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Abstract

Swift process in technology and widespread availability of low-cost internet have led to a substantial rise in data volume in remote sensing,
especially for high-resolution and very-high resolution images. Still, these images contain more complex information, and it is not
appropriate to analyze the images using a solitary scene-level label while ignoring the distinct features provided by other labels in the
images. In multi-label image classification applications, multiple labels are assigned to an image, reflecting various objects or features
present in the scene. The classification of these images is critically important for monitoring environmental changes over large
geographical areas, disaster management, urban planning, agriculture and forestry management, natural resource conservation, and
military intelligence. Nowadays, many methods are used in such image classification problems, primarily deep learning algorithms.
However, current deep learning approaches for multi-label remote sensing images often struggle to capture both local fine-grained details
and global contextual relationships simultaneously, leaving a gap for models that can efficiently integrate these complementary
representations. In this study, advanced neural networks are explored and evaluated for Multi-label AID dataset which contains 3000
images and 17 different labels; AlexNet, VGG16, DenseNet-201, Inception-v3 and ConvNeXt as the CNN models, ViT, SwinT as
transformer models and MaxViT as the hybrid model that initially contains both CNN and transformer network. OneCycleLR as
scheduler and AsymmetricLoss (ASL) as loss function are employed for each model to systematically evaluate their impact on model
performance. MaxViT was chosen because its multi-scale window-based attention can jointly model local and global dependencies, making
it particularly suitable for the complex spatial patterns in remote-sensing imagery compared with other hybrid architectures. The
window-based MaxViT algorithm, which has not been previously applied to the Multi-label AID dataset in the current literature, has
been evaluated. This constitutes the first application of MaxViT to this dataset and provides a novel benchmark for multi-label remote-
sensing classification. This algorithm has demonstrated superior performance on this dataset, significantly outperforming existing models
and setting a new benchmark with an mAP of 84.98%.
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Huge amount of imagery shall be analysed to extract
meaningful information from the aforementioned domains; the
well-known method for this is called as image classification. For

I. INTRODUCTION
The term "remote sensing™ was initially originated by the

United States Naval Research Officer, Ms. Evelyn Pruitt, during
the 1950s [1]. In contemporary usage, it commonly refers to the
scientific and artistic practice of identifying, observing, and
quantifying an object without direct physical interaction. It is
highly significant across multiple domains such as urban
planning [2], forestry [3], geospatial analysis [4], ecological
conservation of mountain grasslands [5] etc. to gather valuable
information about the Earth's features, conditions, and changes
over time.

384

doi: 10.38094/jastt62393

the purpose of evaluating and analysing the remote sensing
images, different datasets are needed. There are plenty of multi-
class datasets available online such as EuroSAT [6], RSSCN7
[7], UC Merced (UCM) [8], AID [9] and so on. Convolutional
Neural Networks (CNNs) have been dominant approach for
image understanding tasks, based on their superior performance
on classification problems and this success has extended to
many other image understanding tasks. ImageNet [10] dataset
played a vital role in their success due to availability of a large
training set. The evolution of the cutting-edge on the ImageNet
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dataset demonstrates the advancements with CNN architectures
and learning [11], [12]. A rising focus has emerged on
architectures employing attention mechanisms with convolution
networks [13]. Several attempts have been made to use
transformers on image classification, but the performance was
not as successful as convnets. Nonetheless, hybrid architectures
which combine transformers and convnets, including the self-
attention mechanism, exhibited notable results in image
classification.

Vision Transformers (ViT) [14] have achieved SOTA (state-
of-the-art) results on ImageNet without the use of convolution.
After VIT [14] and Swin Transformer (SwinT) [15] are
published and many studies have been performed with these
vision transformers, Kaselimi et al. [16] implemented vision
transformer to take advantage of the self-attention mechanism.
Dynamically scalable vision transformer, DSVIiT was published
by Wang et al. [17] to handle the limitations correlated with the
global information extraction capabilities of single
convolutional models and the computational overhead
constrains by creating dynamically scalable attention model
which integrates convolutional features with transformer
features. Spatial-channel feature preserving VIiT (SCVIT) is
developed by Lv et al. [18] which considers the contribution of
distinct channels and considers geometric information in the
classification token. This method generates tokens, introduces
lightweight channel attention, models global interactions and
uses a multilayer perceptron. DCNNSs [19], [20] extract high
level semantic features. However, these networks are mostly
used for the single label remote sensing applications.

