we applied data augmentation to mitigate 
overfitting and improve the model’s ability to generalize. Each 
image was first resized to 256 x 256 pixels and then a random 
224 x 224 patch was cropped for training. This strategy provides 
scale and translation invariance while matching the input size 
expected by our backbone network. Random horizontal and 
vertical flips were added to simulate viewpoint changes and 
increase orientation diversity, which are common in aerial 
imagery. We considered domain-specific spectral 
augmentations such as channel-wise intensity shifts, but 
refrained from applying them because the available images are 
RGB only and lack separate spectral bands, making such 
adjustments less meaningful. An example of the augmented is 
given in Fig. 2. 

 

 
Fig. 2.  Augmented versions of images from the Multi-label AID dataset 
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While we did not modify the dataset distribution, we applied 
random cropping and flipping to all images to increase the total 
training data and reduce overfitting. This augmentation 
improves generalization but does not change the relative class 
frequencies. Although random cropping and flipping helped 
improve generalization, the inherent class imbalance of the 
Multi-label AID dataset—particularly for rare categories such as 
mobile-home—remains a key challenge. Future work could 
investigate complementary strategies such as transfer learning 
from semantically related categories, class-balanced or focal re-
sampling, and cost-sensitive loss weighting to provide 
additional support for underrepresented labels. 

C. Methods 

This study involves the implementation and optimization of 
CNN-based, vision transformer and hybrid networks. Transfer 
learning is employed using pre-trained weights for all the 
models. Models that are pre-trained consistently outperform 
those trained from scratch [34]. These weights were obtained 
from models pre-trained on ImageNet. Due to the scant quantity 
of the Multi-label AID images, it is more likely for the models 
to overfit. For the purpose of preventing overfitting, not only the 
data is augmented, but also patience parameter is selected as 5 
to keep the models with the best validation accuracy under 20 
epochs. In addition, one Dropout layer with 20% probability is 
added just before the very last layer, fully connected layer, for 
each model. OneCycleLR is used as scheduler which is provided 
by the torch.optim library. Maximum learning rate is set to 4 ∗
10−4. Adam [35] is used for the optimization where the learning 
rate is 0.0001 with a weight decay of 0.0001. These values were 
selected after a small pilot search informed by Tu et al. [24], 
which reports peak learning rates around 3 𝑥 10−3 and a weight 
decay rate of 0.05. Adapting these recommendations to the 
smaller Multi-label AID dataset, we found that lowering the 
learning rate and weight decay provided more stable training and 
the best validation mAP while remaining within the empirically 
validated range of the original architecture.  

There are four cases which a classifying model can give as 
an output: true positive (TP), True Negative (TN), False Positive 
(FP) and False Negative (FN). These metrics can be used to 
assess a model’s precision, recall and F1-score values. When a 
model gives positive outputs, the precision shows its reliability. 
When a model correctly classifies positive data points, that is the 
recall. Harmonic mean of both recall and precision is equal to 
F1-Score. Various evaluation metrics are used for the multi-
label image classification as determination of this article’s 
success. The classification report tool is used from 
sklearn.metrics library. The evaluation metrics are calculated in 
the Equations below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁 
    (2) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (3) 

Let 𝐵(𝑇𝑃𝑗 , 𝐹𝑃𝑗 , 𝑇𝑁𝑗 , 𝐹𝑁𝑗)  be a specific binary 

classification metric, where 𝐵 ∈ {𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1 −
𝑆𝑐𝑜𝑟𝑒}[36]. 

𝐵𝑚𝑎𝑐𝑟𝑜 =  
1

𝑞
 ∑ 𝐵(𝑇𝑃𝑗 , 𝐹𝑃𝑗 , 𝑇𝑁𝑗 , 𝐹𝑁𝑗)

𝑞
𝑗=1    (4) 

𝐵𝑚𝑖𝑐𝑟𝑜 =  𝐵(∑ 𝑇𝑃𝑗
𝑞
𝑗=1 , ∑ 𝐹𝑃𝑗

𝑞
𝑗=1 , ∑ 𝑇𝑁𝑗

𝑞
𝑗=1 , ∑ 𝐹𝑁𝑗

𝑞
𝑗=1 ) (5) 

𝐵𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  𝐵(∑ 𝑇𝑃𝑗 .
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑗

𝑝

𝑞
𝑗=1 , ∑ 𝐹𝑃𝑗 .

