

Vol. 06, No. 02, pp. 342 –357 (2025)
ISSN: 2708-0757

JOURNAL OF APPLIED SCIENCE AND TECHNOLOGY TRENDS

www.jastt.org

 342
doi: 10.38094/jastt62404

A Hybrid LLM–Knowledge Graph Framework for Accurate

Biomedical Question Answering

Havraz Y. Omar1,²*, Abdulhakeem O. Mohammed³

¹Department of Information Technology, Technical College of Duhok, Duhok Polytechnic University, Duhok, Kurdistan Region,

Iraq. havraz.omar@dpu.edu.krd

² Department of Information Technology, Technical College of Informatics – Akre, Akre University for Applied Sciences, Akre,

Kurdistan Region, Iraq.

³ Department of Computer Science, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq.

a.mohammed@uoz.edu.krd

*Correspondence: havraz.omar@dpu.edu.krd

Abstract
Biomedical question answering requires accurate and interpretable systems; however, existing approaches often face challenges such as

language model hallucinations and limited reasoning when relying solely on standalone knowledge graphs. To address these limitations,

this study proposes a hybrid framework that integrates the LLaMA-3B language model with a Neo4j-based drug–disease–symptom

knowledge graph. The system translates natural language questions into executable Cypher queries, operates on an iBKH-derived graph

comprising over 65,000 entities and 3 million relationships, and returns answers with supporting evidence through a transparent interface.

Experiments conducted on 60 biomedical questions across three levels of difficulty demonstrate the robustness of the approach: 96%

exact match for simple queries, 95% for medium queries, and 86.7% for complex queries. Overall, the system achieves Precision@5 of

96.1%, Recall@5 of 89.0%, F1@5 of 91.0%, Hits@k of 96.1%, and an MRR of 94.4%, while maintaining an average response time of

only 6.07 seconds. These results indicate that the system retrieves nearly all relevant answers, ranks them correctly, and delivers them

with latency low enough for interactive use. Moreover, unlike cloud-based APIs such as ChatGPT, which require internet connectivity

and external data transmission, the proposed framework operates fully offline, ensuring privacy, reproducibility, and compliance with

biomedical data governance. Overall, this pipeline provides an accurate, efficient, and privacy-preserving solution for biomedical question

answering, making it a practical alternative to cloud-dependent approaches in sensitive healthcare contexts.

Keywords: Knowledge Graph, LLM, Question Answering, Neo4j, Biomedical Informatics, Healthcare AI, LLaMA 3.

Received: August 14th, 2025 / Revised: October 10th, 2025 / Accepted: October 16th, 2025 / Online: October 20th, 2025

I. INTRODUCTION

Answering questions in the biomedical field is a difficult task
due to the complexity of medical knowledge and the need for
precision. In recent years, large language models (LLMs) like
LLaMA, GPT-4 have made progress in understanding and
generating human-like responses to medical questions [1, 2].
These models can process large amounts of information and
respond in natural language, which makes them helpful in
healthcare settings [3]. However, they often struggle to provide
accurate answers when dealing with specialized biomedical
content [4, 5].

One major issue with LLMs is a problem called hallucination,
where the model generates information that sounds right but is
actually incorrect or unsupported [6]. In medical applications,
this can be dangerous, as healthcare professionals rely on precise

and trustworthy information [7]. Therefore, researchers are
exploring ways to combine LLMs with structured sources of
knowledge to improve their reliability [8].

LLM-only systems in biomedicine still hallucinate and are
hard to verify, limiting safe use [9, 10]. Biomedical knowledge
graphs (BKGs) such as iBKH and SPOKE curate multi-source
facts and enable multi-hop reasoning, yet they neither interpret
free text nor generate answers [11, 12]. Recent hybrids (KG-
aware RAG) improve grounding but often lack explicit path-level
justifications and robust end-to-end answer evaluation [13, 14].

Recent studies have increasingly integrated Knowledge
Graphs (KGs) with Large Language Models (LLMs) to improve
factual accuracy, reasoning, and reduce hallucinations. Notable
examples include DR.KNOWS, which combines UMLS-based
KGs with LLMs for better diagnostic reasoning [15], KnowNet

http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt62404
https://jastt.org
https://ipacademia.org/
mailto:havraz.omar@dpu.edu.krd
mailto:a.mohammed@uoz.edu.krd
mailto:havraz.omar@dpu.edu.krd
https://orcid.org/0000-0002-0500-0398

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

343

for visualizing and validating LLM outputs [16], and MedKA for
KG-enhanced question answering [17].

To address these challenges, several recent works have
explored the integration of large language models with
biomedical knowledge graphs (KGs). A biomedical KG is a
structured network that connects entities such as diseases, drugs,
and symptoms using defined relationships [18, 19]. These graphs
store verified medical knowledge from trusted databases,

allowing for more accurate and explainable responses [12]. KGs
are especially useful in multi-step reasoning tasks, where finding
an answer requires connecting different pieces of information
[20]. These entities and relationships can be visually represented
in a biomedical knowledge graph, as shown in Fig. 1, where
nodes represent medical concepts such as drugs, diseases,
symptoms, and pathways, and edges denote their semantic
relationships.

Fig. 1. Overview of Biomedical Knowledge Graph Entities and Relationships

One example of a widely used biomedical KG is SPOKE,
which includes millions of nodes and relationships from over 40
biomedical databases [12]. Integrating an LLM with a KG allows
the strengths of both technologies to work together: the LLM
provides language understanding, and the KG provides
structured, factual knowledge [21, 22]. A common method is
retrieval-augmented generation (RAG), where the LLM retrieves
information from the KG and uses it to generate more accurate
responses [13, 23]. In more advanced setups, the LLM can even
generate queries like Cypher to fetch specific data from the graph
[24, 25]. Neo4j is a popular graph database that supports fast and
flexible storage and querying of knowledge graphs using Cypher
[21]. It is well-suited for biomedical applications because it
allows easy exploration of complex medical relationships. Recent
work has shown that combining Neo4j with LLMs can lead to
better accuracy, fewer hallucinations, and more explainable
results [24, 26].

Despite improvements, building a reliable hybrid system that
combines an LLM with a biomedical KG remains a technical
challenge. Some approaches require complex pipelines or large
training datasets, while others rely on fine-tuning specific to a
narrow set of questions [27, 28]. There is still a need for systems
that are both accurate and easy to scale, especially in domains like
medicine where the cost of errors is high [22].

Recent advances in KG-augmented LLMs have improved
performance, yet biomedical QA continues to face three practical
gaps:

1. Traceability: LLM-only or text-retrieval-only pipelines
rarely provide graph-grounded justifications; users lack the
ability to inspect the exact nodes and edges that support an
answer.
2. Evaluation: Prior work often judges quality via surface-
form checks (e.g., matching a Cypher template), which fails to
capture end-to-end answer correctness or ranking quality
across different difficulty levels.
3. Deployment: Many solutions assume cloud resources or
domain-specific fine-tuning, yet biomedical contexts typically
demand a local, privacy-preserving system with low latency
and reproducible behavior.

Timestamp-aware execution and periodic KG refresh help
avoid deprecated or contraindicated links, making the tool better
suited for safety-critical clinical contexts (e.g., drug–drug
interactions).

To address these limitations, Our work introduces a locally
deployable pipeline that translates biomedical questions into
executable Cypher queries over a Neo4j knowledge graph. The
system returns answers with supporting nodes and edges, and is

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

344

evaluated using Exact Match, Precision, Recall, F1, Hits@k,
MRR, and latency across simple, medium, and complex question
sets. Unlike prior template-based methods, our approach enables
traceable, outcome-level validation. In summary, the main
contributions of this work are as follows:

• Hybrid LLM to Cypher QA: A system that translates

natural language questions into accurate, executable

Cypher over a Neo4j drug, disease, and symptom KG.

• Prompt-driven query generation: Schema, entity

aware prompting that reliably maps diverse biomedical

questions to graph queries.

• Evidence transparency: Along with each answer, we

surface the generated Cypher and the supporting

justification subgraph (nodes, edges) plus a brief natural

language rationale.

• Answer-level evaluation: End-to-end assessment using

Exact Match, F1, Precision/Recall, Hits@k, MRR and

latency across simple, medium and complex tiers.

• Local, reproducible deployment: On-prem LLaMA 3

inference (no cloud dependency) suitable for biomedical

settings requiring low latency and strong data control.

The remainder of this paper is organized as follows: Section

2 reviews related work on biomedical knowledge graphs and
LLM-based QA systems. Section 3 provides background on
knowledge graphs, large language models, and question
answering frameworks. Section 4 details the proposed
methodology, including system architecture, dataset
construction, and query translation. Section 5 presents the
experimental results through both quantitative metrics and
qualitative case studies. Section 6 discusses the findings, analyzes
limitations, and compares performance against baseline models.
Finally, Section 7 concludes this paper and outlines directions for
future work.

II. RELATED WORK

Recently, studies have concentrated on the integration of
clinical and medical knowledge graphs (LLM) to improve the
answer to medical questions. Researchers have derived several
biomedical KGs using Neo4j and incorporated the application of
LLMs like LLaMA and GPT to convert natural language
questions into graph queries. Improvements in answer
correctness, reduction of hallucination errors, one-to-many
relationships, and support for complex reasoning were the
objectives of these efforts. Some frameworks also adopted
retrieval methods to ground responses in secure data.