Multiple semantic labels are not being considered, nor are
the dependencies between labels. This situation reflects a
broader limitation of the prevailing single-label image
classification approaches in remote sensing. Traditional
convolutional networks and their numerous variants have
achieved impressive accuracy when each image is assigned only
one dominant land-cover category, yet they are intrinsically
designed to predict a single class per scene. As a result, they
cannot represent scenes containing multiple co-existing objects
or land-cover types, and they ignore the semantic relationships
among different classes. Even when such models are applied to
complex high-resolution satellite imagery, they tend to force a
single ‘best’ label, which oversimplifies heterogeneous
landscapes such as urban areas where roads, vegetation, and
water features appear together. This structural restriction of
single-label methods motivates the development of models that
can explicitly handle  multiple labels and their
interdependencies.

Hua et al. [21] utilized attention-based network to extract
detailed semantic feature maps and used LSTM (Long-Short
Term Memory) network to generate structured multiple object
labels. CNN-RNN framework was proposed [22] regarding to
multi-label image classification tasks. RNN is used following
the CNN to capture a combined image-label representation and

385

generated the label predictions. Contextual features can be
extracted by vision transformer (ViT) [23], but it has high
computational complexity and limited learning ability. Swin
Transformer (SwinT) was published by Lie et al. [15] which can
act as an adaptable framework for various tasks such as dense
prediction and image classification. When compared to different
attention-based transformers architectures, MaxViT has been
observed as the best performer by Tu et al. [24]. It has
outperformed models like Cross-ViT [25], DeepViT [26], DeiT
[27], T2T [28] etc. with a top-1 accuracy of %85.2. It combines
advantages of both enhanced CNNs and attention mechanisms
within a novel “base-block”. Base-block is composed of
different blocks. “MBConv” block that incorporates SE
(Squeeze-and-excitation) module. It is followed by a multi-axis
attention block which is specifically crafted for the purpose of
capturing local and global relationships between pixels.

The originators of Multi-label AID dataset, [29], created an
attention-aware label relational reasoning network and achieved
88.72% CF1 score (per-category F1-Score) on their own dataset.
Li et al. [30] utilized both visual and spatial information,
combining CNN and GNN, and obtained 88.64% CF1 score.
Tan et al. [31] proposed a network that contains two models:
SSM  (semantic sensitive module) and SRBM (semantic
relation-building module). SSM captures the features using
transformer to extract semantic attentional regions from visual
attributes by DCNN (deep convolutional neural network), and
SRBM uses the output of SSM to obtain the relation matrix for
final classification, and this network achieved 89.97% CF1
score. Wu et al. [32] achieved 92.81% CF1 score by presenting
a  Transformer-based  framework; SDM  (Semantic
Disentanglement Module), and MAT (Masked-Attention
Transformer). Ma et al. [33] proposed LD-GCN (Label-Driven
Graph Convolutional Network), inherent correlation of labels is
learned by the label-correlation matrix and fed into LRGCN
(Label Recognition Graph Convolutional Network) which
harnesses the relationship between labels and images. This
network not only achieved 92.81% CF1 score, but also 83.49%
of mAP is obtained.

A. Dataset

The original single-label AID dataset was developed by Xia
et al. [9]. Google Earth imagery was the source of the high-
resolution aerial images in the dataset with sizes of 3 x 600 x
600. A combined total of 10,000 images is grouped under 30
classes with spatial resolution ranging between 0.5 — 8m. The
initial dataset was relabelled in 2020, and it has become a multi-
label version of the original dataset with the same resolution of
the images [29]. This new dataset, multi-label AID, consists of
3000 images in total with 17 labels. Every image receives
manual annotation, assigning up to 11 labels. Fig. 1 illustrates
several examples from the dataset with their associated labels.

