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Abstract 
Biomedical question answering requires accurate and interpretable systems; however, existing approaches often face challenges such as 

language model hallucinations and limited reasoning when relying solely on standalone knowledge graphs. To address these limitations, 

this study proposes a hybrid framework that integrates the LLaMA-3B language model with a Neo4j-based drug–disease–symptom 

knowledge graph. The system translates natural language questions into executable Cypher queries, operates on an iBKH-derived graph 

comprising over 65,000 entities and 3 million relationships, and returns answers with supporting evidence through a transparent interface. 

Experiments conducted on 60 biomedical questions across three levels of difficulty demonstrate the robustness of the approach: 96% 

exact match for simple queries, 95% for medium queries, and 86.7% for complex queries. Overall, the system achieves Precision@5 of 

96.1%, Recall@5 of 89.0%, F1@5 of 91.0%, Hits@k of 96.1%, and an MRR of 94.4%, while maintaining an average response time of 

only 6.07 seconds. These results indicate that the system retrieves nearly all relevant answers, ranks them correctly, and delivers them 

with latency low enough for interactive use. Moreover, unlike cloud-based APIs such as ChatGPT, which require internet connectivity 

and external data transmission, the proposed framework operates fully offline, ensuring privacy, reproducibility, and compliance with 

biomedical data governance. Overall, this pipeline provides an accurate, efficient, and privacy-preserving solution for biomedical question 

answering, making it a practical alternative to cloud-dependent approaches in sensitive healthcare contexts. 
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I. INTRODUCTION 

Answering questions in the biomedical field is a difficult task 
due to the complexity of medical knowledge and the need for 
precision. In recent years, large language models  (LLMs) like 
LLaMA, GPT-4 have made progress in understanding and 
generating human-like responses to medical questions  [1,  2]. 
These models can process large amounts of information and 
respond in natural language, which makes them helpful in 
healthcare settings [3]. However, they often struggle to provide 
accurate answers when dealing with specialized biomedical 
content [4, 5]. 

One major issue with LLMs is a problem called hallucination, 
where the model generates information that sounds right but is 
actually incorrect or unsupported [6]. In medical applications, 
this can be dangerous, as healthcare professionals rely on precise 

and trustworthy information  [7]. Therefore, researchers are 
exploring ways to combine LLMs with structured sources of 
knowledge to improve their reliability [8]. 

LLM-only systems in biomedicine still hallucinate and are 
hard to verify, limiting safe use [9, 10]. Biomedical knowledge 
graphs (BKGs) such as iBKH and SPOKE curate multi-source 
facts and enable multi-hop reasoning, yet they neither interpret 
free text nor generate answers [11, 12]. Recent hybrids (KG-
aware RAG) improve grounding but often lack explicit path-level 
justifications and robust end-to-end answer evaluation [13, 14]. 

Recent studies have increasingly integrated Knowledge 
Graphs (KGs) with Large Language Models (LLMs) to improve 
factual accuracy, reasoning, and reduce hallucinations. Notable 
examples include DR.KNOWS, which combines UMLS-based 
KGs with LLMs for better diagnostic reasoning [15], KnowNet 
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for visualizing and validating LLM outputs [16], and MedKA for 
KG-enhanced question answering [17]. 

To address these challenges, several recent works have 
explored the integration of large language models with 
biomedical knowledge graphs (KGs). A biomedical KG is a 
structured network that connects entities such as diseases, drugs, 
and symptoms using defined relationships [18, 19]. These graphs 
store verified medical knowledge from trusted databases, 

allowing for more accurate and explainable responses [12]. KGs 
are especially useful in multi-step reasoning tasks, where finding 
an answer requires connecting different pieces of information 
[20]. These entities and relationships can be visually represented 
in a biomedical knowledge graph, as shown in Fig. 1, where 
nodes represent medical concepts such as drugs, diseases, 
symptoms, and pathways, and edges denote their semantic 
relationships. 

 
Fig. 1. Overview of Biomedical Knowledge Graph Entities and Relationships 

 

One example of a widely used biomedical KG is SPOKE, 
which includes millions of nodes and relationships from over 40 
biomedical databases [12]. Integrating an LLM with a KG allows 
the strengths of both technologies to work together: the LLM 
provides language understanding, and the KG provides 
structured, factual knowledge [21, 22]. A common method is 
retrieval-augmented generation (RAG), where the LLM retrieves 
information from the KG and uses it to generate more accurate 
responses [13, 23]. In more advanced setups, the LLM can even 
generate queries like Cypher to fetch specific data from the graph 
[24, 25]. Neo4j is a popular graph database that supports fast and 
flexible storage and querying of knowledge graphs using Cypher 
[21]. It is well-suited for biomedical applications because it 
allows easy exploration of complex medical relationships. Recent 
work has shown that combining Neo4j with LLMs can lead to 
better accuracy, fewer hallucinations, and more explainable 
results [24, 26]. 

Despite improvements, building a reliable hybrid system that 
combines an LLM with a biomedical KG remains a technical 
challenge. Some approaches require complex pipelines or large 
training datasets, while others rely on fine-tuning specific to a 
narrow set of questions [27, 28]. There is still a need for systems 
that are both accurate and easy to scale, especially in domains like 
medicine where the cost of errors is high [22]. 

Recent advances in KG-augmented LLMs have improved 
performance, yet biomedical QA continues to face three practical 
gaps: 

1. Traceability: LLM-only or text-retrieval-only pipelines 
rarely provide graph-grounded justifications; users lack the 
ability to inspect the exact nodes and edges that support an 
answer. 
2. Evaluation: Prior work often judges quality via surface-
form checks (e.g., matching a Cypher template), which fails to 
capture end-to-end answer correctness or ranking quality 
across different difficulty levels. 
3. Deployment: Many solutions assume cloud resources or 
domain-specific fine-tuning, yet biomedical contexts typically 
demand a local, privacy-preserving system with low latency 
and reproducible behavior. 

Timestamp-aware execution and periodic KG refresh help 
avoid deprecated or contraindicated links, making the tool better 
suited for safety-critical clinical contexts (e.g., drug–drug 
interactions). 

To address these limitations, Our work introduces a locally 
deployable pipeline that translates biomedical questions into 
executable Cypher queries over a Neo4j knowledge graph. The 
system returns answers with supporting nodes and edges, and is 
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evaluated using Exact Match, Precision, Recall, F1, Hits@k, 
MRR, and latency across simple, medium, and complex question 
sets. Unlike prior template-based methods, our approach enables 
traceable, outcome-level validation. In summary, the main 
contributions of this work are as follows: 

• Hybrid LLM to Cypher QA: A system that translates 

natural language questions into accurate, executable 

Cypher over a Neo4j drug, disease, and symptom KG. 

• Prompt-driven query generation: Schema,  entity 

aware prompting that reliably maps diverse biomedical 

questions to graph queries. 

• Evidence transparency: Along with each answer, we 

surface the generated Cypher and the supporting 

justification subgraph (nodes,  edges) plus a brief natural 

language rationale. 

• Answer-level evaluation: End-to-end assessment using 

Exact Match, F1, Precision/Recall, Hits@k, MRR and 

latency across simple, medium and complex tiers. 

• Local, reproducible deployment: On-prem LLaMA 3 

inference (no cloud dependency) suitable for biomedical 

settings requiring low latency and strong data control. 

 
The remainder of this paper is organized as follows: Section 

2 reviews related work on biomedical knowledge graphs and 
LLM-based QA systems. Section 3 provides background on 
knowledge graphs, large language models, and question 
answering frameworks. Section 4 details the proposed 
methodology, including system architecture, dataset 
construction, and query translation. Section 5 presents the 
experimental results through both quantitative metrics and 
qualitative case studies. Section 6 discusses the findings, analyzes 
limitations, and compares performance against baseline models. 
Finally, Section 7 concludes this paper and outlines directions for 
future work. 

II. RELATED WORK 

Recently, studies have concentrated on the integration of 
clinical and medical knowledge graphs (LLM) to improve the 
answer to medical questions. Researchers have derived several 
biomedical KGs using Neo4j and incorporated the application of 
LLMs like LLaMA and GPT to convert natural language 
questions into graph queries. Improvements in answer 
correctness, reduction of hallucination errors, one-to-many 
relationships, and support for complex reasoning were the 
objectives of these efforts. Some frameworks also adopted 
retrieval methods to ground responses in secure data. 

