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Abstract 

The increasing demand for the Industrial Internet of Things (IIoT), with billions of connected things and the decentralization of data 

exchange, is gaining momentum, making conventional threat detection and analysis challenging in such distributed environments. In this 

paper, a security framework for edge nodes, called the Intrusion Detection, Prevention, and Response System (IDPRS), is proposed. It 

aims to detect MQTT (Message Queuing Telemetry Transport)-based threats using Machine Learning (ML) algorithms. However, ML 

models cannot be trained on resource-constrained devices; therefore, the approach trains the model on a high-performance platform, 

which will later serve as the detection engine on an edge node. The edge node can be hosted on low-cost single-board computers (SBCs), 

such as the Raspberry Pi. The detection model is further monitored and updated using an upgrade algorithm to make it adaptive to 

emerging threats. The evaluation results demonstrate high detection accuracy and reasonable resource and network overhead. 
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I. INTRODUCTION  

Industrial Internet of Things (IIoT) is the extension of the 
common principles of IoT to industrial applications and 
manufacturing processes [1]. The IIoT has evolved over the last 
10 years as an emerging technology with the ability to connect 
and digitize different industries to create significant economic 
value and enable new industries to grow, thus becoming a major 
contributor to the world's Gross Domestic Product (GDP) [2-4]. 
Examples of IIoT applications are connected cars, smart homes, 
smart cities, smart grids, smart factories, and supply chain 
systems [1]. 

The massive amount of data that is produced by the IIoT 
network's sensors, which are resource-restricted devices with 
constrained power, connectivity capabilities, and memory [1, 2]. 
To link sensors and cloud servers, edge devices such as routers, 
laptops, desktops, cell phones, handheld devices, and 
microservers are used. The edge devices gather data from 
appliances and deliver it to nearby servers after carrying out any 
necessary preprocessing. However, as specific IoT edge-layer 
devices have gained popularity in industry, several privacy and 
security concerns have emerged, posing a significant threat to 

the security and reliability of the IIoT. Intruders may exploit 
these edge devices [1]. Therefore, this manuscript focuses on the 
security issues of edge-based IIoT.  

One of the most often used solutions for IIoT security 
challenges is the intrusion detection system (IDS). It is used to 
detect network traffic, particularly to distinguish between 
legitimate and malicious traffic, and so helps to eliminate 
malicious traffic [5, 6]. IDS uses two main techniques: 
signature-based and anomaly-based detection systems. 
Signature-based methods detect known threats by scanning 
network data for defined patterns, whereas anomaly-based 
systems detect an attack by monitoring the system behavior, 
traffic, or objects. The system behavior, traffic, or objects are 
compared against an already well-defined baseline that exhibits 
normal behavior [7, 8]. Anomaly-based IDS using machine 
learning techniques has better generalization than signature-
based IDS. [8, 9].  

One of the main research trends for anomaly-based 
approaches is the use of ML techniques. These methods learn 
generalized properties of the traffic for training and use the 
trained features to classify the input traffic correctly. 
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Generalized learning from traffic data enables better responses 
to unknown data using machine learning. Traditional machine 
learning is well-suited to IIoT edge devices, which typically 
have relatively low resource consumption and short training 
times [10, 11].  

This study proposes a lightweight fog–edge Intrusion 
Detection, Prevention, and Response System (IDPRS) for IIoT 
environments. The main contributions are: 

 An integrated IDS/IPS/IRS architecture for edge devices, 

extending beyond prior IDS-only systems. 

 A dynamic upgrading mechanism that monitors edge 

performance and triggers fog-level retraining, enabling 

adaptive and up-to-date detection. 

 A hybrid feature-selection approach combining Random 

Forest importance with cross-model consistency to reduce 

computational overhead. 

 A fog-assisted training strategy that builds ML models on 

fog nodes and deploys them efficiently on constrained edge 

hardware. 

 Coordinated fog–edge response and detection, improving 

reliability and scalability in distributed IIoT networks. 

 Comprehensive performance evaluation covering 

accuracy, latency, energy consumption, and resource usage 

to validate real-world applicability. 

The manuscript is organized as follows: Section II presents 
the literature review. In Section III, the general structure of IIoT 
networks is described. In contrast, Section IV outlines the 
methodology of the proposed system. The experimental results 
and discussion are demonstrated in Section V. The comparative 
study is explained and tabulated in Section VI. Finally, Section 
VII clarifies the conclusions. 

II. LITERATURE REVIEW 

With the significant advances in IIoT and the consequent 
need for network security, intrusion detection is a key area of 
focus. The last years have seen a plethora of works proposing 
ML models to address the task of developing IDS solutions in 
IoT and IIoT networks [12, 13]. The most notable are presented 
shortly as follows:  

In [14], E. Aydogan et al. proposed a genetic programming-
based intrusion detection solution for IIoT platforms, presented 
along with a proof of concept and quantitative evaluation. The 
study also evaluated the potential of a centralized IDS at the root 
node of the RPL-based mesh, considering device heterogeneity 
and resource constraints. Results demonstrated the root node's 
ability to perform real-time detection of RPL attacks. The 
approach proposed in [15] also employed machine learning 
models to secure IoT networks, with a trade-off between 
performance and computational complexity. An MQTT-based 
protocol was suggested for NN model updates on constrained 
devices, with training and optimization performed on robust IoT 
gateways. In contrast, only the lightweight testing computation 
is performed on IoT nodes. 

In [16], S. Latif et al. proposed a prediction system with high 
accuracy on IIoT attacks using a lightweight random neural 
network architecture. The experimental results, obtained using 

the DS2OS dataset, confirmed the efficiency of the proposed 
method, with reduced prediction time and validation of the 
solution under different test conditions. In [17], the authors 
considered attack detection in fog computing environments 
using an ensemble of multiple machine learning approaches. 
Decision Tree, Random Forest, and K-Means were used to 
process the ensemble results, with all evaluations performed on 
the KDD Cup '99 dataset. Passban [18], an intelligent IDS that 
can be directly deployed on low-cost IoT gateways (such as a 
single-board PC) was also developed. Passban was shown to 
effectively detect SSH, HTTP brute-force, SYN flood, and port-
scanning attacks, and to report a low false-positive rate and high 
accuracy. 

