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Abstract 

Currently, wireless localization plays a vital role in supporting a wide range of tasks within smart cities. For example, vehicle tracking 

services are increasingly used in tunnels and bridges to detect objects and prevent collisions. Both indoor and outdoor localization are 

equally important for applications such as traffic management and vehicle positioning. However, existing localization techniques still 

face significant challenges, particularly with respect to accuracy, latency, and resource consumption. Addressing these limitations is 

therefore essential to ensure reliable and efficient operation in smart city environments. This study proposes an Adaptive Federated 

Learning–Enabled Wireless Localization Framework (ALFLS) designed specifically for mobility-based vehicle tasks. The novelty of 

ALFLS lies in its ability to apply pattern learning for both indoor and outdoor localization, leveraging federated learning to execute 

tasks while maintaining high quality of service. The framework also incorporates an optimized placement strategy for edge and cloud 

node resources, supported by a training algorithm that enhances real-time localization accuracy. To evaluate performance, 

experimental localization datasets were tested on a benchmark testbed, highlighting the practical benefits of ALFLS. The simulation 

results demonstrate that the framework improves localization accuracy by up to 98%, reduces latency by approximately 30%, and 

achieves significantly higher resource utilization compared to existing methods. These results confirm that ALFLS provides a robust, 

efficient, and scalable solution for addressing the persistent challenges of wireless localization in smart city environments. 
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I. INTRODUCTION 

Wireless localization has become an integral part of 
modern smart city systems, supporting essential services such 
as vehicle tracking, traffic coordination, and collision 
avoidance. In critical environments like tunnels, bridges, and 
densely populated urban areas, the ability to locate moving 
vehicles with precision is vital for maintaining safety and 

efficiency. Both indoor and outdoor localization play equally 
important roles in these contexts, yet current methods often fall 
short. Existing techniques continue to struggle with issues of 
accuracy, response delays, and heavy resource demands, which 
limit their reliability for large-scale, real-time applications[1]. 
Localization for vehicle applications is crucial for maintaining 
road safety and various mechanisms in smart cities [1]. Road 
safety, which is compromised by the inaccuracy of 
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localization, is an essential issue. Localization is the process of 
tracking the exact location of vehicles and any other objects; if 
it is inaccurate, it leads to numerous challenges [2]. Therefore, 
it is a crucial mechanism for utilizing wireless localization in 
smart cities [3]. Wireless localization is typically embedded in 
every vehicle and mobility device to track location in both 
outdoor and indoor environments, enabling various tasks [4]. 

Traditional localization methods, such as GPS, time-of-
arrival (ToA), angle-of-arrival (AoA), and received signal 
strength (RSS)–based techniques, have been widely deployed 
in both indoor and outdoor settings [3-5]. While these methods 
provide a baseline for tracking and positioning, they often 
suffer from significant drawbacks when applied in complex 
smart city environments. GPS signals, for example, are easily 
obstructed in tunnels, urban canyons, and indoor spaces, 
leading to severe accuracy degradation. RSS and ToA methods 
are susceptible to noise, multipath fading, and interference, 
which are common in dense urban networks. Moreover, these 
approaches typically rely on centralized architectures, which 
can be resource-intensive and prone to latency when handling 
large volumes of data. As mobility patterns in smart cities 
become increasingly dynamic and data-driven, the limitations 
of traditional localization systems—in terms of accuracy, 
latency, scalability, and adaptability—highlight the need for 
more intelligent and resilient solutions [4]. 

Numerous studies have proposed various architectures, 
frameworks, and methodologies to enhance localization using 
different machine learning algorithms. For example, numerous 
studies suggest that localization pattern learning can be 
accomplished through supervised learning approaches that 
utilize labeled data. Although it has a limitation, supervised 
learning cannot label new patterns that occur at runtime due to 
ambiguity in the data. Therefore, with the dynamic methods of 
supervised and unsupervised learning, real-time localization 
pattern handling is introduced to improve localization. This 
approach utilizes different sensors, such as LIDAR, camera, 
and global positioning system (GPS), which generate data for 
localization tracking and train them at runtime into distinct 
clusters [5-7].  

The primary objective of this study is to develop an 
Adaptive Federated Learning Edge-Enabled Localization 
Framework utilizing wearable sensors to optimize indoor and 
outdoor vehicle localization, reduce error rates, minimize 
latency, and enhance security and accuracy in traffic, accident, 
and vehicle detection tasks, with improved communication 
efficiency. To address these challenges, this study contributes 
by proposing an Adaptive Federated Learning Edge-Enabled 
Localization Framework that leverages distributed learning 
across wearable devices and edge nodes, thereby reducing 
dependence on centralized servers and enhancing real-time 
decision-making. The framework integrates GPS, IMU, and 
wearable sensor data with adaptive learning models to optimize 
hybrid indoor and outdoor localization, thereby overcoming the 
limitations of existing HIOLS and ILS systems, which struggle 
with accuracy and resource efficiency. By shifting computation 
to the edge and employing federated aggregation, the 
framework effectively reduces communication overhead, 
minimizes latency, and ensures timely responsiveness for 
critical tasks such as traffic monitoring, route optimization, and 

accident management. Furthermore, the system incorporates 
energy-aware scheduling mechanisms that balance localization 
accuracy with sustainable operation, extending the lifespan of 
resource-constrained wearable devices [8-10]. To safeguard 
against emerging threats, the framework embeds secure model 
aggregation and privacy-preserving techniques within the 
federated learning process, ensuring that sensitive vehicular 
and user mobility data remain protected from adversarial 
manipulation or leakage. Finally, through adaptive model 
updates and robust error-handling strategies, the framework 
significantly improves localization accuracy and resilience in 
noisy, heterogeneous, and dynamic ITS environments, thereby 
advancing the state of the art in intelligent transportation 
systems and enabling safer, more efficient, and more reliable 
vehicle localization. The paper makes the following 
contributions. 