Su et al.[11] developed an integrative Biomedical Knowledge 
Hub (iBKH), a huge biomedical knowledge graph that comprises 
18 of the very best data sources. The deployment of the iBKH in 
Neo4j allows for a user-friendly web portal to allow fast and 
interactive knowledge retrieval. The system implemented 
advanced graph learning techniques to enable the discovery of 
biomedical knowledge, illustrated by an example of repurposing 
in silico drugs for Alzheimer’s disease. iBKH achieved 
promising predictive performance for known drugs and proposed 
possible new drug candidates. 

Rajabi and Kafaie[19] proposed a disease knowledge graph 
using a cross-referential disease database comprising diseases, 
symptoms, and drugs interconnected with relationships. They 
transferred the data into Neo4j to create a graph of 9,400 nodes 
and 45,000 relationships representing the semantic links between 
medical concepts. Applying Cypher queries enabled answering 
complex medical questions regarding identifying drugs that may 
cause certain diseases; it was demonstrated that the graph inferred 
new relationships not explicitly existing in the original data. The 
conclusion was that disease knowledge graphs sped up clinical 
discovery and contributed to understanding complex medical 
relationships. 

Hou et al.[3] assessed and contrasted ChatGPT (both GPT-
3.5 and GPT-4) and the biomedical knowledge graphs (BKGs) 
concerning their ability to answer biomedical questions, generate 
new knowledge, and reason. Their datasets were focused on 
dietary supplements and drugs, while evaluation criteria entailed 
accuracy, novelty, and reasoning ability. The results indicate that 
while GPT-4 surpassed GPT-3.5 and BKGs in knowledge 
provision, it proved inconsistent with regard to citations and 
reasoning. Compared to them, BKGs scored higher in accuracy 
and reliability, especially in discovering novel links as well as 
within structured reasoning. 

Soman et al.[13] presented a novel framework called KG-
RAG that integrates a large biomedical knowledge graph 
(SPOKE) with LLaMA 2, GPT-3.5, and GPT-4 (LLMs) to 
produce accurate biomedical text. They optimized the retrieval of 
relevant graph context to cut over 50% tokens without losing 
accuracy. It aided LLMs in performing better on biomedical 
question answering with very high accuracy boosts, especially in 
the case of LLaMA 2. They compared KG-RAG to other retrieval 
methods and indicated its comparatively more robust and 
efficient results. The framework produced reliable evidence-
based answers grounded in biomedical knowledge. 

Luo et al.[23] created ChatKBQA, a new framework with a 
question-and-answer approach over knowledge bases that first 
generates logical forms with the help of fine-tuned LLMs and 
then retrieves the relevant entities and relations. This generate-
then-retrieve approach is supposed to handle a couple of issues 
with the earlier methods concerning tedious retrieval and error 
propagation. They fine-tuned open-source LLMs like LLaMA 2 
to change natural-language questions into logical forms with high 
accuracy. The retrieval phase uses unsupervised phrase-level 
semantic matching in a way that enhances the alignment of 
entities and relations. Experiments on benchmark datasets 
indicate ChatKBQA to be superior to its predecessors, with the 
highest accuracy to date. 

Pusch and Conrad[6] conducted work under a hybrid 
approach conflating LLMs and biomedical Knowledge Graphs 
(KGs) to suppress hallucination errors in question-answering. 
They proposed query-checking algorithms for validating, 
correcting, and executing the KG Cypher queries that LLMs 
generated, thereby attaining accurate and understandable 
answers. The system used retrieval-augmented generation (RAG) 
to ground answers within KG data. The methodology was 
validated on a biomedical KG called PrimeKG using 50 
benchmark questions, assessing models like GPT-4 Turbo and 
LLaMA 3. Commercially available GPT-4 Turbo obtained 
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record-high accuracy, while open-source models achieved 
impressive gains through prompt optimization. 

Feng et al.[22] developed the Knowledge Graph-based 
Thought (KGT) framework that integrated LLMs with a pan-
cancer knowledge graph for biomedical question answering. 
KGT was designed to reason on the knowledge graph schema and 
identify optimal subgraphs to use for directing accurate answer 
generation, all without fine-tuning the LLMs. The framework is 
benchmarked against a new dataset (PcQA) designed specifically 
for pan-cancer KGQA tasks and has outperformed all existing 
state-of-the-art approaches by a rather large margin. KGT’s 
practicality in biomedical issues was highlighted through case 
studies for drug repositioning, drug resistance, and biomarker 
discovery. Their approach exhibited robust adaptability among 
various LLMs. 

Rezaei et al.[26] developed AMG-RAG, a dynamic 
framework that utilizes autonomous LLM agents with medical 
search tools in the continuous construction and real-time updating 
of Medical Knowledge Graphs (MKGs). Their system 
incorporated confidence scoring and multi-hop reasoning to 
improve accuracy and interpretability in medical question 
answering. AMG-RAG outperformed size models on both very 
hard MEDQA benchmarks and more accessible MedMCQA 
ones, proving that it could conduct efficient reasoning based on 
current structured medical knowledge. They also used Neo4j to 
manage the knowledge graphs while adding external searches to 
ensure the latest data. 

Tiwari et al.[24] presented Auto-Cypher, a recent automated 
pipeline for producing high-quality synthetic data for training 
LLMs by mapping natural language to Cypher queries for graph 
databases like Neo4j. The pipeline deployed the novelty of LLM-
as-database-filler to synthesize Neo4j databases for the execution 
of generated queries to ensure their correctness. A sizable dataset 
called SynthCypher was created, spanning multiple domains and 
complex queries, leading to a 40% improvement in LLM 
performance on Cypher generation. The datasets were used to 
fine-tune open-source models such as LLaMA, Mistral, and 
Qwen, and the SPIDER benchmark was adapted for evaluation 
purposes. 

Mohammed et al.[29] proposed a hybridized GraphRAG 
framework combining Neo4j-based UMLS knowledge graphs 
with a vector store for medical textbooks to create an improved 
U.S.M.L.E.-style clinical question-answering approach. The 
project integrated symbolic reasoning from knowledge graphs 
with semantic retrieval performed on text embeddings to enhance 
relevance and accuracy via adaptive re-ranking and query 
expansion. The system had the answers produced by GPT-4o-
Mini, with different prompting strategies encouraging evidence-
based and traceable responses grounded in verified medical 
knowledge. Experiments showed that the hybrid approach 
improved factual accuracy and citation fidelity as compared to 
the L.L.M.-only approach, enhancing transparency and 
reliability. It is shown that binding both structured and 
unstructured medical knowledge sources could aid in 
ameliorating hallucinations and hence improve clinical 
trustworthiness in AI-driven medical QA. 

Yang et al.[30] articulated sepsis knowledge graph was 
crafted by combining multicenter clinical data from over 10,000 
patients with the help of GPT-4 for entity recognition and 
relationship extraction. Real-world data were collected from 
three hospitals and integrated with clinical guidelines and 
databases from the public domain. The knowledge graph 
contained 1,894 nodes and 2,021 relationships pertaining to 
diseases, symptoms, biomarkers, treatments, and complications. 
GPT outperformed other models in every resolution on sepsis-
specific datasets to obtain high F1-score results. The constructed 
graph highlighted complex interactions in sepsis for assisting 
clinical decision-making and was implemented on Neo4j. 

Guan et al.[20] proposed a novel method for constructing a 
local knowledge graph from retrieved biomedical documents by 
extracting propositional claims. They carried out layer wise 
summarization on this graph to capture multi-document 
relationships and provide comprehensive contextual information 
to a language model for question-answering purposes. The 
method resolved issues in multi-document biomedical QA, such 
as noise cancellation and efficient context usage. They then tested 
their method on several benchmarks for biomedical question 
answering, achieving performance at least comparable to, if not 
better than, existing retrieval-augmented generation (RAG) 
baselines. The study established enhanced reasoning and answer 
accuracy of the model achieved through structured graph 
summarization.    

Previous studies have improved biomedical QA using KGs 
and LLMs, but important gaps remain. Most systems lack 
transparent, graph-based justifications, rely on limited evaluation 
methods, or depend on cloud resources that reduce privacy and 
reproducibility. Our framework addresses these gaps by 
providing visible Cypher queries with evidence subgraphs, 
applying comprehensive performance metrics across difficulty 
levels, and ensuring fully local, privacy-preserving deployment. 

Table I summarizes key previous studies on biomedical 
knowledge graphs and question answering, outlining their 
methods, datasets, and main limitations. 