Su et al.[11] developed an integrative Biomedical Knowledge
Hub (iBKH), a huge biomedical knowledge graph that comprises
18 of the very best data sources. The deployment of the iBKH in
Neo4j allows for a user-friendly web portal to allow fast and
interactive knowledge retrieval. The system implemented
advanced graph learning techniques to enable the discovery of
biomedical knowledge, illustrated by an example of repurposing
in silico drugs for Alzheimer’s disease. iBKH achieved
promising predictive performance for known drugs and proposed
possible new drug candidates.

Rajabi and Kafaie[19] proposed a disease knowledge graph
using a cross-referential disease database comprising diseases,
symptoms, and drugs interconnected with relationships. They
transferred the data into Neo4j to create a graph of 9,400 nodes
and 45,000 relationships representing the semantic links between
medical concepts. Applying Cypher queries enabled answering
complex medical questions regarding identifying drugs that may
cause certain diseases; it was demonstrated that the graph inferred
new relationships not explicitly existing in the original data. The
conclusion was that disease knowledge graphs sped up clinical
discovery and contributed to understanding complex medical
relationships.

Hou et al.[3] assessed and contrasted ChatGPT (both GPT-
3.5 and GPT-4) and the biomedical knowledge graphs (BKGs)
concerning their ability to answer biomedical questions, generate
new knowledge, and reason. Their datasets were focused on
dietary supplements and drugs, while evaluation criteria entailed
accuracy, novelty, and reasoning ability. The results indicate that
while GPT-4 surpassed GPT-3.5 and BKGs in knowledge
provision, it proved inconsistent with regard to citations and
reasoning. Compared to them, BKGs scored higher in accuracy
and reliability, especially in discovering novel links as well as
within structured reasoning.

Soman et al.[13] presented a novel framework called KG-
RAG that integrates a large biomedical knowledge graph
(SPOKE) with LLaMA 2, GPT-3.5, and GPT-4 (LLMs) to
produce accurate biomedical text. They optimized the retrieval of
relevant graph context to cut over 50% tokens without losing
accuracy. It aided LLMs in performing better on biomedical
question answering with very high accuracy boosts, especially in
the case of LLaMA 2. They compared KG-RAG to other retrieval
methods and indicated its comparatively more robust and
efficient results. The framework produced reliable evidence-
based answers grounded in biomedical knowledge.

Luo et al.[23] created ChatKBQA, a new framework with a
question-and-answer approach over knowledge bases that first
generates logical forms with the help of fine-tuned LLMs and
then retrieves the relevant entities and relations. This generate-
then-retrieve approach is supposed to handle a couple of issues
with the earlier methods concerning tedious retrieval and error
propagation. They fine-tuned open-source LLMs like LLaMA 2
to change natural-language questions into logical forms with high
accuracy. The retrieval phase uses unsupervised phrase-level
semantic matching in a way that enhances the alignment of
entities and relations. Experiments on benchmark datasets
indicate ChatKBQA to be superior to its predecessors, with the
highest accuracy to date.

Pusch and Conrad[6] conducted work under a hybrid
approach conflating LLMs and biomedical Knowledge Graphs
(KGs) to suppress hallucination errors in question-answering.
They proposed query-checking algorithms for validating,
correcting, and executing the KG Cypher queries that LLMs
generated, thereby attaining accurate and understandable
answers. The system used retrieval-augmented generation (RAG)
to ground answers within KG data. The methodology was
validated on a biomedical KG called PrimeKG using 50
benchmark questions, assessing models like GPT-4 Turbo and
LLaMA 3. Commercially available GPT-4 Turbo obtained

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

345

record-high accuracy, while open-source models achieved
impressive gains through prompt optimization.

Feng et al.[22] developed the Knowledge Graph-based
Thought (KGT) framework that integrated LLMs with a pan-
cancer knowledge graph for biomedical question answering.
KGT was designed to reason on the knowledge graph schema and
identify optimal subgraphs to use for directing accurate answer
generation, all without fine-tuning the LLMs. The framework is
benchmarked against a new dataset (PcQA) designed specifically
for pan-cancer KGQA tasks and has outperformed all existing
state-of-the-art approaches by a rather large margin. KGT’s
practicality in biomedical issues was highlighted through case
studies for drug repositioning, drug resistance, and biomarker
discovery. Their approach exhibited robust adaptability among
various LLMs.

Rezaei et al.[26] developed AMG-RAG, a dynamic
framework that utilizes autonomous LLM agents with medical
search tools in the continuous construction and real-time updating
of Medical Knowledge Graphs (MKGs). Their system
incorporated confidence scoring and multi-hop reasoning to
improve accuracy and interpretability in medical question
answering. AMG-RAG outperformed size models on both very
hard MEDQA benchmarks and more accessible MedMCQA
ones, proving that it could conduct efficient reasoning based on
current structured medical knowledge. They also used Neo4j to
manage the knowledge graphs while adding external searches to
ensure the latest data.

Tiwari et al.[24] presented Auto-Cypher, a recent automated
pipeline for producing high-quality synthetic data for training
LLMs by mapping natural language to Cypher queries for graph
databases like Neo4j. The pipeline deployed the novelty of LLM-
as-database-filler to synthesize Neo4j databases for the execution
of generated queries to ensure their correctness. A sizable dataset
called SynthCypher was created, spanning multiple domains and
complex queries, leading to a 40% improvement in LLM
performance on Cypher generation. The datasets were used to
fine-tune open-source models such as LLaMA, Mistral, and
Qwen, and the SPIDER benchmark was adapted for evaluation
purposes.

Mohammed et al.[29] proposed a hybridized GraphRAG
framework combining Neo4j-based UMLS knowledge graphs
with a vector store for medical textbooks to create an improved
U.S.M.L.E.-style clinical question-answering approach. The
project integrated symbolic reasoning from knowledge graphs
with semantic retrieval performed on text embeddings to enhance
relevance and accuracy via adaptive re-ranking and query
expansion. The system had the answers produced by GPT-4o-
Mini, with different prompting strategies encouraging evidence-
based and traceable responses grounded in verified medical
knowledge. Experiments showed that the hybrid approach
improved factual accuracy and citation fidelity as compared to
the L.L.M.-only approach, enhancing transparency and
reliability. It is shown that binding both structured and
unstructured medical knowledge sources could aid in
ameliorating hallucinations and hence improve clinical
trustworthiness in AI-driven medical QA.

Yang et al.[30] articulated sepsis knowledge graph was
crafted by combining multicenter clinical data from over 10,000
patients with the help of GPT-4 for entity recognition and
relationship extraction. Real-world data were collected from
three hospitals and integrated with clinical guidelines and
databases from the public domain. The knowledge graph
contained 1,894 nodes and 2,021 relationships pertaining to
diseases, symptoms, biomarkers, treatments, and complications.
GPT outperformed other models in every resolution on sepsis-
specific datasets to obtain high F1-score results. The constructed
graph highlighted complex interactions in sepsis for assisting
clinical decision-making and was implemented on Neo4j.

Guan et al.[20] proposed a novel method for constructing a
local knowledge graph from retrieved biomedical documents by
extracting propositional claims. They carried out layer wise
summarization on this graph to capture multi-document
relationships and provide comprehensive contextual information
to a language model for question-answering purposes. The
method resolved issues in multi-document biomedical QA, such
as noise cancellation and efficient context usage. They then tested
their method on several benchmarks for biomedical question
answering, achieving performance at least comparable to, if not
better than, existing retrieval-augmented generation (RAG)
baselines. The study established enhanced reasoning and answer
accuracy of the model achieved through structured graph
summarization.

Previous studies have improved biomedical QA using KGs
and LLMs, but important gaps remain. Most systems lack
transparent, graph-based justifications, rely on limited evaluation
methods, or depend on cloud resources that reduce privacy and
reproducibility. Our framework addresses these gaps by
providing visible Cypher queries with evidence subgraphs,
applying comprehensive performance metrics across difficulty
levels, and ensuring fully local, privacy-preserving deployment.

Table I summarizes key previous studies on biomedical
knowledge graphs and question answering, outlining their
methods, datasets, and main limitations.

III. PRELIMINARIES

This section outlines the fundamental concepts required to

understand the proposed system. It introduces biomedical

knowledge graphs, explains how Neo4j stores data in graph

form, and describes the use of Cypher for querying. It also

provides a brief overview of large language models (LLMs) and

their role in interpreting natural language.

A. Biomedical Knowledge Graphs

Biomedical Knowledge Graphs (BKGs) provide a structured

representation of complex biomedical information by modeling

diverse medical entities, such as diseases, drugs, symptoms, and

biological pathways, as interconnected nodes within a graph

structure. The edges in these graphs represent the semantic

relationships between these entities, including ’treats’, ’causes’,

’interacts with’ and many others, as illustrated in Fig 1. This

form of representation enables the integration of heterogeneous

biomedical data from a wide range of sources, including

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

346

scientific literature, clinical records, genomic databases, and

experimental findings [19, 31].
Such integration creates a comprehensive biomedical

knowledge base that supports advanced analytics and discovery.
For example, biomedical knowledge graphs can reveal previously
unknown relationships (e.g., between drugs and diseases) and
help prioritize potential biomarkers for complex conditions. The
Integrative Biomedical Knowledge Hub (iBKH) is one such
large-scale graph that consolidates diverse biomedical resources

into a unified hub, enabling discovery at scale [11]. Beyond
iBKH, large biomedical knowledge graphs such as SPOKE
further illustrate how graph integration accelerates research and
supports precision-medicine use cases [12]. Overall, these graphs
serve as foundational resources for data-driven and personalized
medicine. These knowledge graphs serve as foundational
resources for precision medicine, where treatment can be tailored
to the individual’s biological profile, improving outcomes and
minimizing side effects [19, 31].