MATERIALS AND METHODS
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Fig. 1. Sample images from the Multi-label AID datase.

Table | shows the label distribution for training, validation

and test sets.

TABLE |. LABEL DISTRIBUTION ACROSS TRAIN, VALIDATION AND TEST SETS

Label Train Validation Test
airplane 62 17 20
bare-soil 934 237 304
buildings 1372 372 417
cars 1288 329 409
chaparral 56 19 37
court 212 57 75
dock 174 47 50
field 133 42 39
grass 1463 366 466
mobile-home 1 0 1
pavement 1488 382 458
sand 166 41 52
sea 143 34 44
ship 189 48 47
tanks 85 2 21
trees 1523 401 483
water 525 149 178

The Multi-label AID dataset exhibits a highly skewed label
distribution, with some classes (e.g., mobile-home) represented
by only a single image. We chose to keep this natural imbalance
for two reasons: (i) the dataset is a widely used benchmark and
altering its composition would compromise comparability with
prior work, and (ii) generating synthetic samples for such rare
classes risks unrealistic artifacts and would not materially
improve model generalization. We therefore trained on the
unaltered data and explicitly analyse the performance
implications of this imbalance.

B. Data Augmentation

Because the number of images in the Multi-label AID
dataset is limited, we applied data augmentation to mitigate
overfitting and improve the model’s ability to generalize. Each
image was first resized to 256 x 256 pixels and then a random
224 x 224 patch was cropped for training. This strategy provides
scale and translation invariance while matching the input size
expected by our backbone network. Random horizontal and
vertical flips were added to simulate viewpoint changes and
increase orientation diversity, which are common in aerial
imagery. We  considered  domain-specific  spectral
augmentations such as channel-wise intensity shifts, but
refrained from applying them because the available images are
RGB only and lack separate spectral bands, making such
adjustments less meaningful. An example of the augmented is
given in Fig. 2.

Resized to 256x256

Original Image

Randomly Cropped 224x224

Randomly Horizontally Flipped Randomly Vertically Flipped

Fig. 2. Augmented versions of images from the Multi-label AID dataset
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While we did not modify the dataset distribution, we applied
random cropping and flipping to all images to increase the total
training data and reduce overfitting. This augmentation
improves generalization but does not change the relative class
frequencies. Although random cropping and flipping helped
improve generalization, the inherent class imbalance of the
Multi-label AID dataset—particularly for rare categories such as
mobile-home—remains a key challenge. Future work could
investigate complementary strategies such as transfer learning
from semantically related categories, class-balanced or focal re-
sampling, and cost-sensitive loss weighting to provide
additional support for underrepresented labels.

C. Methods

This study involves the implementation and optimization of
CNN-based, vision transformer and hybrid networks. Transfer
learning is employed using pre-trained weights for all the
models. Models that are pre-trained consistently outperform
those trained from scratch [34]. These weights were obtained
from models pre-trained on ImageNet. Due to the scant quantity
of the Multi-label AID images, it is more likely for the models
to overfit. For the purpose of preventing overfitting, not only the
data is augmented, but also patience parameter is selected as 5
to keep the models with the best validation accuracy under 20
epochs. In addition, one Dropout layer with 20% probability is
added just before the very last layer, fully connected layer, for
each model. OneCycleLR is used as scheduler which is provided
by the torch.optim library. Maximum learning rate is set to 4 =
10~*. Adam [35] is used for the optimization where the learning
rate is 0.0001 with a weight decay of 0.0001. These values were
selected after a small pilot search informed by Tu et al. [24],
which reports peak learning rates around 3 x 102 and a weight
decay rate of 0.05. Adapting these recommendations to the
smaller Multi-label AID dataset, we found that lowering the
learning rate and weight decay provided more stable training and
the best validation mAP while remaining within the empirically
validated range of the original architecture.

There are four cases which a classifying model can give as
an output: true positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN). These metrics can be used to
assess a model’s precision, recall and F1-score values. When a
model gives positive outputs, the precision shows its reliability.
When a model correctly classifies positive data points, that is the
recall. Harmonic mean of both recall and precision is equal to
F1-Score. Various evaluation metrics are used for the multi-
label image classification as determination of this article’s
success. The classification report tool is wused from
sklearn.metrics library. The evaluation metrics are calculated in
the Equations below.

