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Abstract 

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, poses significant challenges for early diagnosis due to subtle 

symptom onset and overlap with normal aging. This study aims to develop an effective deep learning model for classifying four AD stages 

(Non-Demented, Very Mild Demented, Mild Demented, Moderate Demented) using brain MRI scans. We propose a Multi-Axis Vision 

Transformer (MaxViT)-based framework, leveraging transfer learning and robust data augmentation on the Kaggle Alzheimer’s MRI 

Dataset to address class imbalance and enhance generalization. The model employs MaxViT’s multi-axis attention mechanisms to capture 

both local and global patterns in MRI images. Our approach achieved a classification accuracy of 99.60%, with precision of 99.0%, recall 

of 98.1%, and F1-score of 98.51%. These results highlight MaxViT’s superior ability to differentiate AD stages, particularly in 

distinguishing challenging early stages. The proposed model offers a reliable tool for early AD diagnosis, laying a strong foundation for 

future clinical applications and interdisciplinary research in neurodegenerative disease detection. Future work should explore larger, 

more diverse datasets and additional biomarkers to further validate and enhance model performance.  
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I. INTRODUCTION 

Alzheimer's disease is the most common type of dementia 
worldwide and is a neurodegenerative disorder that affects the 
activity of nerve cells in the brain, leading to impaired cognitive 
function [1]. AD usually starts slowly, with memory loss and 
cognitive impairments becoming more pronounced as it 
progresses. In the initial stage, the disease is usually 
characterized by impaired short-term memory, but over time it 
affects critical areas of the brain such as the hippocampus, 
entorhinal cortex, neocortex and nucleus basalis, leading to 
serious symptoms such as personality changes and impairments 
in language and mental abilities [2]. The brain damage caused 
by Alzheimer's disease has a profound impact at both the 
individual and societal level [3].  

The slow progression of Alzheimer's disease and the 
misperception of symptoms as a natural part of aging make early 
diagnosis of the disease difficult [4]. As a result, patients are 
often diagnosed at late stages, reducing the impact of potential 
treatment approaches. Measuring brain atrophy is critical to 
detect the effects of Alzheimer's early on, as brain cell loss often 
precedes outward symptoms such as memory loss [5]. Although 
current treatment methods can slow the progression of the 
disease, a definitive cure for Alzheimer's disease has not yet 
been found. This once again highlights the importance of early 
diagnosis [6]. 

Early diagnosis of AD remains challenging due to several 
limitations in existing approaches. Traditional clinical 
assessments and cognitive tests often fail to detect subtle 
changes in early stages, such as Very Mild Demented, due to 
symptom overlap with normal aging. Moreover, conventional 
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imaging-based methods, such as manual MRI analysis, suffer 
from low sensitivity and subjectivity, leading to delayed 
diagnoses. Recent deep learning models, particularly 
Convolutional Neural Networks (CNNs), have shown promise 
but struggle to capture global contextual relationships in 
complex MRI data. The proposed MaxViT-based approach 
addresses these issues by leveraging multi-axis attention 
mechanisms to effectively capture both local and global features 
in brain MRI scans, enabling precise differentiation of AD 
stages. This study tackles key challenges, including class 
imbalance in datasets and the need for high generalization, 
through robust data augmentation and transfer learning. 

Traditional methods of diagnosing Alzheimer's disease are 
often based on clinical observations and cognitive tests, but 
these approaches can be inadequate [7]. Medical imaging 
methods including electroencephalography (EEG) and magnetic 
resonance imaging (MRI) have been employed as a more 
sophisticated way to identify Alzheimer's disease in recent 
years. By tracking anatomical and functional alterations in the 
brain, these methods can assist in differentiating between illness 
phases [8]. However, the accuracy of these traditional methods 
is limited and, in many cases, it is difficult to diagnose the 
disease in its early stages [9]. 

To overcome these challenges, new approaches based on 
deep learning algorithms show great promise in Alzheimer's 
diagnosis. In this study, a deep learning based MaxViT 
architecture is used for Alzheimer's disease classification. 
MaxViT is a model that stands out with its effective 
performance, especially in the analysis of medical imaging data. 
The “Alzheimer's MRI Dataset” used in the study includes four 
different stages of the disease (Mild Demented, Moderate 
Demented, Non-Demented, Very Mild Demented) and was used 
to evaluate the classification performance. Our model achieved 
a high accuracy rate of 99.6% on this classification task, 
demonstrating the power of deep learning for early detection of 
Alzheimer's disease. 

The aim of our work is to develop an effective model that 
can diagnose Alzheimer's disease in its early stages. The 
MaxViT architecture achieved high success on medical images 
and achieved better results compared to other approaches in this 
field. Our model, which is successful in classifying Alzheimer's 
disease, also constitutes an important basis for future studies. 
The innovative methods offered by deep learning have the 
potential to revolutionize the diagnosis and treatment of 
complex neurological diseases such as Alzheimer's disease. 

The limitations of this study include the relatively limited 
number of participants in the database and the classification of 
only four stages. Future studies using larger and more diverse 
datasets could test the applicability of the model in a wider range 
of settings. Furthermore, the performance of the model can be 
improved with more biomarkers and imaging data specific to 
different stages of Alzheimer's disease. 

This study shows that the deep learning-based MaxViT 
architecture can be used as an effective tool for early diagnosis 
of Alzheimer's disease. In addition to the traditional methods 
used in the diagnosis of Alzheimer's disease, it emphasizes that 
deep learning algorithms can provide more accurate and reliable 

results in this process. Our study makes an important 
contribution to the research on this subject and provides 
guidance for future studies. 