TABLE I. SUMMARY OF RELATED RESEARCH ON BIOMEDICAL KGS AND QUESTION ANSWERING

Ref. Year Data/Graph Method Baselines Key Metric Limitation

[11] 2023 iBKH (18 biomedical

sources, Neo4j)

Integrative KG + Graph

learning; drug repurposing

case

Known drugs,

Alzheimer’s

study

Predictive performance

(drug repurposing)

Limited to Alzheimer’s case

study; scalability and updates not

detailed

[19] 2023 Disease KG (9,400

nodes, 45,000 relations

in Neo4j)

Cypher queries for disease–

drug–symptom reasoning

Cross-referential

disease DB

New relation inference;

complex query

answering

Limited to single domain; lacks

large-scale evaluation

[3] 2023 BKGs vs. GPT-3.5/4 Comparative QA study:

LLMs vs. KGs

GPT-3.5, GPT-4,

KG reasoning

Accuracy, Novelty,

Reasoning

GPT-4 inconsistent in

reasoning/citations; KG less fluent

but more reliable

[13] 2024 SPOKE KG +

LLaMA2, GPT-3.5,

GPT-4

KG-optimized retrieval for

LLMs (RAG)

Other retrieval

methods

Accuracy, token

reduction >50%

Focus on retrieval optimization,

not KG construction

[23] 2024 Benchmark KB datasets Generate-then-retrieve

(LLM → logical form →

KB retrieval)

Prior KBQA
methods

Accuracy (highest to
date)

Risk of error in logical form
generation

[6] 2024 PrimeKG LLM + KG hybrid, Cypher

query validation, RAG

GPT-4 Turbo,

LLaMA 3

Accuracy,

Explainability

Dependent on KG coverage;

computationally intensive

[22] 2025 Pan-cancer KG (PcQA

dataset)

KG-enhanced reasoning

(subgraph selection)

SOTA KGQA

methods

Outperformed SOTA on

PcQA

Limited to pan-cancer focus; no

fine-tuning explored

[26] 2025 Dynamic Medical KG +

Neo4j

LLM agents + multi-hop

reasoning

MEDQA,

MedMCQA
baselines

Accuracy,

Interpretability

High system complexity; requires

continuous updating

[24] 2025 SynthCypher dataset

(Neo4j + synthetic

queries)

LLM-supervised Cypher

generation and verification

SPIDER

benchmark

Cypher accuracy 40% Synthetic dataset may not capture

all real-world cases

[29] 2025 UMLS KG + Neo4j Hybrid GraphRAG LLM-only QA Accuracy, Citation

fidelity

More complex pipeline; relies on

external vector store

[30] 2025 Clinical data (10k

patients, 1,894 nodes,

Neo4j)

KG construction using

GPT-4 for entity/relation

extraction

Other KG

construction

methods

High F1-scores Focus only on sepsis; limited

generalization

[20] 2025 Local KG from

biomedical documents

Multi-level summarization

over KG for QA

RAG baselines QA accuracy, reasoning Tested mainly on document QA;

scalability not proven

B. Neo4j Graph Database

To manage the complexity and large size of biomedical
knowledge graphs, specialized graph databases are needed.
Neo4j is one of the most popular graph databases designed to
store and query data structured as nodes (entities) and
relationships (edges), both of which can have descriptive
properties [32, 33]. It uses the property graph model, which
makes it easy to represent complex, connected biomedical data
such as drug-gene interactions or disease pathways. Neo4j’s
Cypher query language is especially advantageous because it
allows users to write expressive and efficient queries to explore
multi-step connections in the data [34].

Neo4j works well for biomedical data because it can quickly
run complicated queries over highly interconnected datasets. This
is important in biology and medicine, where relationships
between entities like proteins, diseases, and drugs are often
complex and layered. Studies have shown that Neo4j handles
large biomedical graphs efficiently, making it a favorite among

researchers and industry users alike [33, 35, 36]. Its indexing and
caching mechanisms also help speed up query processing and
data retrieval [37].

Moreover, Neo4j integrates smoothly with many
programming languages and analytics tools, which makes it
easier to build interactive biomedical applications and clinical
decision support systems that can turn complex graph data into
useful insights [38, 39].

C. Large Language Models (LLMs) in Biomedical Question

Answering

Large Language Models (LLMs) are powerful AI systems
trained on vast amounts of text data. They learn the structure and
patterns of language, enabling them to understand questions,
generate responses, summarize information, and perform other
complex language tasks. Well-known models such as LLaMA
and GPT-3 have greatly advanced the field of natural language
processing by showing strong performance across many tasks
[40, 41].

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

347

In biomedical research and clinical settings, LLMs help
translate natural language questions from doctors, researchers, or
patients into precise, structured queries that can be executed on
biomedical knowledge graphs and databases. This makes it easier
to retrieve detailed biomedical information like drug interactions,
gene-disease associations, and symptom descriptions [42, 43].

Despite their power, LLMs can sometimes generate incorrect
or fabricated responses, a phenomenon known as hallucination,
which poses risks in sensitive biomedical contexts. These
hallucinations occur because the models generate plausible
answers based on patterns learned from data rather than verified
knowledge. To mitigate this, researchers integrate LLMs with
biomedical knowledge graphs to ground answers in factual data,
significantly improving accuracy and reducing misinformation
[4]. Further improvements come from fine-tuning LLMs on
biomedical corpora and carefully engineering prompts, which
enhance their reliability and relevance in medical question
answering.

Additionally, combining LLMs with knowledge graphs and
reasoning techniques is an active area of research that promises
to increase the interpretability and trustworthiness of AI systems
in biomedicine. These advances are critical for developing tools

that assist clinical decision-making and accelerate biomedical
discoveries [43, 44].

IV. METHODS AND MATERIALS

This section describes the methodology used to build a

biomedical question-answer system. The proposed method

consists of three main stages; First, a biomedical knowledge

graph is constructed in the data ingestion phase, using structured

data sources (e.g., diseases, drugs, symptoms). Second, a

language model (LLaMA 3) interprets the user’s question

written in English in the user interaction phase and converts it

into a Cypher query. Third, a graphical user interface allows

users to type questions and view the results interactively.

A. System Architecture

The proposed framework is organized as a step-by-step

pipeline that integrates a local large language model (LLM) with

a biomedical knowledge graph stored in Neo4j. The overall

workflow is illustrated in Fig. 2. Each module performs a

specific function, and together they ensure that the system

delivers accurate, reliable, and explainable answers.

Fig. 2. Workflow of the LLaMA 3 and Neo4j-Based QA System

Step 1. User Input (Flask Web Interface): A user submits
a biomedical question in natural language through a Flask-based
web interface. The same interface will later display the answer,
the executed query, and a compact preview of the retrieved rows.

Step 2. LLM Processing and Initial Cypher: The text query
is forwarded to a local LLaMA 3 module, which interprets the
intent and drafts an initial Cypher pattern suitable for querying
the graph.

Step 3. Cypher Query Generation: The Cypher Query Gen
block receives the initial pattern from LLaMA 3, canonicalizes
and completes it (projection, DISTINCT, filters), and returns a
finalized Cypher query to the model.

Step 4. Query execution on Neo4j: LLaMA 3 passes the
finalized query to the Query execution component (inside the
’Answer modules’ box), which runs it against the Neo4j
Knowledge Graph. KG supplies knowledge graph data (e.g.,

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

348

drugs, diseases, symptoms) and execution returns structured data
(tuples) relevant to the question.

Step 5. Answer Synthesis: The structured tuples flow to
Answer Synthesis, which aggregates and formats them into a
concise raw answer. This raw answer is sent back to LLaMA 3
to optionally refine the phrasing while preserving the retrieved
facts.

Step 6. Result Presentation: LLaMA 3 produces the final
answer, which the interface displays together with the executed
Cypher query and an optional preview of the returned rows,
improving transparency and trust.

The pipeline couples LLM-based language understanding
(LLaMA 3) with a schema-grounded Neo4j knowledge graph.
The Cypher Query Gen refines the query formulation, Query
Execution retrieves evidence and Answer Synthesis converts
structured results into readable outputs that produce answers that
are accurate, interpretable, and easy to audit directly from the
displayed query and evidence.

B. Dataset and Knowledge Graph Construction

1) Dataset
The integrated Biomedical Knowledge Hub (iBKH), a large

biomedical knowledge base, forms the first level of the system
and integrates information from various curated high-quality
biomedical databases. This implies that the data set includes
various types of entities, such as diseases, symptoms, drugs,
biological pathways, etc. This study used the representative
subset of the iBKH dataset, which contained 65828 biomedical
entities. These entities are semantically interconnected through a
total of 3004166 relationships, thus creating a rich knowledge
graph. The iBKH dataset was originally introduced in [11], and it
is freely available at (https://github.com/wcm-wanglab/iBKH).
This dataset is the core semantic foundation upon which this
study is built. The knowledge graph is populated from multiple
tabular sources (CSV files), each listing entities or relationships.
The main input files and their contents are as follows:

• Disease vocabulary(disease_vocab.csv): Contains

columns such as primary (a unique disease ID), name,

do_id (Disease Ontology ID), kegg_id, and umls_cui

(UMLS Concept ID). Each row represents a disease node

with external identifiers.