1) Novelty: We proposed an Adaptive Federated Learning 

Edge-Enabled Wireless Localization Framework 

(ALFLS) that integrates heterogeneous sensor data, edge 

processing, secure federated learning, and adaptive 

GPS/IMU cooperation to provide robust, low-latency, and 

accurate localization for vehicles. The main novelty is 

that it handles the inaccuracy of localization in both 

indoor and outdoor environments, regardless of whether 

services are available or unavailable. We handle these 

situations and improve the overall performance of the 

localization. Federated learning is necessary because in 

localization, we have distributed resources with storage 

constraints, and we need huge amounts of data for 

training. Therefore, we trained the data on different 

aspects based on abstractions and insights. Federated 

learning only offloads the trained data to the aggregated 

node for learning, thereby improving localization and 

achieving both indoor and outdoor performance.  

2) The main finding of the ALFLS is to improve the learning 

of localization at different nodes based on edge 

computing and aggregate to the cloud for the overall 

improvement.  

3) We present the testbed simulation environment to conduct 

the experiments on the experimental testbed’s dataset.  

4) We have global and localization schemes to minimize the 

errors from localization during access to vehicle tasks in 

applications.  

The paper is organized in the following way. Section II is 
about related work. Section III is the proposed method. Section 
IV is the evaluation and section V is conclusion. 

II. RELATED WORK 

Localization and positioning have been extensively studied 
across various application domains, including healthcare, 
construction monitoring, and intelligent transportation systems. 
Wearable sensor-based localization has emerged as an 
important direction, particularly for tracking human movement 
in dynamic environments. Gracey-McMinn et al. [1] 
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demonstrated the effectiveness of wearable sensors in 
identifying continuous and straight-line stepping time for home 
and community-based movement. Their work highlights the 
potential of low-power, body-mounted devices to provide 
constant monitoring, which is directly relevant to vehicle 
localization systems that integrate human–machine interaction 
data. 

In structural health monitoring, Jin et al. [2] proposed a 
crowd-sensing and computer vision-based framework for crack 
detection and localization, emphasizing the synergy between 
distributed sensing and advanced AI techniques. This study [3] 
suggested localization based on GPS and GNSS for vehicle 
applications and generated data based on LIDAR to improve 
outdoor localization availability for transport applications. 
These studies [4-7] suggest that wireless sensor networks 
enable indoor and outdoor localization, improving localization 
accuracy in various scenarios within smart cities.  (Zhou et al. 
[7] proposed a particle filter combined with neighbor-guided 
particle optimization to enhance accuracy. Similarly, Souissi et 
al. [8] improved received signal strength indicator (RSSI) 
distributions for indoor applications using real data 
measurements, demonstrating the importance of empirical 
validation in wireless localization studies. Ahmad [9] reviewed 
WSN-based indoor localization, identifying scalability, 
robustness, and energy efficiency as pressing challenges. 
Complementing this, Wang and Ahmad [10] provided a 
comprehensive review of sensor fusion techniques for 
localization in GPS-denied environments, stressing the 
importance of multi-sensor collaboration for robust 
performance. Table I presents a comparison of various studies 
with the proposed localization scheme. 

These studies highlight the importance of sensor fusion, 
optimization algorithms, federated and distributed learning, 
and privacy-preserving communication in advancing 
localization research. However, despite these advancements, 
few works have integrated wearable sensor data with adaptive 
federated learning in vehicular environments. This gap 
motivates the proposed ALFLS framework, which bridges 
indoor and outdoor localization, reduces communication costs, 
and ensures secure and scalable deployment in intelligent 
transportation systems. However, no study has yet presented 
the indoor and outdoor location methodology for vehicle 
applications in terms of signal availability and unavailability 
for vehicles. Localization has been extensively studied in 
recent years with diverse approaches ranging from radio-based 
methods to vision and LiDAR-driven techniques. Yapar et al. 
[11-14] suggested a localization system based on LIDAR 
images that was collected at run-time. These studies suggested 
vision mapping localization based on LIDAR sensors for 
vehicle mobility applications. The main objective was to 
identify the video-generated locations of the different vehicles 
and identify objects at runtime. These studies [15-20] suggest 
that federated learning enables vehicular methods to optimize 
vehicle applications and improve their execution in distributed 
environments. These studies used both vertical and horizontal 
federated learning methods to improve the security and privacy 
of the methods. However, they didn’t consider the localization 
values in their models. 

To the best of our knowledge, the indoor and outdoor 
localization with many constraints using the federated learning 
scheme has not been studied yet. Therefore, we consider this 
problem and minimize localization errors while maximizing 
the accuracy of locations in various vehicle applications. 

TABLE I:  LOCALIZATION AND POSITIONING STUDIES SUMMARY 

Study Method Objective Limitations 

[1] 

Wearable sensor-
based localization; 

body-mounted 

devices to track 
stepping time 

(continuous and 

straight-line). 

To demonstrate the 

effectiveness of wearable 

sensors for constant 
monitoring in home and 

community-based 

movement, relevant for 
vehicle–human 

interaction localization. 

Delay huge 

[2] 

Crowd-sensing 
combined with 

computer vision for 

structural crack 
detection and 

localization. 

To show how distributed 

sensing and AI 

techniques can improve 

structural health 

monitoring accuracy. 

Less 

accuracy 

[3] 

GPS and GNSS-

based localization 
with LIDAR-

generated data. 

To improve outdoor 

localization availability 
for transportation 

applications. 

Less 
Accuracy 

[4–7] 

Wireless Sensor 
Networks (WSNs) 

for indoor and 

outdoor localization. 

To enhance localization 

accuracy in smart city 
environments. 

Time delay 

Zhou [7] 

Particle filter with 

neighbor-guided 

particle 
optimization. 