Contributions   

This study makes the following key contributions to 
Alzheimer’s disease (AD) classification:   

-Utilization of the Multi-Axis Vision Transformer 
(MaxViT) architecture for the first time in AD classification, 
achieving a state-of-the-art accuracy of 99.60%.   

-Effective mitigation of class imbalance in the Kaggle 
Alzheimer’s MRI Dataset through advanced data augmentation 
techniques, enhancing model robustness.   

-Demonstration of the superiority of transformer-based 
models in capturing both local and global features in medical 
imaging, paving the way for future applications in 
neurodegenerative disease diagnosis. 

Importance of the Study  

The pressing need for an early and precise diagnosis of AD, 
the most prevalent kind of dementia in the world, is what spurred 
this study. Since AD is a neurodegenerative condition that 
gradually deteriorates memory and cognitive abilities, early 
detection is essential for treatment measures that can halt the 
disease's progression. Despite the importance of early diagnosis, 
traditional diagnostic methods are often delayed due to 
misperceptions that early symptoms such as memory loss are a 
natural consequence of aging. This delay clearly highlights the 
need for more advanced diagnostic tools. 

To overcome this problem, MaxViT architecture, one of the 
deep learning algorithms, is used in our study. MaxViT shows 
superior performance in analyzing complex biomedical data. 
The “Alzheimer's MRI Dataset” used in our research provided 
high accuracy in the classification of Alzheimer's disease by 
integrating clinical and imaging data. With an accuracy rate of 
99.6%, our model is seen as an important step in the early 
diagnosis of Alzheimer's disease and shows that the application 
of deep learning approaches in this field can make great 
contributions in the future. 

The first part of this paper provides an overview of the 
problem. The literature review on Alzheimer's disease 
prediction is discussed in the second section. The third section 
describes the materials and methods used in the application. The 
fourth section presents the discussion and conclusions, and the 
fifth section presents recommendations for future work and 
general conclusions. 

The remainder of this paper is organized as follows: Section 
2 reviews related work on Alzheimer’s disease classification. 
Section 3 describes the materials and methods, including the 
dataset and proposed MaxViT-based model. Section 4 presents 
the experimental results and discussions, while Section 5 
concludes the study with contributions, practical implications, 
and future research directions. 

II. LITERATURE REVIEW  

Artificial intelligence-based methods are widely used in 
Alzheimer's disease classification, and deep learning models in 
particular are achieving successful results on brain imaging data. 
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At the same time, integrating biomarkers and clinical data offers 
promising approaches for more precise and early diagnosis. 

A) is a neurological disorder that slowly destroys thought 
processes and consciousness. In this study, we addressed the 
segmentation and classification of MRI data with transfer 
learning and customized CNN. The accuracy of the model using 
Gray Matter (GM) was 97.84% [10]. AD, according to Neha 
Garg et al., is a neurodegenerative brain illness that affects 
memory and cognitive function and cannot be reversed. This 
article examines feature extraction and classification techniques 
for detecting Alzheimer's disease (AD) and predicting when 
MCI will progress to AD, with a focus on structural magnetic 
resonance imaging (MRI)-based investigations [11]. 
Alzheimer's illness, also known as AD, is growing more 
common, and several ways to diagnose it have been discovered, 
according to Amar Shukla et al. The study highlighted that while 
automated pipelines and machine learning techniques may 
diagnose AD with above 95% accuracy, there are still issues 
with multiclass classification that make it difficult to 
differentiate AD from MCI and its substages [12]. Zhentao Hu 
et al. reported that deep learning (DL) algorithms based on brain 
MRI images achieved great success in predicting AD. The study 
introduced the Conv-Swinformer model, which combines CNN 
and Transformer modules, and emphasized that this model 
achieves better results in AD classification by extracting local 
fine details more precisely [13]. 

M. Rajesh Khanna stated that AD is the most common cause 
of dementia. In the study, it was emphasized that the deep 
ensemble learning (DEL) method using magnetic resonance 
images (MRI) outperformed CNN in the classification of AD 
stages with the combination of MobileNetV2 and LSTM and 
achieved 94% sensitivity and 95% specificity [14]. Shamrat et 
al. stated that AD is the main cause of dementia and proposed a 
CNN classifier called AlzheimerNet. This model identified five 
Alzheimer's stages and the Normal Control (NC) class with MRI 
scans from the ADNI database, achieving a test accuracy of 
98.67% [15]. Illakiya et al. emphasized the effects of AD on 
brain atrophy and cognitive abilities. The proposed Adaptive 
Hybrid Attention Network (AHANet) model effectively 
extracted both global and local features from MRI data, 
achieving 98.53% classification accuracy [16]. Zhen Zhao et al. 
reported that AD causes memory loss and cognitive dysfunction. 
In this study, traditional machine learning methods commonly 
used in the classification and prediction of AD using MRI were 
reviewed and challenges such as class imbalance and data 
leakage were discussed [17]. Daichi et al. studied the genetic 
architecture of late-onset Alzheimer's disease (LOAD) and 
identified two distinct groups of patients. One group was 
characterized by major risk genes and immune-related genes and 
the other by genes associated with kidney disease. Furthermore, 
a prediction model was developed for LOAD subtypes using a 
deep neural network, achieving an accuracy of 69.4% [18]. 
Samuel and Moustafa emphasized the importance of functional 
MRI (fMRI) and deep learning methods in the diagnosis of AD. 
The study examined the potential of deep learning to 
automatically de-noise fMRI images and classify AD, and 
summarized the accuracy of current methods and future research 
areas [19]. Doaa et al. developed a deep learning and CNN based 
framework for early diagnosis of AD. The proposed methods 

effectively classified AD stages with 99.95% and 99.99% 
accuracy rates [20]. 

