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Abstract 

The rational design of polymer nanocomposites with tailored multifunctional properties remains challenging due to complex multi-scale 

physics and the limitations of traditional empirical approaches, which cannot adequately capture the combinatorial interactions between 

polymer matrices, nanofillers, and processing conditions. We present a new computational framework for cost-effective virtual screening 

and optimization of polymer nanocomposites with physically consistent prediction in this series. In a physics-informed neural network, 

we suggest a combination of the quantum mechanical response, as well as standard molecular dynamics and thermodynamic data. (1) 

Physics-aware loss functions that incorporate conservation policies and thermodynamic constraints; (2) multiscale descriptor integration 

of quantum to macroscales; (3) ensemble learning is supplemented by tools to distinguish epistemic and aleatoric uncertainty; and (4) 

NSGA-III assisted multi-objective optimization coupled with adaptive reference point generation. The neural network architecture 

consists of multi-branch pathways with 5 hidden layers (256, 512, 512, 256, 128 neurons) using Leaky ReLU activation functions, trained 

on 23,847 polymer nanocomposite formulations using Adam optimizer (learning rate: 0.001, batch size: 64) with cosine annealing 

scheduling. The framework achieves prediction accuracies of R² > 0.94 for mechanical properties, R² > 0.91 for thermal characteristics, 

and R² > 0.88 for electrical conductivity, representing 15-25% improvements over conventional machine learning methods. Virtual 

screening of 3.2 million candidate formulations identified 1,847 compositions with superior performance. Our NSGA-III optimization 

identifies Pareto-optimal solutions with 34% higher multifunctional performance than conventional approaches, while reducing 

experimental validation requirements by 82%. Experimental validation of 127 compositions confirms 89% prediction accuracy within 

confidence intervals (95% confidence intervals: ±8.3% for mechanical, ±9.1% for thermal, ±11.2% for electrical properties). The present 

physics-informed machine learning approach enables computational materials design with accounting for the most relevant physical laws 

and data-driven techniques to discover optimal high-performance polymer nanocomposites yet offers a robust uncertainty quantification 

to inform risk-conscious design decisions. 
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I. INTRODUCTION  

This Polymer nanocomposites computation is one of the 
most difficult areas of computational materials science, 
particularly because of exponential increase in design 
complexity due to combinatorial effect (between polymer 
matrix, nanofillers, surface functionalization approach, and 

processing condition). [1,2]. Empirical techniques, although 
effective for simple material systems, are ineffective at 
predicting nanocomposites' behaviour, ranging from quantum 
mechanical interactions at polymer-filler interfaces to 
macroscopic property expression through complex 
morphological structures [3,4]. 
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Despite the fact that machine learning has demonstrated a lot 
of promise in materials discovery [1,2], the majority of recent 
research suffers from three key flaws that have hampered their 
adoption of polymer nanocomposites: (1) a lack of physical 
constraint leads to thermodynamically erroneous prediction 
[5,6], which leaves out predictive power; and (2) the inability to 
provide reliable risk-aware decision making [7]. Support vector 
machine, random forest, or classic neural networks can all 
produce high quality results that are not physically consistent 
with basic conservation or thermodynamic principles and should 
not be trusted when physical consistency is required in practical 
materials design settings [8,9]. 

Four challenges for the design of polymer nanocomposites 
include: (1) Predictions that violate Gibb's free energy 
minimization and phase stability constraints; (2) The 
simultaneous modelling of quantum mechanics at the interface 
with a consistent description of molecular dynamics and 
macroscopic processing conditions [11]; and (4) Optimization 
constraint - The challenge is to strike a balance between 
competing property requirements within manufacturing 
feasibility [12,13,14,15]. 

This work addresses these critical gaps through the 
following key innovations: 

• Novel Physics-Informed Neural Network Architecture: 
These PINNs are targeting thermodynamic (Gibbs free 
energy minimization, phase stability), conservation 
(mass and electricity balance), as soft constraints were 
introduced during the search for optimal architectures to 
produce such high frequency of results that can also be 
indicative of non-trivial experimental trends. 

• Comprehensive Multi-Scale Descriptor Framework: We 
introduce a hierarchical descriptor system that uniquely 
integrates quantum mechanical calculations (DFT-
derived electronic properties including HOMO-LUMO 
energies, binding energies, charge transfer), molecular 
dynamics simulations (structural and dynamical features 
including radius of gyration, self-diffusion coefficients), 
morphological descriptors (from image analysis 
capturing dispersion quality and percolation networks), 
and processing parameters (temperature, mixing time, 
shear rate) within a unified mathematical framework. 

• Uncertainty-Quantified Ensemble Learning: Ours is the 
first work to perform a quantitative risk assessment in 
nanocomposite property estimation by separating 
epistemic uncertainty (model limitations, data scarcity), 
and aleatoric variability (inherent material 
microstructure variation), aimed at informing decision 
makers in materials design with quantified risk. 

• Constrained Multi-Objective Optimization: We produce 
a dedicated NSGA-III with adaptive reference point 
generation algorithms for the polymer nanocomposite 
systems, considering the characteristics of competing 
property demands (mechanical-thermal-electrical trade-
offs) and manufacturing constraints (processing 
temperature limitations, filler loading feasibility). 