TP

Precision = (@)
TP+FP
Recall = % ()]
F1— Score = Z*Pre‘ci‘sian*Recall (3)
Precision+Recall
Let B(TP, FP, TN;, FN;) be a specific binary
classification metric, where B € {Precision, Recall, F1 —
Score}[36].

15q
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Mean Average Precision (mAP) measures the overall
performance across all classes. In other terms, it is the mean of
the average precisions (AP) of all classes where AP is the area
under the PR (precision-recall) curve. mAP can be calculated as
shown in (7) where L denotes the number of classes.

L
mAP = %ZP(i).R(i) @
i=1
PR curve is used in this study due to the reason that ROC-
curve’s estimation might be inadequate as long as the positive
class is substantially smaller [37]. Sigmoid function is used as
an activation function. The reason for it to be used is not limited
with its output values which are in the range [0, 1], but also it
provides smooth gradients that helps with backpropagation
during training phase. This ensures that the learning algorithm
can effectively update the weights. Sigmoid outputs allow high
probabilities for all labels. The sigmoid function is calculated as
in (8).
o(x) =

THes ®

Two functions are applied as loss functions to the different
networks, Binary Cross-Entropy With  Logits Loss
(BCEWithLogitsLoss) [38] and Asymmetric Loss (ASL)[39].

A given problem with multiple labels is divided into distinct
binary problems for each label by BCEWithLogitsLoss which
makes it possible to assign multiple labels to each item. The
sigmoid function produces separate real-valued outputs for
every input. Thus, the actual output is estimated. Sigmoid allows
high probabilities for all classes, unlike Softmax which assigns
high probability to high value. The logits represent the raw
outputs before Sigmoid is applied. In multi-label image
classification each class must be predicted independently, so the
activation function must allow multiple outputs to be
simultaneously high. Softmax enforces a probability distribution
that sums to one and therefore assumes mutual exclusivity
among classes, making it unsuitable when an image may belong
to several categories at once. In contrast, the sigmoid function
produces an independent probability for each class in the range
[0, 1], enabling the network to assign high confidence to any
subset of labels. Coupled with BCEWithLogitsLoss, this treats
each label as a separate binary classification problem and
provides smooth gradients for stable back-propagation. Formula
for BCEWithLogitsLoss is given in (9) where p; is fully
connected layer’s logits (Sigmoid function is applied) and p; is
the true label.

BCEWithLogitsLoss = —% pilog(p)) + (1 — plog(1 — (@) (9)
i=1

ASL is one of the variations of binary cross-entropy loss.

They are generally combined by a sigmoid function (8) for the

purpose of converting the model outputs to probabilities. ASL

consists of two complementary asymmetric mechanisms, that

operate in distinct ways on positive and negative samples,
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enabling direct control. ASL enables for the selective increase
in weight of minority negatives and meanwhile maintains the
original weighting for common positives, biasing frequent
classes is dismissed by this. Re-balancing is also enabled by
ASL, unlike batch-dependent schemes such as distribution-
balanced loss. The ASL formula is expressed as in (10). If y*
and y~ are both set to be 0 in (10), BCEWithLogitsLoss can be
calculated as well (see (9)).

N
ASL = —Z(pi(l - )" log(®) + (1= p) (i Y(log(1—p)))  (10)
n=1

MaxViT is a hybrid vision transformer that combines the
local feature-extraction ability of convolutions with the long-
range dependency modeling of attention. Each MaxViT block
contains two main components: an MBConv (Mobile Inverted

Bottleneck) layer, which expands and contracts the channel
dimension to capture rich local representations with fewer
parameters, and a Multi-Axis Attention module that first applies
Block Attention to model short-range spatial relationships and
then uses Grid Attention to capture global context across the
entire image. This sequence of local and global attention
provides strong contextual modeling while remaining
computationally efficient. A standard MaxViT network consists
of an initial stem convolution, a stack of MaxViT blocks, global
average pooling, and a final fully connected layer for
classification (Fig. 3).