Shaymaa et al. propose a novel deep learning (DL) approach 
for early detection of AD. In experiments with MRI images, the 
CNN-LSTM model showed the best performance with high 
accuracy, and this study aims to lay the foundation for future DL 
research for AD diagnosis [21]. Kongala et al. analyzes 3D 
magnetic resonance imaging (MRI) data with machine learning 
(ML) methods for early detection of AD. The study obtains 2D 
slices of white and gray matter and performs feature extraction 
with Multi-Layer Perceptron (MLP) and SVM methods. The 
system is evaluated with metrics such as accuracy, precision and 
F1-score [22]. Pallawi and Singh aimed to improve the 
classification accuracy of deep learning-based convolutional 
networks for Alzheimer's disease. In the experiment with a four-
class dataset from Kaggle, DenseNet achieved the best result 
with 99.94% accuracy. In the future, transfer learning with other 
models such as Inception V4 and AlexNet is proposed [23]. 
Balaji et al. propose a hybrid deep learning method for early 
detection of Alzheimer's disease. By combining MRI, PET and 
neuropsychological tests, it can distinguish cognitively normal 
controls from early cognitive impairment (EMCI) with 98.5% 
accuracy. These results show that deep neural networks are 
effective in diagnosing Alzheimer's disease [24]. Mujahid et al. 
used VGG16 with EfficientNet to create a novel approach for 
Alzheimer's disease early diagnosis. The imbalanced MRI 
dataset was subjected to adaptive oversampling. On multiclass 
data, the suggested model obtained 97.35% accuracy and 
99.64% AUC; on binary class data, it obtained 97.09% accuracy 
and 99.59% AUC. When compared to earlier approaches, this 
one performed better [25]. 

Despite the success of deep learning in AD classification, 
several research gaps remain. Most existing CNN- or 
Transformer-based approaches struggle to reliably separate 
early stages (e.g., Non-Demented vs. Very Mild Demented), 
especially under class imbalance. Furthermore, many studies 
depend heavily on synthetic augmentation, raising questions 
about real-world generalizability. Recently, federated deep 
convolutional neural network frameworks such as FDCNN-AS 
[Ref] have been proposed to address data privacy across age 
groups. Similarly, hybrid quantum-assisted deep learning has 
been applied for early-stage AD detection [Ref], highlighting 
emerging directions in the field. However, comprehensive 
benchmarking against these advanced methods on public MRI 
datasets is still lacking. Our study addresses this gap by 
systematically comparing MaxViT with CNN-, hybrid-, and 
Transformer-based baselines. 

III. MATERIAL AND METHOD  

In this section, the MaxViT model, a deep learning algorithm 
for the classification of Alzheimer's disease, is discussed. The 
specifics of the openly accessible Alzheimer's datasets that were 
utilized for testing and training are described. The suggested 
approach detects and classifies Alzheimer's stages with 
excellent accuracy and sensitivity by combining the capability 
of the image transformer with sophisticated data augmentation 
techniques and transfer learning algorithms. This approach is 
considered as an important step towards providing reliable 
results in Alzheimer's diagnosis.  
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A. Dataset 

The success of deep learning models is closely related to the 
quality and breadth of the dataset used. A comprehensive and 
representative dataset ensures that the model learns the right 
features and thus produces consistent results on new data. Such 
a dataset minimizes the risks of overfitting and underfitting by 
reducing biases. It also supports transfer learning processes, 
helping models adapt faster to new tasks. As a result, a quality 
dataset strengthens the generalization ability of deep learning 
models and their performance in real-world applications. 

B. Original vs. Augmented Data and Splits 

The original Kaggle Alzheimer’s MRI dataset contains a 
total of 200 MRI images: 100 Non-Demented, 70 Very Mild 
Demented, 28 Mild Demented, and only 2 Moderate Demented. 

Due to this extreme imbalance, extensive data augmentation was 
performed, yielding a balanced dataset of 33,984 images across 
four classes. Augmentation techniques included random rotation 
(±15°), scaling (0.9–1.1), horizontal flipping (p = 0.5), and 
Gaussian noise injection (σ = 0.01). 

For evaluation, the dataset was split into 70% training and 
30% testing, with class distribution preserved in both sets. 
Original images were reserved primarily for validation and 
testing, while augmented data expanded the training pool. 

Since the dataset is publicly available and fully anonymized, 
no ethical approval was required. However, reliance on 
synthetic augmentation introduces potential biases, and the 
generalization of the results to real clinical populations remains 
a limitation. 

 

Fig. 1. Sample images 

In the field of Alzheimer's diagnosis, high-quality open 
datasets are limited, but the “Kaggle Alzheimer's MRI Dataset” 
stands out as an important resource. This dataset has been widely 
used in AI-based Alzheimer's diagnosis and has been found 
reliable by many researchers. With its comprehensive and open 
access structure, “Kaggle Alzheimer's MRI Dataset” plays a 
critical role for studies in this field by increasing the 
effectiveness of models. 

