Vol. 06, No. 02, pp. 358 =371 (2025)
ISSN: 2708-0757

N
JASTT JOURNAL OF APPLIED SCIENCE AND TECHNOLOGY TRENDS

www.jastt.org

Physics-Informed Machine Learning Framework for Virtual
Screening and Multi-Objective Optimization of Polymer
Nanocomposites with Tailored Multifunctional Properties

Sandeep Gupta!®, Budesh Kanwer!®, Udit Mamodiya®®, Saurabh Shandilya’®,
Deepshikha Bhatia*®, Nithesh Naik>*

!Department of Artificial Intelligence and Data Science, PIET, Jaipur, India, sgupta@gsom.polimi.it;
budesh.kanwar@poornima.org
’Faculty of Engineering and Technology, Poornima University, Jaipur, India, assoc.dean_research@poornima.edu.in
SFaculty of Computer Engineering, Poornima University, Jaipur, India, Saurabh.Shandilya@poornima.edu.in
4CS and IT Department, IIS (Deemed to be University), Jaipur, India, deepshikha.bhatia@jiisuniv.ac.in
SDepartment of Mechanical and Industrial Engineering, MIT, MAHE, Manipal, India, nithesh.naik@manipal.edu

* Correspondence: nithesh.naik@manipal.edu

Abstract

The rational design of polymer nanocomposites with tailored multifunctional properties remains challenging due to complex multi-scale
physics and the limitations of traditional empirical approaches, which cannot adequately capture the combinatorial interactions between
polymer matrices, nanofillers, and processing conditions. We present a new computational framework for cost-effective virtual screening
and optimization of polymer nanocomposites with physically consistent prediction in this series. In a physics-informed neural network,
we suggest a combination of the quantum mechanical response, as well as standard molecular dynamics and thermodynamic data. (1)
Physics-aware loss functions that incorporate conservation policies and thermodynamic constraints; (2) multiscale descriptor integration
of quantum to macroscales; (3) ensemble learning is supplemented by tools to distinguish epistemic and aleatoric uncertainty; and (4)
NSGA-III assisted multi-objective optimization coupled with adaptive reference point generation. The neural network architecture
consists of multi-branch pathways with 5 hidden layers (256, 512, 512, 256, 128 neurons) using Leaky ReL U activation functions, trained
on 23,847 polymer nanocomposite formulations using Adam optimizer (learning rate: 0.001, batch size: 64) with cosine annealing
scheduling. The framework achieves prediction accuracies of R*> > 0.94 for mechanical properties, R*> > 0.91 for thermal characteristics,
and R? > 0.88 for electrical conductivity, representing 15-25% improvements over conventional machine learning methods. Virtual
screening of 3.2 million candidate formulations identified 1,847 compositions with superior performance. Our NSGA-III optimization
identifies Pareto-optimal solutions with 34% higher multifunctional performance than conventional approaches, while reducing
experimental validation requirements by 82%. Experimental validation of 127 compositions confirms 89% prediction accuracy within
confidence intervals (95% confidence intervals: £8.3% for mechanical, £9.1% for thermal, +£11.2% for electrical properties). The present
physics-informed machine learning approach enables computational materials design with accounting for the most relevant physical laws
and data-driven techniques to discover optimal high-performance polymer nanocomposites yet offers a robust uncertainty quantification
to inform risk-conscious design decisions.
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processing condition). [1,2]. Empirical techniques, although

effective for simple material systems, are ineffective at
This Polymer nanocomposites computation is one of the predicting nanocomposites' behaviour, ranging from quantum

most difficult areas of computational materials science, mechanical interactions at polymer-filler interfaces to

particularly because of exponential increase in design  macroscopic  property  expression  through  complex

complexity due to combinatorial effect (between polymer morphological structures [3,4].

matrix, nanofillers, surface functionalization approach, and

I. INTRODUCTION
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Despite the fact that machine learning has demonstrated a lot
of promise in materials discovery [1,2], the majority of recent
research suffers from three key flaws that have hampered their
adoption of polymer nanocomposites: (1) a lack of physical
constraint leads to thermodynamically erroneous prediction
[5,6], which leaves out predictive power; and (2) the inability to
provide reliable risk-aware decision making [7]. Support vector
machine, random forest, or classic neural networks can all
produce high quality results that are not physically consistent
with basic conservation or thermodynamic principles and should
not be trusted when physical consistency is required in practical
materials design settings [8,9].

Four challenges for the design of polymer nanocomposites
include: (1) Predictions that violate Gibb's free energy
minimization and phase stability constraints; (2) The
simultaneous modelling of quantum mechanics at the interface
with a consistent description of molecular dynamics and
macroscopic processing conditions [11]; and (4) Optimization
constraint - The challenge is to strike a balance between
competing property requirements within manufacturing
feasibility [12,13,14,15].

This work addresses these critical gaps through the
following key innovations:

e Novel Physics-Informed Neural Network Architecture:
These PINNSs are targeting thermodynamic (Gibbs free
energy minimization, phase stability), conservation
(mass and electricity balance), as soft constraints were
introduced during the search for optimal architectures to
produce such high frequency of results that can also be

indicative of non-trivial experimental trends.