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑗

𝑝

𝑞
𝑗=1 , (6) 

∑ 𝑇𝑁𝑗 .
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑗

𝑝

𝑞
𝑗=1 , ∑ 𝐹𝑁𝑗 .

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑗

𝑝

𝑞
𝑗=1 )          

Mean Average Precision (mAP) measures the overall 
performance across all classes. In other terms, it is the mean of 
the average precisions (AP) of all classes where AP is the area 
under the PR (precision-recall) curve. mAP can be calculated as 
shown in (7) where L denotes the number of classes. 

                                            𝑚𝐴𝑃 =  
1

𝐿
∑ 𝑃(𝑖). 𝑅(𝑖)

𝐿

𝑖=1

                                 (7) 

PR curve is used in this study due to the reason that ROC-
curve’s estimation might be inadequate as long as the positive 
class is substantially smaller [37]. Sigmoid function is used as 
an activation function. The reason for it to be used is not limited 
with its output values which are in the range [0, 1], but also it 
provides smooth gradients that helps with backpropagation 
during training phase. This ensures that the learning algorithm 
can effectively update the weights. Sigmoid outputs allow high 
probabilities for all labels. The sigmoid function is calculated as 
in (8). 

                  σ(x) =  
1

1 + 𝑒−𝑥
                                                           (8) 

Two functions are applied as loss functions to the different 
networks, Binary Cross-Entropy With Logits Loss 
(BCEWithLogitsLoss) [38] and Asymmetric Loss (ASL)[39]. 

A given problem with multiple labels is divided into distinct 
binary problems for each label by BCEWithLogitsLoss which 
makes it possible to assign multiple labels to each item. The 
sigmoid function produces separate real-valued outputs for 
every input. Thus, the actual output is estimated. Sigmoid allows 
high probabilities for all classes, unlike Softmax which assigns 
high probability to high value. The logits represent the raw 
outputs before Sigmoid is applied. In multi-label image 
classification each class must be predicted independently, so the 
activation function must allow multiple outputs to be 
simultaneously high. Softmax enforces a probability distribution 
that sums to one and therefore assumes mutual exclusivity 
among classes, making it unsuitable when an image may belong 
to several categories at once. In contrast, the sigmoid function 
produces an independent probability for each class in the range 
[0, 1], enabling the network to assign high confidence to any 
subset of labels. Coupled with BCEWithLogitsLoss, this treats 
each label as a separate binary classification problem and 
provides smooth gradients for stable back-propagation. Formula 
for BCEWithLogitsLoss is given in (9) where 𝑝𝑖

′  is fully 
connected layer’s logits (Sigmoid function is applied) and 𝑝𝑖 is 
the true label. 

𝐵𝐶𝐸𝑊𝑖𝑡ℎ𝐿𝑜𝑔𝑖𝑡𝑠𝐿𝑜𝑠𝑠 = −
1

𝑛
∑ 𝑝𝑖log(𝑝𝑖

′) + (1 −  𝑝𝑖)log (1 − (𝑝𝑖
′))]

𝑛

𝑖=1

      (9) 

ASL is one of the variations of binary cross-entropy loss. 
They are generally combined by a sigmoid function (8) for the 
purpose of converting the model outputs to probabilities. ASL 
consists of two complementary asymmetric mechanisms, that 
operate in distinct ways on positive and negative samples, 



Akkaş & Güney / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 384 –392 (2025) 

 

388 
 

enabling direct control. ASL enables for the selective increase 
in weight of minority negatives and meanwhile maintains the 
original weighting for common positives, biasing frequent 
classes is dismissed by this. Re-balancing is also enabled by 
ASL, unlike batch-dependent schemes such as distribution-
balanced loss. The ASL formula is expressed as in (10). If 𝛾+ 
and 𝛾− are both set to be 0 in (10), BCEWithLogitsLoss can be 
calculated as well (see (9)). 