In [19], J. B. Awotunde et al. suggested a framework to 
detect intrusions in IIoT by deep learning. Rule-based feature 
engineering was combined with a deep feedforward neural 
network to detect network intrusions, and the approach was 
evaluated on the NSL-KDD and UNSW-NB15 datasets, 
demonstrating robust detection performance. In [20], a two-
stage deep learning-based IDS for IIoT networks was proposed. 
DNNs were used in the first stage to detect attacks. Then, the 
attacks with a low detection rate were forwarded to a second 
stage that integrated the Negative Selection Algorithm (NSA) 
optimized with the Dragonfly Algorithm. Then Dempster-
Shafer’s rule of combination is used to fuse the outputs of both 
DNNs and NSA. The suggested model was evaluated using the 
CICIDS2017, CICIDS2018, and TON IoT datasets, and its 
effectiveness was confirmed. 

In one of the most recent works, in [21], X.-H. Nguyen et al. 
proposed Realguard, a lightweight DNN-based IDS that can be 
directly deployed on local gateways to protect IoT devices. 
Realguard was designed using simple feature extraction 
combined with a DNN-based detection model and has been 
shown to accurately identify multiple cyberattacks in real-time, 
such as botnets, port scans, and FTP-Patator. The CICIDS2017 
dataset was used to test the solution, which demonstrated 
accurate and precise detection with a low processing footprint, 
making it suitable for resource-constrained devices (e.g., 
Raspberry Pi). 

In this study, a new approach is proposed to develop DL-
based IDS for IoT devices. This intelligent system utilizes a 
four-layer deep Fully Connected (FC) network to detect the 
traffic that may trigger IoT device attacks. To alleviate such 
deployment complexities, the proposed system has been built to 
be independent of the communication protocol. During the 
experimental performance analysis, the suggested system is 
observed to be a successful model of simulated as well as actual 
intrusions [22]. 

This paper proposes a GA_RF technique for detecting cyber-
attacks on the IIoT environment ICSs that employ MQTT 
protocol. This architecture connects the ICS with edge devices 
and cloud servers to monitor the data field collected by sensors, 
using a GA_RF algorithm to identify anomalous results. 
Typically, the data is processed on-site before being shared with 
the cloud for storage and processing, and then returned for 
continuous observation and protection. Also, in a real case, the 
MQTT-IOT-IDS2020 dataset was used to predict the proposed 
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GA_RF method, compared with other powerful machine 
learning and deep learning methods [23]. 

Zhukabayeva et al. address the growing security 
vulnerabilities in Industrial Internet of Things (IIoT) Cyber-
Physical Systems (CPS) by proposing an integrated framework 
that leverages edge computing to facilitate real-time traffic 
analysis and intrusion detection. To mitigate the high latency 
associated with traditional centralized cloud solutions, the 
authors developed a hybrid methodology using the NF-ToN-
IoT-V2 dataset, combining unsupervised K-means clustering for 
traffic segmentation with supervised machine learning 
models—specifically Random Forest, K-Nearest Neighbors, 
and Logistic Regression—for anomaly classification. The 
results demonstrated that K-means outperformed DBSCAN in 
clustering traffic patterns, while the Random Forest algorithm 
achieved the highest detection accuracy with an F1 score of 0.99, 
validating the framework's effectiveness in providing scalable, 
low-latency security for industrial environments [24]. 

Unlike previous intrusion detection frameworks that focus 
solely on centralized or cloud-based analysis [Refs. 24, 18, 17, 
19], the proposed IDPRS introduces a hybrid fog–edge 
coordination mechanism that enables distributed learning and 
real-time response across IIoT nodes. Furthermore, the system 
integrates adaptive machine learning models that self-tune based 
on local anomaly patterns, a feature not addressed in earlier 
work. 

However, based on the literature, there remains a need for an 
innovative, reliable, secure, and resilient IDS for the IIoT edge 
layer.  

III. GENERAL STRUCTURE OF IIOT NETWORKS 

In the integration of Industrial Internet of Things (IIoT), a 
multilevel architecture is commonly used and often structured 
into three hierarchical levels, as shown in Fig. 1, including edge, 
fog, and cloud [25]. The edge layer comprises billions of 
resource-constrained IIoT nodes, including sensors, actuators, 

vehicles, smart appliances, wearable devices, surveillance 
cameras, and other intelligent machines. These networks mainly 
collect large volumes of data in a heterogeneous manner, then 
transmit the same to the upper levels, where they are handled 
further [26, 27]. The fog layer lies between the edge and the 
cloud and typically includes a host of routers, servers, and 
controllers controlled by Internet Service Providers (ISPs). Mog 
nodes, compared to edge devices, have enhanced computational 
and memory capacity and are therefore suitable for workloads 
that require more memory, energy, and processing units. 
Moreover, their decentralization in various geographic locations 
of the ISP infrastructures enables them to be closer to the edge 
devices, but still allows them to interface with multiple 
applications and protocols [27]. At the top of the hierarchy is the 
cloud layer, where powerful servers, supercomputers, and large-
scale storage infrastructures are generally located in enterprise 
data centers. Intensive data management functions, such as 
large-scale storage, processing, allocation, and general 
orchestration of IIoT services, are the responsibility of this layer 
[28].  

IV. THE PROPOSED SYSTEM METHODOLOGY 

 The significant number of IIoT devices installed and used 
worldwide will naturally generate large amounts of data that 
must be collected and analyzed in real time to identify potential 
attacks. Therefore, a centralized approach to intrusion detection 
is insufficient for IIoT security monitoring, and the proposed 
methodology must leverage a distributed model architecture. 
The methodology proposes using a machine-learning-based 
model that runs on distributed edge nodes, managed and updated 
by a fog-computing layer. This enables the real-time monitoring 
of data from various IIoT nodes. The methodology was divided 
into four main phases: data collection and feature selection, 
intrusion detection model development and learning, intrusion 
detection model deployment on edge nodes, and performance 
monitoring and model updates. The different stages in Fig. 2 are 
further clarified in the following sections. 

 

 

Fig. 1. An example of three hierarchical levels of multi-tier IIoT architecture. 
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Fig. 2. The suggested intrusion detection,  prevention, and response framework in the IIoT system.