Comprehensive Multi-Scale Descriptor Framework: We
introduce a hierarchical descriptor system that uniquely
integrates quantum mechanical calculations (DFT-
derived electronic properties including HOMO-LUMO
energies, binding energies, charge transfer), molecular
dynamics simulations (structural and dynamical features
including radius of gyration, self-diffusion coefficients),
morphological descriptors (from image analysis
capturing dispersion quality and percolation networks),
and processing parameters (temperature, mixing time,
shear rate) within a unified mathematical framework.

Uncertainty-Quantified Ensemble Learning: Ours is the
first work to perform a quantitative risk assessment in
nanocomposite property estimation by separating
epistemic uncertainty (model limitations, data scarcity),
and  aleatoric  variability  (inherent  material
microstructure variation), aimed at informing decision
makers in materials design with quantified risk.

Constrained Multi-Objective Optimization: We produce
a dedicated NSGA-III with adaptive reference point
generation algorithms for the polymer nanocomposite
systems, considering the characteristics of competing
property demands (mechanical-thermal-electrical trade-
offs) and manufacturing constraints (processing
temperature limitations, filler loading feasibility).
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Large-Scale  Virtual Screening Platform: We
successfully screen 3.2 million composition candidates,
reducing experimental validity by 82% but still showing
a 34% increase in multimodality relative to traditional
methods of design optimization.

The quantitative relationships that control mechanical
stability, mesoscale morphology, and the creation of
macroscopic structures are all typical problems with these
materials [4,10]. (1) improved prediction accuracy when
compared to previous machine learning methods on
nanocomposite property estimation [1,2,6]; (2) new structure-
property relationships between nanoparticles and their
properties [16; 17]; and (3) more effective virtual screening of
millions of candidate formulations with reduced amount of
experimental validation required [18; 19].

Organization of the Paper: The remainder of this paper is
divided as follows: Section 2 discusses the theoretical basis and
mathematical formulations, which include physics-informed
neural network architecture, multi-scale descriptor design, and
ensemble learning with uncertainty prediction. Section 3 details
the multi-objective optimization scheme, which includes the
NSGA-III configuration and multifunctional performance
measures. Section 4 details the computational implementation
including dataset construction, feature engineering, model
architecture, and validation methodology. Section 5 presents
comprehensive results including model performance analysis,
virtual screening discoveries, physics-informed insights,
experimental validation, and comparative analysis. Section 6
concludes the paper with a summary of achievements and future
research directions.

II. THEORETICAL FOUNDATION AND MATHEMATICAL
FRAMEWORK

A. Physics-Informed Neural Network Architecture

Our physics-informed neural network represents a
fundamental advancement over conventional machine learning
approaches by incorporating essential physical principles as
mathematical constraints during the training process [3,14]. The
core innovation lies in ensuring that learned representations
respect conservation laws and thermodynamic principles while
maintaining sufficient flexibility to capture complex non-linear
relationships in experimental data.

For a polymer nanocomposite system characterized by input
descriptors x € R¢ encompassing compositional, structural, and
processing variables, we define the neural network output as a
vector function f(x;0) that maps input descriptors to multiple
material properties simultaneously. The thermodynamic and
conservation constraints are implemented through a carefully
balanced loss function that maintains training stability. During
the initial training phase (epochs 1-50), physics constraint
weights (Aphysics) are gradually increased from 0.01 to 1.0 using
a warm-up schedule to prevent gradient instability. The Gibbs
free energy constraint is enforced through automatic
differentiation of predicted component activities, while mass
conservation is implemented as a hard constraint by normalizing
volume fractions after each forward pass. This implementation
strategy ensures stable convergence with typical training
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completed in 200-300 epochs, compared to 500+ epochs for
unconstrained networks.

f(x;0) = [fi(x;01), £2(x;02), ..., f(x;0,)]" (1)

where 0 = {01, 02, ..., 0,} represents the collection of network
parameters for all property prediction tasks, and n denotes the
number of material properties predicted simultaneously.

The key innovation of our approach lies in the physics-informed
loss function that enforces fundamental physical principles:

L= Laata + )\/physicsa@physics + )\'regzeg (2)

The weighting parameters Aphysics and Ag were determined
through systematic hyperparameter optimization using grid
search combined with cross-validation. We evaluated Aphysics €
[0.1, 0.5, 1.0, 2.0, 5.0] and A € [0.001, 0.01, 0.1], selecting
optimal values (Aphysics 1.0, Arg = 0.01) that maximize
validation R? while maintaining physics constraint satisfaction
(deviation < 2% from thermodynamic principles). The sub-
weights @1, @2, @3, @4 in equation (3) were set to [0.4, 0.3, 0.2,
0.1] based on relative importance from preliminary sensitivity
analysis.

where % represents the standard supervised learning loss,
onysics enforces physical constraints (our primary innovation),
and %, provides regularization. Unlike existing approaches,
our physics-informed constraints are specifically designed for
polymer nanocomposite systems (Fig. 1):

gphysics = C\)lgthermo + C\)Ze@conservation + m3%caling + 0\)4géompatibility (3)

The data-driven loss term employs a weighted mean squared
error formulation:

Laaa = (I/N) Zi¥ wil((yi - (x:0)) O (vi - (x::0))) “

The thermodynamic constraint ensures predictions satisfy
Gibbs free energy minimization:

Lnermo = Zj max(0, 0G/0@jlt,p)* + Xk max(0, -6*G/0p|rp)*  (5)

where G represents the Gibbs free energy and ¢; denotes
component volume fractions. The conservation constraint
enforces mass and energy conservation:

ﬂonservation = "EJ (Pj = 1"2 + "E_] (Pjpj = pcomposite"2 (6)
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Fig. 1. Integrated computational framework showing novel physics-informed neural network architecture with multi-scale descriptor integration, uncertainty

quantification, and experimental validation feedback loops.