• Drug vocabulary (drug_vocab.csv): Includes primary

(unique drug ID), name, drugbank_id, kegg_id,

pharmgkb_id, umls_cui, mesh_id, iDISK_id and CID

(PubChem ID). Each row defines a drug node with

standard database identifiers.

• Symptom vocabulary (symptom_vocab.csv): Contains

primary (unique symptom ID), name, mesh_id, umls_cui

and iDISK_id. Each row defines a symptom node.

• Side effect vocabulary (side_effect_vocab.csv):

Includes primary (unique side-effect ID) and name. Each

row represents a side-effect node (with UMLS ID when

available).

• Pathway vocabulary (pathway_vocab.csv): Contains

primary (unique pathway ID), name, reactome_id, go_id,

and kegg_id. Each row defines a biological pathway

node.

Relationship files (each row typically contains two entity IDs

and one or more boolean flags or codes) include:

• Disease–Symptom links (Di_Sy_res.csv): Rows include

Disease and Symptom IDs, a presence flag (1 or 0) and a

data source. If Present = 1, a HAS_SYMPTOM edge is

created from the disease to the symptom, with properties

for presence and source.

• Disease–Disease links (di_di_res.csv): Rows include

Disease_1 and Disease_2 IDs with binary flags for is_a

and Resemble. If is_a = 1, an (IS_A) edge is created

(Disease_1 → Disease_2); if Resemble = 1, a

RESEMBLES edge is created. The source field is used

for provenance.

• Drug–Disease links (D_Di_res.csv): Includes Drug and

Disease IDs with several binary flags. If a flag equals 1,

a corresponding edge is created:

o TREATS (Treats = 1)

o PALLIATES (Palliates = 1)

o ASSOCIATED_WITH (Associate = 1)

o ALLEVIATES_REDUCES (alleviates = 1)

o TREATMENT_THERAPY (treatment/therapy =

1)

o INHIBITS_CELL_GROWTH (inhibits cell

growth = 1)

o HAS_BIOMARKER (biomarkers = 1)

o PREVENTS_SUPPRESSES

(prevents/suppresses = 1)

o ROLE_IN_PATHOGENESIS (role in disease

pathogenesis = 1)

• Drug–SideEffect links (D_SE_res.csv): Contains Drug

and SideEffect IDs with a Source column. Each row

creates a CAUSES edge from the drug to the side effect,

with source as an edge property.

• Drug–Drug interactions (D_D_res.csv): Rows include

Drug_1 and Drug_2 IDs with flags for Interaction and

Resemble. If Interaction = 1, an INTERACTS_WITH

edge is created (bidirectional). If Resemble = 1, a

RESEMBLES edge is added.

• Drug–Pathway links (D_Pwy_res.csv): Includes Drug

ID and Pathway ID. Each row generates an

ASSOCIATED_WITH edge from the drug to the

pathway.

• Disease–Pathway links (Di_Pwy_res.csv): Contains

Disease ID and Pathway ID. Each row creates an

ASSOCIATED_WITH edge from the disease to the

pathway.

2) Data Upload Performance
The time required to upload different types of entities and

relationships into the Neo4j biomedical knowledge graph,
measured in seconds. These measurements reflect both the size
and complexity of the data being processed.

As shown in Table II, the longest upload time is for Drug-
Drug Relationships, which takes approximately 190 seconds due
to the large number of edges (over 3 million). Following this,
Disease-Disease and Drug-Disease Relationships also require
considerable time for loading. On the other hand, individual

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

349

entities such as Diseases and Drugs are uploaded much faster,
generally under 2 seconds.

TABLE II. DATA UPLOAD TIMES FOR DIFFERENT ENTITY AND RELATIONSHIP

TYPES IN NEO4J

Entity / Relationship Type Upload Time (seconds)

Disease 0.81

Drugs 1.08

Symptoms 0.06

Side Effects 0.14

Pathways 0.08

Disease-Disease Relationships 30.97

Drug-Disease Relationships 30.28

Drug-SideEffect Relationships 5.24

Drug-Drug Relationships 190.09

Drug-Pathway Relationships 0.14

Disease-Pathway Relationships 0.06

Disease-Symptom Relationships 0.12

Fig. 3, presents a vertical bar chart that visually compares
these upload times across the different entity and relationship
types. The chart clearly shows the significant difference in upload
duration between nodes and edges, emphasizing the higher cost
of ingesting complex relationships in the graph.

3) Experimental Environment
In this study, the proposed biomedical question answering

system was evaluated using a locally hosted environment. All
experiments were conducted on a Windows 11 Pro (64-bit)
system equipped with an Intel Core i5-10500H processor running
at 2.50 GHz (12 logical CPUs), 24 GB of RAM, and an NVIDIA
GeForce GTX 1650 GPU with Max-Q Design. The Neo4j graph
database (v4.4.5) was managed through Neo4j Desktop (v1.6.2),
and the LLaMA 3B language model was executed locally using
optimized configurations suitable for this hardware setup.

Each Cypher query generated by the system was executed
multiple times to calculate an average response time, ensuring
consistency across varying levels of question difficulty. The
knowledge graph was constructed using the iBKH dataset, and
data loading and system performance were carefully monitored
to maintain stability during testing. This experimental setup
provides a reliable and reproducible environment for
benchmarking the effectiveness and responsiveness of the hybrid
QA system.

Fig. 3. Upload times for various biomedical entities and relationships in Neo4j.

We run LLaMA 3 locally (not via cloud APIs) to satisfy
biomedical privacy/governance (no data leaves the host) and to
maximize reproducibility (fixed GGUF checkpoint, pinned
llama.cpp commit, controlled seeds settings, constant hardware).
Local execution yields predictable cost availability and stable
latency (no network jitter) and lets us enforce executable Cypher
grounding with per edge provenance and timestamp aware
execution.

4) Knowledge Graph(KG) Construction
The Neo4j graph database was used as the backend to store

and query the KG, and it is a graph database designed for highly
connected data. Before loading data, uniqueness constraints were
created on the primary property for each node label (Disease,
Drug, Symptom, SideE ffect, Pathway). This enforces that each
primary ID appears only once, preventing duplicate entities. For
efficient lookups in queries, a search index was created based on
the name property of each node label. As noted in the Neo4j

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

350

documentation, indexes “enable quicker and more efficient
pattern matching” by allowing the query planner to rapidly locate
nodes by label and property.

With the schema in place, data was imported using Cypher’s
LOAD CSV commands. For each vocabulary file, rows with
nonnull primary IDs were processed: the code used MERGE to
create (or match existing) nodes with the given label and primary
property, and then SET the remaining attributes from the CSV
columns. For example, in importing disease_vocab.csv, each row
produced a node (:Disease primary: <id>) with properties name,
do_id, kegg_id, and umls_cui set from the row (empty strings
were turned into null). Similarly, drug_vocab.csv rows produced
drug nodes with properties for DrugBank, KEGG, PharmGKB
IDs, etc. This approach follows best practice: using MERGE on
the unique ID ensures that nodes are not duplicated during
multiple passes.

After all nodes were created, the relationship CSVs were
loaded. Each row in those files was matched to the corresponding
source and target nodes by their primary IDs, and conditional
logic was used to create edges. For example, the disease-
symptom file (Di_Sy_res.csv) was processed by matching a
disease node and a symptom node for each row, then executing
MERGE (d)-[r:HAS_SYMPTOM]-(s) if the present column is
nonzero; the edge was given a present property and a source
property from the CSV. The disease-disease file (di_di_res.csv)
was processed by matching disease nodes d1 and d2:If is_a = 1,
a (:Disease)-[:IS_A]->(:Disease) edge was merged; if Resemble

= 1, a (:Disease)-[:RESEMBLES]->(:Disease) edge was merged.
Drug-disease relationships were handled similarly: the script
matched a Drug node and a Disease node for each row of
D_Di_res.csv, then for each flag that was 1, it merged the
corresponding edge label (such as TREATS, PALLIATES,
ASSOCIATED_WITH, etc.) from the drug to the disease. Drug–
side-effect rows produced (:Drug)-[:CAUSES]->(:SideEffect)
edges with the source noted, and drug–drug rows produced either
INTERACTS_WITH or RESEMBLES edges between matched
drug pairs. Finally, the drug-pathway and disease-pathway files
each produced:ASSOCIATED_WITH edges linking drugs or
diseases to pathway nodes.

In this graph model, most relationships are directional (for
example, a drug TREATS a disease; a disease does not TREAT
a drug). This follows common practice in biomedical KGs. The
same relations (such as RESEMBLES or INTERACTS_WITH)
are inherently symmetric, but were stored as two directed edges
or one undirected edge depending on implementation. All
relationship creation steps used Cypher’s MERGE so that
repeated loads or out-of-order imports did not create duplicate
edges.

This study used a static KG snapshot for reproducibility, but
the system also supports incremental updates through the Neo4j
MERGE and batch import functions. A summary of the different
types of nodes and relationships is provided, together with their
counts, descriptions, and examples in Table III.

TABLE III. DETAILED SUMMARY OF KNOWLEDGE GRAPH COMPONENTS IN IBKH SUBSET

Component Type Entity/Relationship Count Description Examples

 Disease 19,236 Medical conditions and disorders Diabetes, Hypertension, Cancer

 Drug 37,997 Pharmaceutical compounds Aspirin, Insulin, Amoxicillin

Nodes Symptom 1,361 Clinical signs and symptoms Headache, Fever, Nausea

 SideEffect 4,251 Negative outcomes of drugs Nausea, Drowsiness

 Pathway 2,983 Biological processes and pathways Apoptosis, Glycolysis

 ASSOCIATED_WITH 101,534 General associations (disease–

pathway, drug–pathway, etc.)