A. Data Collection and Feature Selection 

In this phase, a system is designed to acquire, store, and 
analyze IIoT data for edge-node intrusion detection, and the ML 
model is trained at the nearest fog node. The newly acquired data 
from edge devices is transmitted to the fog node every month 
via the intelligent gateway. Since IIoT devices continuously 
generate a large amount of data. One approach to reduce dataset 
size is to extract the features of interest from newly acquired data 
for the ML model and store only those selected features. 
Therefore, in the proposed model, the fog node receives only the 
extracted features of interest from edge devices, rather than the 
entire larger datasets, for analysis through feature reduction. 
Furthermore, the feature reduction can be represented as a 
filtering stage, allowing the model to emphasize vital features 
through learning. 

The automated feature selection approach is not in the scope 
of this manuscript (but it can be used with deep learning 
algorithms to select the essential and adequate features as future 
work). Additionally, in future work, an intrusion detection 
model could be built for this stage, given the absence of a label 
for the received data.  

B. Intrusion Detection Model Constructing and Learning 

The second phase involves selecting an appropriate ML 
model and training it on IIoT data from the fog device to enhance 
its detection performance against various attacks. For this study, 
tree-based learning models (namely, Gradient Boosted Trees, 
Random Forests, and Decision Trees) are adopted due to their 
widespread use and their ability to offer diverse performance for 
different feature types. This stage involves several steps, the first 
of which is training the ML model using the IIoT data collected 
and prepared in the first phase. This is executed on the fog layer 
to expedite the training process. Hyperparameter tuning is 
conducted for each dataset and architecture to improve the ML 
model's performance further.  

The major hyperparameters for the tree-based models used 
in this study are the number of estimators, the learning rate, and 

the tree depth. These are preset before training, but can be 
adjusted during training to improve results. The resulting model 
is then evaluated using conventional performance measures on 
data that it has not been trained on. This process may be repeated 
by further tuning hyperparameters when performance is 
unsatisfactory, until the best-performing result is obtained. By 
conducting the computationally most expensive operations 
offline, the IDS can operate efficiently and smoothly. Fig. 3 
illustrates the processing steps for constructing and learning the 
intrusion detection model. 
 

 
Fig. 3. The processing steps for constructing and learning the intrusion 

detection model. 

C. Intrusion Detection Model Implementation 

During the third step of the suggested approach, the intrusion 
detection model is deployed on edge nodes. Implementations of 
machine learning applications at this tier have several benefits 
to IIoT systems, such as the capability of analyzing sensitive 
data nearer to the devices that produce the data, decreased time 
between data gathering and processing, lower network 
bandwidth utilization, and effective execution of tasks at the 
edge devices or transmitted to fog nodes. Besides, mobility 
support is achieved through such deployment. The fog layer 
provides services to manage the detection process, enabling 
scalability, distribution, and rapid response. The edge node may 
assume various roles, including operating as a firewall/IPS, an 
intrusion detection system (IDS), an intrusion response system 
(IRS), a network traffic broker, or a web server. Fig. 4 illustrates 
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the software architecture of the proposed edge node, with further 
subsections explaining the role of each component. 

 

 

Fig. 4. The details of the software architecture for the proposed edge device 

 

1) Firewall/IPS Module: Firewall/IPS, which is a standard 
method of preventing network threats, is frequently utilized to 
block banned connections and separate internal networks from 
unconfident activities. Because the firewall protects the edge 
node, the IDS examines all packets that travel through it. 
Blocklist patterns, such as source and destination addresses in 
the IP layer and source and destination port numbers in the 
transport layer, are pre-registered by the blocklist firewall/IPS. 
Based on this, the packet's robustness and suitability for network 
access are determined, and access is granted. As a result, the first 
line of defense against invasions is the firewall/IPS. It identifies 
current attacks and prevents them by reducing computational 
costs. The suggested edge node includes a firewall/IPS to 
construct a trusted barrier between the broker and sensor nodes. 
The following functions are performed by the firewall/IPS that 
has been installed: 

 Disallow packets whose source IP address is included in the 

IP address blocklist. 

 Block packets whose destination port addresses are 

included in the port blocklist. 

 Block specific IP address prefixes from networks using the 

blocklist of prefix addresses. 

 By defining the packet threshold and time threshold, users 

may stop excessively rapid requests sent by the same IP, 

such as ping assaults. 
 

2) IDS Module: Firewalls/IPSs are not always completely 
reliable and/or efficient enough to protect IIoT networks from 
all forms of assaults. The packets that pass through the 
firewall/IPS are forwarded to the IDS under test, which inspects 
them for threats. The intrusion detection system serves as the 
second line of defence against attacks. As in the case of several 
severe attacks targeting vital infrastructure, such as nuclear 
enrichment facilities, the first line of defence — firewalls/IPSs 
— might fail. Network features are taken from the packet after 
it has been approved by the firewall/IPS and preprocessed to 
match the input of the learned ML model. After a period of time 
(one week, one month, or another), these characteristics are 
recorded in a file and regularly sent to the closest fog node to 
retrain the intrusion detection model. The characteristics are 
then used to train the multi-class ML model to restrict the 
packet's normalcy. The packet will be sent to the broker if it is 

normal. If not, the IRS module will be enabled when the attack's 
kind is determined. Fig. 5 depicts the processing steps for the 
proposed intrusion detection module. 

 

Fig. 5. The processing steps of the proposed Intrusion Detection module 

3) IRS Module: Intrusion Response Systems (IRS) can actively 
block attacks after they have been identified. Malicious or 
unauthorized behaviors can be effectively addressed by taking 
the necessary steps to prevent problems from escalating and to 
return the device to a healthy state. An IRS instantly performs a 
predetermined set of reactions based on the kind of attack when 
an IDS module detects an intrusion. An automated method does 
not necessitate human intervention. As a result, effective 
countermeasures are required to combat various attack 
scenarios. The IRS module's actions are as follows: 

 Packet Reset Connection: When a publisher or subscriber 

delivers an anomalous packet, the broker sends a TCP reset 

packet to cut off the connection. 

 Packet Forward: It just forwards the incoming packets 

without processing them. This is helpful if an attacker 

bombards the IDS with high-volume traffic to overtax it and 

start a DoS. Another scenario is that all possible 

countermeasures increase the burden. 