B. Multi-Scale Descriptor Formulation

A key innovation of our framework is the comprehensive
multi-scale descriptor system that captures essential physics
from quantum mechanical to macroscopic levels:

D= [DQM, Dwp, Dmorph, Dproc; Dinterface]T (7)
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a) Quantum Mechanical Descriptors

Our quantum mechanical descriptors uniquely capture
electronic structure characteristics that determine interfacial
interactions:
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Dom = [Exomo, ELumo, W, @, %, 1, AEads, AEbinding, Guranster] . (8)

where Enomo and Erumo are frontier orbital energies, p is the
electric dipole moment, o is molecular polarizability, y is
electronegativity, 1 is chemical hardness, AE.qs is adsorption
energy, AEpinging is binding energy, and Quanster quantifies
interfacial charge transfer.

The chemical hardness is calculated using Koopmans'
theorem:

©)

The adsorption energy calculation provides direct measures
of interfacial strength:

AEads = Ecomplex - (Epolymer + Eﬁller)

N = (ELumo - Enomo)/2

(10)

b) Molecular Dynamics-Derived Descriptors

Our MD-derived descriptors capture dynamic behavior and
transport properties:

(11)

The radius of gyration characterizes polymer chain
dimensions:

Dwmp = [(Rgz)a P2, Dges, S(q), g(r); Vfree, Trelax, Kthermal]T

(Rg?) = (1/N) Zist™((ri - rcom)’) (12)
The orientational order parameter is computed as:
P2 =((3cos%0 - 1)/2) (13)

¢) Morphological and Processing Descriptors

The morphological descriptor vector includes geometric and
topological features:

Dmorph = [(Pf, AR, Ssp, i, (I), Dfrac, Ttort, Nclusters]T (14)
Processing descriptors capture manufacturing conditions:

(15)

Dproc = [Tprocess’ tmix, 'Y; Pprocess’ Tanneal, COOling_fate]T
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Fig.2. Novel ensemble architecture integrating physics-informed constraints with uncertainty quantification. Key innovation: adaptive weighting based on local

model expertise and physics consistency checks.

C. Ensemble Learning with Uncertainty Quantification

It would be a major departure in our work to be able to post
such doubts while keeping track of the various variables. We
looked at three options: (1) Monte Carlo dropout (due to space
constraints here, we announced the results of this procedure
only), (2) Bayesian deep learning using variational inference,
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and (3) deep ensembles. Monte Carlo dropout was selected for
its computational efficiency (10% faster than Bayesian methods)
and comparable uncertainty estimates (correlation coefficient r
= 0.93 with full Bayesian posteriors on validation set). While
Bayesian deep learning provides theoretically rigorous
uncertainty quantification, its computational cost (5-7 days for
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training vs. 18-24 hours for MC dropout) makes it impractical
for large-scale virtual screening applications (Fig. 2).

fensemble(X) = Zi=™ wi(x)fi(x) (16)
where weights are determined by a gating network:

wi(x) = exp(gi(x)) / Z™ exp(g(x)) an

02iotal(X) = Gepistemic(X) T Galeatoric(X) (18)

Epistemic uncertainty quantifies model limitations through
ensemble disagreement:

Gzepistemic(x) = (1/ M) XM (ﬁ(x) - fensemble(x))2 (19)

The epistemic and aleatoric uncertainty components were
experimentally validated through a dedicated study of 45
replicate syntheses. For compositions with predicted high
epistemic uncertainty (Gepistemic > 15%), experimental
measurements showed 23% variation in properties, confirming
model uncertainty. For compositions with low epistemic but
high aleatoric uncertainty, property variations of 18% were
observed across nominally identical synthesis conditions,
validating the distinction between uncertainty sources and
enabling targeted strategies for uncertainty reduction (more data
for epistemic, process control for aleatoric).

III. MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

A. Problem Formulation and Mathematical Foundationss

Our multi-objective optimization framework addresses the
unique challenges of polymer nanocomposite design where
multiple  competing properties must be  optimized
simultaneously:

optimize F(x) = [fi(x), f(X), ..., fi(x)]T
subject to: Zineq(X) <0
heo(x) =0
XLSX=Xy

X € Xfeasible (20)

Unlike existing optimization approaches, our formulation
specifically addresses the conflicting nature of nanocomposite
properties:

F(X) = [fmech(x), fthermal(x), felectrical(x), fbatﬁer(x)]T (21)

where each component function represents a weighted
combination:

finech(X) = W1(01(X)/Orer) + W2(E(X)/Erer) 22)
fihermat(X) = Wa(Kin(X)/Kth,rer) + Wa(Te(X)/ T rer) (23)
fetectrical(X) = Ws(Ge(X)/Oeref) + We(€r(X)/Exref) 24)
fharrier(X) = W7(Pret/ P(X)) + Wa(Dret/D(X)) 25)

NSGA-III Parameters Population Ini

Peputation

Objective Evaluation

Non-dominated Sorting

oo

Reference Polnt Generation

Adaptive Distrits

ML-Gusded Propesty Prodiction

Environmental Sclection

Optimization Results

Crossover & Mutation

Genetic Operatons

Pareto-Optimal Set

Fig. 3. Advanced NSGA-III optimization flowchart with novel adaptive reference point generation and physics-informed constraint handling for polymer

nanocomposite design.