• Large-Scale Virtual Screening Platform: We 
successfully screen 3.2 million composition candidates, 
reducing experimental validity by 82% but still showing 
a 34% increase in multimodality relative to traditional 
methods of design optimization. 

The quantitative relationships that control mechanical 
stability, mesoscale morphology, and the creation of 
macroscopic structures are all typical problems with these 
materials [4,10]. (1) improved prediction accuracy when 
compared to previous machine learning methods on 
nanocomposite property estimation [1,2,6]; (2) new structure-
property relationships between nanoparticles and their 
properties [16; 17]; and (3) more effective virtual screening of 
millions of candidate formulations with reduced amount of 
experimental validation required [18; 19]. 

Organization of the Paper: The remainder of this paper is 
divided as follows: Section 2 discusses the theoretical basis and 
mathematical formulations, which include physics-informed 
neural network architecture, multi-scale descriptor design, and 
ensemble learning with uncertainty prediction. Section 3 details 
the multi-objective optimization scheme, which includes the 
NSGA-III configuration and multifunctional performance 
measures. Section 4 details the computational implementation 
including dataset construction, feature engineering, model 
architecture, and validation methodology. Section 5 presents 
comprehensive results including model performance analysis, 
virtual screening discoveries, physics-informed insights, 
experimental validation, and comparative analysis. Section 6 
concludes the paper with a summary of achievements and future 
research directions. 

II. THEORETICAL FOUNDATION AND MATHEMATICAL 

FRAMEWORK 

A. Physics-Informed Neural Network Architecture 

Our physics-informed neural network represents a 
fundamental advancement over conventional machine learning 
approaches by incorporating essential physical principles as 
mathematical constraints during the training process [3,14]. The 
core innovation lies in ensuring that learned representations 
respect conservation laws and thermodynamic principles while 
maintaining sufficient flexibility to capture complex non-linear 
relationships in experimental data. 

For a polymer nanocomposite system characterized by input 
descriptors x ∈ ℝd encompassing compositional, structural, and 
processing variables, we define the neural network output as a 
vector function f(x;θ) that maps input descriptors to multiple 
material properties simultaneously. The thermodynamic and 
conservation constraints are implemented through a carefully 
balanced loss function that maintains training stability. During 
the initial training phase (epochs 1-50), physics constraint 
weights (λphysics) are gradually increased from 0.01 to 1.0 using 
a warm-up schedule to prevent gradient instability. The Gibbs 
free energy constraint is enforced through automatic 
differentiation of predicted component activities, while mass 
conservation is implemented as a hard constraint by normalizing 
volume fractions after each forward pass. This implementation 
strategy ensures stable convergence with typical training 
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completed in 200-300 epochs, compared to 500+ epochs for 
unconstrained networks. 

f(x;θ) = [f₁(x;θ₁), f₂(x;θ₂), ..., fn(x;θn)]T           (1) 

where θ = {θ₁, θ₂, ..., θn} represents the collection of network 
parameters for all property prediction tasks, and n denotes the 
number of material properties predicted simultaneously. 

The key innovation of our approach lies in the physics-informed 
loss function that enforces fundamental physical principles: 

ℒ = ℒdata + λphysicsℒphysics + λregℒreg             (2) 

The weighting parameters λphysics and λreg were determined 
through systematic hyperparameter optimization using grid 
search combined with cross-validation. We evaluated λphysics ∈ 
[0.1, 0.5, 1.0, 2.0, 5.0] and λreg ∈ [0.001, 0.01, 0.1], selecting 
optimal values (λphysics = 1.0, λreg = 0.01) that maximize 
validation R² while maintaining physics constraint satisfaction 
(deviation < 2% from thermodynamic principles). The sub-
weights ω₁, ω₂, ω₃, ω₄ in equation (3) were set to [0.4, 0.3, 0.2, 
0.1] based on relative importance from preliminary sensitivity 
analysis. 

where ℒdata represents the standard supervised learning loss, 
ℒphysics enforces physical constraints (our primary innovation), 
and ℒreg provides regularization. Unlike existing approaches, 
our physics-informed constraints are specifically designed for 
polymer nanocomposite systems (Fig. 1): 

ℒphysics = ω₁ℒthermo + ω₂ℒconservation + ω₃ℒscaling + ω₄ℒcompatibility (3) 

The data-driven loss term employs a weighted mean squared 
error formulation: 

ℒdata = (1/N) Σᵢ₌₁ᴺ wᵢᵀ((yᵢ - f(xᵢ;θ)) ⊙ (yᵢ - f(xᵢ;θ)))           (4) 

The thermodynamic constraint ensures predictions satisfy 
Gibbs free energy minimization: 

ℒthermo = Σⱼ max(0, ∂G/∂φⱼ|T,P)² + Σₖ max(0, -∂²G/∂φₖ²|T,P)²     (5) 

where G represents the Gibbs free energy and φⱼ denotes 
component volume fractions. The conservation constraint 
enforces mass and energy conservation: 

ℒconservation = ‖Σⱼ φⱼ - 1‖² + ‖Σⱼ φⱼρⱼ - ρcomposite‖²           (6) 

 

 

Fig. 1. Integrated computational framework showing novel physics-informed neural network architecture with multi-scale descriptor integration, uncertainty 

quantification, and experimental validation feedback loops. 