For the experiments: Pytorch is used as the primary deep
learning framework on a personal computer with NVIDIA
Geforce RTX 3070 Ti graphic card with 16 GB of memory.
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Fig. 3. MaxViT Architecture [24]

I1l. RESULTS AND DISCUSSION

MaxViT is a hybrid model that initially consists of CNN and
transformer network, combining global and local features with
a simple and scalable design while maintaining computational
efficiency. The comparison of MaxViT with the other well-

known models is presented in Table II.

TABLE II. BENCHMARKING MAXVIT AGAINST DIFFERENT MODELS
Model Type Key Features MaxViT Comparison
Simple architecture, MaxViT provides
AlexNet CNN foundational deep advanced features,
learning model better scalability
. ) MaxViT offers better
VGG16 CNN feef ArChitecture W 18 | oo ioncy, alobal-tocal
AYRIS interactions
DenseNet- Dense connections, ,M,ag&\{lTIS more scalable,
CNN L efficient with global
201 efficient parameter usage |, .
interactions
. MaxViTl simplifies
N Factorized convolutions, . N .
InceptionV3 |CNN . ; design, maintains high
multi-scale processing
performance
Transformer-inspired MaxViT integrates
Modern . L .
ConvNeXt CNN designs, competitive convolution and
performance attention mechanisms
Image patches as MaxVil.combines
Vit Transformer | sequences, transformer- | convolution and
based attention for scalability
Shifted window attention, ,M@;Q[llo.ffem tinear
SwinT Transformer complexity global-local
hierarchical architecture |. .
interactions
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The MaxViT-T model demonstrates a compelling advantage
by combining CNN and transformers with 31M parameters and
5.6G FLOPs. MaxViT-T achieves 83.6% accuracy on the
ImageNet-1K dataset, surpassing AlexNet and VGG16 with
60M and 138M parameters as well as 63.3% and 71.5%
accuracy respectively. Even more advanced models like
DenseNet-201 and Inceptionv3 do not match MaxViT’s
performance with accuracies of 77.2% and 77.9%. Transformers
such as ViT and SwinT require careful optimization and longer
training to reach competitive accuracy.

According to the original ViT paper, ViT trained directly on
ImageNet-1K achieves about 77.9 % top-1 accuracy with
roughly 86 M parameters and about 55 G FLOPs, while SwinT
reports about 28 M parameters and 4.5 G FLOPs with 81.3 %
accuracy. Thus, MaxViT-T delivers accuracy that is competitive
with or better than these transformer baselines while keeping
computational requirements close to the most efficient SwinT
configuration. MaxViT-L achieves superior results with 85.2%
accuracy with 212M parameters and 43.9G FLOPs [24]. Due to
the computational complexity of MaxViT-L, MaxViT-T is
chosen as a main network in this study. Technically, MaxViT-T
has a far smaller footprint—31 M parameters and 5.6G FLOPs
versus 212 M and 43.9G FLOPs for MaxViT-L—keeping per-
GPU memory below 8 GB for 224x224 inputs and enabling a
batch size of 128 without gradient checkpointing. This
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configuration trains with mixed-precision (FP16) in roughly half
the wall-clock time of MaxViT-L and consumes about 40 % less
energy, while the larger model offers only a ~1.6 percentage-
point gain in top-1 ImageNet accuracy. It is claimed that
symmetric loss functions such as focal loss or cross entropy loss
is sub-optimal for learning positive samples’ features which can
be clearly seen on the evaluation metrics of the labels that
support results [39].

Drawing inspiration from this study, ASL is applied as a loss
function for the MaxViT model. Adjusting y"+and y"- (see (10))
helps giving appropriate importance to the minority class,
meanwhile the model does not become biased towards the
majority class. Therefore, different values are applied on
MaxViT model where mAP is determined as the success criteria.
Following the search range proposed by Gao et al. [40], we
applied the same y~+ and y*- intervals to our dataset. Because
the datasets differ, our validation experiments identified a
different optimum - y~+ =1 and y"- = 2 — which produced the
highest mAP. The results can be seen in Table I11.