B. NSGA-III Implementation with Reference Point Adaptation

We implement an advanced NSGA-III algorithm with
adaptive reference point generation specifically designed for
high-dimensional objective spaces in materials design.
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Scalability analysis for objectives ranging from 4 to 12 shows
that computational time scales approximately as O(n?-°) where
n is the number of objectives. For 10 objectives, optimization
completes in 4.2 hours (population size 400, 300 generations) on
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standard hardware (Intel Xeon Gold 6248R, 48GB RAM),
compared to 0.8 hours for 4 objectives. Benchmarking against
recent methods shows our adaptive NSGA-III achieves 18%
higher hypervolume than standard NSGA-III, 12% better than
MOEA/D, and comparable performance to RVEA but with 40%
faster convergence (Fig. 3).

Z={z€ RE:Zikzi=1,7> 0} (26)
Normalized objective values are calculated as:
£ = (6(x) - ™) / (™ - 7™ 27

The perpendicular distance for diversity maintenance:
d(x, z) = If (x) - (f(x)"z / 1zI?)zl (28)

C. Multifunctional Performance Index
We introduce a novel Multifunctional Performance Index
(MPI) that quantifies overall nanocomposite performance:
MPI = ([Ji=1® (Pi/Preri)™) /> (29)

This geometric mean formulation prevents solutions that
excel in some properties while performing poorly in others,
ensuring truly multifunctional materials.

For Pareto optimality analysis, solution xi dominates
solution x: if:

Vi€ {1,2,...k}: fi(xi) <fi(x2) A 3j € {1,2,...k}: fi(x1) <
fi(x2) (30)

Quality assessment uses hypervolume (HV):

HV = )\,(Uizl‘P‘ [f1(Xi), I'1] X [fz(Xi), I'2] X .. X [fk(Xi), I'k]) (31)

IV. COMPUTATIONAL IMPLEMENTATION AND VALIDATION

A. Dataset Construction and Preprocessing

A Such a database based on polymer nanocomposites
appears to be one of the most comprehensive (curated) datasets,
and it incorporates research findings from peer-reviewed papers
to experimental databases, as well as high-throughput
computational experiments. The database was built using a
literature review of journal papers (issues between 2015 and
2024) published by major publishers focusing on polymer
nanocomposites and experimental databases such as NanoMine
(n=3,847). The DFT calculation was done internally for the
interfacial properties (n=1,568). Carbon nanotubes and
graphene (34% and 27%), polyamides (23%), and another
discharge of the polypropylene were found; thermoplastic
matrices had marginal importance to these contributions (3%) as
much as second family of 2D materials other than graphene
(7%). In 67% of North America/Europe studies, geographic bias
is present. We use per-class stratified sampling in FT/TT
partition and joint SMOTE to eliminate the above-mentioned
biases to eliminate the above-mentioned biases to eliminate the
above-mentioned samples from the above-mentioned samples
for under-represented material classes to eliminate the above-
mentioned biases.

Data Sources

Poer-roviowod Literaturo
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+ 10.292 compoations.
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Fig. 4. Comprehensive data preprocessing pipeline showing quality assurance procedures, physics-constrained imputation methods, and statistical distribution

analysis across material classes.

The preprocessing pipeline addresses unique challenges in
materials science data through robust scaling and physics-
constrained imputation methods [20] (Fig. 4).
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Key innovations in data preprocessing include:

1.  Matrix factorization with domain knowledge

constraints for missing value imputation
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2. Robust scaling methods that handle non-normally  procedure, is used to identify features by examining their VIF

distributed materials data value at >10 and removing multicollinearity. For example,
interfacial adhesion energy was retained despite moderate
Pearson correlation (r=0.61) due to its fundamental role in load
transfer mechanisms. Domain expert review validated that 94%
Robust scaling is implemented as: of selected features have established physical significance in

1 ite literature.
Xeeaed = (x - median(x) / (Qs(x) - Q1(x)) (32) polymer nanocomposite literature

Outlier detection employs Mahalanobis distance:

3. Multivariate outlier detection using Mahalanobis
distance and isolation forests

Feature importance evaluation employs mutual information
analysis:

Dui(x) = V((x - W' (x - W) 33) 1(X:Y) =[] px.y) log(p(x.y)(pX)p() dx dy  (34)

The recursive feature elimination with cross-validation

B. Feature Engineering and Selection (RFECV) ensures optimal descriptor selection while preventing

Our feature extraction method hierarchically converts multi- overfitting:
scale data to produce physically understandable descriptors. B Aolds T
Even though the level of statistical significance is not high with Scorecv(k) = (1/noias) Zit™*" R*(Sy, folds) (33)
the RFECV procedure, which uses a two-stage screening

oM Quantum Mechanical
67 festures: HONO/LUMO, binding energy
charge transfer, electroney ity

Dense(128) + LeakyRelU f > Dense(192) + Rell
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Shared Hidden Layer 1: Dense(256) + BatchNorm + RelU + Dropout(0.2)

Shared Hidden Layer 2: Dense(128) + BatchNorm + RelU + Dropout(0.15)

Electrical Properties Barrier Properties

Physics-Informed Loss Function

Z

Data Loss (Weighted MSE)

Architecture Summary: 247 multi-scale inputs - 4 specialized branches -- fusion (512) - shared layers (256 -128) - 12 property outputs with uncertainty quantification

Fig. 5. Novel multi-branch neural network architecture with physics-informed constraints, uncertainty quantification pathways, and adaptive feature integration
mechanisms.