B. Multi-Scale Descriptor Formulation 

A key innovation of our framework is the comprehensive 
multi-scale descriptor system that captures essential physics 
from quantum mechanical to macroscopic levels: 

D = [DQM, DMD, Dmorph, Dproc, Dinterface]T              (7) 

 

a) Quantum Mechanical Descriptors 

Our quantum mechanical descriptors uniquely capture 
electronic structure characteristics that determine interfacial 
interactions: 
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DQM = [EHOMO, ELUMO, μ, α, χ, η, ΔEads, ΔEbinding, qtransfer]T   (8) 

where EHOMO and ELUMO are frontier orbital energies, μ is the 
electric dipole moment, α is molecular polarizability, χ is 
electronegativity, η is chemical hardness, ΔEads is adsorption 
energy, ΔEbinding is binding energy, and qtransfer quantifies 
interfacial charge transfer. 

The chemical hardness is calculated using Koopmans' 
theorem: 

η = (ELUMO - EHOMO)/2                                  (9) 

The adsorption energy calculation provides direct measures 
of interfacial strength: 

ΔEads = Ecomplex - (Epolymer + Efiller)                 (10) 

 

b) Molecular Dynamics-Derived Descriptors 

Our MD-derived descriptors capture dynamic behavior and 
transport properties: 

DMD = [⟨Rg²⟩, P₂, Dself, S(q), g(r), νfree, τrelax, κthermal]T     (11) 

The radius of gyration characterizes polymer chain 
dimensions: 

⟨Rg²⟩ = (1/N) Σᵢ₌₁ᴺ ⟨(rᵢ - rCOM)²⟩                                  (12) 

The orientational order parameter is computed as: 

P₂ = ⟨(3cos²θ - 1)/2⟩                                                  (13) 

 

c) Morphological and Processing Descriptors 

The morphological descriptor vector includes geometric and 
topological features: 

Dmorph = [φf, AR, Ssp, ξ, Φ, Dfrac, τtort, Nclusters]T         (14) 

Processing descriptors capture manufacturing conditions: 

Dproc = [Tprocess, tmix, γ,̇ Pprocess, Tanneal, cooling_rate]T           (15) 

 

 

Fig. 2. Novel ensemble architecture integrating physics-informed constraints with uncertainty quantification. Key innovation: adaptive weighting based on local 

model expertise and physics consistency checks. 

C. Ensemble Learning with Uncertainty Quantification 

It would be a major departure in our work to be able to post 
such doubts while keeping track of the various variables. We 
looked at three options: (1) Monte Carlo dropout (due to space 
constraints here, we announced the results of this procedure 
only), (2) Bayesian deep learning using variational inference, 

and (3) deep ensembles. Monte Carlo dropout was selected for 
its computational efficiency (10× faster than Bayesian methods) 
and comparable uncertainty estimates (correlation coefficient r 
= 0.93 with full Bayesian posteriors on validation set). While 
Bayesian deep learning provides theoretically rigorous 
uncertainty quantification, its computational cost (5-7 days for 
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training vs. 18-24 hours for MC dropout) makes it impractical 
for large-scale virtual screening applications (Fig. 2). 

fensemble(x) = Σᵢ₌₁ᴹ wᵢ(x)fᵢ(x)                                (16) 

where weights are determined by a gating network: 

wᵢ(x) = exp(gᵢ(x)) / Σⱼ₌₁ᴹ exp(gⱼ(x))                    (17) 

σ²total(x) = σ²epistemic(x) + σ²aleatoric(x)                   (18) 

Epistemic uncertainty quantifies model limitations through 
ensemble disagreement: 

σ²epistemic(x) = (1/M) Σᵢ₌₁ᴹ (fᵢ(x) - fensemble(x))²        (19) 

The epistemic and aleatoric uncertainty components were 
experimentally validated through a dedicated study of 45 
replicate syntheses. For compositions with predicted high 
epistemic uncertainty (σepistemic > 15%), experimental 
measurements showed 23% variation in properties, confirming 
model uncertainty. For compositions with low epistemic but 
high aleatoric uncertainty, property variations of 18% were 
observed across nominally identical synthesis conditions, 
validating the distinction between uncertainty sources and 
enabling targeted strategies for uncertainty reduction (more data 
for epistemic, process control for aleatoric). 