III. PRELIMINARIES 

This section outlines the fundamental concepts required to 

understand the proposed system. It introduces biomedical 

knowledge graphs, explains how Neo4j stores data in graph 

form, and describes the use of Cypher for querying. It also 

provides a brief overview of large language models (LLMs) and 

their role in interpreting natural language. 

 

 

A. Biomedical Knowledge Graphs 

Biomedical Knowledge Graphs (BKGs) provide a structured 

representation of complex biomedical information by modeling 

diverse medical entities, such as diseases, drugs, symptoms, and 

biological pathways, as interconnected nodes within a graph 

structure. The edges in these graphs represent the semantic 

relationships between these entities, including ’treats’, ’causes’, 

’interacts with’ and many others, as illustrated in Fig 1. This 

form of representation enables the integration of heterogeneous 

biomedical data from a wide range of sources, including 
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scientific literature, clinical records, genomic databases, and 

experimental findings [19, 31]. 
Such integration creates a comprehensive biomedical 

knowledge base that supports advanced analytics and discovery. 
For example, biomedical knowledge graphs can reveal previously 
unknown relationships (e.g., between drugs and diseases) and 
help prioritize potential biomarkers for complex conditions. The 
Integrative Biomedical Knowledge Hub (iBKH) is one such 
large-scale graph that consolidates diverse biomedical resources 

into a unified hub, enabling discovery at scale [11]. Beyond 
iBKH, large biomedical knowledge graphs such as SPOKE 
further illustrate how graph integration accelerates research and 
supports precision-medicine use cases [12]. Overall, these graphs 
serve as foundational resources for data-driven and personalized 
medicine. These knowledge graphs serve as foundational 
resources for precision medicine, where treatment can be tailored 
to the individual’s biological profile, improving outcomes and 
minimizing side effects [19, 31]. 

 

TABLE I.  SUMMARY OF RELATED RESEARCH ON BIOMEDICAL KGS AND QUESTION ANSWERING 

Ref. Year Data/Graph Method Baselines Key Metric Limitation 

[11] 2023 iBKH (18 biomedical 

sources, Neo4j) 

Integrative KG + Graph 

learning; drug repurposing 

case 

Known drugs, 

Alzheimer’s 

study 

Predictive performance 

(drug repurposing) 

Limited to Alzheimer’s case 

study; scalability and updates not 

detailed 

[19] 2023 Disease KG (9,400 

nodes, 45,000 relations 

in Neo4j) 

Cypher queries for disease–

drug–symptom reasoning 

Cross-referential 

disease DB 

New relation inference; 

complex query 

answering 

Limited to single domain; lacks 

large-scale evaluation 

[3] 2023 BKGs vs. GPT-3.5/4 Comparative QA study: 

LLMs vs. KGs 

GPT-3.5, GPT-4, 

KG reasoning 

Accuracy, Novelty, 

Reasoning 

GPT-4 inconsistent in 

reasoning/citations; KG less fluent 

but more reliable 

[13] 2024 SPOKE KG + 

LLaMA2, GPT-3.5, 

GPT-4 

KG-optimized retrieval for 

LLMs (RAG) 

Other retrieval 

methods 

Accuracy, token 

reduction >50% 

Focus on retrieval optimization, 

not KG construction 

[23] 2024 Benchmark KB datasets Generate-then-retrieve 

(LLM → logical form → 

KB retrieval) 

Prior KBQA 
methods 

Accuracy (highest to 
date) 

Risk of error in logical form 
generation 

[6] 2024 PrimeKG LLM + KG hybrid, Cypher 

query validation, RAG 

GPT-4 Turbo, 

LLaMA 3 

Accuracy, 

Explainability 

Dependent on KG coverage; 

computationally intensive 

[22] 2025 Pan-cancer KG (PcQA 

dataset) 

KG-enhanced reasoning 

(subgraph selection) 

SOTA KGQA 

methods 

Outperformed SOTA on 

PcQA 

Limited to pan-cancer focus; no 

fine-tuning explored 

[26] 2025 Dynamic Medical KG + 

Neo4j 

LLM agents + multi-hop 

reasoning 

MEDQA, 

MedMCQA 
baselines 

Accuracy, 

Interpretability 

High system complexity; requires 

continuous updating 

[24] 2025 SynthCypher dataset 

(Neo4j + synthetic 

queries) 

LLM-supervised Cypher 

generation and verification 

SPIDER 

benchmark 

Cypher accuracy 40% Synthetic dataset may not capture 

all real-world cases 

[29] 2025 UMLS KG + Neo4j Hybrid GraphRAG LLM-only QA Accuracy, Citation 

fidelity 

More complex pipeline; relies on 

external vector store 

[30] 2025 Clinical data (10k 

patients, 1,894 nodes, 

Neo4j) 

KG construction using 

GPT-4 for entity/relation 

extraction 

Other KG 

construction 

methods 

High F1-scores Focus only on sepsis; limited 

generalization 

[20] 2025 Local KG from 

biomedical documents 

Multi-level summarization 

over KG for QA 

RAG baselines QA accuracy, reasoning Tested mainly on document QA; 

scalability not proven 

 

B. Neo4j Graph Database 

To manage the complexity and large size of biomedical 
knowledge graphs, specialized graph databases are needed. 
Neo4j is one of the most popular graph databases designed to 
store and query data structured as nodes (entities) and 
relationships (edges), both of which can have descriptive 
properties [32, 33]. It uses the property graph model, which 
makes it easy to represent complex, connected biomedical data 
such as drug-gene interactions or disease pathways. Neo4j’s 
Cypher query language is especially advantageous because it 
allows users to write expressive and efficient queries to explore 
multi-step connections in the data [34]. 

Neo4j works well for biomedical data because it can quickly 
run complicated queries over highly interconnected datasets. This 
is important in biology and medicine, where relationships 
between entities like proteins, diseases, and drugs are often 
complex and layered. Studies have shown that Neo4j handles 
large biomedical graphs efficiently, making it a favorite among 

researchers and industry users alike [33, 35, 36]. Its indexing and 
caching mechanisms also help speed up query processing and 
data retrieval [37]. 

Moreover, Neo4j integrates smoothly with many 
programming languages and analytics tools, which makes it 
easier to build interactive biomedical applications and clinical 
decision support systems that can turn complex graph data into 
useful insights [38, 39]. 

C. Large Language Models (LLMs) in Biomedical Question 

Answering 

Large Language Models (LLMs) are powerful AI systems 
trained on vast amounts of text data. They learn the structure and 
patterns of language, enabling them to understand questions, 
generate responses, summarize information, and perform other 
complex language tasks. Well-known models such as LLaMA 
and GPT-3 have greatly advanced the field of natural language 
processing by showing strong performance across many tasks 
[40, 41]. 
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In biomedical research and clinical settings, LLMs help 
translate natural language questions from doctors, researchers, or 
patients into precise, structured queries that can be executed on 
biomedical knowledge graphs and databases. This makes it easier 
to retrieve detailed biomedical information like drug interactions, 
gene-disease associations, and symptom descriptions [42, 43]. 

Despite their power, LLMs can sometimes generate incorrect 
or fabricated responses, a phenomenon known as hallucination, 
which poses risks in sensitive biomedical contexts. These 
hallucinations occur because the models generate plausible 
answers based on patterns learned from data rather than verified 
knowledge. To mitigate this, researchers integrate LLMs with 
biomedical knowledge graphs to ground answers in factual data, 
significantly improving accuracy and reducing misinformation 
[4]. Further improvements come from fine-tuning LLMs on 
biomedical corpora and carefully engineering prompts, which 
enhance their reliability and relevance in medical question 
answering. 

Additionally, combining LLMs with knowledge graphs and 
reasoning techniques is an active area of research that promises 
to increase the interpretability and trustworthiness of AI systems 
in biomedicine. These advances are critical for developing tools 

that assist clinical decision-making and accelerate biomedical 
discoveries [43, 44]. 

IV. METHODS AND MATERIALS 

This section describes the methodology used to build a 

biomedical question-answer system. The proposed method 

consists of three main stages; First, a biomedical knowledge 

graph is constructed in the data ingestion phase, using structured 

data sources (e.g., diseases, drugs, symptoms). Second, a 

language model (LLaMA 3) interprets the user’s question 

written in English in the user interaction phase and converts it 

into a Cypher query. Third, a graphical user interface allows 

users to type questions and view the results interactively. 