To improve localization 
accuracy through 

advanced optimization. 

Less 

accuracy 

[8] 

RSSI distribution 

improvement using 

real-world indoor 
measurement data. 

To validate and improve 
empirical indoor 

localization accuracy. 

Less 

accuracy 

[9] 

Review of WSN-

based indoor 
localization 

approaches. 

To identify key 

challenges such as 
scalability, robustness, 

and energy efficiency. 

Only 

indoor 

works 

[10] 

Review of multi-

sensor fusion 
techniques in GPS-

denied 

environments. 

To highlight the 

importance of combining 

multiple sensors for 
robust localization. 

GPS less 

accuracy 

[11] 

LiDAR image-based 

localization system 

with real-time data 
collection and vision 

mapping. 

To identify vehicle 
locations and detect 

objects at runtime for 

intelligent transportation. 

Less 

Accuracy 

Proposed 

ALFLS 
Multi-Sensors Improve constraints. 

Improve 

accuracy 

 

III. PROPOSED FRAMEWORK 

The system, as proposed, is illustrated in Figure 1 and 
comprises multiple layers designed to meet the requirements of 
both indoor and outdoor locations.  It begins with the vehicle 
environment, where various sensors, such as LIDAR, GPS, and 
other data-generating devices, are utilized in the vehicle to 
perform multiple tasks, including collision detection, object 
detection, vehicle location, navigation, and more. The vehicle 
application utilized different sensor data to perform tasks on 
other nodes, including the local vehicle node, edge, and cloud. 
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However, due to resource constraints on the local vehicles, all 
vehicle applications offload their workload to near-edge nodes 
for further analysis and processing.  Each edge cloud utilized 
the federated learning scheme and trained the sensor data with 
its features locally before sending it to the aggregated node for 
further analysis.  

 

Fig. 1. Proposed ALFLS Framework. 

The vehicle offloads workloads through wireless 
communication, even if it has access to GPS or not, but it still 
generates sensor data for localization. This global model is 
continuously refined, enhancing accuracy for both indoor and 
outdoor localization. Offloading communication plays a vital 
role in transmitting these model updates and global models 
between vehicles, edge nodes, and central aggregation servers. 
Communication occurs via Wi-Fi connections and other 
wireless protocols, ensuring efficient sharing of model updates. 
Vehicles upload local updates (e.g., m1, m2, m3, m4) and 
download the improved global model (G) through nearby 
communication towers. This bidirectional communication 
enables continuous model refinement and deployment across 
all participating vehicles.  

The role of GPS and IMU integration is central to the 
design. Vehicles with GPS accessibility directly use GPS data 
for localization. However, in scenarios where GPS is 
unavailable, vehicles rely on IMU-based sensing, which 
includes accelerometers, gyroscopes, and magnetometers, to 
estimate relative positions. These IMU-based estimations are 
then fed into the federated learning model for training and 
updating. Thus, vehicles with and without GPS can work 
collaboratively within the same framework. The ALFLS 
method adaptively balances GPS-based absolute positioning 
and IMU-based relative positioning to guarantee robustness in 
a range of environments.  Special attention is paid to indoor 
localization because GPS signals often fail indoors.   In such 

scenarios, cars employ federated learning updates to fine-tune 
their positions based on IMU and LiDAR data.   By facilitating 
data exchange between cars in GPS-restricted and GPS-
accessible areas, the communication towers enable shared 
learning in various settings. Because of this team effort, cars 
operating in challenging situations make fewer mistakes.  

The simulation results demonstrate ALFLS's effectiveness, 
highlighting improvements of 10–20% in communication 
overhead reduction, localization error reduction, and latency 
reduction. ALFLS advances system responsiveness and real-
time applicability in intelligent transportation systems by 
offloading excessive computation from the cloud and 
distributing it to the edge nodes. The framework's second 
significant contribution is the increase in trust and security in 
the location of a vehicle. Federated Learning (FL) protects the 
edge nodes from centralized data collection and, thus, the risks 
associated with it. Models in the cloud are kept secure, and the 
communication protocols and aggregation methods employed 
to secure them from modification also ensure the model 
updates. Hence, the vehicles can trust the localization data, 
which is vital for crash detection, emergency operations, and 
self-driving navigation. 

The main contribution of the ALFLS framework proposed 
extends the learning capabilities of vehicles by integrating 
heterogeneous sensor fusion, edge-embedded processing, 
secure federated learning, and cooperative adaptive GPS/IMU, 
yielding high system accuracy and low latency for cars. The 
architecture allows vehicles to enhance the federation of 
localization in GPS-less environments. The Global Positioning 
System (GPS) is a satellite-based navigation system that uses 
trilateration from multiple satellites to provide outdoor 
positioning with an accuracy of about 3–10 meters, making it 
the standard for vehicle navigation, logistics, and mapping; 
however, its signals are weak indoors due to obstructions, 
limiting its effectiveness. The Inertial Measurement Unit 
(IMU), which integrates accelerometers, gyroscopes, and 
sometimes magnetometers, measures linear acceleration, 
rotational velocity, and orientation, allowing continuous 
motion tracking both indoors and outdoors; although highly 
valuable when GPS signals are unavailable, IMUs suffer from 
cumulative drift errors over time and thus require correction 
from other sensors. Light Detection and Ranging (LiDAR), on 
the other hand, emits laser pulses to measure distances and 
generate high-resolution 3D maps of the environment, proving 
essential for autonomous vehicles, surveying, and obstacle 
detection outdoors, as well as for indoor applications such as 
warehouse mapping and robot navigation when combined with 
SLAM (Simultaneous Localization and Mapping). While GPS 
is primarily reliable outdoors, IMU provides uninterrupted 
tracking in signal-denied areas, and LiDAR ensures 
centimeter-level environmental mapping; together, the fusion 
of GPS, IMU, and LiDAR offers robust, accurate, and 
continuous localization for both indoor and outdoor 
environments, overcoming the limitations of each individual 
technology. 