 

III. MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK 

A. Problem Formulation and Mathematical Foundationss 

Our multi-objective optimization framework addresses the 
unique challenges of polymer nanocomposite design where 
multiple competing properties must be optimized 
simultaneously: 

optimize F(x) = [f₁(x), f₂(x), ..., fk(x)]T 
subject to: gineq(x) ≤ 0 

heq(x) = 0 
xL ≤ x ≤ xU 

                                      x ∈ Xfeasible                                  (20) 

Unlike existing optimization approaches, our formulation 
specifically addresses the conflicting nature of nanocomposite 
properties: 

F(x) = [fmech(x), fthermal(x), felectrical(x), fbarrier(x)]T        (21) 

where each component function represents a weighted 
combination: 

fmech(x) = w₁(σt(x)/σt,ref) + w₂(E(x)/Eref)                        (22) 

fthermal(x) = w₃(κth(x)/κth,ref) + w₄(Tg(x)/Tg,ref)                (23) 

felectrical(x) = w₅(σe(x)/σe,ref) + w₆(εr(x)/εr,ref)                  (24) 

fbarrier(x) = w₇(Pref/P(x)) + w₈(Dref/D(x))                      (25) 

 

Fig. 3. Advanced NSGA-III optimization flowchart with novel adaptive reference point generation and physics-informed constraint handling for polymer 

nanocomposite design. 

B. NSGA-III Implementation with Reference Point Adaptation 

We implement an advanced NSGA-III algorithm with 
adaptive reference point generation specifically designed for 
high-dimensional objective spaces in materials design. 

Scalability analysis for objectives ranging from 4 to 12 shows 
that computational time scales approximately as O(n²·⁵) where 
n is the number of objectives. For 10 objectives, optimization 
completes in 4.2 hours (population size 400, 300 generations) on 
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standard hardware (Intel Xeon Gold 6248R, 48GB RAM), 
compared to 0.8 hours for 4 objectives. Benchmarking against 
recent methods shows our adaptive NSGA-III achieves 18% 
higher hypervolume than standard NSGA-III, 12% better than 
MOEA/D, and comparable performance to RVEA but with 40% 
faster convergence (Fig. 3). 

Z = {z ∈ ℝk: Σᵢ₌₁ᵏ zᵢ = 1, zᵢ ≥ 0}                      (26) 

Normalized objective values are calculated as: 

f'ⱼ(x) = (fⱼ(x) - zj
min) / (zj

max - zj
min)                   (27) 

The perpendicular distance for diversity maintenance: 

d(x, z) = ‖f'(x) - (f'(x)Tz / ‖z‖²)z‖                     (28) 

C. Multifunctional Performance Index 

We introduce a novel Multifunctional Performance Index 
(MPI) that quantifies overall nanocomposite performance: 

MPI = (∏ᵢ₌₁ⁿ (Pᵢ/Pref,i)wᵢ)1/Σwᵢ                          (29) 

This geometric mean formulation prevents solutions that 
excel in some properties while performing poorly in others, 
ensuring truly multifunctional materials. 

For Pareto optimality analysis, solution x₁ dominates 
solution x₂ if: 

∀i ∈ {1,2,...,k}: fᵢ(x₁) ≤ fᵢ(x₂) ∧ ∃j ∈ {1,2,...,k}: fⱼ(x₁) < 
fⱼ(x₂)     (30) 

Quality assessment uses hypervolume (HV): 

HV = λ(⋃ᵢ₌₁|P| [f₁(xᵢ), r₁] × [f₂(xᵢ), r₂] × ... × [fk(xᵢ), rk])     (31) 

 

IV. COMPUTATIONAL IMPLEMENTATION AND VALIDATION 

A. Dataset Construction and Preprocessing 

A Such a database based on polymer nanocomposites 
appears to be one of the most comprehensive (curated) datasets, 
and it incorporates research findings from peer-reviewed papers 
to experimental databases, as well as high-throughput 
computational experiments. The database was built using a 
literature review of journal papers (issues between 2015 and 
2024) published by major publishers focusing on polymer 
nanocomposites and experimental databases such as NanoMine 
(n=3,847). The DFT calculation was done internally for the 
interfacial properties (n=1,568). Carbon nanotubes and 
graphene (34% and 27%), polyamides (23%), and another 
discharge of the polypropylene were found; thermoplastic 
matrices had marginal importance to these contributions (3%) as 
much as second family of 2D materials other than graphene 
(7%). In 67% of North America/Europe studies, geographic bias 
is present. We use per-class stratified sampling in FT/TT 
partition and joint SMOTE to eliminate the above-mentioned 
biases to eliminate the above-mentioned biases to eliminate the 
above-mentioned samples from the above-mentioned samples 
for under-represented material classes to eliminate the above-
mentioned biases. 

 

Fig. 4. Comprehensive data preprocessing pipeline showing quality assurance procedures, physics-constrained imputation methods, and statistical distribution 

analysis across material classes. 

The preprocessing pipeline addresses unique challenges in 
materials science data through robust scaling and physics-
constrained imputation methods [20] (Fig. 4). 

Key innovations in data preprocessing include: 

1. Matrix factorization with domain knowledge 
constraints for missing value imputation 
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2. Robust scaling methods that handle non-normally 
distributed materials data 

3. Multivariate outlier detection using Mahalanobis 
distance and isolation forests 

Robust scaling is implemented as: 

xscaled = (x - median(x)) / (Q₃(x) - Q₁(x))             (32) 

Outlier detection employs Mahalanobis distance: 

DM(x) = √((x - μ)TΣ-1(x - μ))                           (33) 

 

B. Feature Engineering and Selection 

Our feature extraction method hierarchically converts multi-
scale data to produce physically understandable descriptors. 
Even though the level of statistical significance is not high with 
the RFECV procedure, which uses a two-stage screening 

procedure, is used to identify features by examining their VIF 
value at >10 and removing multicollinearity. For example, 
interfacial adhesion energy was retained despite moderate 
Pearson correlation (r=0.61) due to its fundamental role in load 
transfer mechanisms. Domain expert review validated that 94% 
of selected features have established physical significance in 
polymer nanocomposite literature. 