𝐴𝑆𝐿 =  − ∑(𝑝𝑖(1 − 𝑝𝑖
′)𝛾+

log(𝑝𝑖
′)

𝑁

𝑛=1

+ (1 − 𝑝𝑖)(𝑝𝑖
′𝛾−

)(log(1 − 𝑝𝑖
′)))       (10) 

MaxViT is a hybrid vision transformer that combines the 
local feature-extraction ability of convolutions with the long-
range dependency modeling of attention. Each MaxViT block 
contains two main components: an MBConv (Mobile Inverted 

Bottleneck) layer, which expands and contracts the channel 
dimension to capture rich local representations with fewer 
parameters, and a Multi-Axis Attention module that first applies 
Block Attention to model short-range spatial relationships and 
then uses Grid Attention to capture global context across the 
entire image. This sequence of local and global attention 
provides strong contextual modeling while remaining 
computationally efficient. A standard MaxViT network consists 
of an initial stem convolution, a stack of MaxViT blocks, global 
average pooling, and a final fully connected layer for 
classification (Fig. 3). 

 For the experiments: Pytorch is used as the primary deep 
learning framework on a personal computer with NVIDIA 
Geforce RTX 3070 Ti graphic card with 16 GB of memory. 

 

Fig. 3.  MaxViT Architecture [24] 

III. RESULTS AND DISCUSSION 

MaxViT is a hybrid model that initially consists of CNN and 
transformer network, combining global and local features with 
a simple and scalable design while maintaining computational 
efficiency. The comparison of MaxViT with the other well-
known models is presented in Table II. 

TABLE II. BENCHMARKING MAXVIT AGAINST DIFFERENT MODELS 

 

The MaxViT-T model demonstrates a compelling advantage 
by combining CNN and transformers with 31M parameters and 
5.6G FLOPs. MaxViT-T achieves 83.6% accuracy on the 
ImageNet-1K dataset, surpassing AlexNet and VGG16 with 
60M and 138M parameters as well as 63.3% and 71.5% 
accuracy respectively. Even more advanced models like 
DenseNet-201 and Inceptionv3 do not match MaxViT’s 
performance with accuracies of 77.2% and 77.9%. Transformers 
such as ViT and SwinT require careful optimization and longer 
training to reach competitive accuracy.  

According to the original ViT paper, ViT trained directly on 
ImageNet-1K achieves about 77.9 % top-1 accuracy with 
roughly 86 M parameters and about 55 G FLOPs, while SwinT 
reports about 28 M parameters and 4.5 G FLOPs with 81.3 % 
accuracy. Thus, MaxViT-T delivers accuracy that is competitive 
with or better than these transformer baselines while keeping 
computational requirements close to the most efficient SwinT 
configuration. MaxViT-L achieves superior results with 85.2% 
accuracy with 212M parameters and 43.9G FLOPs [24]. Due to 
the computational complexity of MaxViT-L, MaxViT-T is 
chosen as a main network in this study. Technically, MaxViT-T 
has a far smaller footprint—31 M parameters and 5.6G FLOPs 
versus 212 M and 43.9G FLOPs for MaxViT-L—keeping per-
GPU memory below 8 GB for 224×224 inputs and enabling a 
batch size of 128 without gradient checkpointing. This 
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configuration trains with mixed-precision (FP16) in roughly half 
the wall-clock time of MaxViT-L and consumes about 40 % less 
energy, while the larger model offers only a ~1.6 percentage-
point gain in top-1 ImageNet accuracy. It is claimed that 
symmetric loss functions such as focal loss or cross entropy loss 
is sub-optimal for learning positive samples’ features which can 
be clearly seen on the evaluation metrics of the labels that 
support results [39].  

Drawing inspiration from this study, ASL is applied as a loss 
function for the MaxViT model. Adjusting γ^+and γ^- (see (10)) 
helps giving appropriate importance to the minority class, 
meanwhile the model does not become biased towards the 
majority class. Therefore, different values are applied on 
MaxViT model where mAP is determined as the success criteria. 
Following the search range proposed by Gao et al. [40], we 
applied the same γ^+ and γ^- intervals to our dataset. Because 
the datasets differ, our validation experiments identified a 
different optimum -  γ^+ = 1 and γ^- = 2 – which produced the 
highest mAP. The results can be seen in Table III. 