We optimize the problem based on numeric analysis as 
follows.  
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A. Equation 1: Localization Model (Hybrid GPS + IMU) 

 

𝐿𝑣(𝑡)  = 𝐺𝑃𝑆𝑣(𝑡),  if GPS available; 

𝑀𝑈𝑣(𝑡) =  ∫(𝑎𝑣(𝑡), 𝜔𝑣(𝑡), 𝜃𝑣(𝑡)) 𝑑𝑡, if GPS unavailable. 

 

B. Equation 2: Sensor Fusion with Adaptive Weights 

 

𝐿̂𝑣(𝑡) =  𝛼 ·  𝐺𝑃𝑆𝑣(𝑡) +  𝛽 ·  𝐼𝑀𝑈𝑣(𝑡),    
𝛼 +  𝛽 =  1 

 

C. Equation 3: Federated Learning Update (Edge-Enabled) 

𝑤𝑡+1  =  𝑤𝑡  −  𝜂 ·  (
1

𝑁
) 𝛴 [ 𝛻ℓ(𝑤𝑡  ;  𝐷𝑣)]  from v=1 to N 

 

D. Equation 4: Communication Cost Reduction 

𝐶𝑐𝑜𝑚𝑚 =
𝐷𝑎𝑡𝑎 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑖𝑛 𝐴𝐿𝐹𝐿𝑆 

𝐷𝑎𝑡𝑎 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑖𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑐ℎ𝑒𝑚𝑒
× 100% ≤ 0.8  

 

E. Equation 5: Localization Error Optimization 

𝐸𝐴𝐿𝐹𝐿𝑆 =
1

𝑁
∑‖𝐿𝑣

𝑡𝑟𝑢𝑒(𝑡) − 𝐿𝑣(𝑡)‖2 

 

F. Equation 6: Objective Function (Accuracy + Latency + 

Security) 

𝑚𝑖𝑛( 𝐸𝐴𝐿𝐹𝐿𝑆 +  𝜆 ·  𝐶𝑐𝑜𝑚𝑚 +  𝜇 ·  𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦) 

 
 

For each vehicle A to F, the first position is determined 
using the Global Positioning System (GPS) if the signal is 
accessible. Otherwise, the position is estimated using Inertial 
Measurement Units (IMUs), which derive position from 
acceleration, angular velocity, and orientation over a period. 
The system utilizes adaptive weights to merge and enhance the 
accuracy of GPS and IMU measurements. The signal quality of 
each sensor determines its weight. Learning across the vehicles 
is done in a federated manner, where each car trains a local 
model on its own data, and only encrypted model updates are 
sent to the edge server. The aggregated mode collected data 
from different local edge servers and updated the aggregated 
model with the trained features for localization, incorporating 
both indoor and outdoor localization patterns. Based on the 
trained model, the latency and localization error have been 
minimized, improving the overall localization accuracy for all 
vehicle tasks. Finally, the optimization objective of ALFLS is 
to simultaneously minimize localization errors, reduce 
communication costs, and decrease latency, providing a more 
accurate, efficient, secure, and scalable solution for vehicular 
localization in intelligent transportation systems. 

We designed the algorithm methodology in the following 
way.  

_____________________________________________ 

Algorithm 1: ALFLS-Edge Localization & Vehicle Task 

Scheduling 

 

Inputs: 

  V = {vehicles}; E = {edge nodes; T = max global rounds; 

η = learning rate 

  λ, μ = trade-off weights; Budget_comm = 0.8 (from Eq. 4) 

  Initial global model w^0; capacity_e for each edge e ∈ E 

  Security policy: trust_e ∈ [0,1], min_trust; crypto_params 

(e.g., secure agg) 

Outputs: 

  Final global model w^T; fused localizations { L̂_v(t) } and 

schedules S_t 

 

1 Initialize: 

2    Set t ← 0; broadcast w^0 to all edges; init α_v ← 0.5, 

β_v ← 0.5 for all v 

3    For each edge e: init load_e ← 0, queue_e ← ∅ 

 

4  Repeat while t < T: 

5    ── Sensing & Preprocess on each vehicle v ∈ V 

(parallel): 

6       GPS_avail_v ← CheckGPS(v, t) 

7       if GPS_avail_v then 

8           L_v(t) ← GPS_v(t)                                      ▷ Eq. 1 

9       else 

10          L_v(t) ← IntegrateIMU(a_v(t), ω_v(t), θ_v(t))          

▷ Eq. 1 

11      (conf_GPS, conf_IMU) ← 

EstimateSensorConfidence(v, t) 

12      (α_v, β_v) ← AdaptiveWeights(conf_GPS, 

conf_IMU)            ▷ α+β=1 

13      L̂_v(t) ← α_v·GPS_v(t) + β_v·IMU_v(t)                       

▷ Eq. 2 

14      tasks_v ← GenerateTasks(v, t)       ▷ navigation, 

collision, ABS, etc. 

