

Vol. 07, No. 01, pp. 95 –109 (2026)
ISSN: 2708-0757

JOURNAL OF APPLIED SCIENCE AND TECHNOLOGY TRENDS

www.jastt.org

 95

 doi: 10.38094/jastt71439

A Novel Architecture and Methodology to Detect Intrusions

Against Edge-Based IIoT Using Machine Learning

Sahar L. Qaddoori1* , Qutaiba I. Ali2

1Electronic Department, Electronics Engineering College, Ninevah University, Mosul, Iraq, sahar.qaddoori@uoninevah.edu.iq
2 Computer Engineering Department, Engineering College, University of Mosul, Mosul, Iraq, qut1974@gmail.com

*Correspondence: sahar.qaddoori@uoninevah.edu.iq

Abstract

The increasing demand for the Industrial Internet of Things (IIoT), with billions of connected things and the decentralization of data

exchange, is gaining momentum, making conventional threat detection and analysis challenging in such distributed environments. In this

paper, a security framework for edge nodes, called the Intrusion Detection, Prevention, and Response System (IDPRS), is proposed. It

aims to detect MQTT (Message Queuing Telemetry Transport)-based threats using Machine Learning (ML) algorithms. However, ML

models cannot be trained on resource-constrained devices; therefore, the approach trains the model on a high-performance platform,

which will later serve as the detection engine on an edge node. The edge node can be hosted on low-cost single-board computers (SBCs),

such as the Raspberry Pi. The detection model is further monitored and updated using an upgrade algorithm to make it adaptive to

emerging threats. The evaluation results demonstrate high detection accuracy and reasonable resource and network overhead.

Keywords: Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Firewall, Intrusion Response System (IRS), Fog

Node, MQTTset dataset.

Received: August 26th, 2025 / Revised January 18th, 2026 / Accepted: February 05th, 2026 / Online: February 09th, 2026

I. INTRODUCTION

Industrial Internet of Things (IIoT) is the extension of the
common principles of IoT to industrial applications and
manufacturing processes [1]. The IIoT has evolved over the last
10 years as an emerging technology with the ability to connect
and digitize different industries to create significant economic
value and enable new industries to grow, thus becoming a major
contributor to the world's Gross Domestic Product (GDP) [2-4].
Examples of IIoT applications are connected cars, smart homes,
smart cities, smart grids, smart factories, and supply chain
systems [1].

The massive amount of data that is produced by the IIoT
network's sensors, which are resource-restricted devices with
constrained power, connectivity capabilities, and memory [1, 2].
To link sensors and cloud servers, edge devices such as routers,
laptops, desktops, cell phones, handheld devices, and
microservers are used. The edge devices gather data from
appliances and deliver it to nearby servers after carrying out any
necessary preprocessing. However, as specific IoT edge-layer
devices have gained popularity in industry, several privacy and
security concerns have emerged, posing a significant threat to

the security and reliability of the IIoT. Intruders may exploit
these edge devices [1]. Therefore, this manuscript focuses on the
security issues of edge-based IIoT.

One of the most often used solutions for IIoT security
challenges is the intrusion detection system (IDS). It is used to
detect network traffic, particularly to distinguish between
legitimate and malicious traffic, and so helps to eliminate
malicious traffic [5, 6]. IDS uses two main techniques:
signature-based and anomaly-based detection systems.
Signature-based methods detect known threats by scanning
network data for defined patterns, whereas anomaly-based
systems detect an attack by monitoring the system behavior,
traffic, or objects. The system behavior, traffic, or objects are
compared against an already well-defined baseline that exhibits
normal behavior [7, 8]. Anomaly-based IDS using machine
learning techniques has better generalization than signature-
based IDS. [8, 9].

One of the main research trends for anomaly-based
approaches is the use of ML techniques. These methods learn
generalized properties of the traffic for training and use the
trained features to classify the input traffic correctly.

http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt71439
https://jastt.org
https://ipacademia.org/
mailto:sahar.qaddoori@uoninevah.edu.iq
mailto:qut1974@gmail.com
mailto:sahar.qaddoori@uoninevah.edu.iq
https://orcid.org/0000-0001-6631-5329
https://orcid.org/0000-0002-0640-0561

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

96

Generalized learning from traffic data enables better responses
to unknown data using machine learning. Traditional machine
learning is well-suited to IIoT edge devices, which typically
have relatively low resource consumption and short training
times [10, 11].

This study proposes a lightweight fog–edge Intrusion
Detection, Prevention, and Response System (IDPRS) for IIoT
environments. The main contributions are:

 An integrated IDS/IPS/IRS architecture for edge devices,

extending beyond prior IDS-only systems.

 A dynamic upgrading mechanism that monitors edge

performance and triggers fog-level retraining, enabling

adaptive and up-to-date detection.

 A hybrid feature-selection approach combining Random

Forest importance with cross-model consistency to reduce

computational overhead.

 A fog-assisted training strategy that builds ML models on

fog nodes and deploys them efficiently on constrained edge

hardware.

 Coordinated fog–edge response and detection, improving

reliability and scalability in distributed IIoT networks.

 Comprehensive performance evaluation covering

accuracy, latency, energy consumption, and resource usage

to validate real-world applicability.

The manuscript is organized as follows: Section II presents
the literature review. In Section III, the general structure of IIoT
networks is described. In contrast, Section IV outlines the
methodology of the proposed system. The experimental results
and discussion are demonstrated in Section V. The comparative
study is explained and tabulated in Section VI. Finally, Section
VII clarifies the conclusions.

II. LITERATURE REVIEW

With the significant advances in IIoT and the consequent
need for network security, intrusion detection is a key area of
focus. The last years have seen a plethora of works proposing
ML models to address the task of developing IDS solutions in
IoT and IIoT networks [12, 13]. The most notable are presented
shortly as follows:

In [14], E. Aydogan et al. proposed a genetic programming-
based intrusion detection solution for IIoT platforms, presented
along with a proof of concept and quantitative evaluation. The
study also evaluated the potential of a centralized IDS at the root
node of the RPL-based mesh, considering device heterogeneity
and resource constraints. Results demonstrated the root node's
ability to perform real-time detection of RPL attacks. The
approach proposed in [15] also employed machine learning
models to secure IoT networks, with a trade-off between
performance and computational complexity. An MQTT-based
protocol was suggested for NN model updates on constrained
devices, with training and optimization performed on robust IoT
gateways. In contrast, only the lightweight testing computation
is performed on IoT nodes.

In [16], S. Latif et al. proposed a prediction system with high
accuracy on IIoT attacks using a lightweight random neural
network architecture. The experimental results, obtained using

the DS2OS dataset, confirmed the efficiency of the proposed
method, with reduced prediction time and validation of the
solution under different test conditions. In [17], the authors
considered attack detection in fog computing environments
using an ensemble of multiple machine learning approaches.
Decision Tree, Random Forest, and K-Means were used to
process the ensemble results, with all evaluations performed on
the KDD Cup '99 dataset. Passban [18], an intelligent IDS that
can be directly deployed on low-cost IoT gateways (such as a
single-board PC) was also developed. Passban was shown to
effectively detect SSH, HTTP brute-force, SYN flood, and port-
scanning attacks, and to report a low false-positive rate and high
accuracy.