C. Model Architecture and Training Methodology Detailed Architecture Specifications:

Our neural network architecture features specialized multi- 1. Input Layer: 147 features (42 'QM desc?iptors, 35
branch processing pathways that independently encode different MD descriptors, 38 morphological descriptors, 18
descriptor types before integration (Fig. 5). processing parameters, 14 interface descriptors)
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Branch Architecture: Five parallel branches for
descriptor categories, each with 3 layers [128-64-32
neurons] using LeakyReL U activation (¢=0.2)
Integration Layer: Concatenation followed by 2
dense layers [256-128 neurons] with batch
normalization and dropout (p=0.3)

Output Heads: Four separate heads for property
categories (mechanical, thermal, electrical, barrier),
each with 2 layers [64-32 neurons] and linear output
activation

Total Parameters: 2.3 million trainable parameters

Training Hyperparameters:
Optimizer: Adam with initial learning rate 1o =
0.001, B1=0.9, p2=0.999, ¢ = 1e-8

2. Learning Rate Schedule: Cosine annealing with
warm restarts (To = 50 epochs, T = 2)

3. Batch Size: 64 samples with gradient accumulation
over 2 steps

4.  Epochs: 300 with early stopping (patience = 30

epochs, monitor validation loss)

5. Regularization: L2 weight decay (A = 0.01), dropout

(p = 0.3), batch normalization

Computational Environment:

Training performed on NVIDIA A100 GPU (40GB), Intel
Xeon Platinum 8358, 256GB RAM. Framework: PyTorch 2.0.1,
Python 3.10.12. Training time: 18-24 hours per model, ensemble
of 10 models trained in parallel.

The training methodology incorporates adaptive learning
rate scheduling:

N(t) = Nmin + (Mmax - Mmin)/2 % (1 + cos(nTew/Ti))
Batch normalization is applied:
y=v(x-we)+p (37

Key training innovations include physics-informed loss
weighting, batch normalization with materials-specific
adaptations, and early stopping with patience mechanisms.

(36)

The total loss function includes regularization:

Lot = Litata + }\lphysics‘gphysics + AL1101: + Ar210122 (38)
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* Physics-informed constraints provide superior performance and generalization compared to standard ML approaches

Key Metrics: R* = 0.920 | RMSE = 0.143 | MAE = 0.098 | 89% within CI | CV o = 0.024

Fig. 6. Comprehensive model validation results demonstrating superior performance compared to existing approaches, with uncertainty quantification analysis and

residual analysis across property categories.

D. Uncertainty Quantification and Model Validation

The first comprehensive review of prediction stability in
nanocomposite design is provided by our uncertainty
quantification framework (Fig. 6).

Data Splitting Strategy: The results were divided into three
folds for preparation (70%, n=16,693), tuning/validation (15%,
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n=3,577), and the final hold-out test (15%, n=3,577) were
divided into three folds for training (70%, n=3,577). Using
stratification, a single model for combinations of polymer, filler,
and property was created.

Cross-Validation Procedures: Cross validation was carried
out on an initial set of models in three separate experiments, with
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(1) 5-fold cross-validation by one group researchers to
empirically determine whether results generalize over time, and
(3) trial prediction using results from 2020 to determine the
predictive capabilities for later models.

Statistical Significance Testing:

Hypothesis testing confirmed that R? improvements over
baseline methods are statistically significant (p < 0.001, paired
t-test, n=10 model replicates). Bootstrap confidence intervals
(1000 iterations) provide robust estimates: R?mechanical = 0.946 +
0.012, R?hermat = 0.917 + 0.015, R2ciectricat = 0.887 + 0.018 (95%
CI).

Monte Carlo dropout for epistemic uncertainty:

p(y|x,D) = (1/T) Zi" f(x;0,) (39)
Heteroscedastic loss for aleatoric uncertainty:

Gheteroscedastic = (1/2N) ZiaN [(Yi - lli)z / o2+ log(Giz)] (40)
Performance metrics include:

R*=1-Ei(yi- 90/ E(yi-¥)) 41)

MAE = (1/n) Ziet® |yi - §i (42)

RMSE = V((1/n) Zi= (vi - $i)%) (43)

Validation employs rigorous cross-validation procedures
including k-fold, leave-one-group-out, and temporal validation
to ensure transferability across research groups and time periods

V. RESULTS AND DISCUSSION

A. Model Performance and Predictive Accuracy

Our physics-informed machine learning framework achieves
unprecedented predictive performance, significantly surpassing
existing computational approaches in nanocomposite design
[1,2,6]. Comparative Baseline Methods: We implemented and
compared against four state-of-the-art approaches under
identical training/testing conditions: (1) Random Forest with
500 trees (RF-500) [21], (2) Gradient Boosting Machines with
XGBoost implementation (XGB) [21], (3) Conventional Deep
Neural Networks without physics constraints (DNN-baseline)
[9], and (4) Graph Neural Networks for molecular representation
(GNN-mol) [15] (Fig. 7).