Feature importance evaluation employs mutual information 
analysis: 

I(X;Y) = ∫∫ p(x,y) log(p(x,y)/(p(x)p(y))) dx dy         (34) 

The recursive feature elimination with cross-validation 
(RFECV) ensures optimal descriptor selection while preventing 
overfitting: 

ScoreCV(k) = (1/nfolds) Σᵢ₌₁nfolds R²(Sk, foldᵢ)         (35) 

 

Fig. 5. Novel multi-branch neural network architecture with physics-informed constraints, uncertainty quantification pathways, and adaptive feature integration 

mechanisms. 

C. Model Architecture and Training Methodology 

Our neural network architecture features specialized multi-
branch processing pathways that independently encode different 
descriptor types before integration (Fig. 5).  

Detailed Architecture Specifications: 

1. Input Layer: 147 features (42 QM descriptors, 35 

MD descriptors, 38 morphological descriptors, 18 

processing parameters, 14 interface descriptors) 
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2. Branch Architecture: Five parallel branches for 

descriptor categories, each with 3 layers [128-64-32 

neurons] using LeakyReLU activation (α=0.2) 

3. Integration Layer: Concatenation followed by 2 

dense layers [256-128 neurons] with batch 

normalization and dropout (p=0.3) 

4. Output Heads: Four separate heads for property 

categories (mechanical, thermal, electrical, barrier), 

each with 2 layers [64-32 neurons] and linear output 

activation 

5. Total Parameters: 2.3 million trainable parameters 

 

Training Hyperparameters: 

1. Optimizer: Adam with initial learning rate η₀ = 

0.001, β₁ = 0.9, β₂ = 0.999, ε = 1e-8 

2. Learning Rate Schedule: Cosine annealing with 

warm restarts (T₀ = 50 epochs, Tmult = 2) 

3. Batch Size: 64 samples with gradient accumulation 

over 2 steps 

4. Epochs: 300 with early stopping (patience = 30 

epochs, monitor validation loss) 

5. Regularization: L2 weight decay (λ = 0.01), dropout 

(p = 0.3), batch normalization 

 

Computational Environment:  
Training performed on NVIDIA A100 GPU (40GB), Intel 

Xeon Platinum 8358, 256GB RAM. Framework: PyTorch 2.0.1, 
Python 3.10.12. Training time: 18-24 hours per model, ensemble 
of 10 models trained in parallel. 

     The training methodology incorporates adaptive learning 
rate scheduling: 

η(t) = ηmin + (ηmax - ηmin)/2 × (1 + cos(πTcur/Tᵢ))     (36) 

Batch normalization is applied: 

y = γ((x - μ)/σ) + β     (37) 

Key training innovations include physics-informed loss 
weighting, batch normalization with materials-specific 
adaptations, and early stopping with patience mechanisms. 

The total loss function includes regularization: 

ℒtotal = ℒdata + λphysicsℒphysics + λL1‖θ‖₁ + λL2‖θ‖₂²     (38) 

 

 

Fig. 6. Comprehensive model validation results demonstrating superior performance compared to existing approaches, with uncertainty quantification analysis and 

residual analysis across property categories.

D. Uncertainty Quantification and Model Validation 

The first comprehensive review of prediction stability in 
nanocomposite design is provided by our uncertainty 
quantification framework (Fig. 6).  

Data Splitting Strategy: The results were divided into three 
folds for preparation (70%, n=16,693), tuning/validation (15%, 

n=3,577), and the final hold-out test (15%, n=3,577) were 
divided into three folds for training (70%, n=3,577). Using 
stratification, a single model for combinations of polymer, filler, 
and property was created.  

Cross-Validation Procedures: Cross validation was carried 
out on an initial set of models in three separate experiments, with 



Gupta et al. / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 358 –371 (2025) 

 

366 

(1) 5-fold cross-validation by one group researchers to 
empirically determine whether results generalize over time, and 
(3) trial prediction using results from 2020 to determine the 
predictive capabilities for later models. 

Statistical Significance Testing:  
Hypothesis testing confirmed that R² improvements over 

baseline methods are statistically significant (p < 0.001, paired 
t-test, n=10 model replicates). Bootstrap confidence intervals 
(1000 iterations) provide robust estimates: R²mechanical = 0.946 ± 
0.012, R²thermal = 0.917 ± 0.015, R²electrical = 0.887 ± 0.018 (95% 
CI). 