In [19], J. B. Awotunde et al. suggested a framework to
detect intrusions in IIoT by deep learning. Rule-based feature
engineering was combined with a deep feedforward neural
network to detect network intrusions, and the approach was
evaluated on the NSL-KDD and UNSW-NB15 datasets,
demonstrating robust detection performance. In [20], a two-
stage deep learning-based IDS for IIoT networks was proposed.
DNNs were used in the first stage to detect attacks. Then, the
attacks with a low detection rate were forwarded to a second
stage that integrated the Negative Selection Algorithm (NSA)
optimized with the Dragonfly Algorithm. Then Dempster-
Shafer’s rule of combination is used to fuse the outputs of both
DNNs and NSA. The suggested model was evaluated using the
CICIDS2017, CICIDS2018, and TON IoT datasets, and its
effectiveness was confirmed.

In one of the most recent works, in [21], X.-H. Nguyen et al.
proposed Realguard, a lightweight DNN-based IDS that can be
directly deployed on local gateways to protect IoT devices.
Realguard was designed using simple feature extraction
combined with a DNN-based detection model and has been
shown to accurately identify multiple cyberattacks in real-time,
such as botnets, port scans, and FTP-Patator. The CICIDS2017
dataset was used to test the solution, which demonstrated
accurate and precise detection with a low processing footprint,
making it suitable for resource-constrained devices (e.g.,
Raspberry Pi).

In this study, a new approach is proposed to develop DL-
based IDS for IoT devices. This intelligent system utilizes a
four-layer deep Fully Connected (FC) network to detect the
traffic that may trigger IoT device attacks. To alleviate such
deployment complexities, the proposed system has been built to
be independent of the communication protocol. During the
experimental performance analysis, the suggested system is
observed to be a successful model of simulated as well as actual
intrusions [22].

This paper proposes a GA_RF technique for detecting cyber-
attacks on the IIoT environment ICSs that employ MQTT
protocol. This architecture connects the ICS with edge devices
and cloud servers to monitor the data field collected by sensors,
using a GA_RF algorithm to identify anomalous results.
Typically, the data is processed on-site before being shared with
the cloud for storage and processing, and then returned for
continuous observation and protection. Also, in a real case, the
MQTT-IOT-IDS2020 dataset was used to predict the proposed

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

97

GA_RF method, compared with other powerful machine
learning and deep learning methods [23].

Zhukabayeva et al. address the growing security
vulnerabilities in Industrial Internet of Things (IIoT) Cyber-
Physical Systems (CPS) by proposing an integrated framework
that leverages edge computing to facilitate real-time traffic
analysis and intrusion detection. To mitigate the high latency
associated with traditional centralized cloud solutions, the
authors developed a hybrid methodology using the NF-ToN-
IoT-V2 dataset, combining unsupervised K-means clustering for
traffic segmentation with supervised machine learning
models—specifically Random Forest, K-Nearest Neighbors,
and Logistic Regression—for anomaly classification. The
results demonstrated that K-means outperformed DBSCAN in
clustering traffic patterns, while the Random Forest algorithm
achieved the highest detection accuracy with an F1 score of 0.99,
validating the framework's effectiveness in providing scalable,
low-latency security for industrial environments [24].

Unlike previous intrusion detection frameworks that focus
solely on centralized or cloud-based analysis [Refs. 24, 18, 17,
19], the proposed IDPRS introduces a hybrid fog–edge
coordination mechanism that enables distributed learning and
real-time response across IIoT nodes. Furthermore, the system
integrates adaptive machine learning models that self-tune based
on local anomaly patterns, a feature not addressed in earlier
work.

However, based on the literature, there remains a need for an
innovative, reliable, secure, and resilient IDS for the IIoT edge
layer.

III. GENERAL STRUCTURE OF IIOT NETWORKS

In the integration of Industrial Internet of Things (IIoT), a
multilevel architecture is commonly used and often structured
into three hierarchical levels, as shown in Fig. 1, including edge,
fog, and cloud [25]. The edge layer comprises billions of
resource-constrained IIoT nodes, including sensors, actuators,

vehicles, smart appliances, wearable devices, surveillance
cameras, and other intelligent machines. These networks mainly
collect large volumes of data in a heterogeneous manner, then
transmit the same to the upper levels, where they are handled
further [26, 27]. The fog layer lies between the edge and the
cloud and typically includes a host of routers, servers, and
controllers controlled by Internet Service Providers (ISPs). Mog
nodes, compared to edge devices, have enhanced computational
and memory capacity and are therefore suitable for workloads
that require more memory, energy, and processing units.
Moreover, their decentralization in various geographic locations
of the ISP infrastructures enables them to be closer to the edge
devices, but still allows them to interface with multiple
applications and protocols [27]. At the top of the hierarchy is the
cloud layer, where powerful servers, supercomputers, and large-
scale storage infrastructures are generally located in enterprise
data centers. Intensive data management functions, such as
large-scale storage, processing, allocation, and general
orchestration of IIoT services, are the responsibility of this layer
[28].

IV. THE PROPOSED SYSTEM METHODOLOGY

 The significant number of IIoT devices installed and used
worldwide will naturally generate large amounts of data that
must be collected and analyzed in real time to identify potential
attacks. Therefore, a centralized approach to intrusion detection
is insufficient for IIoT security monitoring, and the proposed
methodology must leverage a distributed model architecture.
The methodology proposes using a machine-learning-based
model that runs on distributed edge nodes, managed and updated
by a fog-computing layer. This enables the real-time monitoring
of data from various IIoT nodes. The methodology was divided
into four main phases: data collection and feature selection,
intrusion detection model development and learning, intrusion
detection model deployment on edge nodes, and performance
monitoring and model updates. The different stages in Fig. 2 are
further clarified in the following sections.

Fig. 1. An example of three hierarchical levels of multi-tier IIoT architecture.

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

98

Fig. 2. The suggested intrusion detection, prevention, and response framework in the IIoT system.

A. Data Collection and Feature Selection

In this phase, a system is designed to acquire, store, and
analyze IIoT data for edge-node intrusion detection, and the ML
model is trained at the nearest fog node. The newly acquired data
from edge devices is transmitted to the fog node every month
via the intelligent gateway. Since IIoT devices continuously
generate a large amount of data. One approach to reduce dataset
size is to extract the features of interest from newly acquired data
for the ML model and store only those selected features.
Therefore, in the proposed model, the fog node receives only the
extracted features of interest from edge devices, rather than the
entire larger datasets, for analysis through feature reduction.
Furthermore, the feature reduction can be represented as a
filtering stage, allowing the model to emphasize vital features
through learning.

The automated feature selection approach is not in the scope
of this manuscript (but it can be used with deep learning
algorithms to select the essential and adequate features as future
work). Additionally, in future work, an intrusion detection
model could be built for this stage, given the absence of a label
for the received data.

B. Intrusion Detection Model Constructing and Learning

The second phase involves selecting an appropriate ML
model and training it on IIoT data from the fog device to enhance
its detection performance against various attacks. For this study,
tree-based learning models (namely, Gradient Boosted Trees,
Random Forests, and Decision Trees) are adopted due to their
widespread use and their ability to offer diverse performance for
different feature types. This stage involves several steps, the first
of which is training the ML model using the IIoT data collected
and prepared in the first phase. This is executed on the fog layer
to expedite the training process. Hyperparameter tuning is
conducted for each dataset and architecture to improve the ML
model's performance further.