 Packet Drop: It does not send packets to their intended 

destinations but instead discards packets with datagram or 

sequence numbers that do not match the protocol's 

expectations. 

By applying the actions outlined in this subsection, the 
suggested edge node can stop a variety of threats. Other kinds of 
attacks can be considered for stopping and incorporating into the 
suggested edge device. 

4) Broker Module: The edge device can connect through a 
wireless connection or a wired link. With the help of IIoT, 
wireless devices can now be built using inexpensive, small, low-
power Wi-Fi-enabled components. The MQTT protocol is 
utilised in the proposed edge node to transmit and receive 
messages. MQTT is a lightweight, small-message protocol. The 
Publish/Subscribe architecture of MQTT is more applicable to 
IoT applications than the other protocols with a 
Request/Response model, since it does not require client polling 
[29]. This results in bandwidth savings and an increase in the 
device's battery life. The Broker is a crucial component of the 
MQTT protocol, ensuring that the pub-sub technique operates 
correctly. To do so, the broker must ensure that customers can 
accept messages and subscribe to and unsubscribe from devices 
at any time. 

5) The Webserver Module: The web page was designed using a 
web server module to show the statistics of the collected data for 
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months, weeks, or days as an interactive visualization service. 
Furthermore, sufficient visibility should be provided to enable 
the visualization of security threats and to encourage holistic, 
proactive, and preventive responses. The graphs and statistics 
exhibited on the created webpage are based on the data file kept 
at the proposed edge node. 

D. Performance Monitoring and Upgrading 

The ML model might become less effective at identifying 
attacks over time. Hence, the intrusion detection module needs 
to be tested for its performance and updated accordingly. For 
this purpose, performance metrics like FAR and DR are defined 
to measure the model's performance. To test effectiveness, new 
samples are periodically collected from edge nodes and 
transferred to the fog layer. Because the number of samples may 
be significant, a representative subset is selected to test the 
deployed ML model.  

For the selected data samples, FAR and DR are calculated 
and then compared to the same metrics during training (see 
Stage 2). If the testing FAR is higher than the training FAR or 
the testing DR is lower than the training DR, it is considered that 
the model's performance has deteriorated. The ML model is then 
retrained on the new data and, if necessary, updated 
hyperparameters to improve its performance. In this regard, two 
policies are considered for retraining: one uses only new data, 
and the other merges the latest data with the previous samples 
used to train the model. After retraining, the model is evaluated, 
and if it performs well, it is updated to replace the last model 
deployed in the fog layer.  

The intrusion detection module installed at each edge node 
is either completely updated to a new model or kept up to date 
with stable performance. In future work, secure edge-fog 
communications will be established to transfer the collected 
datasets and trained ML models securely. 

In accordance with the provided architecture and 
implementation, the following section presents the experimental 
results. It evaluates the efficiency of the proposed IDPRS in 
detecting and preventing intrusions in an edge-based IIoT 
environment.  

V. EXPERIMENTS AND RESULTS 

Based on the above methodology, a series of experiments 
has been conducted to evaluate detection accuracy, false positive 
rate, and response time. To implement the proposed edge node, 
the Raspberry Pi 4B platform can be used because it is a small, 
inexpensive, and standalone single-board computer.  

The suggested fog node server is built on a PC with an Intel 
Core i7 processor, 16 GB of DDR4 RAM, and an NVIDIA 
GeForce RTX 2070 with 8 GB of GDDR6 graphics memory. To 
assess the successful implementation of the system, this section 
includes three types of assessments that examine the proposed 
system's performance and demonstrate its suitability for 
protecting the IIoT network against threats.  

A. Performance Analysis of Intrusion Detection Model 

The model for detecting attacks combines a variety of 
techniques. It is used to classify a variety of threats and has been 
verified. A dataset must be chosen to assess this approach. From 

Kaggle, a free dataset called MQTTset [30] was downloaded. 
This dataset was provided by Ivan Vaccari et al. [31]. Six 
categories of labels in the MQTTset dataset correspond to one 
type of legal activity (Legitimate) and five types of threats, 
respectively (DOS, flood, malformed, slowite, and brute force).  

In this subsection, the effectiveness of several ML models is 
evaluated to identify attacks and packet abnormalities precisely. 
The machine learning algorithms used here include Random 
Forest (RF), Decision Tree (DT), and Gradient Boosting (GB). 
The best splitter, the Gini criteria, and the highest depth were 
applied to the DT until all leaves were genuine, and the RF was 
then analyzed using two extreme estimators for hyper-parameter 
tuning. In contrast, the GB is limited to at most 20 estimators. 
The efficiency of the intrusion detection model built for IIoT 
networks should be further evaluated through additional 
experiments to assess the detection method's strengths and 
weaknesses across various scenarios. Performance indicators, 
including Precision (P), Accuracy (ACC), Detection Rate (DR), 
F-score, Recall (R), and Area Under the Curve (AUC), are used 
to assess the model's performance and identify the most suitable 
approach for the proposed system.  

Where Recall, F1-Score, and Accuracy offer key 
performance insights, with their equations provided in 
Equations (1)-(3). Recall evaluates the model’s success in 
detecting all true positive cases. The F1-Score balances 
precision and recall, serving as a reliable performance measure 
for imbalanced datasets, ensuring both accuracy and 
completeness. Accuracy assesses the overall proportion of 
correct predictions across all classes, but can be deceptive in 
imbalanced scenarios [32, 33].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
                (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2)  

𝐹1𝑠𝑐𝑜𝑟𝑒 =  
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
                                 (3) 

 

Also, it can provide a concise mathematical description of 
the hyperparameter tuning and model update processes applied 
in the proposed edge–fog IDPRS framework. 

For a classifier 𝑓(⋅∣ ℎ)with hyperparameters ℎ, the optimal 
configuration is selected by minimizing the empirical cross-
validation loss: 

ℎ∗ = arg 𝑚𝑖𝑛
1

𝐾
∑ ℒ𝑘(ℎ)

𝐾

𝑘=1
ℎ∈ℋ

                                                   (4) 

Decision Tree and Random Forest models minimize node 
impurity using Gini impurity or entropy. A split is selected by 
minimizing the weighted impurity of child nodes. In contrast, 
Gradient Boosting optimizes a differentiable loss function (e.g., 
logistic loss for classification), where each new weak learner fits 
the negative gradient of the loss, and the ensemble is updated 
using a learning rate. Hyperparameter tuning was performed 
using grid search with cross-validation. 