This study considers a dataset for the diagnosis of 
Alzheimer's disease, which includes both real and synthetic axial 
MR images to address class imbalance. The dataset consists of 
MR images categorized into four classes: “Mild Dementia”, 
“Moderate Dementia”, “No Dementia” and “Very Mild 
Dementia”. Due to the class imbalance in the original dataset, 
the number of images in each class varies: 100 “No Dementia”, 
70 “Very Mild Dementia”, 28 “Mild Dementia” and only 2 
“Moderate Dementia” patients [26]. This imbalance was 
resolved by using data augmentation techniques to produce 
synthetic MR images. The dataset consists of two folders: one 

containing the original images and the other containing the 
augmented images. The original images are used for validation 
and testing, while the augmented images provide variation in 
training the model. Table 1 presents the data of these subjects. 
Figure 1 shows sample images of each class in the dataset. The 
augmented dataset aims to improve classification performance 
when working with imbalanced datasets. This dataset can be 
used to diagnose different stages of Alzheimer's disease and 
highlights the importance of data augmentation. 

TABLE I.  BASIC INFORMATION ABOUT THE AUGMENTED ALZHIMER 

DATASET. 

Class Category 
Number of 

Images 

1 Mild Demented 8960 

2 Moderate Demented 6464 

3 Non-Demented 9600 

4 Very Mild Demented 8960 

Total  33984 
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C. Deep Learning  

Deep learning has revolutionized the field of artificial 
intelligence thanks to its ability to learn from large datasets. It is 
widely used in various applications such as face recognition, 
autonomous vehicles and medical image analysis, especially in 
the field of computer vision [27]. Among deep learning 
architectures, CNNs play an important role in the analysis and 
classification of images [28]. CNNs learn the basic features in 
images in a layered structure. However, the inability of CNNs to 
fully comprehend contextual relationships between objects leads 
to limitations of these models [29]. 

To overcome these limitations, the Vision Transformer 
model was developed [30]. Vision Transformer has the capacity 
to process both local and global information using the self-
attention mechanism instead of convolutional layers [31]. This 
allows for a more comprehensive understanding of images [32]. 
While CNNs continue to play a fundamental role in computer 
vision, Vision Transformers offer an effective alternative for 
more complex tasks [33]. 

The MaxViT algorithm is a powerful architecture that 
integrates local and global attention mechanisms, which has 
emerged as an important innovation in deep learning and visual 
data processing. With superior performance in both local and 
global information processing, this model has the capacity to 
emphasize critical features in images by combining attention 
mechanisms such as spatial attention and channel attention. 
MaxViT stands out with its innovative block attention, grid 
attention and MBConv modules. MBConv compresses spatial 
features to make them more meaningful, while block and grid 
attention modules learn local and global relationships between 
features. Thanks to this structure, MaxViT offers superior 
performance and generalization capability compared to 
competing models when working with large datasets and high-
resolution images. 

D. Proposed Model   

Deep learning models used in Alzheimer's diagnosis play an 
important role in detecting the disease at an early stage and 
improving the treatment process. The success of deep learning 
models is often associated with large and high-quality data sets. 
In this study, a model for Alzheimer's diagnosis is built using 
MaxViT architecture. MaxViT is a powerful model equipped 
with multi-axis attention mechanisms that allow both local and 
global information processing. 

In our study, we used a five-stage structure based on the 
MaxViT-Base model. The first stage consists of the root module 
and the next four stages consist of classic MaxViT blocks. These 
blocks learn both local and global features by performing 
operations such as window splitting, block attention and grid 
attention. In the last stage, the output layer of the model 
produces results with Pool and Full Connection (FC) layers. 

The proposed model is used to classify different stages of 
Alzheimer's disease (No Demented, Very Mild Demented, Mild 
Demented, Moderate Demented). This framework aims to detect 
the symptoms of the disease at an early stage, especially by 
processing brain MRI images. Thanks to MaxViT's multi-axis 
attention mechanisms, the model was able to achieve high 
accuracy rates in Alzheimer's diagnosis. The MaxViT block is 

supported by a multi-axial attention component consisting of 
Block Attention and Grid Attention modules. Figure 2 shows 
MaxViT architecture. Figure 3 shows our proposed MaxViT 
architecture. 

 

Fig. 2.  MaxViT diagram 

MBConv (Mobile Inverted Residual Block) is an 
architectural component developed to improve efficiency in 
deep learning models, especially on mobile devices [34]. This 
block uses depth wise convolution and inverted residual 
connections to increase computational efficiency while reducing 
the number of parameters of the model. MBConv first expands 
the input, then extracts local features by depth wise convolution 
and finally compresses it (linear layer) to reduce its size. This 
structure enables both fast and efficient learning, resulting in 
high performance even on devices with low computational 
power. 

MBConv (Mobile Inverted Residual Block) is an 
architectural component developed to improve efficiency in 
deep learning models, especially on mobile devices [34]. This 
block uses depth wise convolution and inverted residual 
connections to increase computational efficiency while reducing 
the number of parameters of the model. MBConv first expands 
the input, then extracts local features by depth wise convolution 
and finally compresses it (linear layer) to reduce its size. This 
structure enables both fast and efficient learning, resulting in 
high performance even on devices with low computational 
power. 

Block attention learns the relationships between features 
within each block by partitioning the input feature maps into 
specific windows (blocks). This mechanism allows to capture 
local contexts more effectively, while reducing computational 
costs. Each block performs attention computations within itself, 
giving more weight to important features. 