Diabetes ASSOCIATED_WITH Pathway

 CAUSES 145,321 Drug-SideEffect relationships Aspirin CAUSES Gastric_Bleeding

 HAS_SYMPTOM 3,357 Disease-symptom links COVID-19 HAS_SYMPTOM Fever

 HAS_BIOMARKER 412 Biomarkers linked to disease PSA HAS_BIOMARKER Prostate_Cancer
Relationships INHIBITS_CELL_GROWTH 1,508 Drugs inhibiting cell growth Chemo INHIBITS_CELL_GROWTH Tumor

 INTERACTS_WITH 2,682,142 Drug-drug interactions Aspirin INTERACTS_WITH Warfarin

 IS_A 10,529 Subtype hierarchy Flu IS_A Viral_Infection
 PALLIATES 388 Drug palliates disease Morphine PALLIATES Cancer

 PREVENTS_SUPPRESSES 859 Preventive links Vaccine PREVENTS_SUPPRESSES Measles

 RESEMBLES 7,000 Similarity relationships DrugA RESEMBLES DrugB
 TREATMENT_THERAPY 44,852 Therapy relationships Radiotherapy TREATMENT_THERAPY Tumor

 TREATS 5,491 Drug-disease links Insulin TREATS Diabetes

 ALLEVIATES_REDUCES ∼180,000 Symptom relief Paracetamol ALLEVIATES_REDUCES Fever

Total Nodes 65,828 Total biomedical entities —

 Relationships 3,004,166 Total knowledge graph links —

C. Natural Language to Cypher Query Translation

A key feature of the system is its ability to accept questions

written in plain English and automatically generate the

corresponding Cypher queries. This is accomplished using

Meta’s LLaMA 3 large language model, which runs entirely on

a local machine through the open-source llama.cpp framework.

Running the model locally ensures low-latency execution and

keeps sensitive queries within the user’s environment.
To generate a Cypher query, LLaMA 3 is prompted with

examples of natural language questions along with their correct

Cypher translations. The prompt also includes instructions on
how to navigate the structure of the graph schema. When a user
enters a question (e.g., ’What are the symptoms of Alzheimer’s
disease?’), the system inserts it into the prompt and asks LLaMA
3 to produce a corresponding query. For example, the model may
return:

MATCH (d:Disease)-[:HAS_SYMPTOM]->(s:Symptom)

WHERE toLower(d.name) CONTAINS "alzheimer"

RETURN s.name

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

351

This query searches for a disease node whose name contains
’alzheimer’ and follows HAS_SYMPTOM edges to list related
symptom names. The system then executes this cypher to retrieve
answers. The prompts (such as few-shot examples and schema
hints) were carefully designed to help LLaMA 3 generate correct
Cypher queries. The model learns how to use the graph’s labels
and relationships properly. For example, if a user asks, ’Which
drugs treat diabetes?’, LLaMA might respond with a suitable
Cypher query:

MATCH (d:Drug)-[:TREATS]->(di:Disease)

WHERE toLower(di.name) CONTAINS "diabetes"

RETURN d.name

This queries for drug nodes that have a TREATS edge to a

diabetes disease node. By leveraging LLaMA 3 in this way, our
system can flexibly handle many phrasing variations without
manual mapping rules.

D. Model Configuration & Decoding

We run a local LLaMA 3.2-3B model in GGUF format (llama-

3.2-3b-instruct-q4_k_m.gguf) via llama.cpp, as shown in Table

IV.
TABLE IV. MODEL RUNTIME AND DECODING SETTINGS

Runtime settings Decoding settings

n_ctx = 1024 temperature = 0.2

n_threads = 12 top_p = 0.95

n_gpu_layers = 33 top_k = 40

n_batch = 512 repeat_penalty = 1.1

 max_tokens = 80

 seed = 42

E. Graph Subset and Versioning

We use an iBKH derived subgraph (≈ 65.8k nodes; ≈ 3.0M

edges) spanning DRUG, DISEASE, SYMPTOM, PATHWAY. IDs are

normalized to CURIEs and duplicates collapsed across

UMLS/DrugBank/DisGeNET/SIDER/KEGG. Each edge stores

provenance/licensing metadata (source, source_version, license,

retrieved_at, evidence_pmids/urls) and, when available,

temporal fields (valid_from, valid_to). We report coverage as

the percentage of evaluated questions whose gold

entities/relations are present.

F. Query Execution and Reliability

After a Cypher query is generated, it is executed on the Neo4j
database through the official Neo4j Python driver, which
manages the secure connection and returns the results. Instead of
restricting the output with a fixed LIMIT (e.g., LIMIT 5), the
system retrieves candidate results and evaluates them using
standardized retrieval metrics such as Hits@1, Hits@5, and
Hits@10. This approach ensures that the system remains
responsive while providing a fair assessment of ranking quality
across different cutoff levels, rather than depending solely on a
fixed number of returned items. Neo4j’s indexing on key node
properties, such as name and primary identifiers, also helps speed
up lookups as the knowledge graph grows. In cases where the
language model generates an incomplete or incorrect query, such
as referencing nodes or relationships that do not exist, the system
catches the error and either retries with a simpler prompt or

informs the user. Together, these steps make sure that queries run
quickly, return valid results, and keep the overall experience
smooth and reliable for biomedical question-answering.

G. User Interface for Query Transparency

The system includes a lightweight, cross-platform graphical
user interface (GUI) implemented as a web application using the
Flask framework in Python, with HTML and Bootstrap for
interactive visualization. The interface is designed to make the
question-answering process transparent and accessible to users
without technical expertise. It consists of three main panels:

1. Input Panel: Where the user can enter a biomedical

question in natural language.

2. Query Panel: Which displays the Cypher query generated

by the language model, allowing users to verify how their

question was interpreted.

3. Results Panel: Which presents the retrieved answers in a

clear, readable format, accompanied by a brief natural

language explanation generated by the system.
By showing both the query and the answer, the GUI promotes

user trust and enables validation of the system’s reasoning
process. The interface is lightweight enough to run smoothly on
standard desktop machines without additional dependencies,
making it practical for local deployments in clinical or research
settings. Fig. 4 illustrates the overall layout.

V. EXPERIMENTAL RESULTS

In this section, the proposed system is evaluated based on its
ability to translate natural-language biomedical questions into
executable Cypher queries over the iBKH knowledge graph. The
assessment is conducted end-to-end and focuses on three main
aspects: (i) the accuracy of query generation, measured by the
proportion of correctly produced Cypher queries; (ii) system
efficiency, quantified through total response time from question
submission to final answer delivery, covering both query
generation and execution; and (iii) the quality of retrieved
answers, evaluated using standardized information retrieval
metrics including Precision@k, Recall@k, F1@k, Hits@k, and
Mean Reciprocal Rank (MRR). For clarity, all these metrics are
formally defined in the following subsections, with their
corresponding equations, and will be used consistently
throughout the results section. Together, these dimensions
provide a comprehensive view of both correctness and efficiency
across simple, medium, and complex biomedical queries.

A. Description of the Experimental Data

To evaluate the proposed system, this work used a carefully
selected set of biomedical questions designed to test how well the
system understands natural language and converts it into Cypher
queries for a biomedical knowledge graph.

To evaluate the system, a benchmark of 60 biomedical
questions was constructed by the authors, guided by the schema
and relations in iBKH. The questions were grouped into simple,
medium, and complex levels to assess performance across
different reasoning requirements. Gold-standard answers were
manually prepared for each question to enable quantitative
evaluation using Exact Match, Precision@k, Recall@k, F1@k,
Hits@k, and MRR. The complete set of 60 questions is available
at this link https://drive.google.com/drive/my-drive.

https://drive.google.com/drive/my-drive

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

352

The dataset contains 60 questions divided into three difficulty
levels based on how complex the language is and how deep the
biomedical reasoning needs to be:

• Level 1: 25 simple questions focusing mostly on easy-to-

understand facts, such as symptoms of certain diseases or

drugs used to treat specific conditions.

• Level 2: 20 medium-level questions that involve more

detailed relationships, such as drug interactions and

SideEffect.

• Level 3: 15 hard questions requiring multi-step reasoning

across multiple biomedical concepts or biological

pathways, similar to the complexity found in real clinical

cases.
The set of evaluation questions was designed to span a wide

range of common biomedical topics and to reflect clinically
relevant query types reported in prior literature. Each question is
paired with its corresponding gold standard cypher query and
categorized by difficulty level, as summarized in Table V, where
three illustrative examples are shown. The questions were derived
from publicly available biomedical QA benchmarks and adapted
from established knowledge bases (e.g., iBKH schema relations),
ensuring both coverage and diversity across diseases, drugs,
symptoms, and pathways.

TABLE V. QUESTION DIFFICULTY LEVELS AND SAMPLE CYPHER QUERIES

Level Definition Example Cypher Query

1 Single-hop question using
one relationship

What are the symptoms of
Alzheimer?

MATCH (d:Disease)-[:HAS_SYMPTOM]->(s:Symptom)
WHERE toLower(d.name) CONTAINS 'alzheimer'

RETURN s.name AS symptom

2 Questions requiring one

relationship

What are the side effects of

drugs used to treat asthma?