TABLE III.   IMPACT OF DIFFERENT Γ COMBINATIONS OF MAP (%) ON MAXVIT  

           γ+ 
γ- 

0 1 2 3 4 

2 84.2 84.98 83.82 83.46 84.41 

4 83.58 84.03 83.83 82.95 83.92 

 

In deep learning applications, a single hyperparameter does 
not always play the main role. Scheduler is also one of the 
factors that plays a vital role in the success of the model for 
classifying. OneCycleLR allows the learning rate to rise during 
training by following a cyclical pattern where the learning rate 
increases to a maximum value and decreases. The performance 
of OneCycleLR on the same models with the aforementioned 
two loss functions is compared. Comparison showed that 
BCEWithLogitsLoss is slightly better than ASL in CNN models 
except Inceptionv3. It aligns with binary classification 
objectives and is robust in handling data imbalances by 
providing stable probability outputs. These factors together lead 
to improved precision and recall, and results in higher mAP 
scores.  

Conversely, ASL performs better than BCEWithLogitsLoss 
for the vision transformer models, except a small difference in 
ViT. ASL handles the class imbalances more effectively by 
weighting positive and negative examples differently that deals 
with imbalanced datasets, such as Multi-label AID, where one 
class is underrepresented. For example, airplane and chaparral 
have less instances when compared to the other labels, 20 and 
37 respectively. This contrast likely arises from architectural 
differences: CNNs benefit from the independent, stable 
gradients of BCEWithLogitsLoss, which match their localized 
feature learning and reduce overfitting, whereas transformers’ 
global attention amplifies negative-sample dominance. ASL’s 
asymmetric focusing (γ⁺, γ⁻) counteracts this effect, enabling 
transformers to better learn rare labels despite strong inter-class 
correlations. The success of combining ASL and OneCycleLR 
on vision transformer models is undeniable, as they achieved the 
highest F1-Score in 16 out of a total of 17 classes where F1-

Score is more comprehensive and critical, considering recall and 
precision metrics. The comparison of MaxViT model with two 
loss functions, ASL weights the positive and negative samples 
much better than BCEWithLogitsLoss. 

Table IV highlights the overall performance landscape of all 
evaluated networks, showing clear differences in how each 
architecture handles the diverse set of object categories. Models 
with transformer components generally maintain stronger and 
more balanced accuracy across classes, while purely 
convolutional approaches display wider variation between 
frequent and infrequent labels.  

ANOVA was applied to the results presented in Table IV. 
Since the p-value was found to be less than 0.05, the null 
hypothesis (H₀) was rejected for all cases, indicating that at least 
one group mean significantly differed from the others. 
Subsequently, pairwise comparisons of the algorithm 
performances were conducted using the Student’s t-test to assess 
whether the observed differences were statistically significant. 
Examining the results presented in Table V, it appears that the 
proposed MaxViT method performed better. 

MaxViT performs both grid and global attention 
mechanisms that allows the model to capture multi-scale 
features more effectively than a simple fusion of CNN and 
transformer models. As far as is known, mAP of 84.98% has 
been achieved for the first time on Multi-label AID dataset. A 
comparison of performance metrics between earlier research and 
MaxViT is given in Table VI. 