The major hyperparameters for the tree-based models used
in this study are the number of estimators, the learning rate, and

the tree depth. These are preset before training, but can be
adjusted during training to improve results. The resulting model
is then evaluated using conventional performance measures on
data that it has not been trained on. This process may be repeated
by further tuning hyperparameters when performance is
unsatisfactory, until the best-performing result is obtained. By
conducting the computationally most expensive operations
offline, the IDS can operate efficiently and smoothly. Fig. 3
illustrates the processing steps for constructing and learning the
intrusion detection model.

Fig. 3. The processing steps for constructing and learning the intrusion

detection model.

C. Intrusion Detection Model Implementation

During the third step of the suggested approach, the intrusion
detection model is deployed on edge nodes. Implementations of
machine learning applications at this tier have several benefits
to IIoT systems, such as the capability of analyzing sensitive
data nearer to the devices that produce the data, decreased time
between data gathering and processing, lower network
bandwidth utilization, and effective execution of tasks at the
edge devices or transmitted to fog nodes. Besides, mobility
support is achieved through such deployment. The fog layer
provides services to manage the detection process, enabling
scalability, distribution, and rapid response. The edge node may
assume various roles, including operating as a firewall/IPS, an
intrusion detection system (IDS), an intrusion response system
(IRS), a network traffic broker, or a web server. Fig. 4 illustrates

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

99

the software architecture of the proposed edge node, with further
subsections explaining the role of each component.

Fig. 4. The details of the software architecture for the proposed edge device

1) Firewall/IPS Module: Firewall/IPS, which is a standard
method of preventing network threats, is frequently utilized to
block banned connections and separate internal networks from
unconfident activities. Because the firewall protects the edge
node, the IDS examines all packets that travel through it.
Blocklist patterns, such as source and destination addresses in
the IP layer and source and destination port numbers in the
transport layer, are pre-registered by the blocklist firewall/IPS.
Based on this, the packet's robustness and suitability for network
access are determined, and access is granted. As a result, the first
line of defense against invasions is the firewall/IPS. It identifies
current attacks and prevents them by reducing computational
costs. The suggested edge node includes a firewall/IPS to
construct a trusted barrier between the broker and sensor nodes.
The following functions are performed by the firewall/IPS that
has been installed:

 Disallow packets whose source IP address is included in the

IP address blocklist.

 Block packets whose destination port addresses are

included in the port blocklist.

 Block specific IP address prefixes from networks using the

blocklist of prefix addresses.

 By defining the packet threshold and time threshold, users

may stop excessively rapid requests sent by the same IP,

such as ping assaults.

2) IDS Module: Firewalls/IPSs are not always completely
reliable and/or efficient enough to protect IIoT networks from
all forms of assaults. The packets that pass through the
firewall/IPS are forwarded to the IDS under test, which inspects
them for threats. The intrusion detection system serves as the
second line of defence against attacks. As in the case of several
severe attacks targeting vital infrastructure, such as nuclear
enrichment facilities, the first line of defence — firewalls/IPSs
— might fail. Network features are taken from the packet after
it has been approved by the firewall/IPS and preprocessed to
match the input of the learned ML model. After a period of time
(one week, one month, or another), these characteristics are
recorded in a file and regularly sent to the closest fog node to
retrain the intrusion detection model. The characteristics are
then used to train the multi-class ML model to restrict the
packet's normalcy. The packet will be sent to the broker if it is

normal. If not, the IRS module will be enabled when the attack's
kind is determined. Fig. 5 depicts the processing steps for the
proposed intrusion detection module.

Fig. 5. The processing steps of the proposed Intrusion Detection module

3) IRS Module: Intrusion Response Systems (IRS) can actively
block attacks after they have been identified. Malicious or
unauthorized behaviors can be effectively addressed by taking
the necessary steps to prevent problems from escalating and to
return the device to a healthy state. An IRS instantly performs a
predetermined set of reactions based on the kind of attack when
an IDS module detects an intrusion. An automated method does
not necessitate human intervention. As a result, effective
countermeasures are required to combat various attack
scenarios. The IRS module's actions are as follows:

 Packet Reset Connection: When a publisher or subscriber

delivers an anomalous packet, the broker sends a TCP reset

packet to cut off the connection.

 Packet Forward: It just forwards the incoming packets

without processing them. This is helpful if an attacker

bombards the IDS with high-volume traffic to overtax it and

start a DoS. Another scenario is that all possible

countermeasures increase the burden.

 Packet Drop: It does not send packets to their intended

destinations but instead discards packets with datagram or

sequence numbers that do not match the protocol's

expectations.

By applying the actions outlined in this subsection, the
suggested edge node can stop a variety of threats. Other kinds of
attacks can be considered for stopping and incorporating into the
suggested edge device.

4) Broker Module: The edge device can connect through a
wireless connection or a wired link. With the help of IIoT,
wireless devices can now be built using inexpensive, small, low-
power Wi-Fi-enabled components. The MQTT protocol is
utilised in the proposed edge node to transmit and receive
messages. MQTT is a lightweight, small-message protocol. The
Publish/Subscribe architecture of MQTT is more applicable to
IoT applications than the other protocols with a
Request/Response model, since it does not require client polling
[29]. This results in bandwidth savings and an increase in the
device's battery life. The Broker is a crucial component of the
MQTT protocol, ensuring that the pub-sub technique operates
correctly. To do so, the broker must ensure that customers can
accept messages and subscribe to and unsubscribe from devices
at any time.

5) The Webserver Module: The web page was designed using a
web server module to show the statistics of the collected data for

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

100

months, weeks, or days as an interactive visualization service.
Furthermore, sufficient visibility should be provided to enable
the visualization of security threats and to encourage holistic,
proactive, and preventive responses. The graphs and statistics
exhibited on the created webpage are based on the data file kept
at the proposed edge node.

D. Performance Monitoring and Upgrading

The ML model might become less effective at identifying
attacks over time. Hence, the intrusion detection module needs
to be tested for its performance and updated accordingly. For
this purpose, performance metrics like FAR and DR are defined
to measure the model's performance. To test effectiveness, new
samples are periodically collected from edge nodes and
transferred to the fog layer. Because the number of samples may
be significant, a representative subset is selected to test the
deployed ML model.

For the selected data samples, FAR and DR are calculated
and then compared to the same metrics during training (see
Stage 2). If the testing FAR is higher than the training FAR or
the testing DR is lower than the training DR, it is considered that
the model's performance has deteriorated. The ML model is then
retrained on the new data and, if necessary, updated
hyperparameters to improve its performance. In this regard, two
policies are considered for retraining: one uses only new data,
and the other merges the latest data with the previous samples
used to train the model. After retraining, the model is evaluated,
and if it performs well, it is updated to replace the last model
deployed in the fog layer.

The intrusion detection module installed at each edge node
is either completely updated to a new model or kept up to date
with stable performance. In future work, secure edge-fog
communications will be established to transfer the collected
datasets and trained ML models securely.

In accordance with the provided architecture and
implementation, the following section presents the experimental
results. It evaluates the efficiency of the proposed IDPRS in
detecting and preventing intrusions in an edge-based IIoT
environment.

V. EXPERIMENTS AND RESULTS

Based on the above methodology, a series of experiments
has been conducted to evaluate detection accuracy, false positive
rate, and response time. To implement the proposed edge node,
the Raspberry Pi 4B platform can be used because it is a small,
inexpensive, and standalone single-board computer.