Monte Carlo dropout for epistemic uncertainty: 

p(y|x,D) ≈ (1/T) Σₜ₌₁ᵀ f(x;θₜ)                                         (39) 

Heteroscedastic loss for aleatoric uncertainty: 

ℒheteroscedastic = (1/2N) Σᵢ₌₁ᴺ [(yᵢ - μᵢ)² / σᵢ² + log(σᵢ²)]     (40) 

Performance metrics include: 

R² = 1 - (Σᵢ(yᵢ - ŷᵢ)²) / (Σᵢ(yᵢ - ȳ)²)                                  (41) 
MAE = (1/n) Σᵢ₌₁ⁿ |yᵢ - ŷᵢ|                                              (42) 
RMSE = √((1/n) Σᵢ₌₁ⁿ (yᵢ - ŷᵢ)²)                                     (43) 

Validation employs rigorous cross-validation procedures 
including k-fold, leave-one-group-out, and temporal validation 
to ensure transferability across research groups and time periods 
 

V. RESULTS AND DISCUSSION 

A. Model Performance and Predictive Accuracy 

Our physics-informed machine learning framework achieves 
unprecedented predictive performance, significantly surpassing 
existing computational approaches in nanocomposite design 
[1,2,6]. Comparative Baseline Methods: We implemented and 
compared against four state-of-the-art approaches under 
identical training/testing conditions: (1) Random Forest with 
500 trees (RF-500) [21], (2) Gradient Boosting Machines with 
XGBoost implementation (XGB) [21], (3) Conventional Deep 
Neural Networks without physics constraints (DNN-baseline) 
[9], and (4) Graph Neural Networks for molecular representation 
(GNN-mol) [15] (Fig. 7).  

All baselines used the same train/validation/test splits and 
underwent equivalent hyperparameter optimization (100 trials, 
Optuna framework) [17]. The ensemble model achieves R² 
values of 0.946 for tensile strength, 0.938 for elastic modulus, 
and 0.921 for impact resistance, representing 15-25% 
improvements over conventional machine learning methods 
(RF: R²=0.78, XGB: R²=0.82, DNN: R²=0.81, GNN: R²=0.84) 
and 40-60% improvements over empirical models (Halpin-Tsai: 
R²=0.52, rule of mixtures: R²=0.48) [6,22]. 

Comparative Performance Analysis: 

• Mechanical Properties: Our approach achieves R² > 
0.94 compared to R² < 0.8 for existing ML methods 
[6,21] 

• Thermal Properties: R² > 0.91 vs. R² < 0.75 for 
conventional approaches [8,14] 

• Electrical Properties: R² > 0.88 vs. R² < 0.72 for data-
driven methods [12,15] 

• Barrier Properties: R² > 0.85 vs. R² < 0.68 for empirical 
models [8,23] 

Thermal property predictions demonstrate R² values of 
0.934 for thermal conductivity, 0.917 for glass transition 
temperature, 0.908 for thermal expansion coefficient, and 0.895 
for thermal stability onset temperature [14]. The model 
successfully captures complex temperature-dependent 
behaviour including interfacial thermal resistance and phonon 
scattering mechanisms. 

Electrical property predictions achieve R² values of 0.887 for 
electrical conductivity, 0.901 for dielectric constant, and 0.876 
for dielectric loss, successfully modelling percolation behaviour 
and frequency-dependent responses critical for electronic 
applications [12,18,24]. 

The uncertainty quantification framework enables risk-
aware design decisions with 89% of predictions falling within 
predicted confidence intervals, a capability absent in existing 
nanocomposite design approaches. 

B. Virtual Screening and Materials Discovery 

Our virtual screening platform evaluated over 3.2 million 
candidate formulations, identifying 1,847 compositions with 
superior multifunctional performance screening capability that 
would require decades using conventional experimental 
approaches [4,11,16]. Quantitative Efficiency Benchmarking: 
Computational cost analysis shows: (1) Single property 
prediction: 0.8 ms per composition (CPU) vs. 2-3 weeks 
experimental synthesis and characterization, (2) Full multi-
property screening: 2.1 ms per composition (GPU-accelerated), 
(3) Complete 3.2M screening: 48 hours on 4× NVIDIA A100 
GPUs vs. estimated 38 years for equivalent experimental 
campaign (assuming 5 samples/week), (4) Cost reduction: 
$0.0003 per prediction vs. $2,500-4,000 per experimental 
sample ($850 materials, $1,200 synthesis, $450-1,800 
characterization). This represents 8.3-million-fold cost 
reduction and 365,000-fold time acceleration compared to 
conventional experimental approaches [9,10,16]. 

The screening process utilized intelligent sampling strategies 
that balance exploration with exploitation, achieving 
comprehensive coverage while maintaining computational 
efficiency [11,22].  

Key discoveries include: 

• Novel negative thermal expansion compositions maintaining 
high mechanical strength [14]. 

• Simultaneous high electrical conductivity and optical 
transparency formulations [24]. 

• Ultra-low permeability barrier materials with enhanced 
mechanical properties [8,23]. 