TABLE IV. AP VALUES OF EACH CLASS WITH THE MODELS  

Object 
Labels 

AlexN
et 

VGG16 DenseNet-
201 

Inceptio
nv3 

ConvNe
Xt 

ViT Swin
T 

Max 

ViT 

airplane 0,817 0,372 0,769 0,915 0,731 0,673 0,787 1,000 

bare-soil 0,805 0,796 0,853 0,828 0,838 0,859 0,815 0,883 

buildings 0,975 0,985 0,984 0,990 0,994 0,992 0,991 0,995 

cars 0,975 0,964 0,979 0,970 0,982 0,979 0,983 0,988 

chaparral 0,267 0,354 0,476 0,406 0,375 0,367 0,381 0,481 

court 0,539 0,663 0,627 0,692 0,676 0,665 0,768 0,812 

dock 0,625 0,683 0,695 0,805 0,773 0,807 0,814 0,819 

field 0,609 0,631 0,753 0,749 0,768 0,782 0,686 0,804 

grass 0,960 0,976 0,980 0,981 0,985 0,985 0,979 0,981 

mobile-
home 

0,002 0,002 0,006 0,062 0,004 0,002 0,091 0,004 

pavement 0,986 0,992 0,992 0,990 0,993 0,997 0,993 0,995 

sand 0,928 0,882 0,957 0,969 0,958 0,956 0,929 0,961 

sea 0,915 0,926 0,956 0,965 0,975 0,960 0,945 0,979 

ship 0,549 0,671 0,761 0,843 0,720 0,725 0,737 0,881 

tanks 0,940 0,894 0,946 0,946 0,949 0,973 0,909 1,000 

trees 0,961 0,985 0,981 0,990 0,988 0,973 0,980 0,987 

water 0,715 0,823 0,826 0,811 0,788 0,818 0,802 0,875 

mAP 0,739 0,741 0,797 0,818 0,794 0,795 0,799 0,849 
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TABLE V. STATISTICAL COMPARISON OF THE PROPOSED MAXVIT METHOD 

WITH THE OTHERS. 

Compared Methods P(T<=t) Single 

ended 

P(T<=t) two 

ended 

MaxViT- Alexnet 1,46307 E-16 1,78094E-16 

MaxViT- VGG16 8,103714E-13  1,61385E-12 

MaxViT- DenseNet-201 1,35845E-06 2,7169E-06 

MaxViT- Inceptionv3 0,0000327510 0,000075422 

MaxViT- ConvNeXt 1,379103E-07  2,756E-07 

MaxViT- ViT 5,91E-07 1,18E-06 

MaxViT- SwinT 3,30504E-06 6,0829E-06 

TABLE VI. A COMPARISON OF PERFORMANCE METRICS BETWEEN EARLIER 

RESEARCH AND MAXVIT, UTILIZING THE MULTI-LABEL AID DATASET 

Method Score (CF1/CP/CR) mAP (%) 

AL-RN-ResNet50 [29] 88.72 / 91.00 / 88.95 - 

MLRSSC-CNN-GNN 

[30] 
88.64 / 89.83 / 90.20 - 

ResNet50-SR-Net [31] 89.97 / 89.42 / 90.52 - 

S-MAT-ResNet50 [32] 90.90 / 92.17 / 89.69 - 

LD-GCN 
[33] 

90.93 / 92.81 / 89.06 83.49 

MaxViT 91 / 92 / 91 84.98 

 

The success of MaxViT can be explained by its architecture 
since both convolutional operations and multi-head self-
attention are leveraged. This dual capability enables both local 

and global features to be captured effectively and particularly 
beneficial for multi-label classification tasks where different 
labels might correspond to distinct features at various scales and 
regions within an image. Spatial relationships and local patterns 
within the images of Multi-label AID are captured by MaxViT 
which facilitates hierarchical feature extraction. The features are 
extracted at different levels of abstraction, from edges and 
textures in the initial layers to more complex shapes and objects 
in the deeper layers. Extracted initial feature maps, which 
contains localized and spatially aware representations of the 
image, serve as input for the subsequent transformer blocks. 
These input feature maps processed by transformer blocks using 
self-attention and FFN.  

Global features are captured by the self-attention mechanism 
in each MaxViT block, with the importance of each feature 
being computed relative to all others in the feature map. FFN 
processes the combined local and global features, adds non-
linearity. As a result, the extraction of local features through 
convolutional layers and global features via the multi-head self-
attention mechanism creates a powerful and flexible 
architecture, enhancing the model's capability to identify and 
distinguish multiple labels within a single image. In addition, the 
integration of ASL and OneCycleLR not only improved mAP 
value but also showed robustness in handling the complexities 
of multi-label image classification. PR curve for all the labels 
can be seen in Fig. 4, using MaxViT where γ^+ and γ^- are set 
as 1 and 2, respectively. 