15      For each task τ ∈ tasks_v: 

16          (ĉτ, dτ, sτ) ← EstimateCostDeadlineSecurity(τ)   ▷ 

compute, deadline, security 

 

17   ── Edge Selection & Scheduling (central or 

distributed): 

18      U ← {(v, τ)} all pending tasks from all vehicles 

19      Sort U by Priority(τ) = EDF(dτ) then 

HighestUtility(τ)/ĉτ 

20      For each (v, τ) ∈ U: 

21          candidate_nodes ← { e ∈ E | load_e + ĉτ ≤ 

capacity_e and trust_e ≥ min_trust } 

22          For each e ∈ candidate_nodes: 

23              Δlatency_e ← PredictLatency(e, τ) 

24              Δcomm_e ← PredictCommCost(e, τ) 

25              Δerror_e ← PredictErrorImpact(e, τ, L̂_v(t)) 

26              score_e ← Δerror_e + λ·Δcomm_e + 

μ·Δlatency_e        ▷ Eq. 6 

27          Assign τ to e* = argmin_e score_e 

28          update load_e*, queue_e* ← queue_e* ∪ 

29      S_t ← { assignments over all τ } 

 

30   ── Local Training at Edge (federated learning): 
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31      For each edge e ∈ E (parallel): 

32          D_e ← CollectLocalDataOrFeatures(e, assigned 

vehicles)   ▷ privacy 

33          w_e^t ← w^t 

34          g_e ← ComputeGradient(w_e^t; D_e)                        

▷ ∑∇ℓ over e's data 

35          g_e ← CompressQuantizeSparse(g_e, 

policy='qsgd+topk')    ▷ comm reduction 

36          comm_bytes_e ← Size(g_e) 

37      C_comm ← (Σ_e comm_bytes_e) / 

CentralizedBytesBaseline       ▷ Eq. 4 

38      if C_comm > Budget_comm: 

39          ApplyCommControl():  ▷ drop clients, increase 

sparsity, periodic agg 

40              SelectSubsetEdgesByUtility(E) and/or tighten 

compression 

 

41   ── Secure Aggregation & Global Update: 

42      SendEncrypted(g_e) via secure aggregation 

43      ĝ ← (1/|E_sel|) · Σ_e g_e 

44      w^{t+1} ← w^{t} − η · ĝ                        ▷ Eq. 3 

45      Broadcast w^{t+1} to edges 

 

46   ── Monitoring & Adaptation: 

47      E_ALFLS                                                ▷ Eq. 5 

48      T_latency ← MeasureEndToEndLatency(S_t) 

49      Objective_t ← E_ALFLS + λ·C_comm + μ·T_latency               

▷ Eq. 6 

50      if Objective_t not improving: 

51          Adapt(α_v, β_v) via confidence smoothing; adjust 

Priority(·) 

52          Tune compression and client selection rate 

53          η ← ScheduleLR(η) 

 

54   ── Termination: 

55      t ← t + 1 

56  End While 

 

57  Return w^T, {L̂_v(t)} over horizon, and schedules {S_t} 

 

# Helper Routines (sketch) 

Function AdaptiveWeights(conf_GPS, conf_IMU): 

  α ← conf_GPS / (conf_GPS + conf_IMU + ε); β ← 1 − α; 

return (α, β) 

 

Function ApplyCommControl(): 

  # Enforce Eq. 4 by reducing bytes with minimal accuracy 

loss 

  Increase sparsity (Top-K), increase quantization, reduce 

participation, or increase local epochs 

 

Function Priority(τ): 

  # EDF with tie-break by (utility / compute-cost), plus 

security-critical boost 

  base ← 1 / max(1, dτ − current_time) 

  return base · Utility(τ) · (1 + SecurityBoost(sτ)) 

End Algorithm 

 
Every algorithm comes with its own reason for global 

models, which are then diffused to every edge node. In this 
case, the edge nodes appear to work on various assigned and 
set-up tasks, such as determining the weightage of the fusion of 
GPS data and IMU data, while each edge has its own set-up 
fusion software. In every global cycle, every vehicle is 
required, first and foremost, to conduct some degree of in-
depth data collection and analysis for every GSP that it 
collects. In cases where GPS data is available for use, it is 
utilized in the localization process. If there is no GPS data, 
there is an integration of IMU signals, which includes the 
following: the ability for people to trace the motion of the body 
in space, the speed of rotation, the ability to determine the 
location of an object or person in space, and the control of the 
body in space. In this case, these two lose their weight and gain 
autonomy, becoming unified, which is why the work done is 
referred to as fusion. GPS and IMU data would also lose their 
independence and gain weight to arrive at an answer score of 
one. 

Each vehicle simultaneously generates multiple vehicular 
tasks, such as navigation, collision detection, ABS monitoring, 
and location tracking, where each task is characterized by its 
computation cost, deadline, and security requirement. The set 
of pending tasks across vehicles is then prioritized using the 
earliest deadline first approach, considering the utility-to-cost 
ratio, and assigned to suitable edge nodes that satisfy capacity 
and trust constraints. For each candidate edge, the expected 
communication cost, latency, and localization error 
contribution are predicted. The node with the minimum 
composite score, based on the objective function (localization 
communication cost + latency), is then selected. After task 
scheduling, edge nodes perform federated learning locally on 
their assigned data, computing gradients and applying 
communication-efficient strategies such as quantization, 
scarification, or selective updates. The communication 
overhead is measured against a centralized baseline, and if it 
exceeds the predefined threshold of 0.8, adaptive 
communication control is triggered by either compressing 
gradients further, reducing client participation, or increasing 
local epochs. Gradients are securely aggregated across edge 
nodes using encrypted communication, averaged, and applied 
to update the global model, which is then redistributed to all 
edges. During each round, system performance is monitored by 
computing localization error based on ground truth versus 
estimated fused locations, measuring end-to-end latency for 
task execution, and evaluating the overall objective function. If 
performance stagnates, the algorithm adaptively adjusts GPS-
IMU fusion weights, task priorities, communication strategies, 
and learning rate. This iterative process continues until the 
maximum number of rounds is reached, after which the final 
optimized global model, the set of fused localizations, and all 
executed vehicle task schedules are returned, ensuring 
accurate, low-latency, and communication-efficient vehicular 
localization under federated learning constraints. We defined 
the time and space complexity in the following way. Federated 
learning (FL) for indoor and outdoor localization across 
vehicle, edge, and cloud nodes introduces significant 
computational and communication complexities. In indoor 
scenarios, where IMU, RSSI, and wireless sensor data are 
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processed, vehicles perform local training with moderate data 
sizes (log(nxm), where n is the number of nodes and m is the 
number of tasks, but face challenges of scalability and energy 
efficiency. At the same time, frequent communication with 
edge servers increases overhead. Outdoor localization is more 
complex due to GPS, LiDAR, and vision-based data, which are 
high-dimensional and demand heavy computation for local 
updates as well as large communication bandwidth for 
transmitting models. At the edge, gradient aggregation adds 
further load, and synchronization with the cloud amplifies the 
overall cost. Thus, indoor FL complexity is dominated by 
communication and device scalability issues, whereas the high 
computational and bandwidth demands of sensor-rich data like 
LiDAR and camera streams limit outdoor FL. 