• High-temperature polyimide-boron nitride systems with 
exceptional thermal conductivity (>15 W/m·K) [15] 

a) Physics-Informed Design Principles for 

Experimentalists:  
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1) Interfacial properties: Keeping the interfacial bond energy 
higher than 0.8 eV/nm2 groups intact (amine and carboxyl 
groups); optimal functional group densities are found 
between 2.5 -3.8 groups/nm2; 

2)  Processing windows: To achieve optimum dispersion, the 
mixing temperature should remain within a 0.5 °C range. 
The United States has voted to withdraw from the 
European Union.  

3) Engineering percolation: With P2 >0.4, you can reduce the 
p.c of nanocomposites by 55%.  

4) Morphological control: Tg-15°C during 2 h can cause 
interfacial crystallization to erupt and consequently 
improve the mechanical properties of by 18-24%. 

This finding reveals system-properties that are not apparent 
in literature and need to be investigated further, but also 
recommends the use of physics-based virtual screening 
[4,16,17]. Nonetheless, surface functionalization of boron 
nitride nanotubes with high temperature polyimide-based 
compounds is expected to result in thermal conductivity values 
that reach or exceed 15 W/mK and provide a mixture of both its 
electrical insulation property and high thermal stability greater 
than 400 °C [15]. 

Improved trade-offs between competing properties were 
calculated directly by Pareto-optimal solutions and design 
principles for balanced multifunctional results, which were not 
apparent from single-objective optimization [12,13,22]. 

 

Fig. 7. Superior model performance compared to existing approaches: (a) prediction accuracy comparison, (b) uncertainty quantification validation, (c) learning curve 

analysis, and (d) computational efficiency metrics. 

C. SPhysics-Informed Insights and Structure-Property 

Relationships 

Our physics-informed analysis reveals fundamental 
mechanisms governing nanocomposite behaviour through 
feature importance ranking, gradient-based sensitivity analysis, 
and layer-wise relevance propagation techniques [16,17] 
(Fig.8). 

a) Interfacial Effects:  

The most prominent one is interfacial adhesion, according to the 
author, although charge transfer mechanisms have a major effect 

on electrical percolation and mechanical load transfer [4,15]. 
The interfacial adhesion energy has been cited as the most 
significant contributor to reinforcement effectiveness, followed 
by an aspect ratio of nanofiller and dispersion properties [6,22].  

b) Multi-Scale Coupling:  

The work reveals how quantum mechanics evolves into that of 
the classical world while still providing interface engineering 
rule of thumbs [20]. In stark contrast to conventional methods, 
our method is capable of quantitatively assessing how 
environmental processing parameters influence final results in 



Gupta et al. / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 358 –371 (2025) 

 

368 

terms of influence on final results in terms of influence on 
interface establishment and dispersion state of filler [13,18].  

c) Processing-Structure-Property Relationships:  

As processing becomes more temperature sensitive, there is a 
smaller window of operation with polymer viscosity that 
promotes good mixing and without promoting thermal 

degradation [6,13]. The quality of dispersion shows a chaotic, 
non-linear process of communication that calls for uniform 
administration at low levels, with monitored aggregation at 
higher levels for percolation dependent properties [12,18].  

 

 

Fig. 8. Physics-informed insights: (a) quantum-classical transition analysis, (b) interfacial energy-property correlations, (c) multi-scale coupling mechanisms, and (d) 

processing-structure-property relationships.

D. Experimental Validation and Model Reliability 

Experimental validation of 127 compositions has shown 
improved predictive accuracy, with 89% of formulations having 
predicted confidence intervals relative to 65-70% for existing 
ML methods. Polyamide-6 polyamide-6 from Sigma-Aldrich, 
epoxide resin EPON 828 from Hexion and polyimide, as well as 
nanofillers, are examples in the experimental procedure, 
including multi-walled carbon nanotubes (US Research 
Nanomaterials). 

DMF mixing solvent and then ultrasonicated with (750W, 
24 hours), and compression molding (150-200°C, 30 min) are 
the product's methods. Mechanical properties (Instron 5969 
universal testing unit, ASTM D638), thermal analysis (DSC: TA 
Instruments Q500, TGA: TA Instruments Q500), morphology 
investigation (FEI Tecnai G2), and size determination of 
SiNPs_FE_CE (inhomogeneous particle) in the electrolyte can 
be seen directly on the electrolyte (FEI Tecnai G2). 

a) Validation Case Selection:  

The 127 compositions were chosen from a total of 57 
compositions with the most predicted interfaces from 
percolation thresholds to extremes in interfacial energy, as well 
as (2) 35 compositions randomly selected from high-performing 
virtual screening candidates (MPI > 1.3) across the property 
space and potentially verify uncertainty estimates, as well as a 
rigorously demonstrating model capabilities throughout the 
entire design process. 

b) Validation Highlights: 

1. Carbon nanotube-polyamide: Achieved tensile 
strength of 189 MPa (predicted 184 MPa), representing 
142% improvement over neat polymer 

2. Boron nitride-polyimide: Demonstrated thermal 
conductivity of 3.7 W/m·K (predicted 3.9 W/m·K), 
representing 17-fold improvement 
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3. Silver nanowire-polyurethane: Achieved electrical 
conductivity of 2.3 × 10³ S/m at predicted percolation 
threshold 

Mechanical property validation through tensile testing, 
dynamic mechanical analysis, and impact resistance 
measurements confirm predicted enhancements. Thermal 
performance validation through differential scanning 
calorimetry and thermogravimetric analysis confirms predicted 
improvements in thermal stability and transport properties. 