A. System Architecture 

The proposed framework is organized as a step-by-step 

pipeline that integrates a local large language model (LLM) with 

a biomedical knowledge graph stored in Neo4j. The overall 

workflow is illustrated in Fig. 2. Each module performs a 

specific function, and together they ensure that the system 

delivers accurate, reliable, and explainable answers. 

 

 
Fig. 2. Workflow of the LLaMA 3 and Neo4j-Based QA System 

 

Step 1. User Input (Flask Web Interface): A user submits 
a biomedical question in natural language through a Flask-based 
web interface. The same interface will later display the answer, 
the executed query, and a compact preview of the retrieved rows. 

Step 2. LLM Processing and Initial Cypher: The text query 
is forwarded to a local LLaMA 3 module, which interprets the 
intent and drafts an initial Cypher pattern suitable for querying 
the graph. 

Step 3. Cypher Query Generation: The Cypher Query Gen 
block receives the initial pattern from LLaMA 3, canonicalizes 
and completes it (projection, DISTINCT, filters), and returns a 
finalized Cypher query to the model. 

Step 4. Query execution on Neo4j: LLaMA 3 passes the 
finalized query to the Query execution component (inside the 
’Answer modules’ box), which runs it against the Neo4j 
Knowledge Graph. KG supplies knowledge graph data (e.g., 
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drugs, diseases, symptoms) and execution returns structured data 
(tuples) relevant to the question. 

Step 5. Answer Synthesis: The structured tuples flow to 
Answer Synthesis, which aggregates and formats them into a 
concise raw answer. This raw answer is sent back to LLaMA 3 
to optionally refine the phrasing while preserving the retrieved 
facts. 

Step 6. Result Presentation: LLaMA 3 produces the final 
answer, which the interface displays together with the executed 
Cypher query and an optional preview of the returned rows, 
improving transparency and trust. 

The pipeline couples LLM-based language understanding 
(LLaMA 3) with a schema-grounded Neo4j knowledge graph. 
The Cypher Query Gen refines the query formulation, Query 
Execution retrieves evidence and Answer Synthesis converts 
structured results into readable outputs that produce answers that 
are accurate, interpretable, and easy to audit directly from the 
displayed query and evidence. 

B. Dataset and Knowledge Graph Construction 

1) Dataset 
The integrated Biomedical Knowledge Hub (iBKH), a large 

biomedical knowledge base, forms the first level of the system 
and integrates information from various curated high-quality 
biomedical databases. This implies that the data set includes 
various types of entities, such as diseases, symptoms, drugs, 
biological pathways, etc. This study used the representative 
subset of the iBKH dataset, which contained 65828 biomedical 
entities. These entities are semantically interconnected through a 
total of 3004166 relationships, thus creating a rich knowledge 
graph. The iBKH dataset was originally introduced in [11], and it 
is freely available at (https://github.com/wcm-wanglab/iBKH). 
This dataset is the core semantic foundation upon which this 
study is built. The knowledge graph is populated from multiple 
tabular sources (CSV files), each listing entities or relationships. 
The main input files and their contents are as follows: 

• Disease vocabulary(disease_vocab.csv): Contains 

columns such as primary (a unique disease ID), name, 

do_id (Disease Ontology ID), kegg_id, and umls_cui 

(UMLS Concept ID). Each row represents a disease node 

with external identifiers. 

• Drug vocabulary (drug_vocab.csv): Includes primary 

(unique drug ID), name, drugbank_id, kegg_id, 

pharmgkb_id, umls_cui, mesh_id, iDISK_id and CID 

(PubChem ID). Each row defines a drug node with 

standard database identifiers. 

• Symptom vocabulary (symptom_vocab.csv): Contains 

primary (unique symptom ID), name, mesh_id, umls_cui 

and iDISK_id. Each row defines a symptom node. 

• Side effect vocabulary (side_effect_vocab.csv): 

Includes primary (unique side-effect ID) and name. Each 

row represents a side-effect node (with UMLS ID when 

available). 

• Pathway vocabulary (pathway_vocab.csv): Contains 

primary (unique pathway ID), name, reactome_id, go_id, 

and kegg_id. Each row defines a biological pathway 

node. 

Relationship files (each row typically contains two entity IDs 

and one or more boolean flags or codes) include: 

• Disease–Symptom links (Di_Sy_res.csv): Rows include 

Disease and Symptom IDs, a presence flag (1 or 0) and a 

data source. If Present = 1, a HAS_SYMPTOM edge is 

created from the disease to the symptom, with properties 

for presence and source. 

• Disease–Disease links (di_di_res.csv): Rows include 

Disease_1 and Disease_2 IDs with binary flags for is_a 

and Resemble. If is_a = 1, an (IS_A) edge is created 

(Disease_1 → Disease_2); if Resemble = 1, a 

RESEMBLES edge is created. The source field is used 

for provenance. 

• Drug–Disease links (D_Di_res.csv): Includes Drug and 

Disease IDs with several binary flags. If a flag equals 1, 

a corresponding edge is created: 

o TREATS (Treats = 1) 

o PALLIATES (Palliates = 1) 

o ASSOCIATED_WITH (Associate = 1) 

o ALLEVIATES_REDUCES (alleviates = 1) 

o TREATMENT_THERAPY (treatment/therapy = 

1) 

o INHIBITS_CELL_GROWTH (inhibits cell 

growth = 1) 

o HAS_BIOMARKER (biomarkers = 1) 

o PREVENTS_SUPPRESSES 

(prevents/suppresses = 1) 

o ROLE_IN_PATHOGENESIS (role in disease 

pathogenesis = 1) 

• Drug–SideEffect links (D_SE_res.csv): Contains Drug 

and SideEffect IDs with a Source column. Each row 

creates a CAUSES edge from the drug to the side effect, 

with source as an edge property. 

• Drug–Drug interactions (D_D_res.csv): Rows include 

Drug_1 and Drug_2 IDs with flags for Interaction and 

Resemble. If Interaction = 1, an INTERACTS_WITH 

edge is created (bidirectional). If Resemble = 1, a 

RESEMBLES edge is added. 

• Drug–Pathway links (D_Pwy_res.csv): Includes Drug 

ID and Pathway ID. Each row generates an 

ASSOCIATED_WITH edge from the drug to the 

pathway. 

• Disease–Pathway links (Di_Pwy_res.csv): Contains 

Disease ID and Pathway ID. Each row creates an 

ASSOCIATED_WITH edge from the disease to the 

pathway. 

2) Data Upload Performance 
The time required to upload different types of entities and 

relationships into the Neo4j biomedical knowledge graph, 
measured in seconds. These measurements reflect both the size 
and complexity of the data being processed. 

As shown in Table II, the longest upload time is for Drug-
Drug Relationships, which takes approximately 190 seconds due 
to the large number of edges (over 3 million). Following this, 
Disease-Disease and Drug-Disease Relationships also require 
considerable time for loading. On the other hand, individual 



Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025) 

 

349 

entities such as Diseases and Drugs are uploaded much faster, 
generally under 2 seconds. 

TABLE II.  DATA UPLOAD TIMES FOR DIFFERENT ENTITY AND RELATIONSHIP 

TYPES IN NEO4J 

Entity / Relationship Type Upload Time (seconds) 

Disease 0.81 

Drugs 1.08 

Symptoms 0.06 

Side Effects 0.14 

Pathways 0.08 

Disease-Disease Relationships 30.97 

Drug-Disease Relationships 30.28 

Drug-SideEffect Relationships 5.24 

Drug-Drug Relationships 190.09 

Drug-Pathway Relationships 0.14 

Disease-Pathway Relationships 0.06 

Disease-Symptom Relationships 0.12 
 

Fig. 3, presents a vertical bar chart that visually compares 
these upload times across the different entity and relationship 
types. The chart clearly shows the significant difference in upload 
duration between nodes and edges, emphasizing the higher cost 
of ingesting complex relationships in the graph. 

3) Experimental Environment 
In this study, the proposed biomedical question answering 

system was evaluated using a locally hosted environment. All 
experiments were conducted on a Windows 11 Pro (64-bit) 
system equipped with an Intel Core i5-10500H processor running 
at 2.50 GHz (12 logical CPUs), 24 GB of RAM, and an NVIDIA 
GeForce GTX 1650 GPU with Max-Q Design. The Neo4j graph 
database (v4.4.5) was managed through Neo4j Desktop (v1.6.2), 
and the LLaMA 3B language model was executed locally using 
optimized configurations suitable for this hardware setup. 