All baselines used the same train/validation/test splits and
underwent equivalent hyperparameter optimization (100 trials,
Optuna framework) [17]. The ensemble model achieves R?
values of 0.946 for tensile strength, 0.938 for elastic modulus,
and 0.921 for impact resistance, representing 15-25%
improvements over conventional machine learning methods
(RF: R=0.78, XGB: R>=0.82, DNN: R>=0.81, GNN: R?=(0.84)
and 40-60% improvements over empirical models (Halpin-Tsai:
R?=0.52, rule of mixtures: R?=0.48) [6,22].

Comparative Performance Analysis:

e  Mechanical Properties: Our approach achieves R? >
0.94 compared to R? < 0.8 for existing ML methods

[6,21]

Thermal Properties: R* > 0.91 vs. R* < 0.75 for
conventional approaches [8,14]
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Electrical Properties: R> > 0.88 vs. R? < 0.72 for data-
driven methods [12,15]

Barrier Properties: R?> 0.85 vs. R? < (.68 for empirical
models [8,23]

Thermal property predictions demonstrate R? values of
0.934 for thermal conductivity, 0.917 for glass transition
temperature, 0.908 for thermal expansion coefficient, and 0.895
for thermal stability onset temperature [14]. The model
successfully  captures  complex temperature-dependent
behaviour including interfacial thermal resistance and phonon
scattering mechanisms.

Electrical property predictions achieve R? values of 0.887 for
electrical conductivity, 0.901 for dielectric constant, and 0.876
for dielectric loss, successfully modelling percolation behaviour
and frequency-dependent responses critical for electronic
applications [12,18,24].

The uncertainty quantification framework enables risk-
aware design decisions with 89% of predictions falling within
predicted confidence intervals, a capability absent in existing
nanocomposite design approaches.

B. Virtual Screening and Materials Discovery

Our virtual screening platform evaluated over 3.2 million
candidate formulations, identifying 1,847 compositions with
superior multifunctional performance screening capability that
would require decades using conventional experimental
approaches [4,11,16]. Quantitative Efficiency Benchmarking:
Computational cost analysis shows: (1) Single property
prediction: 0.8 ms per composition (CPU) vs. 2-3 weeks
experimental synthesis and characterization, (2) Full multi-
property screening: 2.1 ms per composition (GPU-accelerated),
(3) Complete 3.2M screening: 48 hours on 4x NVIDIA A100
GPUs vs. estimated 38 years for equivalent experimental
campaign (assuming 5 samples/week), (4) Cost reduction:
$0.0003 per prediction vs. $2,500-4,000 per experimental
sample ($850 materials, $1,200 synthesis, $450-1,800
characterization). This represents 8.3-million-fold cost
reduction and 365,000-fold time acceleration compared to
conventional experimental approaches [9,10,16].

The screening process utilized intelligent sampling strategies
that balance exploration with exploitation, achieving
comprehensive coverage while maintaining computational
efficiency [11,22].

Key discoveries include:

Novel negative thermal expansion compositions maintaining
high mechanical strength [14].

Simultaneous high electrical conductivity and optical
transparency formulations [24].

Ultra-low permeability barrier materials with enhanced
mechanical properties [8,23].

High-temperature polyimide-boron nitride systems with
exceptional thermal conductivity (>15 W/m-K) [15]

a) Physics-Informed
Experimentalists:

Design Principles

for
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1) Interfacial properties: Keeping the interfacial bond energy
higher than 0.8 eV/nm2 groups intact (amine and carboxyl
groups); optimal functional group densities are found
between 2.5 -3.8 groups/nm2;

2) Processing windows: To achieve optimum dispersion, the
mixing temperature should remain within a 0.5 °C range.
The United States has voted to withdraw from the
European Union.

3) Engineering percolation: With P2 >0.4, you can reduce the
p-c of nanocomposites by 55%.

4) Morphological control: Tg-15°C during 2 h can cause
interfacial crystallization to erupt and consequently
improve the mechanical properties of by 18-24%.

This finding reveals system-properties that are not apparent
in literature and need to be investigated further, but also
recommends the use of physics-based virtual screening
[4,16,17]. Nonetheless, surface functionalization of boron
nitride nanotubes with high temperature polyimide-based
compounds is expected to result in thermal conductivity values
that reach or exceed 15 W/mK and provide a mixture of both its
electrical insulation property and high thermal stability greater
than 400 °C [15].

Improved trade-offs between competing properties were
calculated directly by Pareto-optimal solutions and design
principles for balanced multifunctional results, which were not
apparent from single-objective optimization [12,13,22].

(A) Prediction Accuracy (R?)
0.91

(B) Predicted vs Experimental
0.94

0.88 0.86

Ebeciric Barrier

Thermal

Mech

Experimental Values

(E) Model Comparison - Performance Metrics

Model R* MAE RMSE Time (s)
PINN (Our Method) 0.924 8.2% 0.067 0.034
Random Forest 0.856 12.4% 0.084 0.012
Support Vector Machine 0.821 14.8% 0.108 0.089
Gaussian Process 0.887 10.6% 0.078 2.340
Gradient Boosting 0.872 11.3% 0.083 0.156

Linear Regression 0.623 24.7% 0.189 0.003

(D) Learning Curves

(G) Top Feature Importance

(€

Uncertainty Analysis

(F) Residual Analysis

QM Binding Energy (N 024
Aspect Rato (NG o021

Mean: 0.002

1 Std: 0084
_ Surface Area [INNNEG_ o.15
: . . Filler Loading M 016
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Crystallinity 010
Mixing Time 0.08

Computational Efficiency

34ms prediction time
82% reduction in experiments

Prediction Accuracy

R? > 0.94 for mechanical properties
89% within confidence intervals

Key Performance Achievements

Physical Consistency

100% thermodynamically valid
Physics-informed constraints

Discovery Success

1,847 promising compositions
34% performance improvement

Bl Thermal

I Electrical

1 Barrier

Fig. 7. Superior model performance compared to existing approaches: (a) prediction accuracy comparison, (b) uncertainty quantification validation, (c) learning curve

analysis, and (d) computational efficiency metrics.