The suggested fog node server is built on a PC with an Intel
Core i7 processor, 16 GB of DDR4 RAM, and an NVIDIA
GeForce RTX 2070 with 8 GB of GDDR6 graphics memory. To
assess the successful implementation of the system, this section
includes three types of assessments that examine the proposed
system's performance and demonstrate its suitability for
protecting the IIoT network against threats.

A. Performance Analysis of Intrusion Detection Model

The model for detecting attacks combines a variety of
techniques. It is used to classify a variety of threats and has been
verified. A dataset must be chosen to assess this approach. From

Kaggle, a free dataset called MQTTset [30] was downloaded.
This dataset was provided by Ivan Vaccari et al. [31]. Six
categories of labels in the MQTTset dataset correspond to one
type of legal activity (Legitimate) and five types of threats,
respectively (DOS, flood, malformed, slowite, and brute force).

In this subsection, the effectiveness of several ML models is
evaluated to identify attacks and packet abnormalities precisely.
The machine learning algorithms used here include Random
Forest (RF), Decision Tree (DT), and Gradient Boosting (GB).
The best splitter, the Gini criteria, and the highest depth were
applied to the DT until all leaves were genuine, and the RF was
then analyzed using two extreme estimators for hyper-parameter
tuning. In contrast, the GB is limited to at most 20 estimators.
The efficiency of the intrusion detection model built for IIoT
networks should be further evaluated through additional
experiments to assess the detection method's strengths and
weaknesses across various scenarios. Performance indicators,
including Precision (P), Accuracy (ACC), Detection Rate (DR),
F-score, Recall (R), and Area Under the Curve (AUC), are used
to assess the model's performance and identify the most suitable
approach for the proposed system.

Where Recall, F1-Score, and Accuracy offer key
performance insights, with their equations provided in
Equations (1)-(3). Recall evaluates the model’s success in
detecting all true positive cases. The F1-Score balances
precision and recall, serving as a reliable performance measure
for imbalanced datasets, ensuring both accuracy and
completeness. Accuracy assesses the overall proportion of
correct predictions across all classes, but can be deceptive in
imbalanced scenarios [32, 33].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2)

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

Also, it can provide a concise mathematical description of
the hyperparameter tuning and model update processes applied
in the proposed edge–fog IDPRS framework.

For a classifier 𝑓(⋅∣ ℎ)with hyperparameters ℎ, the optimal
configuration is selected by minimizing the empirical cross-
validation loss:

ℎ∗ = arg 𝑚𝑖𝑛
1

𝐾
∑ ℒ𝑘(ℎ)

𝐾

𝑘=1
ℎ∈ℋ

 (4)

Decision Tree and Random Forest models minimize node
impurity using Gini impurity or entropy. A split is selected by
minimizing the weighted impurity of child nodes. In contrast,
Gradient Boosting optimizes a differentiable loss function (e.g.,
logistic loss for classification), where each new weak learner fits
the negative gradient of the loss, and the ensemble is updated
using a learning rate. Hyperparameter tuning was performed
using grid search with cross-validation.

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

101

B. Analysis of Feature Importance

In this section, some of the selected essential features can be
leveraged to perform real-time processing and intrusion
prediction in a resource-constrained IIoT system. For this
purpose, an RF classifier can be used on MQTTset to determine
the importance of features in making the correct prediction. The
distribution of various attacks across the actual data in the
MQTTset dataset during training and testing is shown in Table
I. The utilized dataset is split into training and testing sets in a
70-30 ratio. With a split ratio of 0.33, the training set is divided
into two subsets: a training set and a validation set, with 67%
used for training and 33% for validation.

As shown in Fig. 6, of 33 features, only 18 have high
importance and are used by the RF model to make decisions,
whereas the remaining features are deemed to have zero
importance. The proposed method uses various performance
metrics, including precision, accuracy, F1 Score, and recall,

across four ML models: top 7, top 10, top 18, and all features, in
both training and testing phases. The results presented in Table
II indicate that reducing the number of features has no impact on
the overall model performance. Further experimentation reveals
that the model with the top 10 essential features achieves the
same level of accuracy as the model with all features.

TABLE I. THE AVAILABILITY OF DIFFERENT ATTACKS IN THE MQTT

SET REAL DATASET AT THE TRAINING AND TESTING STAGES.

Attacks Types Total Train 70% Test 30%

Legitimate 11,915,716 8341001 3574715

DOS 130223 91156 39077

Malformed 14501 10150 4351

Brute Force 10924 7646 3278

Slowite 9202 6441 2761

Flood 613 429 184

Fig. 6. The extracted features rank ratio at the MQTT set dataset based on a Random Forest model classifier.

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

102

TABLE II. COMPARISON OF THE MQTTSET DATASET'S FULL AND REDUCED EXTRACTED FEATURES USING VARIOUS ASSESSMENT MEASURES BASED ON

MULTIPLE ML CLASSIFIERS.

ML
Classifier

Extracted
Features No.

Testing stage Training stage

Precision F1 Score Recall Accuracy Precision F1 Score Recall Accuracy

RF

7 0.9967 0.99662 0.9968 0.9968 0.9968 0.99668 0.99685 0.9968

10 0.9967 0.99666 0.9968 0.9968 0.9968 0.99669 0.99687 0.9968

18 0.9967 0.99666 0.9968 0.9968 0.9968 0.99669 0.99687 0.9968

33 0.9967 0.99666 0.9968 0.9968 0.9968 0.99669 0.99687 0.9968

GB

33 0.9956 0.9956 0.9959 0.9959 0.9955 0.9954 0.9956 0.9956

18 0.9955 0.9951 0.9950 0.9950 0.9955 0.9949 0.9948 0.9948

10 0.9959 0.9956 0.9961 0.9961 0.9957 0.9953 0.9958 0.9958

7 0.9958 0.9957 0.9959 0.9959 0.9955 0.9954 0.9957 0.9957

DT

7 0.9967 0.9966 0.9968 0.9968 0.9969 0.9967 0.9969 0.9969

10 0.9967 0.9966 0.9968 0.9968 0.9969 0.9967 0.9969 0.9969

18 0.9967 0.9966 0.9968 0.9968 0.9969 0.9967 0.9969 0.9969

33 0.9967 0.9966 0.9968 0.9968 0.9969 0.9967 0.9969 0.9969

Table III also shows that it reduces processing time by less
than 30% and achieves better model performance during both
training and testing. Top features were selected based on
Random Forest importance scores, calculated using the mean
decrease in impurity across all trees. Features were ranked, and
the top 15 most important were retained for model training. To
ensure robustness, it can also be examined whether feature
rankings across other models (XGBoost and SVM) are
consistent, and features consistently ranked highly across
models were prioritized. This combined approach ensures that
the selected features are both predictive and generalizable across
different classifiers.

C. Intrusion Detection Model Performance based on the

Essential Features

The machine learning models for detecting attack packets
have been trained and evaluated using the updated feature set
(top 10 features). The MQTT set with the new feature set is then
submitted to 5-fold cross-validation for each of the three
selected classifiers. Figs. 7 and 8 illustrate how the error rate
values in the learning and testing stages are converged.