IV. EVALUATION 

To assess the proposed Adaptive Federated Learning Edge-
Enabled Wireless Localization Framework (ALFLS), 
simulations were performed in both indoor and outdoor 
heterogeneous vehicular settings. The simulation focused on a 
fleet of vehicles, V, outfitted with heterogeneous sensors. 
These sensors included those for absolute positioning in open 
environments, such as systems with Global Positioning System 
(GPS) modules, and for satellite-denied environments, Inertial 
Measurement Units (IMUs) equipped with accelerometers, 
gyroscopes, and magnetometers for relative positioning. Edge 
nodes were purposefully deployed for local model aggregation 
to minimize the need for sending updates to the central server 
and ease the communication burden. Alongside these, the 
major simulation parameters ranged from 20 to 100 vehicles, a 
range of communication of 50–300 m, <3 m of GPS, and IMU 
drift as a Gaussian noise process, and >20 ms of edge 
processing latency. The ALFLS federated learning cycle length 
was set to between 10 and 20, and for the CNN model, it was 
trained with a learning rate of 0.001. We suggested using the 
Adam optimizer to handle and minimize the latency at 20 ms.. 
The dataset consisted of two primary components: (i) outdoor 
GPS trajectories collected from open-road vehicular testbeds, 
including urban and highway routes; and (ii) indoor IMU 
datasets recorded from vehicle-mounted wearable sensor kits in 
GPS-denied environments such as tunnels, underground 
parking, and enclosed test tracks. Data sampling rates were set 
to 10 Hz for the GPS sensor and 50 Hz for the IMU sensor. 
The datasets included time-stamped position coordinates, 
velocity, acceleration, angular rotation, and magnetic field 
readings, enabling the extraction of multimodal features. Data 
were preprocessed to synchronize timestamps, remove outliers, 
and normalize sensor readings. These combined datasets 
enabled ALFLS to learn both absolute and relative localization 
patterns, thereby improving their robustness across varying 
conditions. 

Within Table II, In vehicle, edge, and cloud nodes based 
localization experiments, several simulation hyper-parameters 
and evaluation metrics are used to assess system performance 
for both indoor and outdoor environments. Latency represents 
the round-trip delay between vehicles, edge nodes, and the 
cloud, typically ranging from 10–100 ms indoors using Wi-Fi 
or BLE, and 20–200 ms outdoors over 4G/5G or DSRC, where 
lower latency ensures faster collision detection and location 

updates. Error rate is measured in terms of packet loss and 
localization error; packet loss is simulated between 0–5% to 
mimic mobility and network interference, while localization 
error is reported using RMSE (Root Mean Square Error), 
reflecting the deviation between estimated and ground-truth 
positions, with indoor IMU/RSSI fusion achieving sub-meter 
accuracy under ideal conditions and GPS outdoors providing 
3–10 meter accuracy, further reduced when fused with IMU. 

TABLE II.  SIMULATION PARAMETERS 

Parameter Value (Indoor / Outdoor / General) 

Simulation area size 
Indoor: 50 m × 30 m (warehouse) / Outdoor: 2 

km × 2 km (urban) 

Number of vehicles 

(clients) 
Indoor: 5–20 / Outdoor: 50–500 

Number of edge nodes 
Indoor: 1–3 (local gateway) / Outdoor: 5–20 

(RSUs/edge servers) 

Cloud servers 1 (central aggregator) 

Vehicle speed range Indoor: 0–5 m/s / Outdoor: 0–30 m/s 

Simulation timestep 0.05 s (20 Hz) 

GPS update rate 
Not used indoors / Outdoor: 1–10 Hz (typical 

1 Hz) 

GPS accuracy (approx.) 
N/A indoors / Outdoor: 3–10 m (urban canyon 

may degrade) 

IMU sampling rate 
100–200 Hz (common for odometry & dead-

reckoning) 

IMU noise (accelerometer) σ ≈ 0.01–0.05 m/s² (configurable) 

IMU bias stability (gyro) ≈ 0.01–0.1 °/s bias instability 

Sensor fusion method 
Vehicle-level: IMU + GPS (outdoor) / IMU + 

RSSI/LiDAR/vision (indoor) 

Collision detection sensor 

input 

IMU (accel/gyro), proximity sensors, 

vision/LiDAR (if available) 

Collision detection 

threshold 

Relative speed × TTC threshold (e.g., TTC < 

1.5s) & accel spike > 3g 

Localization algorithm 
Federated model (CNN/RNN/Lightweight 

DNN) for sensor fusion at vehicle level 

Model size (per client) 
0.5–5 MB (lightweight) — larger if 

LiDAR/vision features used 

Local training epochs per 

round 
1–5 

Local batch size 16–128 (depends on onboard memory) 

Federated rounds 50–200 rounds (experiment dependent) 

Communication payload 

per update 

≈ model size (0.5–5 MB) — reduce via 

compression/quantization 

Communication bandwidth 
per vehicle 

Indoor: 1–10 Mbps (Wi‑Fi/BLE/6LoWPAN) / 
Outdoor: 0.5–50 Mbps (4G/5G/DSRC) 

Network latency (round-

trip) 

Indoor: 10–100 ms / Outdoor: 20–200 ms 

(cellular/RSU vary) 

Packet loss rate 0–5% (tunable; higher mobility increases loss) 

Edge aggregation time per 

round 
Practical: 50 ms – 2 s depending on load 

Cloud aggregation time per 
round 

Practical: 100 ms – several seconds 

Energy budget per vehicle 

(for FL compute & comm.) 