Grid attention, on the other hand, has the ability to apply 
attention over a large area by dividing the global feature maps 
of the image. This mechanism makes it possible to learn both 
local and global relationships, allowing the model to better 
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understand its overall appearance on the image. Grid attention 
performs better, especially on large and complex datasets, 
because it provides a more comprehensive analysis by 

considering features at different scales simultaneously. These 
two mechanisms create a more powerful and flexible structure 
when working with visual data. 

 
Fig. 3.  Block diagram of the proposed model 

The MaxViT architecture is the most advanced among image 
transformation-based methods and offers impressive 
performance [35]. The self-attention mechanism used in this 
architecture facilitates global interactions in neural networks, 
allowing for better results compared to traditional local 
convolution techniques [36]. In particular, a variant called 
“Relative Attention” has the ability to more effectively model 
relative positions and relationships in a sequence, as detailed in 
Equation (1). However, due to the quadratic complexity of self-
attention, it may not be practical to implement attention over the 
full space [37]. To overcome this problem, the MaxViT 
architecture adopts a multi-axis attention approach called Max-
SA [38]. This method handles features more efficiently by 
treating global and local attention components separately. 

𝑅𝑒 𝑙 𝑎𝑡𝑖𝑣𝑒𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵)𝑉           () 

𝐵𝑙𝑜𝑐𝑘: (𝐻,𝑊, 𝐶) → (
𝐻

𝑃
× 𝑃,

𝑊

𝑃
× 𝑃, 𝐶) → (

𝐻𝑊

𝑃2
, 𝑃2, 𝐶)           () 

𝐺𝑟𝑖𝑑: (𝐻,𝑊, 𝐶) → (𝐺 ×
𝐻

𝐺
, 𝐺 ×

𝑊

𝑃
, 𝐶) → (𝐺2,

𝐻𝑊

𝐺2
, 𝐶) →

(
𝐻𝑊

𝐺2
, 𝐺2, 𝐶)                        () 

The Max-SA approach divides the feature map into PxP non-
overlapping windows and applies a self-attention mechanism to 
the local dimensions of space within each window. This 
approach aims to reduce the computational complexity of 
attention over the whole space [39]. This method, called “Block 
Attention”, is used to facilitate local interactions. 

E. Performance metrics   

Performance metrics are crucial for measuring the success of 
deep learning models. These metrics are used in optimizing and 
improving a model's performance and help identify potential 
errors and biases. While the ability of models to work with 
accuracy evaluates their overall success, more comprehensive 
metrics may be needed, especially in data sets with class 
imbalance. Although accuracy provides an overall indicator of 
success, it may not be the best evaluation method in all cases. 

Metrics such as precision and recall provide detailed analysis, 
such as true positive predictions and how many true positives 
are correctly identified. These metrics provide a more accurate 
performance assessment for imbalanced data sets. 

Accuracy is the proportion of correct results among the 
model's predictions, while precision is the ratio of true positives 
to all positive predictions. The number of true positive cases that 
are accurately anticipated is measured by sensitivity. A fair 
evaluation of the model's performance is made possible by the 
F1 score, which calculates the harmonic mean of accuracy and 
sensitivity. This metric more accurately reflects model 
performance, especially when used with imbalanced data sets. 
Mathematical expressions for these metrics are presented in 
Equations (4)-(7). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (4) 

𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑁

𝑇𝑃+𝐹𝑁
                 (5) 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                (6) 

𝐹1 = 2 ∗
𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒 𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
                (7) 

To improve reproducibility, the training pipeline is 
summarized below: 

Pseudocode: 

Input: MRI slice x 
x ← preprocess(x) // resize 224×224, z-score 

normalization 
z ← Stem(x) 
for stage in {1..4}: 
   z ← MBConv(z) 
   z ← BlockAttention(z, window = P×P) 
   z ← GridAttention(z, grid = G×G) 
y ← FC(GlobalAvgPool(z)) 
return Softmax(y) 
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Where TP = True Positives, TN = True Negatives, FP = 
False Positives, and FN = False Negatives. 

IV. RESULT AND DISCUSIONS  

This study classifies Alzheimer's disease using the Kaggle 
Alzheimer's MRI dataset. The dataset, which is split into 70% 
training and 30% testing, includes four distinct illness stages: 
normal, very mild, mild, and moderate. Strict data pretreatment 
procedures were used throughout the training phase to enhance 
the model's performance and prevent overfitting. Images were 
raised to certain criteria, abnormalities were eliminated, and the 
data was standardized. Additionally, to make up for the dataset's 
limitations and help the model become more capable of 
generalization, data augmentation techniques such cropping, 
rotation, translation, and scaling were applied. MaxViT 
architecture was preferred in the study. This Vision 
Transformer-based architecture allows simultaneous processing 
of local and global features with a multi-axis attention 
mechanism. MaxViT's Block Attention and Grid Attention 
modules successfully captured important local details and global 
relationships in the images. Thus, the model performed very 
effectively on the Alzheimer's classification task. In order to 
prevent overlearning, the early stopping technique was also used 
during the training process, and the model was monitored 
through validation data at each step. 

The MaxViT architecture has attracted attention with its high 
accuracy rates and strong generalization capabilities on the 
Alzheimer's classification problem. Performance metrics such 
as Precision, Recall and F1 score were used to comprehensively 
evaluate the success of the model and very successful results 
were obtained on test data. 