C. SPhysics-Informed Insights and Structure-Property
Relationships
Our physics-informed analysis reveals fundamental
mechanisms governing nanocomposite behaviour through
feature importance ranking, gradient-based sensitivity analysis,
and layer-wise relevance propagation techniques [16,17]

(Fig.8).
a) Interfacial Effects:

The most prominent one is interfacial adhesion, according to the
author, although charge transfer mechanisms have a major effect
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on electrical percolation and mechanical load transfer [4,15].
The interfacial adhesion energy has been cited as the most
significant contributor to reinforcement effectiveness, followed
by an aspect ratio of nanofiller and dispersion properties [6,22].

b) Multi-Scale Coupling:
The work reveals how quantum mechanics evolves into that of
the classical world while still providing interface engineering
rule of thumbs [20]. In stark contrast to conventional methods,
our method is capable of quantitatively assessing how
environmental processing parameters influence final results in
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terms of influence on final results in terms of influence on
interface establishment and dispersion state of filler [13,18].

¢) Processing-Structure-Property Relationships:

As processing becomes more temperature sensitive, there is a
smaller window of operation with polymer viscosity that
promotes good mixing and without promoting thermal

degradation [6,13]. The quality of dispersion shows a chaotic,
non-linear process of communication that calls for uniform
administration at low levels, with monitored aggregation at
higher levels for percolation dependent properties [12,18].

(A) Multi-Scale Feature Importance

(B) Feature Interaction Effects

(F) Integrated Design Strategy for Multift

(C) Physics-Informed Mechanistic Insights

Formsiation
M v 030
[ -

Physics Constraints

Property
Enhancemont

(E) Quantified Enhancement Mechanisms

Thermal Properties

Key Insight: Multi-scale mechanisms show strong synergistic coupling
rtecince esects damnate at low kiadegs, percolaton dominates at high badrgs

1al Optimi

Framework Identifies Critical Structure-Property Relationships: 89% Enhancement Mechanisms Quantified | 34% Synergistic Effects Discovered | 42% Multifunctional Performance Galn

Fig. 8. Physics-informed insights: (a) quantum-classical transition analysis, (b) interfacial energy-property correlations, (c) multi-scale coupling mechanisms, and (d)

processing-structure-property relationships.

D. Experimental Validation and Model Reliability

Experimental validation of 127 compositions has shown
improved predictive accuracy, with 89% of formulations having
predicted confidence intervals relative to 65-70% for existing
ML methods. Polyamide-6 polyamide-6 from Sigma-Aldrich,
epoxide resin EPON 828 from Hexion and polyimide, as well as
nanofillers, are examples in the experimental procedure,
including multi-walled carbon nanotubes (US Research
Nanomaterials).

DMF mixing solvent and then ultrasonicated with (750W,
24 hours), and compression molding (150-200°C, 30 min) are
the product's methods. Mechanical properties (Instron 5969
universal testing unit, ASTM D638), thermal analysis (DSC: TA
Instruments Q500, TGA: TA Instruments Q500), morphology
investigation (FEI Tecnai G2), and size determination of
SiNPs_FE CE (inhomogeneous particle) in the electrolyte can
be seen directly on the electrolyte (FEI Tecnai G2).
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a) Validation Case Selection:

The 127 compositions were chosen from a total of 57
compositions with the most predicted interfaces from
percolation thresholds to extremes in interfacial energy, as well
as (2) 35 compositions randomly selected from high-performing
virtual screening candidates (MPI > 1.3) across the property
space and potentially verify uncertainty estimates, as well as a
rigorously demonstrating model capabilities throughout the
entire design process.

b) Validation Highlights:

1.  Carbon nanotube-polyamide: Achieved tensile
strength of 189 MPa (predicted 184 MPa), representing
142% improvement over neat polymer

2. Boron nitride-polyimide: Demonstrated thermal

conductivity of 3.7 W/m-K (predicted 3.9 W/m-K),
representing 17-fold improvement
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3. Silver nanowire-polyurethane: Achieved electrical

conductivity of 2.3 x 10® S/m at predicted percolation
threshold

Mechanical property validation through tensile testing,

dynamic mechanical analysis, and impact resistance
measurements confirm predicted enhancements. Thermal
performance validation through differential scanning

calorimetry and thermogravimetric analysis confirms predicted
improvements in thermal stability and transport properties.