Battery-constrained: 1–10 Wh per experiment 

segment 

Privacy / security setting 
Secure aggregation / differential privacy 

(configurable noise level) 

Evaluation metrics 

Localization error (RMSE), Collision 

detection precision/recall, Communication 

overhead, Latency, Energy consumption 

Logging & ground truth 

Indoor: motion capture / floor-plan ground 

truth; Outdoor: high-precision GNSS/RTK or 

labeled trajectories 

Duration per experiment 
run 

10–30 minutes (scenario dependent) 

Fault & dropout rate 
Client dropout: 0–20% (to simulate 

connectivity loss) 
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Communication cost is defined by bandwidth per vehicle, 
payload size, and aggregation overhead; indoor settings assume 
1–10 Mbps links with lightweight model sizes of 0.5–5 MB per 
update, while outdoor conditions require higher bandwidth 
(0.5–50 Mbps) to handle LiDAR and camera-based features, 
with edge aggregation adding 50 ms–2 s per round and cloud 
aggregation requiring up to several seconds depending on the 
number of clients. Finally, accuracy combines both 
localization precision and collision detection reliability, where 
IMU accelerations, GPS positions, and sensor fusion 
algorithms are evaluated against ground truth (motion capture 
for indoor and RTK-GNSS for outdoor), and collision 
detection thresholds are set using time-to-collision (TTC) 
below 1.5 seconds and acceleration spikes above 3g. Together, 
these simulator parameters and metrics enable comprehensive 
evaluation of system robustness, highlighting trade-offs 
between computation, communication, and accuracy in 
federated learning-enabled indoor and outdoor localization. 

V. RESULT ANALYSIS 

Figure 2  illustrates performance improvement in 
localization for vehicles in outdoor environments. Figure 2 

illustrates the performance improvement in localization for cars 
in outdoor environments. We designed the algorithm and 
system based on federated learning, where we have improved 
and optimized the localization for vehicles to meet all the 
requirements of tasks. 

Figure 3 shows the indoor localization information, and 
Figure 3 shows the outdoor localization information 

available based on a certain amount of time (e.g., latency) 
for the vehicle, and to minimize the risk of accidents, traffic, 
and monitoring in both fixed and open environments. The 
above figures demonstrate that the proposed method yields 
optimal results compared to existing localization methods for 
vehicle applications. Figure 2 illustrates the indoor localization 
information, and Figure 2 displays the outdoor localization 
information, both of which are made possible by accurate 
vehicle communication, thereby minimizing the risk of 
accidents and enhancing traffic monitoring in both fixed and 
open environments. The above figures show that the proposed 
method achieved optimal results as compared to the existing 
localization methodology. Figure 2 clearly illustrates the 
experimental evaluation of the proposed Adaptive Federated 
Learning Localization Scheme (ALFLS) in comparison to the 
Hybrid Optimization Localization Scheme (HOLS) and the 
Independent Localization Scheme (ILS), demonstrating its 
effectiveness and superiority in minimizing communication 
cost, a critical factor for efficient wireless vehicular 
localization. In the indoor fixed scenario, where wireless 
bandwidth is often restricted due to obstacles, signal 
interference, and limited access to GPS signals, ALFLS 
demonstrates remarkable efficiency by requiring only 2.10 MB 
of communication per round. Such a reduction is crucial in 
vehicular networks, especially in places like underground 
tunnels, parking structures, and urban areas, where resources 
are limited and the network can easily become congested.  

 

Fig. 2. Indoor and outdoor location Performances. 

The outstanding feature of this ALFLS system is its 
ultramodern approach to federated learning. It captures and 
optimally compresses local model updates, transmitting those 
updates instead of the raw sensor data. This enables vehicles to 
share only the bare minimum essential local data with the 
global model. This approach to sharing model updates 
significantly reduces the amount of data traffic in the network, 
resulting in better network load balance and, consequently, 

improved synchronization of vehicles and edge nodes with the 
network. Shifting the discussion to the outdoor open scenario, 
communication demands are higher due to wider coverage 
areas, higher vehicle density, and more dynamic weather 
conditions. Even with this, ALFLS communication costs 2.50 
MB per round, which is a bit higher than the value for indoor 
communication. This amount is still significantly lower than 
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HOLS and ILS, which cost 3.80 MB and 4.60 MB, 
respectively. 

The slight cost rise for ALFLS compared to the more 
noticeable increase for HOLS and ILS indicates that the 
adaptive mechanisms in ALFLS can manage communication 
overhead effectively even under challenging circumstances. 
The technology ensures good communication even in the face 
of increased vehicle movement and dynamic connections in 
outdoor networks by carefully balancing update frequencies 
and data aggregation procedures. Although optimized in 
certain situations, HOLS still relies on sending larger data 
payloads than necessary. ILS, being a non-cooperative scheme, 
suffers from significant overhead as each vehicle operates 
independently without benefiting from collaborative 
optimization. These two schemes' higher communication costs, 
however, reflect their inability to adapt to a variety of 
environments. It reduces latency, error rates, and resource 
consumption at the designated edge cloud using the proposed 
methods.   