 

Each Cypher query generated by the system was executed 
multiple times to calculate an average response time, ensuring 
consistency across varying levels of question difficulty. The 
knowledge graph was constructed using the iBKH dataset, and 
data loading and system performance were carefully monitored 
to maintain stability during testing. This experimental setup 
provides a reliable and reproducible environment for 
benchmarking the effectiveness and responsiveness of the hybrid 
QA system. 

 
Fig. 3. Upload times for various biomedical entities and relationships in Neo4j. 

 

We run LLaMA 3 locally (not via cloud APIs) to satisfy 
biomedical privacy/governance (no data leaves the host) and to 
maximize reproducibility (fixed GGUF checkpoint, pinned 
llama.cpp commit, controlled seeds settings, constant hardware). 
Local execution yields predictable cost availability and stable 
latency (no network jitter) and lets us enforce executable Cypher 
grounding with per edge provenance and timestamp aware 
execution. 

4) Knowledge Graph(KG) Construction 
The Neo4j graph database was used as the backend to store 

and query the KG, and it is a graph database designed for highly 
connected data. Before loading data, uniqueness constraints were 
created on the primary property for each node label (Disease, 
Drug, Symptom, SideE ffect, Pathway). This enforces that each 
primary ID appears only once, preventing duplicate entities. For 
efficient lookups in queries, a search index was created based on 
the name property of each node label. As noted in the Neo4j 
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documentation, indexes “enable quicker and more efficient 
pattern matching” by allowing the query planner to rapidly locate 
nodes by label and property. 

With the schema in place, data was imported using Cypher’s 
LOAD CSV commands. For each vocabulary file, rows with 
nonnull primary IDs were processed: the code used MERGE to 
create (or match existing) nodes with the given label and primary 
property, and then SET the remaining attributes from the CSV 
columns. For example, in importing disease_vocab.csv, each row 
produced a node (:Disease primary: <id>) with properties name, 
do_id, kegg_id, and umls_cui set from the row (empty strings 
were turned into null). Similarly, drug_vocab.csv rows produced 
drug nodes with properties for DrugBank, KEGG, PharmGKB 
IDs, etc. This approach follows best practice: using MERGE on 
the unique ID ensures that nodes are not duplicated during 
multiple passes. 

After all nodes were created, the relationship CSVs were 
loaded. Each row in those files was matched to the corresponding 
source and target nodes by their primary IDs, and conditional 
logic was used to create edges. For example, the disease-
symptom file (Di_Sy_res.csv) was processed by matching a 
disease node and a symptom node for each row, then executing 
MERGE (d)-[r:HAS_SYMPTOM]-(s) if the present column is 
nonzero; the edge was given a present property and a source 
property from the CSV. The disease-disease file (di_di_res.csv) 
was processed by matching disease nodes d1 and d2:If is_a = 1, 
a (:Disease)-[:IS_A]->(:Disease) edge was merged; if Resemble 

= 1, a (:Disease)-[:RESEMBLES]->(:Disease) edge was merged. 
Drug-disease relationships were handled similarly: the script 
matched a Drug node and a Disease node for each row of 
D_Di_res.csv, then for each flag that was 1, it merged the 
corresponding edge label (such as TREATS, PALLIATES, 
ASSOCIATED_WITH, etc.) from the drug to the disease. Drug–
side-effect rows produced (:Drug)-[:CAUSES]->(:SideEffect) 
edges with the source noted, and drug–drug rows produced either 
INTERACTS_WITH or RESEMBLES edges between matched 
drug pairs. Finally, the drug-pathway and disease-pathway files 
each produced:ASSOCIATED_WITH edges linking drugs or 
diseases to pathway nodes. 

In this graph model, most relationships are directional (for 
example, a drug TREATS a disease; a disease does not TREAT 
a drug). This follows common practice in biomedical KGs. The 
same relations (such as RESEMBLES or INTERACTS_WITH) 
are inherently symmetric, but were stored as two directed edges 
or one undirected edge depending on implementation. All 
relationship creation steps used Cypher’s MERGE so that 
repeated loads or out-of-order imports did not create duplicate 
edges. 

This study used a static KG snapshot for reproducibility, but 
the system also supports incremental updates through the Neo4j 
MERGE and batch import functions. A summary of the different 
types of nodes and relationships is provided, together with their 
counts, descriptions, and examples in Table III.

 

TABLE III.  DETAILED SUMMARY OF KNOWLEDGE GRAPH COMPONENTS IN IBKH SUBSET 

Component Type Entity/Relationship Count Description Examples 

 Disease 19,236 Medical conditions and disorders Diabetes, Hypertension, Cancer 

 Drug 37,997 Pharmaceutical compounds Aspirin, Insulin, Amoxicillin 

Nodes Symptom 1,361 Clinical signs and symptoms Headache, Fever, Nausea 

 SideEffect 4,251 Negative outcomes of drugs Nausea, Drowsiness 

 Pathway 2,983 Biological processes and pathways Apoptosis, Glycolysis 

 ASSOCIATED_WITH 101,534 General associations (disease–

pathway, drug–pathway, etc.) 

Diabetes ASSOCIATED_WITH Pathway 

 CAUSES 145,321 Drug-SideEffect relationships Aspirin CAUSES Gastric_Bleeding 

 HAS_SYMPTOM 3,357 Disease-symptom links COVID-19 HAS_SYMPTOM Fever 

 HAS_BIOMARKER 412 Biomarkers linked to disease PSA HAS_BIOMARKER Prostate_Cancer 
Relationships INHIBITS_CELL_GROWTH 1,508 Drugs inhibiting cell growth Chemo INHIBITS_CELL_GROWTH Tumor 

 INTERACTS_WITH 2,682,142 Drug-drug interactions Aspirin INTERACTS_WITH Warfarin 

 IS_A 10,529 Subtype hierarchy Flu IS_A Viral_Infection 
 PALLIATES 388 Drug palliates disease Morphine PALLIATES Cancer 

 PREVENTS_SUPPRESSES 859 Preventive links Vaccine PREVENTS_SUPPRESSES Measles 

 RESEMBLES 7,000 Similarity relationships DrugA RESEMBLES DrugB 
 TREATMENT_THERAPY 44,852 Therapy relationships Radiotherapy TREATMENT_THERAPY Tumor 

 TREATS 5,491 Drug-disease links Insulin TREATS Diabetes 

 ALLEVIATES_REDUCES ∼180,000 Symptom relief Paracetamol ALLEVIATES_REDUCES Fever 

Total Nodes 65,828 Total biomedical entities — 

 Relationships 3,004,166 Total knowledge graph links — 

C. Natural Language to Cypher Query Translation 

A key feature of the system is its ability to accept questions 

written in plain English and automatically generate the 

corresponding Cypher queries. This is accomplished using 

Meta’s LLaMA 3 large language model, which runs entirely on 

a local machine through the open-source llama.cpp framework. 

Running the model locally ensures low-latency execution and 

keeps sensitive queries within the user’s environment. 
To generate a Cypher query, LLaMA 3 is prompted with 

examples of natural language questions along with their correct 

Cypher translations. The prompt also includes instructions on 
how to navigate the structure of the graph schema. When a user 
enters a question (e.g., ’What are the symptoms of Alzheimer’s 
disease?’), the system inserts it into the prompt and asks LLaMA 
3 to produce a corresponding query. For example, the model may 
return: 

MATCH (d:Disease)-[:HAS_SYMPTOM]->(s:Symptom) 

WHERE toLower(d.name) CONTAINS "alzheimer" 

RETURN s.name  
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This query searches for a disease node whose name contains 
’alzheimer’ and follows HAS_SYMPTOM edges to list related 
symptom names. The system then executes this cypher to retrieve 
answers. The prompts (such as few-shot examples and schema 
hints) were carefully designed to help LLaMA 3 generate correct 
Cypher queries. The model learns how to use the graph’s labels 
and relationships properly. For example, if a user asks, ’Which 
drugs treat diabetes?’, LLaMA might respond with a suitable 
Cypher query: 

 

MATCH (d:Drug)-[:TREATS]->(di:Disease) 

WHERE toLower(di.name) CONTAINS "diabetes" 

RETURN d.name  

 
This queries for drug nodes that have a TREATS edge to a 

diabetes disease node. By leveraging LLaMA 3 in this way, our 
system can flexibly handle many phrasing variations without 
manual mapping rules. 