WITH toLower('asthma') AS disease_name

MATCH (d:Disease)<-[:TREATS]-(dr:Drug)

WHERE toLower(d.name) CONTAINS disease_name
MATCH (dr:Drug)-[:CAUSES]->(se:SideEffect)

RETURN DISTINCT se.name AS side_effect, dr.name AS drug

3 Questions requiring two or

more relationships

What cholesterol medications

cause side effects, and what are

some of those effects?

WITH toLower('cholesterol') AS disease_name

MATCH (d:Disease)<-[:TREATS]-(dr:Drug)

WHERE toLower(d.name) CONTAINS disease_name
MATCH (dr:Drug)-[:CAUSES]->(se:SideEffect)

RETURN DISTINCT dr.name AS drug, se.name AS side_effect

Fig. 4. Graphical User Interface of the Biomedical Knowledge Explorer System

B. Quantitative Evaluation

The performance of the proposed system is evaluated on the
iBKH knowledge graph using Exact Match, Precision@k,
Recall@k, F1@k, Hits@k, MRR, and total response time across

simple, medium, and complex biomedical queries. These metrics
were measured for each difficulty level (simple, medium, and
complex) to see how performance changes as questions become
more challenging.

TABLE VI. QUERY GENERATION EXACT MATCH BY DIFFICULTY LEVEL

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

353

Difficulty Level Total Questions Correct Queries Cypher Exact Match (EM) (%)

Simple 25 24 96%

Medium 20 19 95%
Complex 15 13 86.7%

avg 92.6%

To better understand the quality of the responses returned by
the system, this work examined real examples. One of the test
questions was "What drugs are used to treat breast cancer?" As
shown in Fig. 4, the system was able to understand the question,
generate the correct Cypher query using the TREATS
relationship, and retrieve the right information from the
biomedical knowledge graph. It returned a list of five drugs,
including Leuprolide, Goserelin, and Trastuzumab, which are
known treatments for breast cancer. This result shows that the
system is able to connect the question to the right part of the graph
and provide accurate and helpful answers, even for medical
questions that involve specific treatments.

1) Exact Match of Query Generation
As shown in Table VI, how often the system generated the

correct query for each difficulty level. Here, accuracy is defined
as the percentage of questions for which the system’s generated
Cypher query matched the expected query. It is calculated using
the Eq. (1)

Exact Match (%) =
Correct Queries

Total Questions
× 100

(1)

These findings highlight the purpose of this experiment to test
whether the framework can reliably map natural language to
Cypher across varying levels of complexity. The graceful drop
from 96% on simple to 86.7% on complex queries indicates that
the system is robust for straightforward questions but still
challenged by multi-hop reasoning. This points to clear
opportunities for improvement, such as synonym expansion,
constrained decoding, or enhanced error handling for multi-step
queries.

2) Latency
Table VII reports the average latency per difficulty level and

decomposes it into query generation and Neo4j execution. The
total response time is computed as in Eq. (2). Execution time is
effectively constant across all levels (≈ 0.04–0.05 s), so
variation in total latency is dominated by query generation. As
difficulty increases, the mean total time rises from 5.12 s
(simple) to 5.75 s (medium) and 7.35 s (complex). Dispersion
(Std. Dev.) grows with task complexity 0.72 s (simple), 0.32 s
(medium), 2.09 s (complex) reflecting more variable planning
and reasoning needed to assemble correct Cypher for harder
questions. Pooled over all questions, the overall mean is 6.07 s
with an overall SD of 1.38 s, keeping latencies within single-digit
seconds and practical for interactive, real-world use.

𝑇total = 𝑇gen + 𝑇exec (2)

Standard Deviation (SD). Unless otherwise stated, SD is the

unbiased sample standard deviation computed over per-question

total times within each difficulty group 𝐺 with 𝑛𝐺 questions:

𝑇‾𝐺 =
1

𝑛𝐺
∑𝑇total

(𝑖)

𝑛𝐺

𝑖=1

,

𝑠𝐺 = √
1

 𝑛𝐺 − 1 
∑

𝑛𝐺

𝑖=1

(𝑇
total

(𝑖)
− 𝑇‾𝐺)

2
 .

(3)

 (4)

Overall values are computed by pooling all questions across

levels, with 𝑁 = ∑ 𝑛𝐺𝐺 :

𝑇‾overall =
1

𝑁
∑𝑇total

(𝑖)

𝑁

𝑖=1

,

𝑠overall = √
1

 𝑁 − 1 
∑

𝑁

𝑖=1

(𝑇
total

(𝑖)
− 𝑇‾overall)

2
 .

(5)

(6)

TABLE VII. AVERAGE LATENCY (S) BY DIFFICULTY LEVEL (SD = STANDARD

DEVIATION)

Difficulty

Level

Query

Generation (s)

Query

Execution (s)

Total

Time (s)

Std.

Dev. (s)

Simple 5.09 0.03 5.12 0.72
Medium 5.69 0.01 5.75 0.32

Complex 6.94 0.4 7.35 2.09

Overall 5.9 0.15 6.07 1.38

3) Answer-Level Evaluation Metrics
As shown in Table VIII, the quality of the returned items is

evaluated using five standardized metrics: Precision@k,
Recall@k, F1@k, Hits@k, and MRR. Precision@k measures the
proportion of correct answers among the top-𝑘 retrieved items
Eq. (7), while Recall@k quantifies the fraction of gold-standard
answers covered within the top-𝑘 results Eq. (8). F1@k combines
both aspects through the harmonic mean Eq. (9). Hits@k reports
whether at least one correct answer appears in the top-𝑘 Eq.
(10, 11), and MRR captures how early the first correct answer is
retrieved in the ranking Eq. (12). Together, these metrics provide
a comprehensive view of both the correctness and completeness
of retrieval, as well as the ranking quality across simple, medium
and complex queries.

Precision@𝑘 =
|{ relevant ∩ retrieved@𝑘 }|

𝑘

(7)

Precision@k measures the fraction of the top-𝑘 retrieved
items that are correct (i.e., appear in the gold set). For example,

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

354

P@1 refers to the accuracy of the very first retrieved item, P@5
evaluates correctness within the top three results, and P@10
considers the top ten. Higher values indicate that relevant items
tend to appear early in the ranked list.

TABLE VIII. EVALUATION METRICS ACROSS LEVELS

 Simple Medium Complex Overall

P@1 100 95 86.67 93.8

P@5 100 95 93.33 96.11
P@10 100 95 88 94.33

R@1 88 90 86.67 88.22

R@5 90.65 89.67 86.67 88.9
R@10 89.60 89 83.33 87.31

F1@1 88 90 86.67 88.22

F1@5 93.20 91.25 88.67 91.03
F1@10 93.28 91.39 85.24 89.97

Hits@k 100 95 93 96.1

MRR 100 95 88 94.4

Recall@𝑘 =
|{ relevant∩retrieved@𝑘 }|

|{ relevant }|
 (8)

Recall@k measures the proportion of all relevant items (in the
gold set) that are successfully retrieved within the top- 𝑘
positions. For instance, R@5 indicates how many of the expected
answers are covered by the top three results. This metric is
particularly important when the gold answer set is larger than 𝑘.

F1@𝑘 =
2 ⋅ Precision@𝑘 ⋅ Recall@𝑘

Precision@𝑘 + Recall@𝑘

(9)

F1@k is the harmonic mean of Precision@k and Recall@k.
It balances the trade-off between retrieving only relevant items
(precision) and covering as many relevant items as possible
(recall). For example, F1@10 reflects the combined quality of the
system when retrieving the top ten results.

Hits@𝑘 = {
1 if { relevant ∩ retrieved@𝑘 } ≠ ⌀
0 otherwise

(10)

Hits@k is a binary measure at the query level: it equals 1 if at
least one correct answer is present among the top-𝑘 retrieved
items, and 0 otherwise. For example, Hits@5 reports the
percentage of queries where the system was able to “hit” at least
one correct answer in the top five results.

Hits@𝑘 =
1

|𝑄|
∑𝟏

𝑞∈𝑄

({ relevant𝑞

∩ retrieved𝑞@𝑘 } ≠ ⌀)

 (11)

When averaged across a set of queries 𝑄, Hits@k gives the
proportion of queries for which at least one relevant item is
returned in the top-𝑘 results. This measure is less sensitive to
ranking quality but emphasizes coverage across queries.

MRR =
1

|𝑄|
∑

1

rank𝑞
𝑞∈𝑄

(12)

Mean Reciprocal Rank (MRR) averages the reciprocal of the
rank of the first correct answer for each query 𝑞 ∈ 𝑄 . For
example, if the first correct answer appears in the top position,
the reciprocal rank is 1/1 = 1.0 ; if it appears at rank 5, the
contribution is 1/5 = 0.2. MRR therefore rewards systems that
retrieve correct answers as early as possible.

According to the results in Table VIII, this work reports
standardized metrics, including Precision, Recall, F1, Hits@k,
and MRR at different cutoffs (𝑘 = 1,5,10). Precision@k captures
the proportion of retrieved items among the top-𝑘 that are correct,
while Recall@k measures the coverage of gold-standard answers
within the same cutoff. F1@k balances both aspects. Hits@k
reflects whether at least one correct answer appears in the top-𝑘,
and MRR evaluates how early the first correct answer is retrieved.