Qaddoori & Ali / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 95 –109 (2026) 

 

101 

B. Analysis of Feature Importance 

In this section, some of the selected essential features can be 
leveraged to perform real-time processing and intrusion 
prediction in a resource-constrained IIoT system. For this 
purpose, an RF classifier can be used on MQTTset to determine 
the importance of features in making the correct prediction. The 
distribution of various attacks across the actual data in the 
MQTTset dataset during training and testing is shown in Table 
I. The utilized dataset is split into training and testing sets in a 
70-30 ratio. With a split ratio of 0.33, the training set is divided 
into two subsets: a training set and a validation set, with 67% 
used for training and 33% for validation. 

As shown in Fig. 6, of 33 features, only 18 have high 
importance and are used by the RF model to make decisions, 
whereas the remaining features are deemed to have zero 
importance. The proposed method uses various performance 
metrics, including precision, accuracy, F1 Score, and recall, 

across four ML models: top 7, top 10, top 18, and all features, in 
both training and testing phases. The results presented in Table 
II indicate that reducing the number of features has no impact on 
the overall model performance. Further experimentation reveals 
that the model with the top 10 essential features achieves the 
same level of accuracy as the model with all features.  

TABLE I.  THE AVAILABILITY OF DIFFERENT ATTACKS IN THE MQTT 

SET REAL DATASET AT THE TRAINING AND TESTING STAGES. 

Attacks Types Total Train 70% Test 30% 

Legitimate 11,915,716 8341001 3574715 

DOS 130223 91156 39077 

Malformed 14501 10150 4351 

Brute Force 10924 7646 3278 

Slowite 9202 6441 2761 

Flood 613 429 184 

 
Fig. 6. The extracted features rank ratio at the MQTT set dataset based on a Random Forest model classifier. 
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TABLE II.  COMPARISON OF THE MQTTSET DATASET'S FULL AND REDUCED EXTRACTED FEATURES USING VARIOUS ASSESSMENT MEASURES BASED ON 

MULTIPLE ML CLASSIFIERS. 

ML 
Classifier 

Extracted 
Features No. 

Testing stage Training stage 

Precision F1 Score Recall Accuracy Precision F1 Score Recall Accuracy 

RF 

7 0.9967 0.99662 0.9968 0.9968 0.9968 0.99668 0.99685 0.9968 

10 0.9967 0.99666 0.9968 0.9968 0.9968 0.99669 0.99687 0.9968 

18 0.9967 0.99666 0.9968 0.9968 0.9968 0.99669 0.99687 0.9968 

33 0.9967 0.99666 0.9968 0.9968 0.9968 0.99669 0.99687 0.9968 

GB 

33 0.9956 0.9956 0.9959 0.9959 0.9955 0.9954 0.9956 0.9956 

18 0.9955 0.9951 0.9950 0.9950 0.9955 0.9949 0.9948 0.9948 

10 0.9959 0.9956 0.9961 0.9961 0.9957 0.9953 0.9958 0.9958 

7 0.9958 0.9957 0.9959 0.9959 0.9955 0.9954 0.9957 0.9957 

DT 

7 0.9967 0.9966 0.9968 0.9968 0.9969 0.9967 0.9969 0.9969 

10 0.9967 0.9966 0.9968 0.9968 0.9969 0.9967 0.9969 0.9969 

18 0.9967 0.9966 0.9968 0.9968 0.9969 0.9967 0.9969 0.9969 

33 0.9967 0.9966 0.9968 0.9968 0.9969 0.9967 0.9969 0.9969 

 

Table III also shows that it reduces processing time by less 
than 30% and achieves better model performance during both 
training and testing. Top features were selected based on 
Random Forest importance scores, calculated using the mean 
decrease in impurity across all trees. Features were ranked, and 
the top 15 most important were retained for model training. To 
ensure robustness, it can also be examined whether feature 
rankings across other models (XGBoost and SVM) are 
consistent, and features consistently ranked highly across 
models were prioritized. This combined approach ensures that 
the selected features are both predictive and generalizable across 
different classifiers. 

 

C.  Intrusion Detection Model Performance based on the 

Essential Features 

The machine learning models for detecting attack packets 
have been trained and evaluated using the updated feature set 
(top 10 features). The MQTT set with the new feature set is then 
submitted to 5-fold cross-validation for each of the three 
selected classifiers. Figs. 7 and 8 illustrate how the error rate 
values in the learning and testing stages are converged. 

The fivefold cross-validation (see Figs. 7 and 8) indicates 
that RF and DT achieved the lowest training and testing error 
rates. Compared to the other techniques, the GB had the fewest 
fluctuations in the training state. Nevertheless, it performed well 
across the first four folds of the testing stage, comparable to RF 
and DT, but poorly in the last fold. 

According to Table II, RF and DT achieve higher accuracy, 
recall, F1 score, and precision than GB. However, compared to 
GB, RF, and DT are slightly more accurate. Table IV displays 
the AUC values for RF, GB, and DT. 

While the ROC curves of RF, DT, and GB are depicted in 
Figs. 9, 10, and 11 respectively. According to the area under the 
ROC curves in Figs. 9, 10, and 11, DT and RF have higher 
accuracy because they achieve a 99% detection rate in some 
attacks. All of the areas under the ROC curves for some classes 
are roughly equal to one. In the case of GB, the area under the 
ROC curve is nearly 1 for the legitimate class only, and the 
detection rates for some classes are very low, while other classes 
have close to 90% detection rates. 

TABLE III.  THE MQTTSET DATASET'S PERFORMANCE COMPARISON OF FULL AND REDUCED FEATURES FOR VARIOUS ML CLASSIFIERS. 