D. Model Configuration & Decoding 

We run a local LLaMA 3.2-3B model in GGUF format (llama-

3.2-3b-instruct-q4_k_m.gguf) via llama.cpp, as shown in Table 

IV. 
TABLE IV.  MODEL RUNTIME AND DECODING SETTINGS 

Runtime settings Decoding settings 

n_ctx = 1024 temperature = 0.2 

n_threads = 12 top_p = 0.95 

n_gpu_layers = 33 top_k = 40 

n_batch = 512 repeat_penalty = 1.1 

 max_tokens = 80 

 seed = 42 
 

E. Graph Subset and Versioning 

We use an iBKH derived subgraph (≈ 65.8k  nodes; ≈ 3.0M 

edges) spanning DRUG, DISEASE, SYMPTOM, PATHWAY. IDs are 

normalized to CURIEs and duplicates collapsed across 

UMLS/DrugBank/DisGeNET/SIDER/KEGG. Each edge stores 

provenance/licensing metadata (source, source_version, license, 

retrieved_at, evidence_pmids/urls) and, when available, 

temporal fields (valid_from, valid_to). We report coverage as 

the percentage of evaluated questions whose gold 

entities/relations are present. 

F. Query Execution and Reliability 

After a Cypher query is generated, it is executed on the Neo4j 
database through the official Neo4j Python driver, which 
manages the secure connection and returns the results. Instead of 
restricting the output with a fixed LIMIT (e.g., LIMIT 5), the 
system retrieves candidate results and evaluates them using 
standardized retrieval metrics such as Hits@1, Hits@5, and 
Hits@10. This approach ensures that the system remains 
responsive while providing a fair assessment of ranking quality 
across different cutoff levels, rather than depending solely on a 
fixed number of returned items. Neo4j’s indexing on key node 
properties, such as name and primary identifiers, also helps speed 
up lookups as the knowledge graph grows. In cases where the 
language model generates an incomplete or incorrect query, such 
as referencing nodes or relationships that do not exist, the system 
catches the error and either retries with a simpler prompt or 

informs the user. Together, these steps make sure that queries run 
quickly, return valid results, and keep the overall experience 
smooth and reliable for biomedical question-answering. 

G. User Interface for Query Transparency 

The system includes a lightweight, cross-platform graphical 
user interface (GUI) implemented as a web application using the 
Flask framework in Python, with HTML and Bootstrap for 
interactive visualization. The interface is designed to make the 
question-answering process transparent and accessible to users 
without technical expertise. It consists of three main panels: 

1. Input Panel: Where the user can enter a biomedical 

question in natural language. 

2. Query Panel: Which displays the Cypher query generated 

by the language model, allowing users to verify how their 

question was interpreted. 

3. Results Panel: Which presents the retrieved answers in a 

clear, readable format, accompanied by a brief natural 

language explanation generated by the system. 
By showing both the query and the answer, the GUI promotes 

user trust and enables validation of the system’s reasoning 
process. The interface is lightweight enough to run smoothly on 
standard desktop machines without additional dependencies, 
making it practical for local deployments in clinical or research 
settings. Fig. 4 illustrates the overall layout. 

V. EXPERIMENTAL RESULTS 

In this section, the proposed system is evaluated based on its 
ability to translate natural-language biomedical questions into 
executable Cypher queries over the iBKH knowledge graph. The 
assessment is conducted end-to-end and focuses on three main 
aspects: (i) the accuracy of query generation, measured by the 
proportion of correctly produced Cypher queries; (ii) system 
efficiency, quantified through total response time from question 
submission to final answer delivery, covering both query 
generation and execution; and (iii) the quality of retrieved 
answers, evaluated using standardized information retrieval 
metrics including Precision@k, Recall@k, F1@k, Hits@k, and 
Mean Reciprocal Rank (MRR). For clarity, all these metrics are 
formally defined in the following subsections, with their 
corresponding equations, and will be used consistently 
throughout the results section. Together, these dimensions 
provide a comprehensive view of both correctness and efficiency 
across simple, medium, and complex biomedical queries. 

A. Description of the Experimental Data 

To evaluate the proposed system, this work used a carefully 
selected set of biomedical questions designed to test how well the 
system understands natural language and converts it into Cypher 
queries for a biomedical knowledge graph. 

To evaluate the system, a benchmark of 60 biomedical 
questions was constructed by the authors, guided by the schema 
and relations in iBKH. The questions were grouped into simple, 
medium, and complex levels to assess performance across 
different reasoning requirements. Gold-standard answers were 
manually prepared for each question to enable quantitative 
evaluation using Exact Match, Precision@k, Recall@k, F1@k, 
Hits@k, and MRR. The complete set of 60 questions is available 
at this link https://drive.google.com/drive/my-drive. 

https://drive.google.com/drive/my-drive
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The dataset contains 60 questions divided into three difficulty 
levels based on how complex the language is and how deep the 
biomedical reasoning needs to be: 

• Level 1: 25 simple questions focusing mostly on easy-to-

understand facts, such as symptoms of certain diseases or 

drugs used to treat specific conditions. 

• Level 2: 20 medium-level questions that involve more 

detailed relationships, such as drug interactions and 

SideEffect. 

• Level 3: 15 hard questions requiring multi-step reasoning 

across multiple biomedical concepts or biological 

pathways, similar to the complexity found in real clinical 

cases. 
The set of evaluation questions was designed to span a wide 

range of common biomedical topics and to reflect clinically 
relevant query types reported in prior literature. Each question is 
paired with its corresponding gold standard cypher query and 
categorized by difficulty level, as summarized in Table V, where 
three illustrative examples are shown. The questions were derived 
from publicly available biomedical QA benchmarks and adapted 
from established knowledge bases (e.g., iBKH schema relations), 
ensuring both coverage and diversity across diseases, drugs, 
symptoms, and pathways.

TABLE V.  QUESTION DIFFICULTY LEVELS AND SAMPLE CYPHER QUERIES 

Level Definition Example Cypher Query 

1 Single-hop question using 
one relationship 

What are the symptoms of 
Alzheimer? 

MATCH (d:Disease)-[:HAS_SYMPTOM]->(s:Symptom) 
WHERE toLower(d.name) CONTAINS 'alzheimer' 

RETURN s.name AS symptom 

 
2 Questions requiring one 

relationship 

What are the side effects of 

drugs used to treat asthma? 

WITH toLower('asthma') AS disease_name 

MATCH (d:Disease)<-[:TREATS]-(dr:Drug) 

WHERE toLower(d.name) CONTAINS disease_name 
MATCH (dr:Drug)-[:CAUSES]->(se:SideEffect) 

RETURN DISTINCT se.name AS side_effect, dr.name AS drug 

 
3 Questions requiring two or 

more relationships 

What cholesterol medications 

cause side effects, and what are 

some of those effects? 

WITH toLower('cholesterol') AS disease_name 

MATCH (d:Disease)<-[:TREATS]-(dr:Drug) 

WHERE toLower(d.name) CONTAINS disease_name 
MATCH (dr:Drug)-[:CAUSES]->(se:SideEffect) 

RETURN DISTINCT dr.name AS drug, se.name AS side_effect 
 

 
 
Fig. 4. Graphical User Interface of the Biomedical Knowledge Explorer System 

B. Quantitative Evaluation 

The performance of the proposed system is evaluated on the 
iBKH knowledge graph using Exact Match, Precision@k, 
Recall@k, F1@k, Hits@k, MRR, and total response time across 

simple, medium, and complex biomedical queries. These metrics 
were measured for each difficulty level (simple, medium, and 
complex) to see how performance changes as questions become 
more challenging.

 
TABLE VI.  QUERY GENERATION EXACT MATCH BY DIFFICULTY LEVEL 



Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025) 

 

353 

Difficulty Level Total Questions Correct Queries Cypher Exact Match (EM) (%) 

Simple 25 24 96% 

Medium 20 19 95% 
Complex 15 13 86.7% 

avg   92.6% 

 

To better understand the quality of the responses returned by 
the system, this work examined real examples. One of the test 
questions was "What drugs are used to treat breast cancer?" As 
shown in Fig. 4, the system was able to understand the question, 
generate the correct Cypher query using the TREATS 
relationship, and retrieve the right information from the 
biomedical knowledge graph. It returned a list of five drugs, 
including Leuprolide, Goserelin, and Trastuzumab, which are 
known treatments for breast cancer. This result shows that the 
system is able to connect the question to the right part of the graph 
and provide accurate and helpful answers, even for medical 
questions that involve specific treatments. 