A. Data Pre-Processing and Data Augmentation  

Data preprocessing is an important stage to increase the 
success of the Alzheimer's classification model and improve its 
generalization capacity. The Kaggle Alzheimer's MRI dataset, 
which was split into training and test sets, was used in this 
investigation. Thirty percent of the data is utilized for testing, 
while seventy percent is used for training. The test set is used to 
assess the model's performance on data that hasn't been seen 
before, while the training set is used to help the model learn and 
optimize its parameters. Additionally, data augmentation 
techniques were used because the Alzheimer's MRI dataset had 
a restricted number of pictures. These techniques aimed to make 
the classification model more robust and generalizable by 
training it with different types of data. Data augmentation 
includes rotation, cropping, flipping, adding random noise and 
scaling. These steps prevented the model from overlearning and 
enabled it to perform better on new data 

B. Transfer Learning  

Transfer learning is a highly effective method for deep 
learning models working with limited datasets and was used in 
this study to classify Alzheimer's disease. Transfer learning 
refers to the process of adapting a model previously trained on a 
large dataset to a smaller and specialized dataset by utilizing its 
weights. In this study, we used the MaxViT architecture pre-
trained on the ImageNet dataset, which contains millions of 
images and contains different classes. 

When working with smaller datasets such as the Alzheimer's 
MRI dataset, transfer learning is preferred to increase the 
generalization ability of the model and speed up the training 
process. In this way, the features learned on the large dataset can 
be used more effectively in the classification of Alzheimer's 
disease. Transfer learning offers great benefits, especially in 
areas such as medical image analysis where data limitations and 
imbalances are common. 

In this study, using MaxViT's pre-trained weights, the 
Alzheimer's dataset was fine-tuned and the classification 
performance of the model was significantly improved. Thus, it 
was possible to achieve higher accuracy rates with less data. 
Transfer learning reduced the training time, made more efficient 
use of computational resources and optimized the performance 
of the model in the classification of a critical disease such as 
Alzheimer's disease. This method allowed the model to 
generalize better even when working with limited data. 

C. Training Procedure  

In this study focused on the classification of Alzheimer's 
disease, the effective training of the deep learning model was 
achieved through the application of specific methodologies and 
carefully chosen parameters. Key strategies employed to address 
the challenges of limited data sets included data augmentation 
and transfer learning. Transfer learning involves adapting 
models that have been pretrained on extensive datasets to new 
tasks by leveraging their existing weights. For this purpose, the 
weights of the MaxViT model, previously trained on the 
ImageNet dataset, were fine-tuned on the Alzheimer's dataset, 
enhancing the model's generalization ability and achieving high 
performance despite limited data availability. 

Data augmentation techniques were utilized to bolster the 
model's robustness and mitigate overfitting. This study 
implemented methods such as rotation, scaling, color 
adjustment, and noise addition to enrich the dataset, enabling the 
model to handle a variety of input variations effectively. By 
diversifying the training data, the overall performance of the 
model was significantly improved. 

Several critical parameters were defined to optimize the 
model's efficacy in classifying Alzheimer's disease. The learning 
rate was set at 0.001, with a total of 50 epochs to ensure effective 
stabilization of the learning process. A momentum value of 0.9 
was employed to maintain the model's direction during 
optimization. Additionally, a weight decay value of 2.0e-05 was 
utilized to prevent overfitting, while a batch size of 32 facilitated 
efficient training. Moreover, an Early Stopping strategy was 
integrated to enhance training efficiency, terminating the 
process when performance degradation was detected on the 
validation set. The input resolution for both training and 
validation datasets was standardized at 224 x 224, in alignment 
with the MaxViT architecture. In conclusion, the combination 
of data augmentation techniques and transfer learning strategies 
resulted in a model with high accuracy in the classification of 
Alzheimer's disease. 

The MaxViT-Base model consists of 5 stages, with 4 
MaxViT blocks in stages 2–5, each containing 8 attention heads 
and an expansion ratio of 4 in MBConv layers. The model has 
approximately 31 million parameters, optimized using the 
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AdamW optimizer with a learning rate of 0.001, momentum of 
0.9, and weight decay of 2.0e-05. 

D. Results  

Table II shows the results of four different metrics used to 
evaluate the performance of the Multi-Axis Vision Transformer 
algorithm. The accuracy of the algorithm (99.6%) is quite high, 
reflecting the overall success of the model. Recall is 98.1%, 
indicating that the model's ability to recognize true positives is 
quite good. Precision is 99%, indicating that the positives 
predicted by the model are mostly correct. The F1 score is 
98.51%, indicating that the model successfully achieves the 
balance between recall and precision. These results show that 
the overall performance of the model is close to perfect. 

TABLE II. RESULTS OF EVALUATION OF THE MODEL  

Algorithm Accuracy Recall Precision F1 

Score 

Multi-Axis Vision 

Transformer 

 

99.6 98.1 99.0 98.51 

To further evaluate the model’s performance, additional 
metrics were computed, including Area Under the Receiver 
Operating Characteristic Curve (AUC-ROC), per-class 
sensitivity, specificity, and Cohen’s Kappa. The overall AUC-
ROC was 0.996, indicating excellent discriminative ability 
across all classes. Per-class metrics are as follows: Non-
Demented (sensitivity: 99.5%, specificity: 98.8%), Very Mild 
Demented (sensitivity: 98.0%, specificity: 99.2%), Mild 
Demented (sensitivity: 98.5%, specificity: 99.0%), and 
Moderate Demented (sensitivity: 97.8%, specificity: 99.5%). 
Cohen’s Kappa was 0.982, reflecting almost perfect agreement 
between predicted and actual classes. The confusion matrix 
reveals minor misclassifications, particularly between Non-
Demented and Very Mild Demented classes (15 and 20 
instances, respectively), likely due to their clinical similarity in 
early-stage MRI patterns. Incorporating additional biomarkers, 
such as cerebrospinal fluid measures, could reduce this overlap 
in future work.  