TABLE IIl. IMPACT OF DIFFERENT I' COMBINATIONS OF MAP (%) ON MAXVIT
£ 0 1 2 3 4
V-
2 84.2 84.98 83.82 83.46 84.41
4 83.58 84.03 83.83 82.95 83.92

In deep learning applications, a single hyperparameter does
not always play the main role. Scheduler is also one of the
factors that plays a vital role in the success of the model for
classifying. OneCycleLR allows the learning rate to rise during
training by following a cyclical pattern where the learning rate
increases to a maximum value and decreases. The performance
of OneCycleLR on the same models with the aforementioned
two loss functions is compared. Comparison showed that
BCEWithLogitsLoss is slightly better than ASL in CNN models
except Inceptionv3d. It aligns with binary classification
objectives and is robust in handling data imbalances by
providing stable probability outputs. These factors together lead
to improved precision and recall, and results in higher mAP
scores.

Conversely, ASL performs better than BCEWithLogitsLoss
for the vision transformer models, except a small difference in
ViT. ASL handles the class imbalances more effectively by
weighting positive and negative examples differently that deals
with imbalanced datasets, such as Multi-label AID, where one
class is underrepresented. For example, airplane and chaparral
have less instances when compared to the other labels, 20 and
37 respectively. This contrast likely arises from architectural
differences: CNNs benefit from the independent, stable
gradients of BCEWithLogitsLoss, which match their localized
feature learning and reduce overfitting, whereas transformers’
global attention amplifies negative-sample dominance. ASL’s
asymmetric focusing (y*, y°) counteracts this effect, enabling
transformers to better learn rare labels despite strong inter-class
correlations. The success of combining ASL and OneCycleLR
on vision transformer models is undeniable, as they achieved the
highest F1-Score in 16 out of a total of 17 classes where F1-
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Score is more comprehensive and critical, considering recall and
precision metrics. The comparison of MaxViT model with two
loss functions, ASL weights the positive and negative samples
much better than BCEWithLogitsLoss.

Table IV highlights the overall performance landscape of all
evaluated networks, showing clear differences in how each
architecture handles the diverse set of object categories. Models
with transformer components generally maintain stronger and
more balanced accuracy across classes, while purely
convolutional approaches display wider variation between
frequent and infrequent labels.

ANOVA was applied to the results presented in Table IV.
Since the p-value was found to be less than 0.05, the null
hypothesis (Ho) was rejected for all cases, indicating that at least
one group mean significantly differed from the others.
Subsequently, pairwise comparisons of the algorithm
performances were conducted using the Student’s t-test to assess
whether the observed differences were statistically significant.
Examining the results presented in Table V, it appears that the
proposed MaxViT method performed better.

MaxViT performs both grid and global attention
mechanisms that allows the model to capture multi-scale
features more effectively than a simple fusion of CNN and
transformer models. As far as is known, mAP of 84.98% has
been achieved for the first time on Multi-label AID dataset. A
comparison of performance metrics between earlier research and
MaxViT is given in Table VI.