E. Comparative Analysis and Computational Efficiency 

Our framework demonstrates significant advantages over 
existing approaches across multiple metrics (Fig. 9): 

a) Efficiency Improvements: 

1. Screening time: 2-3 weeks vs. 12-18 months for 
conventional methods (order-of-magnitude 
acceleration) 

2. Experimental requirements: 15-25 validation tests 
vs. 200-500 for trial-and-error approaches 

3. Development cost reduction: 68% reduction in total 
development costs 

4. Performance improvements: 28-42% enhancement 
in multifunctional performance metrics 

b) Computational Performance: 

1. Property predictions: Computed in milliseconds per 
composition 

2. Multi-objective optimization: Completed within 
hours on standard hardware 

3. Virtual screening: 3.2M compositions screened in 48 
hours 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In comparison to most standard neural networks, which can 
produce physically inaccurate forecasts if constraints are applied 
post hoc during forecast, our approach includes soft limits at 
training time that penalize fundamental physical laws, resulting 
in accurate and interpretable forecasts. The second step forward 
is integrated multiscale descriptor framework, which includes 
quantum-mechanical simulations (representing chain dynamics 
and transport characteristics), molecular dynamics simulations 
(reflecting chain dynamics and transport characteristics), 
morphological analysis (characterizing degree of dispersion and 
percolation network), and processing parameters (encoding 
fabrication conditions) within a single mathematical descriptor 
space. Our framework's ability to include the intricate causal 
chain from atomic scale reactions to macroscopic observation is 
unmatched by current single-scale methods. The third 
innovation fills a triage gap in informatics by robust uncertainty 
quantification that separates epistemic (reduced by further 
results) from aleatoric variability (intrinsic to material 
stochasticity. Experimentalists quantified ranges of confidence 
as well as indicating where further experiments are required to 
establish predictions are useful to validate estimates (i.e., it helps 
us to maximize the usage of available funds for materials 
development campaigns), enabling risk-informed decision-
making. The fourth novelty is an algebraic NSGA-III approach 
with variable reference point generation, which aids in the 
discovery of a fast-tracked objective space characterized by 
multifunctional polymer nanocomposites. 

 

Fig. 9. Comprehensive comparative analysis: (a) performance improvements over existing methods, (b) computational efficiency metrics, (c) cost-benefit analysis, 

and (d) development timeline comparisons 
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Key achievements that advance the state-of-the-art include: 

1. Superior Predictive Performance: 15-25% 
improvement over existing ML methods across all 
property categories 

2. Physics Consistency: First framework ensuring 
thermodynamic constraint satisfaction in 
nanocomposite design 

3. Uncertainty Quantification: Reliable confidence 
estimates enabling risk-aware design decisions 

4. Computational Efficiency: Order-of-magnitude 
acceleration in discovery timelines 

5. Experimental Validation: 89% prediction accuracy 
within confidence intervals across 127 tested 
compositions 

The virtual screening framework efficiently searches vast 
compositional design spaces, screening over 3.2 million 
candidate formulations to discover novel compositions with 
superior multifunctional performance. The multi-objective 
optimization approach effectively balances competing property 
requirements, identifying Pareto-optimal solutions that achieve 
optimal trade-offs between mechanical strength, thermal 
stability, electrical conductivity, and barrier performance. 

Environmental Impact Integration (Preliminary Discussion): 
While the current framework focuses on performance 
optimization, integration of sustainability metrics represents a 
critical future direction. Preliminary analysis suggests that life-
cycle assessment (LCA) indicators can be incorporated as 
additional objectives in the multi-objective optimization 
framework. Key sustainability descriptors include: (1) 
embodied energy of materials (polymer production: 80-120 
MJ/kg, nanofiller synthesis: 200-500 MJ/kg), (2) carbon 
footprint (kg CO₂-eq per kg composite), (3) recyclability indices 
based on thermal stability and chemical resistance, (4) toxicity 
metrics for nanoparticle exposure. Initial case studies show that 
adding sustainability constraints (embodied energy < 150 
MJ/kg) reduces the Pareto front by approximately 30% but 
identifies compositions with 85-90% of maximum performance 
while achieving 40-50% lower environmental impact. Future 
work will implement comprehensive LCA integration using 
SimaPro databases and develop bio-derived polymer 
alternatives (polylactic acid, polyhydroxyalkanoates) with 
comparable performance profiles. 

Future research directions will focus on: 

1. Sustainable Materials: Extension to bio-derived 
polymers, sustainable nanofillers, and recycled 
composites addressing environmental considerations 

2. Automated Discovery: Integration with automated 
synthesis and characterization systems for closed-loop 
materials discovery 

3. Sustainability Metrics: Incorporation of life-cycle 
assessment and environmental impact considerations 
into optimization frameworks 

4. Real-time Monitoring: Development of property 
monitoring and predictive maintenance capabilities 

extending beyond initial design to service life 
optimization 
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