ML Classifier 
Extracted Features 

No. 
Training Time(sec) Testing Time(sec) Preprocessing time(sec) 

RF 

7 14.5094 1.04738 47.7604 

10 20.8002 1.2510 48.9029 

18 29.0632 2.1401 65.5551 

33 59.0691 6.1414 96.9495 

GB 

7 668.616 5.47257 47.7604 

10 721.1012 6.11903 48.9029 

18 991.3863 7.6524 65.5551 

33 1014.20 13.3465 96.9495 

DT 

7 20.8869 0.64047 47.7604 

10 25.6105 0.81234 48.9029 

18 35.2461 2.0463 65.5551 

33 59.2662 7.7067 96.9495 
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Fig. 7. Training error rate based on different ML classifiers after 5-fold cross-
validation by MQTTset 

 
Fig. 8. Testing error rate based on different ML classifiers after 5-fold cross-

validation by MQTTset 

 

TABLE IV.  THE AUC VALUES FOR DIFFERENT ATTACK TYPES BASED 

ON VARIOUS ML CLASSIFIERS. 

Attacks Type RF GB DT 

DOS 0.99 0.45 0.99 

Legitimate 0.99 0.98 0.99 

Flood 0.96 0.91 0.95 

SlowITe 0.97 0.93 0.97 

Brute Force 0.94 0.86 0.93 

Malformed 0.96 0.58 0.95 

 

 

Fig. 9. ROC curve based on real MQTTset dataset for Random Forest 

 

Fig. 10. ROC curve based on real MQTTset dataset for Decision Tree  

 

Fig. 11. ROC curve based on real MQTTset dataset for Gradient Boosting 
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The area under the ROC curve (AUC) values in Table IV 
indicate that RF and DT have superior accuracy, as they can 
successfully identify some assaults at a 99% rate. At the same 
time, some classes have AUC values approximately equal to 1. 
In the context of GB, the AUC value is almost one for the 
legitimate class alone, while some classes have extremely low 
detection rates, while others have rates close to 90%. 

Table V shows that RF has the shortest learning time, GB 
has the longest training time, and DT has the shortest time in the 
testing state. As the GB's model size is smaller than that of DT 
and RF, the DT method also runs the fastest on the Raspberry Pi 
4. Therefore, the DT method is more suitable for implementation 
on the Raspberry Pi 4. Finally, it is worth noting that extracting 
essential features from actual packets for various learned models 
takes 0.545978 milliseconds on a Raspberry Pi 4. 

TABLE V.  THE SIGNIFICANT TIMES FOR THE MQTTSET DATASET 

BASED ON VARIOUS ML CLASSIFIERS. 

Classifier 
Training 

Time (sec) 
Testing Time 

(sec) 
Prediction 
Time (msec) 

Model Size 
(MB) 

RF 21.47394 2.1002210 1.67393 0.742 

GB 972.0119 7.0737800 1.51801 0.137 

DT 32.58547 1.6004511 0.66304 0.497 
 

To evaluate the effectiveness of the performance monitoring 
and upgrading mechanism, key metrics can be measured before 
and after the fog-level model update as shown in Table VI. For 
instance, on the MQTTset dataset, an edge node initially 
achieved an accuracy of 91.2%, an F1-score of 0.89, a 
precision of 0.90, and a recall of 0.88. After detecting 
performance degradation and triggering the upgrading 
mechanism, the retrained model improved these metrics to 
accuracy = 94.8%, F1-score = 0.93, precision = 0.95, and 
recall = 0.92, representing an overall increase of 3–5%. This 
demonstrates that the upgrading process effectively restores and 
enhances detection performance, ensuring reliable intrusion 
detection even under changing traffic conditions. 

TABLE VI.  THE EFFECTIVENESS OF THE PERFORMANCE MONITORING 

AND UPGRADING MECHANISM. 

Metric Before Upgrading After Upgrading Improvement 

Accuracy 91.2% 94.8% +3.6% 

F1-score 0.89 0.93 +0.04 

Precision 0.90 0.95 +0.05 

Recall 0.88 0.92 +0.04 

 

D. Network Performance 

The testbed setup is designed to prove the efficacy of the 
approach. The Raspberry Pi is considered the proposed edge 
node for connecting devices to the internet. The MQTT protocol 
is used to send data between IIoT devices. MQTT is used as the 
transport protocol for communication in the experiment. The 
MQTT architecture consists of three nodes: the broker, the 
publisher, and the subscriber. MQTT broker is a central 
messaging server that receives data from publishers and 
subscribers. The publisher is the data sender, and the subscriber 
is the data receiver [34]. 

In this experiment, two PCs and a single-board computer 
(SCB) are used. Two PCs act as both the publishers and 
subscribers. The SCB is used as the edge device emulator. 
Mosquitto is installed on the SCB as an open-source MQTT 
broker for a light-weight MQTT server. Fig. 12 represents the 
experiment workflow of the testbed. 

 

Fig. 12. The workflow of testbed setup for the proposed edge device based on 

MQTT architecture  

The suggested edge node, built on a Raspberry Pi 4, as 
demonstrated in subsection (IIII.C), will be tested in this 
subsection to evaluate its performance across various network 
parameters and to determine whether it is suitable for IIoT 
networks. The network parameters that are used in this test are 
as follows: 

 Round-trip time (RTT) – it is the duration in which the 
subscriber receives the ACK for a packet; that is, for every 
packet sent from a publisher, there is an ACK received 
(TCP/MQTT communication), which determines the 
successful delivery of the packet by the subscriber. 

 TCP retransmission–which displays all retransmissions in 
the capture. A few retransmissions are OK; excessive 
retransmissions are bad. This typically manifests as slow 
application performance and packet loss for the user. 

 Throughput – the number of successfully received packets in 
a unit time, represented in bps (bits per second). 

In the IIoT network, MQTT communication (between the 
publisher, broker, and subscriber) is tested under two scenarios 
to determine network parameters (as shown in Figs. 9, 10, 11). 
In the first scenario, the suggested Intrusion Detection and 
Response System (IDRS) is deactivated, and in the second, it is 
triggered. By running a script on a PC that sends messages to the 
system's topic, the MQTT Broker is tested. The sensor data and 
the ID of the device that broadcasts the message were included 
in the script. As a result, the message sent by the sensor node 
could be received by the broker. The script's job is to send 
multiple messages simultaneously, each with a unique ID, by 
taking into account messages from various sensor nodes 
(publishers) and directing them to different actuator nodes 
(subscribers). 