 

Fig. 4. PR curve of the labels for MaxViT where 𝛾+= 1, 𝛾−=2, mAP = 84.98% 
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IV. CONCLUSION 

The multi-label AID dataset has some shortcomings. Table I 
clearly reveals a severe class imbalance across the Multi-label 
AID dataset. While common land-cover types such as trees, 
pavement and grass dominate the distribution, several categories 
are extremely under-represented. Notably, mobile-home 
appears only once in the entire dataset (1 training image and 1 
test image, no validation samples), airplane has only 62 training 
and 20 test images, and chaparral has just 56 training and 37 test 
images. Other classes such as tanks, court, dock and field also 
have far fewer examples than the dominant categories. Lower 
precision and recall are inevitable for rare labels because 
categories with only a handful of images provide insufficient 
variability for the networks to learn discriminative features.  

In our experiments, labels such as chaparral and airplane 
consistently exhibit low recall, while mobile-home cannot be 
classified at all by any model. This extreme scarcity also 
imposes a ceiling on the mAP, since mobile-home label 
contributes only one positive instance, the theoretical upper 
bound of the dataset-level mAP is 94.12%, even if all other 
labels were predicted perfectly. In addition, the large imbalance 
biases the training process toward majority classes, abundant 
categories such as trees, pavement and grass dominate the loss 
and encourage the models to favor these labels, which can mask 
poor performance on minority classes when only overall 
accuracy is reported. Although we did not perform an exhaustive 
comparison with all learning-rate schedulers and loss functions, 
prior studies [39] report that symmetric losses such as focal loss 
or cross-entropy are sub-optimal for learning discriminative 
features of positive samples in highly imbalanced multi-label 
settings.  

Drawing on this evidence, we adopted Asymmetric Loss 
(ASL) for the MaxViT model, as it is specifically designed to 
handle class imbalance through asymmetric treatment of 
positive and negative samples. Coupling ASL with the 
OneCycleLR scheduler, which provides dynamic learning-rate 
adjustments and has been shown to accelerate convergence and 
improve generalization, improved overall model accuracy. 
OneCycleLR proved especially effective for the MaxViT-T 
architecture on the MultiLabel-AID dataset because its dynamic, 
non-monotonic schedule matches both the model’s depth and 
the dataset’s class imbalance. MaxViT’s hybrid CNN–
transformer blocks require an initial period of rapid feature 
exploration to stabilize attention weights, followed by a slower 
refinement stage.  

The single–cycle policy—starting with a low learning rate to 
avoid divergence, rising to a high peak to escape sharp local 
minima, and then annealing—encourages wide-basin 
convergence that improves generalization. MultiLabel-AID 
further benefits from this approach: its heterogeneous aerial 
scenes contain overlapping labels and rare classes, so a 
temporary high learning rate early in training helps the optimizer 
traverse saddle points and learn minority-class features, while 
the final decay reduces overfitting to dominant categories. 
Among the different configurations we tested, this combination 
achieved the best validation performance on the MaxViT-T 
model, supporting our choice while leaving a broader 
comparison with other schedulers and loss functions as future 

work. The findings demonstrate that the choice of loss function 
and learning rate scheduler in an appropriate network model 
impacts the performance of the model significantly. 

In the next studies, classification performance can be 
increased by focusing on achieving high classification rates on 
small instances and finding the best combination of the loss 
function, scheduler and window-based vision transformer. Due 
to the limited computational resources, the MaxViT-L algorithm 
could not be implemented in this study.  

In future applications, this algorithm can be adopted for 
better classification results. Training MaxViT-L on the available 
workstation was infeasible because the model’s 212 M 
parameters and roughly 44 GFLOPs per 224×224 image 
exceeded the GPU’s memory budget during forward and 
backward passes. A practical path to overcome this limitation 
would be to distribute the model across multiple GPUs using 
model or pipeline parallelism, which allows parameters and 
activations to be split. Alternatively, future experiments could 
migrate to cloud or high-performance computing resources 
equipped with GPUs offering far larger memory capacities—
such as NVIDIA A100 or H100 cards with 40 GB or more—so 
that MaxViT-L can be trained end-to-end without architectural 
changes. 
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