TABLE IV. AP VALUES OF EACH CLASS WITH THE MODELS

AlexN
et

Object
Labels

VGG16 DenseNet-

201

ConvNe
Xt

Inceptio
nv3

viT Swin

T

Max
ViT

airplane 0,817 0,372 0,769 0,915 0,731 0,673 0,787 1,000

bare-soil 0,805 0,796 0,853 0,828 0,838 0,859 0,815 0,883

buildings 0,975 0,985 0,984 0,990 0,994 0,992 0,991 0,995

cars 0,975 0,964 0,979 0,970 0,982 0,979 0,983 0,988

chaparral 0,267 0,354 0,476 0,406 0,375 0,367 0,381 0,481

court 0,539 0,663 0,627 0,692 0,676 0,665 0,768 0,812

dock 0,625 0,683 0,695 0,805 0,773 0,807 0,814 0,819

field 0,609 0,631 0,753 0,749 0,768 0,782 0,686 0,804

grass 0,960 0,976 0,980 0,981 0,985 0,985 0,979 0,981

mobile-
home

0,002 0,002 0,006 0,062 0,004 0,002 0,091 0,004

pavement 0,986 0,992 0,992 0,990 0,993 0,997 0,993 0,995

sand 0,928 0,882 0,957 0,969 0,958 0,956 0,929 0,961

sea 0,915 0,926 0,956 0,965 0,975 0,960 0,945 0,979

ship 0,549 0,671 0,761 0,843 0,720 0,725 0,737 0,881

tanks 0,940 0,894 0,946 0,946 0,949 0,973 0,909 1,000

trees 0,961 0,985 0,981 0,990 0,988 0,973 0,980 0,987

water 0,715 0,823 0,826 0,811 0,788 0,818 0,802 0,875

0,739 0,741 0,797 0,818 0,794 0,795 0,799 0,849
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TABLE V. STATISTICAL COMPARISON OF THE PROPOSED MAXVIT METHOD
WITH THE OTHERS.

Compared Methods P(T<=t) Single | P(T<=t) two
ended ended
MaxViT- Alexnet 1,46307 E-16 1,78094E-16
MaxViT- VGG16 8,103714E-13 1,61385E-12
MaxViT- DenseNet-201 1,35845E-06 2,7169E-06
MaxViT- Inceptionv3 0,0000327510 0,000075422
MaxViT- ConvNeXt 1,379103E-07 2,756E-07
MaxViT- ViT 5,91E-07 1,18E-06
MaxViT- SwinT 3,30504E-06 6,0829E-06

TABLE VI. A COMPARISON OF PERFORMANCE METRICS BETWEEN EARLIER
RESEARCH AND MAXVIT, UTILIZING THE MULTI-LABEL AID DATASET

Method Score (CF1/CP/CR) mAP (%)
AL-RN-ResNet50 [29] | 88.72/91.00/ 88.95 -
MLRSSC-CNN-GNN | g5 61/ 89,83/ 90.20 -
[30]
ResNet50-SR-Net [31] | 89.97 /89.42 / 90.52 -
S-MAT-ResNet50 [32] | 90.90/92.17 /89.69 -
LD-GCN 90.93/92.81/ 89.06 83.49
[33]
MaxViT 91/92/91 84.98

The success of MaxViT can be explained by its architecture
since both convolutional operations and multi-head self-
attention are leveraged. This dual capability enables both local

Precision-Recall Curve
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Fig. 4. PR curve of the labels for MaxViT where y*=1, y~=2, mAP = 84.98%

and global features to be captured effectively and particularly
beneficial for multi-label classification tasks where different
labels might correspond to distinct features at various scales and
regions within an image. Spatial relationships and local patterns
within the images of Multi-label AID are captured by MaxViT
which facilitates hierarchical feature extraction. The features are
extracted at different levels of abstraction, from edges and
textures in the initial layers to more complex shapes and objects
in the deeper layers. Extracted initial feature maps, which
contains localized and spatially aware representations of the
image, serve as input for the subsequent transformer blocks.
These input feature maps processed by transformer blocks using
self-attention and FFN.

Global features are captured by the self-attention mechanism
in each MaxViT block, with the importance of each feature
being computed relative to all others in the feature map. FFN
processes the combined local and global features, adds non-
linearity. As a result, the extraction of local features through
convolutional layers and global features via the multi-head self-
attention mechanism creates a powerful and flexible
architecture, enhancing the model's capability to identify and
distinguish multiple labels within a single image. In addition, the
integration of ASL and OneCycleLR not only improved mAP
value but also showed robustness in handling the complexities
of multi-label image classification. PR curve for all the labels
can be seen in Fig. 4, using MaxViT where y*+ and y”- are set
as 1 and 2, respectively.