The fivefold cross-validation (see Figs. 7 and 8) indicates
that RF and DT achieved the lowest training and testing error
rates. Compared to the other techniques, the GB had the fewest
fluctuations in the training state. Nevertheless, it performed well
across the first four folds of the testing stage, comparable to RF
and DT, but poorly in the last fold.

According to Table II, RF and DT achieve higher accuracy,
recall, F1 score, and precision than GB. However, compared to
GB, RF, and DT are slightly more accurate. Table IV displays
the AUC values for RF, GB, and DT.

While the ROC curves of RF, DT, and GB are depicted in
Figs. 9, 10, and 11 respectively. According to the area under the
ROC curves in Figs. 9, 10, and 11, DT and RF have higher
accuracy because they achieve a 99% detection rate in some
attacks. All of the areas under the ROC curves for some classes
are roughly equal to one. In the case of GB, the area under the
ROC curve is nearly 1 for the legitimate class only, and the
detection rates for some classes are very low, while other classes
have close to 90% detection rates.

TABLE III. THE MQTTSET DATASET'S PERFORMANCE COMPARISON OF FULL AND REDUCED FEATURES FOR VARIOUS ML CLASSIFIERS.

ML Classifier
Extracted Features

No.
Training Time(sec) Testing Time(sec) Preprocessing time(sec)

RF

7 14.5094 1.04738 47.7604

10 20.8002 1.2510 48.9029

18 29.0632 2.1401 65.5551

33 59.0691 6.1414 96.9495

GB

7 668.616 5.47257 47.7604

10 721.1012 6.11903 48.9029

18 991.3863 7.6524 65.5551

33 1014.20 13.3465 96.9495

DT

7 20.8869 0.64047 47.7604

10 25.6105 0.81234 48.9029

18 35.2461 2.0463 65.5551

33 59.2662 7.7067 96.9495

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

103

Fig. 7. Training error rate based on different ML classifiers after 5-fold cross-
validation by MQTTset

Fig. 8. Testing error rate based on different ML classifiers after 5-fold cross-

validation by MQTTset

TABLE IV. THE AUC VALUES FOR DIFFERENT ATTACK TYPES BASED

ON VARIOUS ML CLASSIFIERS.

Attacks Type RF GB DT

DOS 0.99 0.45 0.99

Legitimate 0.99 0.98 0.99

Flood 0.96 0.91 0.95

SlowITe 0.97 0.93 0.97

Brute Force 0.94 0.86 0.93

Malformed 0.96 0.58 0.95

Fig. 9. ROC curve based on real MQTTset dataset for Random Forest

Fig. 10. ROC curve based on real MQTTset dataset for Decision Tree

Fig. 11. ROC curve based on real MQTTset dataset for Gradient Boosting

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

104

The area under the ROC curve (AUC) values in Table IV
indicate that RF and DT have superior accuracy, as they can
successfully identify some assaults at a 99% rate. At the same
time, some classes have AUC values approximately equal to 1.
In the context of GB, the AUC value is almost one for the
legitimate class alone, while some classes have extremely low
detection rates, while others have rates close to 90%.

Table V shows that RF has the shortest learning time, GB
has the longest training time, and DT has the shortest time in the
testing state. As the GB's model size is smaller than that of DT
and RF, the DT method also runs the fastest on the Raspberry Pi
4. Therefore, the DT method is more suitable for implementation
on the Raspberry Pi 4. Finally, it is worth noting that extracting
essential features from actual packets for various learned models
takes 0.545978 milliseconds on a Raspberry Pi 4.

TABLE V. THE SIGNIFICANT TIMES FOR THE MQTTSET DATASET

BASED ON VARIOUS ML CLASSIFIERS.

Classifier
Training

Time (sec)
Testing Time

(sec)
Prediction
Time (msec)

Model Size
(MB)

RF 21.47394 2.1002210 1.67393 0.742

GB 972.0119 7.0737800 1.51801 0.137

DT 32.58547 1.6004511 0.66304 0.497

To evaluate the effectiveness of the performance monitoring
and upgrading mechanism, key metrics can be measured before
and after the fog-level model update as shown in Table VI. For
instance, on the MQTTset dataset, an edge node initially
achieved an accuracy of 91.2%, an F1-score of 0.89, a
precision of 0.90, and a recall of 0.88. After detecting
performance degradation and triggering the upgrading
mechanism, the retrained model improved these metrics to
accuracy = 94.8%, F1-score = 0.93, precision = 0.95, and
recall = 0.92, representing an overall increase of 3–5%. This
demonstrates that the upgrading process effectively restores and
enhances detection performance, ensuring reliable intrusion
detection even under changing traffic conditions.

TABLE VI. THE EFFECTIVENESS OF THE PERFORMANCE MONITORING

AND UPGRADING MECHANISM.

Metric Before Upgrading After Upgrading Improvement

Accuracy 91.2% 94.8% +3.6%

F1-score 0.89 0.93 +0.04

Precision 0.90 0.95 +0.05

Recall 0.88 0.92 +0.04

D. Network Performance

The testbed setup is designed to prove the efficacy of the
approach. The Raspberry Pi is considered the proposed edge
node for connecting devices to the internet. The MQTT protocol
is used to send data between IIoT devices. MQTT is used as the
transport protocol for communication in the experiment. The
MQTT architecture consists of three nodes: the broker, the
publisher, and the subscriber. MQTT broker is a central
messaging server that receives data from publishers and
subscribers. The publisher is the data sender, and the subscriber
is the data receiver [34].

In this experiment, two PCs and a single-board computer
(SCB) are used. Two PCs act as both the publishers and
subscribers. The SCB is used as the edge device emulator.
Mosquitto is installed on the SCB as an open-source MQTT
broker for a light-weight MQTT server. Fig. 12 represents the
experiment workflow of the testbed.

Fig. 12. The workflow of testbed setup for the proposed edge device based on

MQTT architecture

The suggested edge node, built on a Raspberry Pi 4, as
demonstrated in subsection (IIII.C), will be tested in this
subsection to evaluate its performance across various network
parameters and to determine whether it is suitable for IIoT
networks. The network parameters that are used in this test are
as follows:

 Round-trip time (RTT) – it is the duration in which the
subscriber receives the ACK for a packet; that is, for every
packet sent from a publisher, there is an ACK received
(TCP/MQTT communication), which determines the
successful delivery of the packet by the subscriber.

 TCP retransmission–which displays all retransmissions in
the capture. A few retransmissions are OK; excessive
retransmissions are bad. This typically manifests as slow
application performance and packet loss for the user.

 Throughput – the number of successfully received packets in
a unit time, represented in bps (bits per second).

In the IIoT network, MQTT communication (between the
publisher, broker, and subscriber) is tested under two scenarios
to determine network parameters (as shown in Figs. 9, 10, 11).
In the first scenario, the suggested Intrusion Detection and
Response System (IDRS) is deactivated, and in the second, it is
triggered. By running a script on a PC that sends messages to the
system's topic, the MQTT Broker is tested. The sensor data and
the ID of the device that broadcasts the message were included
in the script. As a result, the message sent by the sensor node
could be received by the broker. The script's job is to send
multiple messages simultaneously, each with a unique ID, by
taking into account messages from various sensor nodes
(publishers) and directing them to different actuator nodes
(subscribers).