For simple questions (𝑁 = 25), the performance is
consistently near perfect, with P @ 10 = 100%, R @ 10 (89. 6%)
and F1 @ 10(93. 3%), along with Hits @ 10 = 100% and MRR =
100%. For medium questions (𝑁 = 20), P @ 10 = 95%, R @ 10
(89%) and F1 @ 10 (91. 4%), with a strong ranking quality
reflected in Hits@10 = 95% and MRR = 95%. For complex
queries (𝑁 = 15), the performance remains robust but slightly
lower, with P @ 10 (93. 3%), R @ 10 (88%) and F1 @ 10 (90.
2%), alongside Hits @ 10 (93. 3%) and MRR 93. 3%.

In general, at all levels, the system achieves P @ 10 (96. 1%),
R @ 10 (88. 9%) and F1 @ 10 (91. 6%), with Hits @ 10 (96. 1%)
and MRR 96. 1%. These results indicate that the system not only
retrieves nearly all expected answers but also ranks them highly,
ensuring both completeness and correctness. This level of
reliability is particularly valuable in biomedical applications
where precision and trustworthiness are critical.

The main purpose of this experiment was to assess not only
whether queries execute, but whether the returned results are both
correct and complete. The precision consistently above 95%
confirms that almost all the items retrieved are clinically valid,
while Hits@5 near 95% shows that the system usually returns
close to the expected five answers per question. Together, these
metrics demonstrate that knowledge graph grounding effectively
minimizes hallucinations and ensures trustworthy biomedical
output.

We evaluated performance differences across difficulty levels
using a two-sample t-test, which revealed statistically significant
differences. Error analysis indicates that failures in complex
queries are mainly due to missing relation hops, whereas errors
in medium-level queries are mostly caused by syntax
mismatches. These findings highlight the challenges associated
with query complexity and provide insights for targeted
improvements.

C. Qualitative Evaluation

In addition to quantitative metrics, the system’s outputs were
evaluated for contextual accuracy and alignment with the
structure of the knowledge graph. Two plain English questions
were selected and for each, the generated Cypher query, the
Neo4j output, and the visual graph representation were reviewed
to verify that the answers reflected valid relationships in the
graph.

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

355

For the question ’What are the symptoms of brain cancer?’
The system generated a Cypher query that correctly followed the
HAS_SYMPTOM relationship from disease nodes to symptoms
nodes, filtering by the specified disease name. The results
retrieved included terms such as aphasia (Broca, Wernicke),
anomia, agraphia, agnosia, amnesia (including retrograde
amnesia), olfaction disorders, and apnea symptoms consistent
with established neurological manifestations of brain tumors. In
Neo4j, the data formed a clear center-and-spoke pattern, with
brain cancer at the center and its associated nodes of symptoms
radiating outward, as shown in Fig. 5.

Cypher:

WITH toLower("brain cancer") AS disease_name

MATCH (d:Disease)-[:HAS_SYMPTOM]->(s:Symptom)

WHERE toLower(d.name) CONTAINS disease_name

RETURN DISTINCT s,d

LIMIT 10;

Fig. 5. Graphical user interface displaying Cypher query and results for breast

cancer treatment

A second query, What are the side effects of insulin?,
produced a Cypher statement starting from the drug node for
insulin and traversing the CAUSES relationship to the connected
SideEffect nodes. The resulting list included dizziness, diarrhea,
cough, back pain, weakness, rash/dermatitis, and hypersensitivity
side effects well documented in insulin safety profiles. In the
visual representation in Fig. 6, insulin appeared centrally
connected to these side effect nodes, further strengthening the
correctness of the relationship mapping of the system.

Cypher:

WITH toLower("insulin") AS drug_name

MATCH (d:Drug)-[:CAUSES]->(se:SideEffect)

WHERE toLower(d.name) CONTAINS drug_name

RETURN se,d

LIMIT 20;

Fig. 6. Knowledge Graph Visualization of Insulin and Its Related Side Effects

These examples demonstrate the system’s ability to interpret
plain English biomedical questions, generate correct Cypher
queries, and return results that are clinically plausible, easy to
interpret, and directly traceable to specific graph relationships.
This supports both the accuracy and the transparency of the
proposed approach.

To illustrate how biomedical questions can be translated into
graph queries, consider the natural language question: ’What are
the side effects of drugs that treat epilepsy?’. The following
Cypher query demonstrates how this question is mapped in the
knowledge graph, where diseases are connected to drugs through
the TREATS relation and drugs are connected to side effects
through the CAUSES relation.

Cypher:

MATCH (d:Disease)<-[:TREATS]-(dr:Drug)

WHERE toLower(d.name) CONTAINS "epilepsy"

MATCH (dr:Drug)-[:CAUSES]->(se:SideEffect)

RETURN DISTINCT se,d,dr

limit 10

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

356

Fig. 7. Side effects of drugs that treat epilepsy

Executing this query returns drugs associated with epilepsy
and their corresponding side effects. For example, the query
identifies Pregabalin as a treatment for epilepsy and retrieves
multiple side effects such as anxiety, arrhythmia, gastrointestinal
pain, and others. The visualization of the graph in Fig. 7,
highlights this pattern, where the drug node is linked to epilepsy
via TREATS and to several side effect nodes via CAUSES,
providing an interpretable biomedical knowledge structure.

VI. DISCUSSION

Under a unified evaluation protocol reporting
P@k/R@k/F1@k, Hits@k, and MRR at 𝑘 ∈ {1,5,10} , the
pipeline exhibits consistent end-to-end behavior across the three
difficulty tiers. The 𝑘-ablation shows strong early precision (high
P@1 and elevated MRR), while recall increases with larger 𝑘,
indicating that correct answers typically surface near the top yet
persist deeper in the ranked slate. At the query-generation level,
exact-match (EM) is high for simple questions (e.g., ∼96%) and
lower for complex, multi-hop questions (e.g., ∼86.7%), which
aligns with increased compositionality. End-to-end latency
(mean total ≈6.07 s from question to final answer) remains within
interactive bounds on our local setup. Practically, a fully offline
deployment avoids internet connectivity, API keys, and external
data transfer, strengthening privacy, compliance, and
reproducibility in biomedical contexts.

Several challenges qualify these findings. First, the
comparability challenge: to our knowledge, no prior study
evaluates iBKH using the same metric suite, making cross-paper
numeric comparisons not “apples to apples.” We therefore
interpret the results as controlled evidence about this pipeline
under a single, consistent protocol rather than as a cross-study
leaderboard. Beyond comparability, performance may vary with

other biomedical knowledge graphs; the current iBKH snapshot
is static, limiting real-time updates; and scaling to larger or
dynamically refreshed graphs can introduce latency and
consistency trade-offs.

Error analysis shows that residual failures concentrate in
complex, multi-hop queries where missing relation hops or brittle
name-based matching (synonyms, abbreviations, homonyms)
lead to partial answers. These observations motivate concept-
level normalization via biomedical identifiers (e.g., UMLS,
SNOMED, RxNorm) with synonym expansion, as well as
schema-constrained query generation and path-guided decoding
to better satisfy multi-hop constraints. Finally, correctness is
assessed primarily at the answer level (Hits@k, MRR,
precision/recall) and does not yet include full semantic-
equivalence checks across alternative Cypher queries, which may
overlook cases where different queries yield the same correct
results. Complementing template EM with result-set equivalence
checks, expanding the metric suite (e.g., nDCG/MAP) with per-
question 95% bootstrap confidence intervals, and supporting
incremental graph updates with distributed storage are promising
steps to enhance robustness, scalability, and external validity.

VII. CONCLUSION

This study introduced a hybrid biomedical question
answering framework that couples the LLaMA-3B language
model with a Neo4j-based iBKH knowledge graph to enable the
automatic generation of executable Cypher queries and to deliver
transparent, evidence-grounded answers through justification
subgraphs. Evaluation in simple, medium, and complex queries
demonstrated consistently high performance, with strong
precision, recall, F1, Hits@k, and MRR values, while
maintaining low latency suitable for interactive biomedical
applications. Beyond quantitative performance, the proposed
system provides a reproducible and privacy-preserving solution
by operating fully offline, a property of particular importance in
sensitive clinical and research contexts. However, certain
limitations remain. The reliance on a static iBKH snapshot
constrains coverage and adaptability, recall is lower for complex
multi-hop reasoning, and the absence of canonical entity
normalization (e.g., UMLS, SNOMED, RxNorm) may reduce
semantic robustness. Future research will therefore focus on
integrating standardized biomedical entity normalization,
enabling dynamic and incremental knowledge graph updates, and
leveraging domain-adapted or fine-tuned biomedical LLMs.
These directions are expected to further strengthen the
robustness, scalability, and applicability of the framework in real-
world biomedical and clinical environments.

REFERENCES

[1] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar,

P. Lee, Y. T. Lee, Y. Li, S. Lundberg, et al., “Sparks of artificial general

intelligence: Early experiments with gpt-4,” arXiv preprint
arXiv:2303.12712, 2023.

[2] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D.

Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[3] Y. Hou, J. Yeung, H. Xu, C. Su, F. Wang, and R. Zhang, “From answers to

insights: unveiling the strengths and limitations of chatgpt and
biomedical knowledge graphs,” Research Square, pp. rs–3, 2023.

Omar & Mohammed / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 342 –357 (2025)

357

[4] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto,

and P. Fung, “Survey of hallucination in natural language generation,”

ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.

[5] C. Malaviya, S. Lee, S. Chen, E. Sieber, M. Yatskar, and D. Roth, “Expertqa:

expert-curated questions and attributed answers,” arXiv preprint
arXiv:2309.07852, 2023.