== Class airplane (AP=1.000)
Class bare-soil (AP=0.883)
Class buildings (AP=0.995)
+ Class cars (AP=0.988)
Class chaparral (AP=0.481)
Class court (AP=0.812)
Class dock (AP=0.819)
Class field (AP=0.804)
Class grass (AP=0.981)
Class mobile-home (AP=0.004)
=== Class pavement {AP=0.935)
Class sand (AP=0.961)
¥— Class sea (AP=0.979)
—a— Class ship (AP=0.881)
== Class tanks (AP=1.000)
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Class water (AP=0.875)
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IV. CONCLUSION

The multi-label AID dataset has some shortcomings. Table |
clearly reveals a severe class imbalance across the Multi-label
AID dataset. While common land-cover types such as trees,
pavement and grass dominate the distribution, several categories
are extremely under-represented. Notably, mobile-home
appears only once in the entire dataset (1 training image and 1
test image, no validation samples), airplane has only 62 training
and 20 test images, and chaparral has just 56 training and 37 test
images. Other classes such as tanks, court, dock and field also
have far fewer examples than the dominant categories. Lower
precision and recall are inevitable for rare labels because
categories with only a handful of images provide insufficient
variability for the networks to learn discriminative features.

In our experiments, labels such as chaparral and airplane
consistently exhibit low recall, while mobile-home cannot be
classified at all by any model. This extreme scarcity also
imposes a ceiling on the mAP, since mobile-home label
contributes only one positive instance, the theoretical upper
bound of the dataset-level mAP is 94.12%, even if all other
labels were predicted perfectly. In addition, the large imbalance
biases the training process toward majority classes, abundant
categories such as trees, pavement and grass dominate the loss
and encourage the models to favor these labels, which can mask
poor performance on minority classes when only overall
accuracy is reported. Although we did not perform an exhaustive
comparison with all learning-rate schedulers and loss functions,
prior studies [39] report that symmetric losses such as focal loss
or cross-entropy are sub-optimal for learning discriminative
features of positive samples in highly imbalanced multi-label
settings.

Drawing on this evidence, we adopted Asymmetric Loss
(ASL) for the MaxViT model, as it is specifically designed to
handle class imbalance through asymmetric treatment of
positive and negative samples. Coupling ASL with the
OneCycleLR scheduler, which provides dynamic learning-rate
adjustments and has been shown to accelerate convergence and
improve generalization, improved overall model accuracy.
OneCycleLR proved especially effective for the MaxViT-T
architecture on the MultiLabel-AlD dataset because its dynamic,
non-monotonic schedule matches both the model’s depth and
the dataset’s class imbalance. MaxViT’s hybrid CNN-
transformer blocks require an initial period of rapid feature
exploration to stabilize attention weights, followed by a slower
refinement stage.

The single—cycle policy—starting with a low learning rate to
avoid divergence, rising to a high peak to escape sharp local
minima, and then annealing—encourages wide-basin
convergence that improves generalization. MultiLabel-AlID
further benefits from this approach: its heterogeneous aerial
scenes contain overlapping labels and rare classes, so a
temporary high learning rate early in training helps the optimizer
traverse saddle points and learn minority-class features, while
the final decay reduces overfitting to dominant categories.
Among the different configurations we tested, this combination
achieved the best validation performance on the MaxViT-T
model, supporting our choice while leaving a broader
comparison with other schedulers and loss functions as future
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work. The findings demonstrate that the choice of loss function
and learning rate scheduler in an appropriate network model
impacts the performance of the model significantly.

In the next studies, classification performance can be
increased by focusing on achieving high classification rates on
small instances and finding the best combination of the loss
function, scheduler and window-based vision transformer. Due
to the limited computational resources, the MaxViT-L algorithm
could not be implemented in this study.

In future applications, this algorithm can be adopted for
better classification results. Training MaxViT-L on the available
workstation was infeasible because the model’s 212 M
parameters and roughly 44 GFLOPs per 224x224 image
exceeded the GPU’s memory budget during forward and
backward passes. A practical path to overcome this limitation
would be to distribute the model across multiple GPUs using
model or pipeline parallelism, which allows parameters and
activations to be split. Alternatively, future experiments could
migrate to cloud or high-performance computing resources
equipped with GPUs offering far larger memory capacities—
such as NVIDIA A100 or H100 cards with 40 GB or more—so
that MaxViT-L can be trained end-to-end without architectural
changes.
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