Fig. 13 demonstrates the round-trip time (RTT) of different
numbers of published messages. Fig. 14 illustrates the TCP
retransmission of synchronous packets as the number of
published messages varies. Fig. 15 represents TCP
retransmission packets for different numbers of published

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

105

messages. Fig. 16 illustrates the throughput of the proposed
system as a function of time for various message counts.

Fig. 13. RTT for varying published message numbers when activating and

deactivating the proposed IDRS

Fig. 14. The TCP retransmission sync. packets for varying published message

numbers when activating and deactivating the proposed IDRS

Fig. 15. The TCP retransmission packets for varying published message
numbers when activating and deactivating the proposed IDRS

Fig. 16. The suggested system’s throughput over time during sending diverse

published message numbers when activating and deactivating the

proposed IDRS

Fig. 13 shows that the RTT increases as the number of
published messages increases, in both scenarios of an activated
and a deactivated IDRS. Fig. 14 shows that the retransmitted
synchronous packet numbers remain at approximately 5, a low
enough number to prevent degradation of network performance,
in both scenarios: an activated and deactivated IDRS. Fig. 15
illustrates that the number of retransmitted data packets
increases as the number of published messages increases. Fig.
16 shows that the Raspberry Pi 4's throughput is slightly reduced
when the IDRS is activated.

Although the implementation was performed on a single
Raspberry Pi 4B, the proposed fog–edge IDPRS framework is
designed for multi-node deployment. Each edge device can run
an independent lightweight IDS instance, while the fog layer
synchronizes model updates and detection rules. This distributed
setup reduces per-node load and allows parallel processing of
network traffic, minimizing detection latency. Based on similar
edge-based IDS studies (e.g., RealGuard, Passban), the system
is expected to maintain accuracy and responsiveness when
scaled, provided communication bandwidth and update
frequency are managed appropriately.

E. Performance of Resources Utilization

In IIoT networks, edge nodes are typically battery-operated
and have limited processing and storage capabilities. Hence, the
power usage, CPU load, and memory occupation of the
proposed edge node are measured in the two operational states
mentioned earlier. The operating conditions of Raspberry Pi 4
[35] are presented in Fig. 17, where the average consumed
current values for different operation modes are displayed. In
Low Power Mode, peripherals such as the mouse, keyboard, and
screen are switched off, while all peripherals are active in Stable
Mode. The regular power usage of the suggested intelligent
gateway is obtained by multiplying the average current by the
nominal voltage. The nominal voltage of the Raspberry Pi 4 is
5V. The proposed intelligent gateway, with its low complexity
and lightweight resource requirements, can be deployed
efficiently on a high-performance Raspberry Pi 4, as displayed
in Table VII.

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

106

Fig. 17. The average consumed current values for different operation modes on

Raspberry Pi 4.

TABLE VII. THE SYSTEM RESOURCES UTILIZATION ON RASBARRY PI4.

System Resources
Ineffective

IDRS
Effective IDRS Overhead

Increased

Regular Power usage 3.325 W 3.750 W 12.78%

Typical CPU Process
%

5% 16% 11%

 Memory usage % (of
8 Gbytes)

1.73%
(0.139 Gbyte)

2.52%
(0.202 Gbyte)

0.79%

VI. COMPARATIVE STUDY

Despite the remarkable progress reported in the literature, a
general, secure, robust, and resilient intrusion detection system
for IIoT networks remains an open issue. Table VIII presents the
recent works discussed in this section, classifying them by
dataset, architectural approach, algorithm, upgrading strategy,
validation method, and performance metric.

Although many researchers have proposed operational
intrusion detection solutions for IoT/IIoT networks, several
issues remain to be addressed. First, many studies validate their
approach using a few performance metrics, which do not
provide a comprehensive assessment of the method's overall
effectiveness. Second, the feasibility of such techniques on
resource-constrained devices is not sufficiently demonstrated.
Third, to validate the high accuracy of the suggested threat
detection solutions, the researchers employed extensive feature
engineering (e.g., feature mapping and reduction) to extract
optimal characteristics from attack datasets, in conjunction with
classification algorithms. Feature engineering involves complex
computational procedures and cannot be performed on time-
sensitive edge devices with limited processing power. In this
context, this paper offers a lightweight intrusion detection,

response, and prevention system for edge nodes deployed in
IIoT systems. The proposed system is novel in several aspects
compared to prior work:

 In industrial IoT settings, IDS, IPS, and IRS functionalities

are tightly integrated with a secure architectural design for

the edge devices.

 High experimental accuracy is achieved by training

machine learning models on high-performance platforms

(fog nodes) and running the same on resource-constrained

edge devices to lessen the impact of time-intensive feature

engineering.

 Performance monitoring and upgrading mechanisms are

included to handle emerging attacks.

 A variety of performance evaluation metrics are defined to

measure resource utilization, network efficiency, and

detection performance.
Although most prior IDS frameworks for IoT and IIoT do

not report explicit power-consumption measurements, several
studies highlight their computational and resource efficiency,
which can be used for qualitative comparison. For example,
MEML [15] and Passban IDS [18] report reduced CPU and
memory overhead through lightweight machine-learning
models optimized for constrained devices. At the same time,
Realguard [21] focuses on minimizing processing latency and
resource usage on IoT gateways. Similarly, the edge-based
frameworks in [17], [23], and [24] emphasize low-complexity
detection to support real-time deployment on fog and edge
nodes. Compared to the proposed work with these systems, the
Raspberry Pi 4B implementation provides measured energy
consumption across different workloads, demonstrating that the
proposed IDS/IPS/IRS framework achieves comparable
lightweight operation while delivering higher detection
performance. This comparison highlights that the proposed
system not only maintains the low-resource characteristics
emphasized in prior work but also explicitly quantifies energy
savings, thereby filling a gap in existing research.

Unlike prior edge-based IDS frameworks such as Passban
[18], RealGuard [21], and GA_RF [23], which either rely on
static models or manual feature selection, the proposed IDPRS
framework integrates a real-time performance-monitoring and
upgrade mechanism, as shown in Table IX. The system
continuously evaluates edge-node detection performance and
triggers fog-level retraining when predefined thresholds are
exceeded, ensuring adaptive and consistent detection.
Additionally, feature selection is automated using Random
Forest importance scores, optionally verified across multiple
models to retain only the most predictive features. This approach
reduces computational load, enhances robustness, and
distinguishes the proposed framework from existing edge-based
IDS architectures.

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

107

TABLE VIII. DETAILS ON RECENT IDS-BASED RESEARCH FOR IOT/IIOT SYSTEMS.