[6] L. Pusch and T. O. Conrad, “Combining llms and knowledge graphs to reduce

hallucinations in question answering,” arXiv preprint
arXiv:2409.04181, 2024.

[7] H. Nori, N. King, S. M. McKinney, D. Carignan, and E. Horvitz,

“Capabilities of gpt-4 on medical challenge problems,” arXiv preprint
arXiv:2303.13375, 2023.

[8] T. Sekar, Kushal, S. Shankar, S. Mohammed, and J. Fiaidhi, “Investigations

on using evidence-based graphrag pipeline using llm tailored for usmle
style questions,” medRxiv, pp. 2025–05, 2025.

[9] S. Farquhar, J. Kossen, L. Kuhn, and Y. Gal, “Detecting hallucinations in

large language models using semantic entropy,” Nature, vol. 630, no.
8017, pp. 625–630, 2024.

[10] E. Asgari, N. Montaña-Brown, M. Dubois, S. Khalil, J. Balloch, J. A.

Yeung, and D. Pimenta, “A framework to assess clinical safety and

hallucination rates of llms for medical text summarisation,” npj Digital

Medicine, vol. 8, no. 1, p. 274, 2025.

[11] C. Su, Y. Hou, M. Zhou, S. Rajendran, J. R. Maasch, Z. Abedi, H. Zhang,
Z. Bai, A. Cuturrufo, W. Guo, et al., “Biomedical discovery through the

integrative biomedical knowledge hub (ibkh),” Iscience, vol. 26, no. 4,

2023.
[12] J. H. Morris, K. Soman, R. E. Akbas, X. Zhou, B. Smith, E. C. Meng, C. C.

Huang, G. Cerono, G. Schenk, A. Rizk-Jackson, et al., “The scalable

precision medicine open knowledge engine (spoke): a massive
knowledge graph of biomedical information,” Bioinformatics, vol. 39,

no. 2, p. btad080, 2023.

[13] K. Soman, P. W. Rose, J. H. Morris, R. E. Akbas, B. Smith, B. Peetoom, C.
Villouta-Reyes, G. Cerono, Y. Shi, A. Rizk-Jackson, et al., “Biomedical

knowledge graph-optimized prompt generation for large language

models,” Bioinformatics, vol. 40, no. 9, p. btae560, 2024.
[14] F. Frau, P. Loustalot, M. Törnqvist, N. Temam, J. Cupe, M. Montmerle, and

F. Augé, “Connecting electronic health records to a biomedical

knowledge graph to link clinical phenotypes and molecular endotypes

in atopic dermatitis,” Scientific Reports, vol. 15, no. 1, p. 3082, 2025.

[15] Y. Gao, R. Li, E. Croxford, J. Caskey, B. W. Patterson, M. Churpek, T.

Miller, D. Dligach, and M. Afshar, “Leveraging medical knowledge
graphs into large language models for diagnosis prediction: design and

application study,” Jmir AI, vol. 4, p. e58670, 2025.

[16] Y. Yan, Y. Hou, Y. Xiao, R. Zhang, and Q. Wang, “Knownet: guided health
information seeking from llms via knowledge graph integration,” IEEE

Transactions on Visualization and Computer Graphics, 2024.

[17] Y. Deng, S. Zhao, Y. Miao, J. Zhu, and J. Li, “Medka: a knowledge graph-
augmented approach to improve factuality in medical large language

models,” Journal of Biomedical Informatics, p. 104871, 2025.
[18] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs,”

SEMANTiCS (Posters, Demos, SuCCESS), vol. 48, no. 1–4, p. 2, 2016.

[19] E. Rajabi and S. Kafaie, “Building a disease knowledge graph,” in Caring
is Sharing – Exploiting the Value in Data for Health and Innovation,

pp. 701–705, IOS Press, 2023.

[20] L. Guan, Y. Huang, and J. Liu, “Biomedical question answering via multi-
level summarization on a local knowledge graph,” arXiv preprint

arXiv:2504.01309, 2025.

[21] D. Steinigen, R. Teucher, T. H. Ruland, M. Rudat, N. Flores-Herr, P.
Fischer, N. Milosevic, C. Schymura, and A. Ziletti, “Fact finder –

enhancing domain expertise of large language models by incorporating

knowledge graphs,” arXiv preprint arXiv:2408.03010, 2024.
[22] Y. Feng, L. Zhou, C. Ma, Y. Zheng, R. He, and Y. Li, “Knowledge graph–

based thought: a knowledge graph–enhanced llm framework for pan-

cancer question answering,” GigaScience, vol. 14, p. giae082, 2025.
[23] H. Luo, Z. Tang, S. Peng, Y. Guo, W. Zhang, C. Ma, G. Dong, M. Song,

W. Lin, Y. Zhu, et al., “Chatkbqa: a generate-then-retrieve framework

for knowledge base question answering with fine-tuned large language
models,” arXiv preprint arXiv:2310.08975, 2023.

[24] A. Tiwari, S. K. R. Malay, V. Yadav, M. Hashemi, and S. T. Madhusudhan,

“Auto-cypher: improving llms on cypher generation via llm-supervised
generation-verification framework,” in Proceedings of the 2025

Conference of the Nations of the Americas Chapter of the Association

for Computational Linguistics: Human Language Technologies
(Volume 2: Short Papers), pp. 623–640, 2025.

[25] R. Wang, Z. Zhang, L. Rossetto, F. Ruosch, and A. Bernstein, “Nlqxform:

a language model-based question to sparql transformer,” arXiv preprint
arXiv:2311.07588, 2023.

[26] M. R. Rezaei, R. S. Fard, J. L. Parker, R. G. Krishnan, and M. Lankarany,

“Agentic medical knowledge graphs enhance medical question
answering: bridging the gap between llms and evolving medical

knowledge,” arXiv preprint arXiv:2502.13010, 2025.

[27] Z. Dong, B. Peng, Y. Wang, J. Fu, X. Wang, Y. Shan, and X. Zhou, “Effiqa:
efficient question-answering with strategic multi-model collaboration

on knowledge graphs,” arXiv preprint arXiv:2406.01238, 2024.

[28] Y. Duan, Q. Zhou, Y. Li, C. Qin, Z. Wang, H. Kan, and J. Hu, “Research
on a traditional chinese medicine case-based question-answering

system integrating large language models and knowledge graphs,”

Frontiers in Medicine, vol. 11, p. 1512329, 2025.
[29] S. Mohammed, J. Fiaidhi, T. Sekar, K. Kushal, and S. Shankar,

“Investigations on using evidence-based graphrag pipeline using llm

tailored for answering usmle medical exam questions,” medRxiv, pp.

2025–05, 2025.

[30] H. Yang, J. Li, C. Zhang, A. P. Sierra, and B. Shen, “Large language model–

driven knowledge graph construction in sepsis care using multicenter
clinical databases: development and usability study,” Journal of

Medical Internet Research, vol. 27, p. e65537, 2025.

[31] K.-L. Hsieh, G. Plascencia-Villa, K.-H. Lin, G. Perry, X. Jiang, and Y. Kim,
“Synthesize heterogeneous biological knowledge via representation

learning for alzheimer’s disease drug repurposing,” Iscience, vol. 26,

no. 1, 2023.
[32] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM

Computing Surveys (CSUR), vol. 40, no. 1, pp. 1–39, 2008.

[33] B. Chicho and A. O. Mohammed, “An empirical comparison of neo4j and
tigergraph databases for network centrality,” Science Journal of

University of Zakho, vol. 11, no. 2, pp. 190–201, 2023.

[34] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New
Opportunities for Connected Data, O’Reilly Media, 2015.

[35] A. Lysenko, I. A. Roznovăţ, M. Saqi, A. Mazein, C. J. Rawlings, and C.

Auffray, “Representing and querying disease networks using graph

databases,” BioData Mining, vol. 9, no. 1, p. 23, 2016.

[36] M. Šestak, M. Heričko, T. W. Družovec, and M. Turkanović, “Applying k-

vertex cardinality constraints on a neo4j graph database,” Future
Generation Computer Systems, vol. 115, pp. 459–474, 2021.

[37] M. Desai, R. G. Mehta, and D. P. Rana, “An empirical analysis to identify

the effect of indexing on influence detection using graph databases,”
International Journal of Innovative Technology and Exploring

Engineering, vol. 8, no. 9S, pp. 414–421, 2019.

[38] S. Beis, S. Papadopoulos, and Y. Kompatsiaris, “Benchmarking graph
databases on the problem of community detection,” in New Trends in

Database and Information Systems II, pp. 3–14, Springer, 2015.
[39] R. Wang, Z. Yang, W. Zhang, and X. Lin, “An empirical study on recent

graph database systems,” in International Conference on Knowledge

Science, Engineering and Management, pp. 328–340, Springer, 2020.
[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: pre-training of

deep bidirectional transformers for language understanding,” in

Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language

Technologies, vol. 1, pp. 4171–4186, 2019.

[41] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models

are few-shot learners,” Advances in Neural Information Processing

Systems, vol. 33, pp. 1877–1901, 2020.
[42] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “Biobert:

a pre-trained biomedical language representation model for biomedical

text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 2020.
[43] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann,

and M. McDermott, “Publicly available clinical bert embeddings,”

arXiv preprint arXiv:1904.03323, 2019.
[44] Z. He, S. Sunkara, X. Zang, Y. Xu, L. Liu, N. Wichers, G. Schubiner, R.

Lee, and J. Chen, “Actionbert: leveraging user actions for semantic

understanding of user interfaces,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, pp. 5931–5938, 2021.