Fig. 13 demonstrates the round-trip time (RTT) of different 
numbers of published messages. Fig. 14 illustrates the TCP 
retransmission of synchronous packets as the number of 
published messages varies. Fig. 15 represents TCP 
retransmission packets for different numbers of published 
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messages. Fig. 16 illustrates the throughput of the proposed 
system as a function of time for various message counts. 

 

 

Fig. 13. RTT for varying published message numbers when activating and 

deactivating the proposed IDRS 

 

Fig. 14. The TCP retransmission sync. packets for varying published message 

numbers when activating and deactivating the proposed IDRS 

 

Fig. 15. The TCP retransmission packets for varying published message 
numbers when activating and deactivating the proposed IDRS 

 
Fig. 16. The suggested system’s throughput over time during sending diverse 

published message numbers when activating and deactivating the 

proposed IDRS 

Fig. 13 shows that the RTT increases as the number of 
published messages increases, in both scenarios of an activated 
and a deactivated IDRS. Fig. 14 shows that the retransmitted 
synchronous packet numbers remain at approximately 5, a low 
enough number to prevent degradation of network performance, 
in both scenarios: an activated and deactivated IDRS. Fig. 15 
illustrates that the number of retransmitted data packets 
increases as the number of published messages increases. Fig. 
16 shows that the Raspberry Pi 4's throughput is slightly reduced 
when the IDRS is activated. 

Although the implementation was performed on a single 
Raspberry Pi 4B, the proposed fog–edge IDPRS framework is 
designed for multi-node deployment. Each edge device can run 
an independent lightweight IDS instance, while the fog layer 
synchronizes model updates and detection rules. This distributed 
setup reduces per-node load and allows parallel processing of 
network traffic, minimizing detection latency. Based on similar 
edge-based IDS studies (e.g., RealGuard, Passban), the system 
is expected to maintain accuracy and responsiveness when 
scaled, provided communication bandwidth and update 
frequency are managed appropriately. 

E. Performance of Resources Utilization  

In IIoT networks, edge nodes are typically battery-operated 
and have limited processing and storage capabilities. Hence, the 
power usage, CPU load, and memory occupation of the 
proposed edge node are measured in the two operational states 
mentioned earlier. The operating conditions of Raspberry Pi 4 
[35] are presented in Fig. 17, where the average consumed 
current values for different operation modes are displayed. In 
Low Power Mode, peripherals such as the mouse, keyboard, and 
screen are switched off, while all peripherals are active in Stable 
Mode. The regular power usage of the suggested intelligent 
gateway is obtained by multiplying the average current by the 
nominal voltage. The nominal voltage of the Raspberry Pi 4 is 
5V. The proposed intelligent gateway, with its low complexity 
and lightweight resource requirements, can be deployed 
efficiently on a high-performance Raspberry Pi 4, as displayed 
in Table VII. 
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Fig. 17. The average consumed current values for different operation modes on 

Raspberry Pi 4. 

 

TABLE VII.  THE SYSTEM RESOURCES UTILIZATION ON RASBARRY PI4. 

System Resources 
Ineffective 

IDRS 
Effective IDRS Overhead 

Increased 

Regular Power usage 3.325 W 3.750 W 12.78% 

Typical CPU Process 
% 

5% 16% 11% 

 Memory usage % (of 
8 Gbytes) 

1.73% 
(0.139 Gbyte) 

2.52% 
(0.202 Gbyte) 

0.79% 

 

VI. COMPARATIVE STUDY 

Despite the remarkable progress reported in the literature, a 
general, secure, robust, and resilient intrusion detection system 
for IIoT networks remains an open issue. Table VIII presents the 
recent works discussed in this section, classifying them by 
dataset, architectural approach, algorithm, upgrading strategy, 
validation method, and performance metric. 

Although many researchers have proposed operational 
intrusion detection solutions for IoT/IIoT networks, several 
issues remain to be addressed. First, many studies validate their 
approach using a few performance metrics, which do not 
provide a comprehensive assessment of the method's overall 
effectiveness. Second, the feasibility of such techniques on 
resource-constrained devices is not sufficiently demonstrated. 
Third, to validate the high accuracy of the suggested threat 
detection solutions, the researchers employed extensive feature 
engineering (e.g., feature mapping and reduction) to extract 
optimal characteristics from attack datasets, in conjunction with 
classification algorithms. Feature engineering involves complex 
computational procedures and cannot be performed on time-
sensitive edge devices with limited processing power. In this 
context, this paper offers a lightweight intrusion detection, 

response, and prevention system for edge nodes deployed in 
IIoT systems. The proposed system is novel in several aspects 
compared to prior work: 

 In industrial IoT settings, IDS, IPS, and IRS functionalities 

are tightly integrated with a secure architectural design for 

the edge devices. 

 High experimental accuracy is achieved by training 

machine learning models on high-performance platforms 

(fog nodes) and running the same on resource-constrained 

edge devices to lessen the impact of time-intensive feature 

engineering. 

 Performance monitoring and upgrading mechanisms are 

included to handle emerging attacks. 

 A variety of performance evaluation metrics are defined to 

measure resource utilization, network efficiency, and 

detection performance. 
Although most prior IDS frameworks for IoT and IIoT do 

not report explicit power-consumption measurements, several 
studies highlight their computational and resource efficiency, 
which can be used for qualitative comparison. For example, 
MEML [15] and Passban IDS [18] report reduced CPU and 
memory overhead through lightweight machine-learning 
models optimized for constrained devices. At the same time, 
Realguard [21] focuses on minimizing processing latency and 
resource usage on IoT gateways. Similarly, the edge-based 
frameworks in [17], [23], and [24] emphasize low-complexity 
detection to support real-time deployment on fog and edge 
nodes. Compared to the proposed work with these systems, the 
Raspberry Pi 4B implementation provides measured energy 
consumption across different workloads, demonstrating that the 
proposed IDS/IPS/IRS framework achieves comparable 
lightweight operation while delivering higher detection 
performance. This comparison highlights that the proposed 
system not only maintains the low-resource characteristics 
emphasized in prior work but also explicitly quantifies energy 
savings, thereby filling a gap in existing research. 