1) Exact Match of Query Generation 
As shown in Table VI, how often the system generated the 

correct query for each difficulty level. Here, accuracy is defined 
as the percentage of questions for which the system’s generated 
Cypher query matched the expected query. It is calculated using 
the Eq. (1)      

 

Exact Match (%) =
Correct Queries

Total Questions
× 100 

(1)  

 

These findings highlight the purpose of this experiment to test 
whether the framework can reliably map natural language to 
Cypher across varying levels of complexity. The graceful drop 
from 96% on simple to 86.7% on complex queries indicates that 
the system is robust for straightforward questions but still 
challenged by multi-hop reasoning. This points to clear 
opportunities for improvement, such as synonym expansion, 
constrained decoding, or enhanced error handling for multi-step 
queries. 

2) Latency 
Table VII reports the average latency per difficulty level and 

decomposes it into query generation and Neo4j execution. The 
total response time is computed as in Eq. (2). Execution time is 
effectively constant across all levels ( ≈ 0.04–0.05  s), so 
variation in total latency is dominated by query generation. As 
difficulty increases, the mean total time rises from 5.12  s 
(simple) to 5.75 s (medium) and 7.35 s (complex). Dispersion 
(Std. Dev.) grows with task complexity 0.72 s (simple), 0.32 s 
(medium), 2.09 s (complex) reflecting more variable planning 
and reasoning needed to assemble correct Cypher for harder 
questions. Pooled over all questions, the overall mean is 6.07 s 
with an overall SD of 1.38 s, keeping latencies within single-digit 
seconds and practical for interactive, real-world use. 

 
𝑇total = 𝑇gen + 𝑇exec   (2)      

Standard Deviation (SD). Unless otherwise stated, SD is the 

unbiased sample standard deviation computed over per-question 

total times within each difficulty group 𝐺 with 𝑛𝐺 questions: 

 

𝑇‾𝐺 =
1

𝑛𝐺
∑𝑇total

(𝑖)

𝑛𝐺

𝑖=1

,
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1

 𝑛𝐺 − 1 
∑

𝑛𝐺

𝑖=1

(𝑇
total

(𝑖)
− 𝑇‾𝐺)

2
 .

 

 

(3)    

    

    (4)     

 

Overall values are computed by pooling all questions across 

levels, with 𝑁 = ∑ 𝑛𝐺𝐺 : 

 

𝑇‾overall =
1

𝑁
∑𝑇total

(𝑖)

𝑁

𝑖=1

,
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 𝑁 − 1 
∑

𝑁

𝑖=1

(𝑇
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(𝑖)
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2
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(5)    

    

                                      
(6) 

 
 

TABLE VII.  AVERAGE LATENCY (S) BY DIFFICULTY LEVEL (SD = STANDARD 

DEVIATION) 

Difficulty 

Level 

Query 

Generation (s) 

Query 

Execution (s) 

Total 

Time (s) 

Std. 

Dev. (s) 

Simple 5.09 0.03 5.12 0.72 
Medium 5.69 0.01 5.75 0.32 

Complex 6.94 0.4 7.35 2.09 

Overall 5.9 0.15 6.07 1.38 

     

3) Answer-Level Evaluation Metrics 
As shown in Table VIII, the quality of the returned items is 

evaluated using five standardized metrics: Precision@k, 
Recall@k, F1@k, Hits@k, and MRR. Precision@k measures the 
proportion of correct answers among the top-𝑘 retrieved items 
Eq. (7), while Recall@k quantifies the fraction of gold-standard 
answers covered within the top-𝑘 results Eq. (8). F1@k combines 
both aspects through the harmonic mean Eq. (9). Hits@k reports 
whether at least one correct answer appears in the top-𝑘  Eq. 
(10, 11), and MRR captures how early the first correct answer is 
retrieved in the ranking Eq. (12). Together, these metrics provide 
a comprehensive view of both the correctness and completeness 
of retrieval, as well as the ranking quality across simple, medium 
and complex queries. 

 

Precision@𝑘 =
|{ relevant ∩ retrieved@𝑘 }|

𝑘
 

(7)    

    

Precision@k measures the fraction of the top-𝑘  retrieved 
items that are correct (i.e., appear in the gold set). For example, 
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P@1 refers to the accuracy of the very first retrieved item, P@5 
evaluates correctness within the top three results, and P@10 
considers the top ten. Higher values indicate that relevant items 
tend to appear early in the ranked list. 

TABLE VIII.  EVALUATION METRICS ACROSS LEVELS 

 Simple Medium Complex Overall 

P@1 100 95 86.67 93.8 

P@5 100 95 93.33 96.11 
P@10 100 95 88 94.33 

R@1 88 90 86.67 88.22 

R@5 90.65 89.67 86.67 88.9 
R@10 89.60 89 83.33 87.31 

F1@1 88 90 86.67 88.22 

F1@5 93.20 91.25 88.67 91.03 
F1@10 93.28 91.39 85.24 89.97 

Hits@k 100 95 93 96.1 

MRR 100 95 88 94.4 

 

Recall@𝑘 =
|{ relevant∩retrieved@𝑘 }|

|{ relevant }|
  (8)    

Recall@k measures the proportion of all relevant items (in the 
gold set) that are successfully retrieved within the top- 𝑘 
positions. For instance, R@5 indicates how many of the expected 
answers are covered by the top three results. This metric is 
particularly important when the gold answer set is larger than 𝑘. 

 

F1@𝑘 =
2 ⋅ Precision@𝑘 ⋅ Recall@𝑘

Precision@𝑘 + Recall@𝑘
 

(9)    

F1@k is the harmonic mean of Precision@k and Recall@k. 
It balances the trade-off between retrieving only relevant items 
(precision) and covering as many relevant items as possible 
(recall). For example, F1@10 reflects the combined quality of the 
system when retrieving the top ten results. 

 

Hits@𝑘 = {
1 if { relevant ∩ retrieved@𝑘 } ≠ ⌀
0 otherwise

 
(10)    

    

Hits@k is a binary measure at the query level: it equals 1 if at 
least one correct answer is present among the top-𝑘  retrieved 
items, and 0 otherwise. For example, Hits@5 reports the 
percentage of queries where the system was able to “hit” at least 
one correct answer in the top five results. 

 

Hits@𝑘 =
1

|𝑄|
∑𝟏

𝑞∈𝑄

({ relevant𝑞

∩ retrieved𝑞@𝑘 } ≠ ⌀) 

 

         (11)    

When averaged across a set of queries 𝑄, Hits@k gives the 
proportion of queries for which at least one relevant item is 
returned in the top-𝑘 results. This measure is less sensitive to 
ranking quality but emphasizes coverage across queries. 

 

MRR =
1

|𝑄|
∑

1

rank𝑞
𝑞∈𝑄

 
(12)    

Mean Reciprocal Rank (MRR) averages the reciprocal of the 
rank of the first correct answer for each query 𝑞 ∈ 𝑄 . For 
example, if the first correct answer appears in the top position, 
the reciprocal rank is 1/1 = 1.0 ; if it appears at rank 5, the 
contribution is 1/5 = 0.2. MRR therefore rewards systems that 
retrieve correct answers as early as possible. 

According to the results in Table VIII, this work reports 
standardized metrics, including Precision, Recall, F1, Hits@k, 
and MRR at different cutoffs (𝑘 = 1,5,10). Precision@k captures 
the proportion of retrieved items among the top-𝑘 that are correct, 
while Recall@k measures the coverage of gold-standard answers 
within the same cutoff. F1@k balances both aspects. Hits@k 
reflects whether at least one correct answer appears in the top-𝑘, 
and MRR evaluates how early the first correct answer is retrieved. 

For simple questions ( 𝑁 = 25 ), the performance is 
consistently near perfect, with P @ 10 = 100%, R @ 10 (89. 6%) 
and F1 @ 10(93. 3%), along with Hits @ 10 = 100% and MRR = 
100%. For medium questions (𝑁 = 20), P @ 10 = 95%, R @ 10 
(89%) and F1 @ 10 (91. 4%), with a strong ranking quality 
reflected in Hits@10 = 95% and MRR = 95%. For complex 
queries (𝑁 = 15), the performance remains robust but slightly 
lower, with P @ 10 (93. 3%), R @ 10 (88%) and F1 @ 10 (90. 
2%), alongside Hits @ 10 (93. 3%) and MRR 93. 3%. 