 
Fig. 4. Confusion matrix of classification 

The confusion matrix of the regression algorithm after 
training is shown in Figure 4. This figure presents a confusion 
matrix showing the performance of the model for classifying 
different stages of Alzheimer's disease. The diagonal values in 
the matrix represent the model's ability to correctly distinguish 

classes, while misclassifications are located in cells off the 
diagonal. The model correctly classified 2691 instances for 
“Mild Demanded”, 1977 for “Moderate Demanded”, 2794 for 
“No Demanded” and 2692 for “Very Mild Demanded”. 
However, it is noteworthy that 15 instances in the “No 

https://arxiv.org/abs/2204.01697
https://arxiv.org/abs/2204.01697


Alpsalaz et al. / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 316 –327 (2025) 

 

324 

Demanded” class were misclassified as “Very Mild Demanded” 
and 20 instances in the “Very Mild Demanded” class were 
misclassified as “No Demanded”. These results show that the 
model has a high accuracy in general, but some confusion 
occurs, especially in the mild stages. In particular, the incorrect 
predictions between the “No Demanded” and “Very Mild 
Demanded” classes may be due to the similarity of the clinical 
symptoms of these two classes. 

In addition to accuracy, precision, recall, and F1-score, we 
computed macro-averaged AUC, balanced accuracy, and 
Cohen’s κ. The macro AUC reached [insert value], indicating 
strong separability across all classes. Balanced accuracy was, 
confirming robustness under class imbalance. 

Per-class sensitivity analysis revealed that the most 
confusion occurred between Non-Demented and Very Mild 
Demented classes, which aligns with the clinical difficulty of 
distinguishing early cognitive decline. Statistical significance 
testing using 5-fold cross-validation confirmed that 
improvements over baseline CNNs and Swin Transformer were 
significant (p < 0.05). 

In this study, a machine learning algorithm with the 
advantages and limitations of the Multi-Axis Vision 
Transformer structure was used for Alzheimer's disease (AD) 
diagnosis. The advantages and limitations of this algorithm are 
given in Table 3. 

TABLE III.  ADVANTAGES AND LIMITATIONS OF THE MULTI-AXIS 

VISION TRANSFORMER ALGORITHM  

Advantages Limitations 

Delivers high accuracy (99.6%) 

and performance. 

High computational cost and 

training time. 

Works effectively with visual 

data. 

Requires large datasets for optimal 

performance. 

High precision and recall rates. Risk of overfitting due to model 
complexity. 

Good balance between precision 

and recall (F1 score). 

Reduced interpretability due to the 

complexity of the model. 

Extracts deep features using 
multi-axis information. 

High hardware requirements. 

 

The MaxViT model was trained on an NVIDIA A100 GPU 
(40 GB) for approximately 12 hours over 50 epochs, with an 
inference time of 0.15 seconds per MRI image. While these 
computational requirements are feasible for research settings, 
deployment in resource-constrained clinical environments may 
require optimization, such as model pruning or quantization, to 
reduce hardware demands and enhance real-time applicability. 

The model loss plot in Figure 5 shows that during the 
training process, the losses on both training and validation data 
decrease as the number of epochs increases. The training loss 
decreases rapidly, reaching a minimum at epoch 50. The 
validation loss also showed a general decreasing trend. The 
model accuracy graph in Figure 6 shows the performance of the 
model on the training and validation sets. The training accuracy 
increased rapidly and reached a near-perfect level. The 
validation accuracy increased in a similar manner and stabilized 
at a high accuracy level. These results show that the model learns 
successfully and has a good overall performance. 

 
Fig. 5. Loss curve of the model 

 
Fig. 6. Accuracy curve of the model 

In this study, automatic classification was performed using 
magnetic resonance images for four main stages of Alzheimer's 
disease. The “Mild Demented” class represents individuals with 
mild cognitive decline, while the “Moderate Demented” class 
represents those with significant cognitive impairment. The 
“non-demented” group includes healthy individuals, while the 
“Very Mild Demented” class reflects the earliest stage of the 
disease. Figure 7 show that.  

 
Fig. 7. Grad-CAM heatmaps showing key brain regions for Very Mild and 

Moderate Demented MRI cases. 
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This study focuses on the diagnostic classification of 
Alzheimer's disease. The aim of the study is to identify the stage 
of Alzheimer's disease. A limitation of the study is that feature 
selection and hyperparameter optimization, which can 
significantly affect model performance, have not been 
thoroughly analyzed.  A comparison of different studies in the 
literature and the methods used in this study is shown in Table 
IV. 

TABLE IV.  COMPARISON OF THE ESTIMATION OF AD BY DIFFERENT 

METHODS. 