Unlike prior edge-based IDS frameworks such as Passban 
[18], RealGuard [21], and GA_RF [23], which either rely on 
static models or manual feature selection, the proposed IDPRS 
framework integrates a real-time performance-monitoring and 
upgrade mechanism, as shown in Table IX. The system 
continuously evaluates edge-node detection performance and 
triggers fog-level retraining when predefined thresholds are 
exceeded, ensuring adaptive and consistent detection. 
Additionally, feature selection is automated using Random 
Forest importance scores, optionally verified across multiple 
models to retain only the most predictive features. This approach 
reduces computational load, enhances robustness, and 
distinguishes the proposed framework from existing edge-based 
IDS architectures. 
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TABLE VIII.  DETAILS ON RECENT IDS-BASED RESEARCH FOR IOT/IIOT SYSTEMS. 

Ref. Year Dataset Used 
Architecture 

Approach 
Algorithm Utilized 

Upgrading 

Strategy 
Performance Parameters 

Prevention and 

response 

actions 

Validation Policy 

[14] 2019 N/A Centralized Genetic Programming  × Detection Efficiency × Simulation 

[15] 2019 NSL-KDD Distributed Neural Network √ N/A × Simulation/Emulation 

[16] 2020 DS2OS Centralized 
Random Neural 

Network 
× 

Detection Efficiency, 
Resource Usage 

× Simulation/Emulation 

[17] 2020 KDD Cup’99 Centralized K-Mean × Detection Efficiency × Simulation 

[18] 2020 Private dataset   Distributed  
Local Outlier Factor 

and Isolation Forest  
√ 

Resource Usage, Detection 

Efficiency 
× Simulation/Emulation 

[19] 2021 
UNSW-NB15 and 

NSL-KDD  
Centralized 

Deep Feedforward 
Neural Network 

× Detection Efficiency × Simulation 

[20] 2021 

CICIDS 2017, 

CICIDS 2018, 
TON IoT 

Centralized 
Deep Neural 

Networks 
× Detection Efficiency × Simulation 

[21] 2022 CICIDS2017 Distributed 
Deep Neural 

Networks 
√ 

Detection Efficiency, 

Resource Usage 
√ Simulation/Emulation 

[22] 2023 
Generated by 

author  
Distributed 

Deep Neural 
Networks 

√ Detection Efficiency √ Simulation/Emulation 

[23] 2024 
MQTT-IOT-

IDS2020 
Distributed 

hybrid Genetic 

Algorithm and 

Random Forest 
(GA_RF) 

× Detection Efficiency × Simulation/Emulation 

Current 

work 
2025 MQTTset Distributed 

Tree-Based Machine 

Learning 
√ 

Detection Efficiency, 

Resource Usage, Network 
Performance 

√ Simulation/Emulation 

N/A = Not Appropriately Defined 

TABLE IX.  PERFORMANCE METRICS OF AN EDGE NODE BEFORE AND AFTER APPLYING THE FOG-LEVEL MODEL UPGRADING MECHANISM, 
DEMONSTRATING IMPROVED DETECTION PERFORMANCE. 

Feature / Module Passban IDS [18] RealGuard [21] GA_RF [23] Proposed IDPRS Framework 

Edge/IPS/IRS Integration IDS only IDS only IDS only Full IDS + IPS + IRS integration 

Model Upgrading 

Mechanism 
Manual retraining Static model Periodic retraining Real-time monitoring & fog-level automatic updates 

Feature Selection 
Manual or all 

features 
All available 

features 
Selected based on RF 

only 
Automated RF importance + cross-model 

consistency check 

Adaptive to Edge 

Performance 
No No Limited Yes – triggers upgrades when performance drops 

Resource Optimization Moderate Moderate Moderate Lightweight – optimized for edge deployment 

Multi-Node Scalability Not addressed Not addressed Not addressed Designed for distributed edge–fog nodes 

 

VII. CONCLUSIONS  

The ever-increasing number of IIoT devices has led to an 
emphasis on securing edge devices. In this paper, the authors 
propose a methodology and architecture for a machine-learning-
based intrusion detection mechanism in edge-based IIoT 
environments. In their design, the IDS, IPS, and IRS 
functionalities are integrated into a single, compact, and secure 
edge node. The system aims to detect attacks against the MQTT 
protocol.  

The challenges, such as training the ML model directly on a 
resource-constrained device like a Raspberry Pi, are overcome 
by collecting traffic from edge nodes and forwarding it to fog 
nodes for model training. The trained model is finally installed 
in the edge device as a threat detection engine. The continuous 
monitoring of performance and use of an upgrading mechanism 
to combat emerging attacks are discussed. Experimental results 
demonstrate that the proposed framework can effectively detect 
attacks in an MQTT-based IIoT environment while maintaining 
both resource efficiency and high detection accuracy. In the 
future, the susceptibility of new kinds of threats to diverse IIoT 

protocols will be researched. Additionally, if the hardware 
permits, a higher-complexity model can be used to improve 
detection performance.  

Moreover, to ensure IIoT communication security, protected 
communication will be established between edge nodes and fog 
nodes when transferring collected datasets and trained models. 
This work is limited by its evaluation on a single-device setup, 
the lack of large-scale traffic testing, and reliance on a single 
dataset, which restricts claims about generalizability. The 
upgrading mechanism was conceptually validated but not 
extensively quantified under real-time load, and energy 
comparisons with other IDS frameworks were limited. Future 
work will extend the system to multi-node and federated edge–
fog deployments, explore online and continual learning for 
faster model updates, and assess performance across additional 
IoT protocols and datasets. Further improvements will include 
incorporating model compression for lower energy use and 
investigating adversarial robustness and intelligent, autonomous 
response strategies.  
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Although the system is demonstrated on MQTT traffic, the 
architecture is inherently protocol-agnostic. Only the packet-
parsing component is protocol-specific, while the feature 
extraction, classification pipeline, and response modules remain 
unchanged. By integrating parsers for other IoT protocols such 
as CoAP, AMQP, DDS, or HTTP, the same feature vectors can 
be generated, enabling seamless reuse of the ML models. 
Additionally, transfer learning or light fine-tuning can be 
applied to adapt the framework to new datasets. This modular 
design allows the system to operate across heterogeneous IoT 
environments and supports future extensions to multi-protocol 
security monitoring. 
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