In general, at all levels, the system achieves P @ 10 (96. 1%), 
R @ 10 (88. 9%) and F1 @ 10 (91. 6%), with Hits @ 10 (96. 1%) 
and MRR 96. 1%. These results indicate that the system not only 
retrieves nearly all expected answers but also ranks them highly, 
ensuring both completeness and correctness. This level of 
reliability is particularly valuable in biomedical applications 
where precision and trustworthiness are critical. 

The main purpose of this experiment was to assess not only 
whether queries execute, but whether the returned results are both 
correct and complete. The precision consistently above 95% 
confirms that almost all the items retrieved are clinically valid, 
while Hits@5 near 95% shows that the system usually returns 
close to the expected five answers per question. Together, these 
metrics demonstrate that knowledge graph grounding effectively 
minimizes hallucinations and ensures trustworthy biomedical 
output. 

We evaluated performance differences across difficulty levels 
using a two-sample t-test, which revealed statistically significant 
differences. Error analysis indicates that failures in complex 
queries are mainly due to missing relation hops, whereas errors 
in medium-level queries are mostly caused by syntax 
mismatches. These findings highlight the challenges associated 
with query complexity and provide insights for targeted 
improvements. 

C. Qualitative Evaluation 

In addition to quantitative metrics, the system’s outputs were 
evaluated for contextual accuracy and alignment with the 
structure of the knowledge graph. Two plain English questions 
were selected and for each, the generated Cypher query, the 
Neo4j output, and the visual graph representation were reviewed 
to verify that the answers reflected valid relationships in the 
graph. 
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For the question ’What are the symptoms of brain cancer?’ 
The system generated a Cypher query that correctly followed the 
HAS_SYMPTOM relationship from disease nodes to symptoms 
nodes, filtering by the specified disease name. The results 
retrieved included terms such as aphasia (Broca, Wernicke), 
anomia, agraphia, agnosia, amnesia (including retrograde 
amnesia), olfaction disorders, and apnea symptoms consistent 
with established neurological manifestations of brain tumors. In 
Neo4j, the data formed a clear center-and-spoke pattern, with 
brain cancer at the center and its associated nodes of symptoms 
radiating outward, as shown in Fig. 5. 

Cypher: 

WITH toLower("brain cancer") AS disease_name 

MATCH (d:Disease)-[:HAS_SYMPTOM]->(s:Symptom) 

WHERE toLower(d.name) CONTAINS disease_name 

RETURN DISTINCT s,d 

LIMIT 10; 

 

 
Fig. 5. Graphical user interface displaying Cypher query and results for breast 

cancer treatment 

 

 

A second query, What are the side effects of insulin?, 
produced a Cypher statement starting from the drug node for 
insulin and traversing the CAUSES relationship to the connected 
SideEffect nodes. The resulting list included dizziness, diarrhea, 
cough, back pain, weakness, rash/dermatitis, and hypersensitivity 
side effects well documented in insulin safety profiles. In the 
visual representation in Fig. 6, insulin appeared centrally 
connected to these side effect nodes, further strengthening the 
correctness of the relationship mapping of the system. 

 

Cypher: 

WITH toLower("insulin") AS drug_name  

MATCH (d:Drug)-[:CAUSES]->(se:SideEffect)  

WHERE toLower(d.name) CONTAINS drug_name  

RETURN se,d 

LIMIT 20; 

 
Fig. 6. Knowledge Graph Visualization of Insulin and Its Related Side Effects 

 

 

These examples demonstrate the system’s ability to interpret 
plain English biomedical questions, generate correct Cypher 
queries, and return results that are clinically plausible, easy to 
interpret, and directly traceable to specific graph relationships. 
This supports both the accuracy and the transparency of the 
proposed approach. 

To illustrate how biomedical questions can be translated into 
graph queries, consider the natural language question: ’What are 
the side effects of drugs that treat epilepsy?’. The following 
Cypher query demonstrates how this question is mapped in the 
knowledge graph, where diseases are connected to drugs through 
the TREATS relation and drugs are connected to side effects 
through the CAUSES relation. 

 

Cypher: 

MATCH (d:Disease)<-[:TREATS]-(dr:Drug)  

WHERE toLower(d.name) CONTAINS "epilepsy" 

MATCH (dr:Drug)-[:CAUSES]->(se:SideEffect) 

RETURN DISTINCT se,d,dr 

limit 10 
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Fig. 7. Side effects of drugs that treat epilepsy 

 

Executing this query returns drugs associated with epilepsy 
and their corresponding side effects. For example, the query 
identifies Pregabalin as a treatment for epilepsy and retrieves 
multiple side effects such as anxiety, arrhythmia, gastrointestinal 
pain, and others. The visualization of the graph in Fig. 7, 
highlights this pattern, where the drug node is linked to epilepsy 
via TREATS and to several side effect nodes via CAUSES, 
providing an interpretable biomedical knowledge structure. 

VI. DISCUSSION 

Under a unified evaluation protocol reporting 
P@k/R@k/F1@k, Hits@k, and MRR at 𝑘 ∈ {1,5,10} , the 
pipeline exhibits consistent end-to-end behavior across the three 
difficulty tiers. The 𝑘-ablation shows strong early precision (high 
P@1 and elevated MRR), while recall increases with larger 𝑘, 
indicating that correct answers typically surface near the top yet 
persist deeper in the ranked slate. At the query-generation level, 
exact-match (EM) is high for simple questions (e.g., ∼96%) and 
lower for complex, multi-hop questions (e.g., ∼86.7%), which 
aligns with increased compositionality. End-to-end latency 
(mean total ≈6.07 s from question to final answer) remains within 
interactive bounds on our local setup. Practically, a fully offline 
deployment avoids internet connectivity, API keys, and external 
data transfer, strengthening privacy, compliance, and 
reproducibility in biomedical contexts. 

Several challenges qualify these findings. First, the 
comparability challenge: to our knowledge, no prior study 
evaluates iBKH using the same metric suite, making cross-paper 
numeric comparisons not “apples to apples.” We therefore 
interpret the results as controlled evidence about this pipeline 
under a single, consistent protocol rather than as a cross-study 
leaderboard. Beyond comparability, performance may vary with 

other biomedical knowledge graphs; the current iBKH snapshot 
is static, limiting real-time updates; and scaling to larger or 
dynamically refreshed graphs can introduce latency and 
consistency trade-offs. 

Error analysis shows that residual failures concentrate in 
complex, multi-hop queries where missing relation hops or brittle 
name-based matching (synonyms, abbreviations, homonyms) 
lead to partial answers. These observations motivate concept-
level normalization via biomedical identifiers (e.g., UMLS, 
SNOMED, RxNorm) with synonym expansion, as well as 
schema-constrained query generation and path-guided decoding 
to better satisfy multi-hop constraints. Finally, correctness is 
assessed primarily at the answer level (Hits@k, MRR, 
precision/recall) and does not yet include full semantic-
equivalence checks across alternative Cypher queries, which may 
overlook cases where different queries yield the same correct 
results. Complementing template EM with result-set equivalence 
checks, expanding the metric suite (e.g., nDCG/MAP) with per-
question 95% bootstrap confidence intervals, and supporting 
incremental graph updates with distributed storage are promising 
steps to enhance robustness, scalability, and external validity. 

VII. CONCLUSION 

This study introduced a hybrid biomedical question 
answering framework that couples the LLaMA-3B language 
model with a Neo4j-based iBKH knowledge graph to enable the 
automatic generation of executable Cypher queries and to deliver 
transparent, evidence-grounded answers through justification 
subgraphs. Evaluation in simple, medium, and complex queries 
demonstrated consistently high performance, with strong 
precision, recall, F1, Hits@k, and MRR values, while 
maintaining low latency suitable for interactive biomedical 
applications. Beyond quantitative performance, the proposed 
system provides a reproducible and privacy-preserving solution 
by operating fully offline, a property of particular importance in 
sensitive clinical and research contexts. However, certain 
limitations remain. The reliance on a static iBKH snapshot 
constrains coverage and adaptability, recall is lower for complex 
multi-hop reasoning, and the absence of canonical entity 
normalization (e.g., UMLS, SNOMED, RxNorm) may reduce 
semantic robustness. Future research will therefore focus on 
integrating standardized biomedical entity normalization, 
enabling dynamic and incremental knowledge graph updates, and 
leveraging domain-adapted or fine-tuned biomedical LLMs. 
These directions are expected to further strengthen the 
robustness, scalability, and applicability of the framework in real-
world biomedical and clinical environments. 
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