Ref. Year Dataset Used
Architecture

Approach
Algorithm Utilized

Upgrading

Strategy
Performance Parameters

Prevention and

response

actions

Validation Policy

[14] 2019 N/A Centralized Genetic Programming × Detection Efficiency × Simulation

[15] 2019 NSL-KDD Distributed Neural Network √ N/A × Simulation/Emulation

[16] 2020 DS2OS Centralized
Random Neural

Network
×

Detection Efficiency,
Resource Usage

× Simulation/Emulation

[17] 2020 KDD Cup’99 Centralized K-Mean × Detection Efficiency × Simulation

[18] 2020 Private dataset Distributed
Local Outlier Factor

and Isolation Forest
√

Resource Usage, Detection

Efficiency
× Simulation/Emulation

[19] 2021
UNSW-NB15 and

NSL-KDD
Centralized

Deep Feedforward
Neural Network

× Detection Efficiency × Simulation

[20] 2021

CICIDS 2017,

CICIDS 2018,
TON IoT

Centralized
Deep Neural

Networks
× Detection Efficiency × Simulation

[21] 2022 CICIDS2017 Distributed
Deep Neural

Networks
√

Detection Efficiency,

Resource Usage
√ Simulation/Emulation

[22] 2023
Generated by

author
Distributed

Deep Neural
Networks

√ Detection Efficiency √ Simulation/Emulation

[23] 2024
MQTT-IOT-

IDS2020
Distributed

hybrid Genetic

Algorithm and

Random Forest
(GA_RF)

× Detection Efficiency × Simulation/Emulation

Current

work
2025 MQTTset Distributed

Tree-Based Machine

Learning
√

Detection Efficiency,

Resource Usage, Network
Performance

√ Simulation/Emulation

N/A = Not Appropriately Defined

TABLE IX. PERFORMANCE METRICS OF AN EDGE NODE BEFORE AND AFTER APPLYING THE FOG-LEVEL MODEL UPGRADING MECHANISM,
DEMONSTRATING IMPROVED DETECTION PERFORMANCE.

Feature / Module Passban IDS [18] RealGuard [21] GA_RF [23] Proposed IDPRS Framework

Edge/IPS/IRS Integration IDS only IDS only IDS only Full IDS + IPS + IRS integration

Model Upgrading

Mechanism
Manual retraining Static model Periodic retraining Real-time monitoring & fog-level automatic updates

Feature Selection
Manual or all

features
All available

features
Selected based on RF

only
Automated RF importance + cross-model

consistency check

Adaptive to Edge

Performance
No No Limited Yes – triggers upgrades when performance drops

Resource Optimization Moderate Moderate Moderate Lightweight – optimized for edge deployment

Multi-Node Scalability Not addressed Not addressed Not addressed Designed for distributed edge–fog nodes

VII. CONCLUSIONS

The ever-increasing number of IIoT devices has led to an
emphasis on securing edge devices. In this paper, the authors
propose a methodology and architecture for a machine-learning-
based intrusion detection mechanism in edge-based IIoT
environments. In their design, the IDS, IPS, and IRS
functionalities are integrated into a single, compact, and secure
edge node. The system aims to detect attacks against the MQTT
protocol.

The challenges, such as training the ML model directly on a
resource-constrained device like a Raspberry Pi, are overcome
by collecting traffic from edge nodes and forwarding it to fog
nodes for model training. The trained model is finally installed
in the edge device as a threat detection engine. The continuous
monitoring of performance and use of an upgrading mechanism
to combat emerging attacks are discussed. Experimental results
demonstrate that the proposed framework can effectively detect
attacks in an MQTT-based IIoT environment while maintaining
both resource efficiency and high detection accuracy. In the
future, the susceptibility of new kinds of threats to diverse IIoT

protocols will be researched. Additionally, if the hardware
permits, a higher-complexity model can be used to improve
detection performance.

Moreover, to ensure IIoT communication security, protected
communication will be established between edge nodes and fog
nodes when transferring collected datasets and trained models.
This work is limited by its evaluation on a single-device setup,
the lack of large-scale traffic testing, and reliance on a single
dataset, which restricts claims about generalizability. The
upgrading mechanism was conceptually validated but not
extensively quantified under real-time load, and energy
comparisons with other IDS frameworks were limited. Future
work will extend the system to multi-node and federated edge–
fog deployments, explore online and continual learning for
faster model updates, and assess performance across additional
IoT protocols and datasets. Further improvements will include
incorporating model compression for lower energy use and
investigating adversarial robustness and intelligent, autonomous
response strategies.

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

108

Although the system is demonstrated on MQTT traffic, the
architecture is inherently protocol-agnostic. Only the packet-
parsing component is protocol-specific, while the feature
extraction, classification pipeline, and response modules remain
unchanged. By integrating parsers for other IoT protocols such
as CoAP, AMQP, DDS, or HTTP, the same feature vectors can
be generated, enabling seamless reuse of the ML models.
Additionally, transfer learning or light fine-tuning can be
applied to adapt the framework to new datasets. This modular
design allows the system to operate across heterogeneous IoT
environments and supports future extensions to multi-protocol
security monitoring.

REFERENCES

[1] Z. E. Huma, S. Latif, J. Ahmad, Z. Idrees, A. Ibrar, Z. Zou, et al., "A
Hybrid Deep Random Neural Network for Cyberattack Detection in the
Industrial Internet of Things," IEEE Access, vol. 9, pp. 55595-55605,
2021. https://doi.org/10.1109/2021/3071766.

[2] T. Vaiyapuri, Z. Sbai, H. Alaskar, and N. A. Alaseem, "Deep Learning
Approaches for Intrusion Detection in IIoT Networks–Opportunities and
Future Directions," International Journal of Advanced Computer Science
and Applications (IJACSA), vol. 12, pp. 86-92, 2021.
https://doi.org/10.14569/IJACSA.2021.0120411

[3] G. E. I. Selim, E. Hemdan, A. M. Shehata, and N. A. El-Fishawy,
"Anomaly events classification and detection system in critical industrial
internet of things infrastructure using machine learning algorithms,"
Multimedia Tools and Applications, vol. 80, pp. 12619-12640, 2021.
https://doi.org/10.1007/s11042-020-10354-1

[4] Q. Ibrahim and S. Lazim, "An insight review of internet of Things (IoT)
protocols, standards, platforms, applications and security issues,"
International Journal of Sensors Wireless Communications and Control,
vol. 11, pp. 627-648, 2021.
https://doi.org/10.2174/2210327910999201102194157

[5] M. Zolanvari, M. A. Teixeira, and R. Jain, "Effect of imbalanced datasets
on security of industrial IoT using machine learning," in 2018 IEEE
International Conference on Intelligence and Security Informatics (ISI),
2018, pp. 112-117. https://doi.org/10.1109/ISI.2018.8587389.

[6] S. Lazim Qaddoori and Q. I. Ali, "An embedded and intelligent anomaly
power consumption detection system based on smart metering," IET
Wireless Sensor Systems, vol. 13, pp. 75-90, 2023.
https://doi.org/10.1049/wss2.12054

[7] H. Qiao, J. O. Blech, and H. Chen, "A Machine learning based intrusion
detection approach for industrial networks," in 2020 IEEE International
Conference on Industrial Technology (ICIT), 2020, pp. 265-270.
https://doi.org/10.1109/ICIT45562.2020.9067253

[8] H. Alaiz-Moreton, J. Aveleira-Mata, J. Ondicol-Garcia, A. L. Muñoz-
Castañeda, I. García, and C. Benavides, "Multiclass classification
procedure for detecting attacks on MQTT-IoT protocol," Complexity, vol.
2019, pp. 1-11, 2019. https://doi.org/10.1155/2019/6516253

[9] S. Madhawa, P. Balakrishnan, and U. Arumugam, "Roll forward
validation based decision tree classification for detecting data integrity
attacks in industrial internet of things," Journal of Intelligent & Fuzzy
Systems, vol. 36, pp. 2355-2366, 2019. https://doi.org/10.3233/JIFS-
169946

[10] H. Yao, P. Gao, P. Zhang, J. Wang, C. Jiang, and L. Lu, "Hybrid intrusion
detection system for edge-based IIoT relying on machine-learning-aided
detection," IEEE Network, vol. 33, pp. 75-81, 2019.