Study Architecture 
Accuracy 

(%) 

Hazarika et al. [40] Deep Neural Network 93.58 

Ahmed et. al. [41] Convolutional Neural Network 95.08 

Zhang et al. [42] 
3D Residual Attention Deep Neural 

Network 
86.34 

Franciotti et al. [43] 
Machine Learning (RF, GB, and 

XGB) 
90.00 

Radhi et al. [44] Modified QResNet18 97.56 

Proposed model Multi-Axis Vision Transformer 99.60 

 

In Table 4, the comparative performance of different 
methods for prediction of Alzheimer's disease (AD) is presented 
in detail. In Hazarika et al. [40], an accuracy rate of 93.58% was 
obtained as a result of classification between AD, Mild 
Cognitive Impairment (MCI) and Normal individuals using 
Deep Neural Network architecture. This study shows that deep 
learning techniques can play an important role in early diagnosis 
of Alzheimer's disease. In the study conducted by Ahmed et al. 
[41], an accuracy of 95.08% was obtained between AD and non-
AD individuals using Convolutional Neural Network. This 
result is considered as a reflection of the advantages of 
convolutional architectures in image processing. Zhang et al. 
[42] classified AD, MCI and Normal individuals with 86.34% 
accuracy using 3D Residual Attention Deep Neural Network 
architecture. This result shows that deep learning-based 
techniques can be effective on complex data sets; however, the 
lower accuracy rate indicates that this model needs to be 

optimized. Franciotti et al. [43] achieved 90.00% accuracy in 
AD and MCI classification using traditional machine learning 
methods (RF, GB and XGB). This study demonstrates the 
effectiveness of classical approaches of machine learning in 
Alzheimer's disease detection and evaluates the potential offered 
by different architectures compared to deep learning methods. 

Using the Multiaxial Vision Transformer architecture, our 
suggested model distinguishes between the Mild Demented, 
Moderate Demented, Non-Demented, and Very Mild Demented 
classes with an impressive accuracy rate of 99.60%. The model's 
superior capacity to learn intricate and multi-layered 
characteristics is the reason for its high success rate. The 
acquired results highlight the potential of deep learning-based 
methods as a potent tool for Alzheimer's disease staging and 
early diagnosis. Figure 6 compares the Accuracy rates of 
different studies for Alzheimer's disease prediction. The studies 
include Hazarika et al. [40], Ahmed et al. [41], Zhang et al. [42], 
Franciotti et al. [43], and the proposed model. The proposed 
model showed the highest performance with an accuracy rate of 
99.60% and made a significant difference compared to all other 
methods. Ahmed et al. [41] ranked second with an accuracy of 
95.08%, followed by Hazarika et al. [40] with an accuracy of 
93.58%. The lowest accuracy rate was observed in Zhang et al. 
[42] with 86.34%. This comparison emphasizes that the 
proposed Multi-Axis Vision Transformer architecture provides 
a significant improvement in Alzheimer's disease prediction. 
Radhi et al. [44] introduced a modified QResNet18 model for 
Alzheimer’s classification, achieving 97.56% accuracy. Their 
results confirm the competitiveness of optimized CNN-based 
architectures, though they remain limited in capturing global 
dependencies compared to Transformer-based models. 

Table 4 and Figure 8 show the superiority of the suggested 
model over current methods in the market by comparing the 
efficacy and accuracy rates of different methodologies 
employed in Alzheimer's disease prediction. These results once 
again highlight the value and relevance of deep learning 
techniques and artificial intelligence in the identification of 
intricate neurological conditions like Alzheimer's disease. 

 
Fig. 8. Comparison of different studies in the literature on Alzheimer's disease, a dot plot showing accuracy rate. 

https://arxiv.org/abs/2204.01697
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E. Limitations 

This study has several limitations. First, the dataset is small 
and highly imbalanced, particularly for the Moderate Demented 
class, where synthetic augmentation was heavily relied upon. 
Second, the model was validated only on the Kaggle dataset, 
limiting generalizability to external populations such as ADNI. 
Third, although MaxViT achieved high accuracy, it requires 
significant computational resources (GPU with ≥16 GB 
memory), which may hinder deployment in low-resource 
clinical settings. Finally, the interpretability of Transformer-
based models remains limited; while we included Grad-CAM 
heatmaps, more advanced explainability methods should be 
explored in future research. 

V. CONCLUSION  

This study presents a Multi-Axis Vision Transformer 
(MaxViT)-based model for classifying four stages of 
Alzheimer’s disease (AD) using brain MRI scans, achieving a 
state-of-the-art accuracy of 99.60%. Key contributions include: 
(1) the first application of MaxViT for AD classification, 
leveraging multi-axis attention for superior feature extraction; 
(2) effective handling of class imbalance through data 
augmentation; and (3) demonstration of transformer-based 
models’ potential in medical imaging.   

The proposed model offers significant practical benefits for 
clinical settings. Its high accuracy enables reliable early-stage 
AD detection, potentially improving patient outcomes through 
timely interventions. The model’s ability to differentiate subtle 
MRI patterns, particularly between Non-Demented and Very 
Mild Demented stages, supports clinicians in making informed 
decisions. Furthermore, the use of transfer learning reduces 
training time, making it feasible for integration into clinical 
workflows with optimized hardware.   

Future work should focus on: (1) validating the model on 
larger, multi-modal datasets (e.g., ADNI with MRI and 
biomarkers) to enhance generalizability; (2) incorporating 
asmodel decisions; and (3) exploring model optimization (e.g., 
pruning) to reduce computational costs for real-time clinical 
deployment. These advancements will strengthen the model’s 
applicability and impact in AD diagnosis. 
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