E. Comparative Analysis and Computational Efficiency

Our framework demonstrates significant advantages over
existing approaches across multiple metrics (Fig. 9):

a) Efficiency Improvements:

1.  Screening time: 2-3 weeks vs. 12-18 months for
conventional methods (order-of-magnitude
acceleration)

2. Experimental requirements: 15-25 validation tests
vs. 200-500 for trial-and-error approaches

3. Development cost reduction: 68% reduction in total
development costs

4.  Performance improvements: 28-42% enhancement

in multifunctional performance metrics

b) Computational Performance:

1.  Property predictions: Computed in milliseconds per
composition
2. Multi-objective optimization: Completed within

hours on standard hardware

3. Virtual screening: 3.2M compositions screened in 48

hours

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In comparison to most standard neural networks, which can
produce physically inaccurate forecasts if constraints are applied
post hoc during forecast, our approach includes soft limits at
training time that penalize fundamental physical laws, resulting
in accurate and interpretable forecasts. The second step forward
is integrated multiscale descriptor framework, which includes
quantum-mechanical simulations (representing chain dynamics
and transport characteristics), molecular dynamics simulations
(reflecting chain dynamics and transport characteristics),
morphological analysis (characterizing degree of dispersion and
percolation network), and processing parameters (encoding
fabrication conditions) within a single mathematical descriptor
space. Our framework's ability to include the intricate causal
chain from atomic scale reactions to macroscopic observation is
unmatched by current single-scale methods. The third
innovation fills a triage gap in informatics by robust uncertainty
quantification that separates epistemic (reduced by further
results) from aleatoric variability (intrinsic to material
stochasticity. Experimentalists quantified ranges of confidence
as well as indicating where further experiments are required to
establish predictions are useful to validate estimates (i.e., it helps
us to maximize the usage of available funds for materials
development campaigns), enabling risk-informed decision-
making. The fourth novelty is an algebraic NSGA-III approach
with variable reference point generation, which aids in the
discovery of a fast-tracked objective space characterized by
multifunctional polymer nanocomposites.

(A} Property Performance Gains

Mechanical Conventional Trial-and-Error

Thermal ML-Guided Approach
= =
: s
+34%
Electrical

(D) Discovery Success Rates

Gonventional Approach
sEEEEEEE s
sEEE 12% Success
ML-Guided Approach

TB% Success

Performance Gains:

34% average property improvement, 83% time reduction, 68% cost savings, 6.5x higher success rate

Direxct walidalion of 127 polymer nanocompasite formulations, Economic analysis across multiple seciors.

(B) Development Timeline Comparison
Time Reduction
Total .
) - b : e
® e . 340%
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(C) Cost-Benefit Analysis

Development Costs
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L]

(E) Envirenmental Impact and Industry Adoption
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-85% =12% -81%
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Key Performance Improvements and Impact Summary

Methodology and Data Sources

Perfarmance comparisons based on: Lilerature review of 847 matorials development projects (2015-2025), Industry survey of 45 companies:

Industry Impact:
5288

rojected R and D savings, 81% environmental impact reduction, 60% industry adoption by 2030

Fig. 9. Comprehensive comparative analysis: (a) performance improvements over existing methods, (b) computational efficiency metrics, (c) cost-benefit analysis,

and (d) development timeline comparisons
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Key achievements that advance the state-of-the-art include:

1. Superior Predictive Performance: 15-25%
improvement over existing ML methods across all
property categories

Physics Consistency: First
thermodynamic constraint
nanocomposite design

framework ensuring
satisfaction in

Uncertainty Quantification: Reliable confidence
estimates enabling risk-aware design decisions

Computational ~ Efficiency:  Order-of-magnitude
acceleration in discovery timelines

Experimental Validation: 89% prediction accuracy
within confidence intervals across 127 tested
compositions

The virtual screening framework efficiently searches vast
compositional design spaces, screening over 3.2 million
candidate formulations to discover novel compositions with
superior multifunctional performance. The multi-objective
optimization approach effectively balances competing property
requirements, identifying Pareto-optimal solutions that achieve
optimal trade-offs between mechanical strength, thermal
stability, electrical conductivity, and barrier performance.

Environmental Impact Integration (Preliminary Discussion):
While the current framework focuses on performance
optimization, integration of sustainability metrics represents a
critical future direction. Preliminary analysis suggests that life-
cycle assessment (LCA) indicators can be incorporated as
additional objectives in the multi-objective optimization
framework. Key sustainability descriptors include: (1)
embodied energy of materials (polymer production: 80-120
MJ/kg, nanofiller synthesis: 200-500 MJ/kg), (2) carbon
footprint (kg CO2-eq per kg composite), (3) recyclability indices
based on thermal stability and chemical resistance, (4) toxicity
metrics for nanoparticle exposure. Initial case studies show that
adding sustainability constraints (embodied energy < 150
MJ/kg) reduces the Pareto front by approximately 30% but
identifies compositions with 85-90% of maximum performance
while achieving 40-50% lower environmental impact. Future
work will implement comprehensive LCA integration using
SimaPro databases and develop bio-derived polymer
alternatives (polylactic acid, polyhydroxyalkanoates) with
comparable performance profiles.

Future research directions will focus on:

1. Sustainable Materials: Extension to bio-derived
polymers, sustainable nanofillers, and recycled
composites addressing environmental considerations

Automated Discovery: Integration with automated
synthesis and characterization systems for closed-loop
materials discovery

Sustainability Metrics: Incorporation of life-cycle
assessment and environmental impact considerations
into optimization frameworks

Real-time Monitoring: Development of property
monitoring and predictive maintenance capabilities
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extending beyond initial design to service life
optimization
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