[11] S. L. Qaddoori and Q. I. Ali, "An embedded intrusion detection and
prevention system for home area networks in advanced metering
infrastructure," IET Information Security, vol. 17, pp. 315-334, 2023.
https://doi.org/10.1049/ise2.12097.

[12] M. A. Khan, M. A. Khan, S. U. Jan, J. Ahmad, S. S. Jamal, A. A. Shah,
et al., "A Deep Learning-Based Intrusion Detection System for MQTT
Enabled IoT," Sensors, vol. 21, pp. 7016-7040, 2021.
https://doi.org/10.3390/s21217016

[13] A. Derhab, M. Guerroumi, A. Gumaei, L. Maglaras, M. A. Ferrag, M.
Mukherjee, et al., "Blockchain and random subspace learning-based IDS

for SDN-enabled industrial IoT security," Sensors, vol. 19, pp. 3119-
3142, 2019. https://doi.org/10.3390/s19143119.

[14] E. Aydogan, S. Yilmaz, S. Sen, I. Butun, S. Forsström, and M. Gidlund,
"A central intrusion detection system for rpl-based industrial internet of
things," in 2019 15th IEEE International Workshop on Factory
Communication Systems (WFCS), 2019, pp. 1-5.
https://doi.org/10.1109/WFCS.2019.8758024.

[15] A. Shalaginov, O. Semeniuta, and M. Alazab, "MEML: Resource-aware
MQTT-based machine learning for network attacks detection on IoT edge
devices," in Proceedings of the 12th IEEE/ACM International Conference
on Utility and Cloud Computing Companion, 2019, pp. 123-128.
https://doi.org/10.1145/3368235.3368876

[16] S. Latif, Z. Zou, Z. Idrees, and J. Ahmad, "A Novel Attack Detection
Scheme for the Industrial Internet of Things Using a Lightweight Random
Neural Network," IEEE Access, vol. 8, pp. 89337-89350, 2020.
https://doi.org/10.1109/2020.2994079.

[17] M. P. Maharani, P. T. Daely, J. M. Lee, and D.-S. Kim, "Attack detection
in fog layer for iiot based on machine learning approach," in 2020
International Conference on Information and Communication
Technology Convergence (ICTC), 2020, pp. 1880-1882. https://doi.org/
10.1109/ICTC49870.2020.9289380.

[18] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, "Passban IDS:
An intelligent anomaly-based intrusion detection system for IoT edge
devices," IEEE Internet of Things Journal, vol. 7, pp. 6882-6897, 2020.

[19] J. B. Awotunde, C. Chakraborty, and A. E. Adeniyi, "Intrusion detection
in industrial internet of things network-based on deep learning model with
rule-based feature selection," Wireless communications and mobile
computing, vol. 2021, pp. 1-17, 2021.
https://doi.org/10.1155/2021/7154587

[20] K. Raja, K. Karthikeyan, B. Abilash, K. Dev, and G. Raja, "Deep
Learning Based Attack Detection in IIoT using Two-Level Intrusion
Detection System," Soft computing, Springer, Research Square, vol.
2021, pp. 1-32, 2021. https://doi.org/10.21203/rs.3.rs-997888/v1.

[21] X.-H. Nguyen, X.-D. Nguyen, H.-H. Huynh, and K.-H. Le, "Realguard:
A Lightweight Network Intrusion Detection System for IoT Gateways,"
Sensors, vol. 22, pp. 432-449, 2022. https://doi.org/10.3390/s22020432

[22] A. Awajan, "A novel deep learning-based intrusion detection system for
IOT networks," Computers, vol. 12, p. 34,
2023.https://doi.org/10.3390/computers12020034

[23] G. T. Francis, A. Souri, and N. İnanç, "A hybrid intrusion detection
approach based on message queuing telemetry transport (MQTT)
protocol in industrial internet of things," Transactions on Emerging
Telecommunications Technologies, vol. 35, p. e5030, 2024.
https://doi.org/10.1002/ett.5030

[24] T. Zhukabayeva, Z. Ahmad, A. Adamova, N. Karabayev, and A.
Abdildayeva, "An Edge-Computing-Based Integrated Framework for
Network Traffic Analysis and Intrusion Detection to Enhance Cyber–
Physical System Security in Industrial IoT," Sensors, vol. 25, p. 2395,
2025. https://doi.org/10.3390/s25082395

[25] L. Zhang, S. Jiang, X. Shen, B. B. Gupta, and Z. Tian, "PWG-IDS: An
Intrusion Detection Model for Solving Class Imbalance in IIoT Networks
Using Generative Adversarial Networks," arXiv preprint
arXiv:2110.03445, 2021. https://doi.org/10.48550/arXiv.2110.03445

[26] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, "Edge-
IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT
and IIoT Applications for Centralized and Federated Learning," IEEE
Access, vol. 10, pp. 40281-40306, 2022.
https://doi.org/10.1109/2022/3165809

[27] A. Samy, H. Yu, and H. Zhang, "Fog-based attack detection framework
for internet of things using deep learning," IEEE Access, vol. 8, pp.
74571-74585, 2020. https://doi.org/10.1109/2020/2988854

[28] I. Butun, M. Almgren, V. Gulisano, and M. Papatriantafilou, "Intrusion
Detection in Industrial Networks via Data Streaming," in Industrial IoT,
ed: Springer, 2020, pp. 213-238.https://doi.org/10.1007/978-3-030-
42500-5_6

[29] R. Colelli, S. Panzieri, and F. Pascucci, "Securing connection between IT
and OT: the Fog Intrusion Detection System prospective," in 2019 II
Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0&IoT),
2019, pp. 444-448.

Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026)

109

[30] MQTTset Dataset [Online]. Available: https:
//www.kaggle.com/cnrieiit/mqttset

[31] I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso,
"MQTTset, a new dataset for machine learning techniques on MQTT,"
Sensors, vol. 20, pp. 6578-6595, 2020. https://doi.org/10.3390/s20226578

[32] E. Aslan, Y. Ozupak, F. Alpsalaz, and Z. M. Elbarbary, "A Hybrid
Machine Learning Approach for Predicting Power Transformer Failures
Using Internet of Things Based Monitoring and Explainable Artificial
Intelligence," IEEE Access, 2025. https://doi.org/ 10.1109/2025/3583773

[33] B. Said, F. I. Bouguenna, Z. Ayyoub, M. Abdullah, Y. Özüpak, R.
Bouddou, et al., "Hybrid MPC–Third‐Order Sliding Mode Control With

MRAS for Fault‐Tolerant Speed Regulation of PMSMs Under Sensor
Failures," International Transactions on Electrical Energy Systems, vol.
2025, p. 5984024, 2025. https://doi.org/10.1155/etep/5984024.

[34] Z. Gao, J. Cao, W. Wang, H. Zhang, and Z. Xu, "Online-Semisupervised
Neural Anomaly Detector to Identify MQTT-Based Attacks in Real
Time," Security and Communication Networks, vol. 2021, pp. 1-11, 2021.
https://doi.org/10.1155/2021/4587862

[35] (24/9/2021). Raspberry Pi Foundation. Available:
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

[36]

http://www.kaggle.com/cnrieiit/mqttset‎
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/‎