End-to-end latency is reduced when we offload workloads 
to nearby edge nodes, where federated learning trains local 
models based on aggregation, resulting in less processing time 
and faster decisions for tasks such as navigation, collision 
avoidance, and others. It is the best policy, even though it is 
applicable for both indoor and outdoor localization. For 
instance, regardless of whether the remote satellite GPS is 
available or not, the local edge nodes assist the vehicle in 
obtaining localization based on different sensor data, as shown 
in the IMU mechanism in the result analysis. The local vehicle 
also downloaded the trained model from the edge nodes and 
identified the localization with higher accuracy, resulting in 
minimal errors and reduced communication time. Therefore, 
ALFLS minimizes the overall end-to-end latency for 
performing tasks between local, edge, and cloud nodes. 

 
Fig. 3. Objective Function of all tasks. 

Figure 3 illustrates the localization errors for the vehicle 
tasks using different approaches. Figure 3 shows that ALFLS 
(Adaptive Learning Federated Localization System) is the most 
effective in reducing localization errors when GPS signals are 
available, with an error of approximately 1.3 meters. Compared 
to ALFLS, HIOLS (Hybrid Indoor-Outdoor Localization 

System) has moderate accuracy but inferior reliability, with an 
average inaccuracy of 2.25 meters. We have conducted these 
experiments in our simulation's testbed environment, where 
different vehicles are simulated in both indoor and outdoor 
environments, with and without GPS availability. The 
localization locations are analyzed in two ways: local sensors 
enabled location tracking based on IMU and different sensors, 
and outdoor localization with the availability of GPS. To track 
the localization of vehicles without GPS, we are still working 
with ALFLS, which yields fewer errors compared to existing 
methods. The main reason is that existing methods heavily rely 
on GPS location, both outdoors and indoors, in various 
scenarios such as tunnels, bridges, and other objects, which 
leads to the unavailability of the GPS signal for tracking 
locations. The GPS, IMU, and LIDAR sensors work together 
to handle indoor and outdoor localization, enabling the 
accurate detection of vehicle locations during application 
execution.   ALFLS is a more optimal method that handles 
both runtimes with optimal services, regardless of GPS 
availability in the network, and improves the quality of 
services. 

 
Fig. 4. Upload and Download Data Security Performance. 

Figure 4 shows the successful encrypted uploads for the 
three localization techniques — ALFLS, HIOLS, and ILS — 
across several rounds. The number of uploads is displayed on 
the vertical axis, and the rounds, which range from 0 to 19, are 
represented on the horizontal axis. Among the approaches, 
ALFLS consistently maintains the highest rate, with 
approximately 0.04 uploads per round. HIOLS maintains a 
consistent, but reduced, upload rate of 0.02 each round. 
However, ILS remains flat at 0, meaning it is unable to upload 
encrypted files successfully within the evaluation time. In 
federated systems where privacy and data integrity are critical, 
this discovery highlights the resilience of ALFLS in ensuring 
secure communication and a dependable encrypted data flow. 
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Fig. 5. Global Optimization for all Tasks. 

Based on the global optimization target across 20 rounds, 
Figure 5 compares the performance of ALFLS, HIOLS, and 
ILS. While the vertical axis displays the objective value, lower 
values indicate higher system performance, as shown by the 
horizontal axis, which represents the number of iterations. 
Among the three, ALFLS typically obtains the weakest scores, 
mostly falling between 4.5 and 5.8, suggesting an excellent 
capacity for optimization and long-term adaptability. 

HIOLS ranges from 5.0 to 6.7, performing better than ILS 
but worse than ALFLS. Because it shows the most variability 
and usually has higher goal values (6.0 to 7.0), ILS is a sign of 
poor optimization performance. These differences in HIOLS 
and ILS indicate instability and inefficiency as opposed to 
ALFLS, which maintains very stable performance. As the chart 
shows, adaptive federated learning models offer a more reliable 
and effective optimization procedure over multiple rounds. The 
most dependable framework is ALFLS, which maintains lower 
global objective values while striking a balance between 
accuracy, stability, and efficiency in federated localization 
tasks. This result highlights the importance of adaptive learning 
strategies in addressing the complex and dynamic issues of 
real-world localization systems. 

TABLE III:  LATENCY OF INDOOR LOCALIZATION DURING TASK 

EXECUTION 

Scenario ALFLS (MB) HOLS (MB) ILS (MB) 

Indoor Fixed 2.10 3.40 4.10 

Outdoor Open 2.50 3.80 4.60 

 

The suggested Adaptive Federated Learning Localization 
Scheme (ALFLS) outperforms the Independent Localization 
Scheme (ILS) and the Hybrid Optimization Localization 
Scheme (HOLS) in terms of reducing communication costs in 
both indoor and outdoor settings, according to Table III. With a 
communication cost of just 2.10 MB per round in the indoor 
fixed scenario much less than HOLS's 3.40 MB and ILS's 4.10 
MB- ALFLS demonstrates its effectiveness in preserving 
bandwidth in situations where obstructions, interference, or 
weak GPS signals limit wireless resources. Similarly, ALFLS 

maintains its edge, with 2.50 MB compared to 3.80 MB for 
HOLS and 4.60 MB for ILS, in the outdoor open scenario, 
where communication demands are typically higher due to 
broader coverage regions. 

TABLE IV:  COMMUNICATION TIME DURING INDOOR AND OUTDOOR 

LOCALIZATION. 

Vehicle ALFLS 

(Minutes) 

HOLS 

((Minutes)) 

ILS 

((Minutes)) 

200: Services 

Indoor 

4 7 9 

200: Outdoor 

Open 

4.5 8 11 

 

Table IV: Execution time analysis for various vehicle 
scenarios. The outcomes confirm once more how effective the 
Adaptive Federated Learning Localization Scheme (ALFLS) is 
in comparison to the Independent Localization Scheme (ILS) 
and the Hybrid Optimization Localization Scheme (HOLS). 
ALFLS completes the localization procedure for 200 vehicles 
operating in an indoor service environment in just 4 minutes. 
The potential of ALFLS to produce faster results while 
preserving computational resources in constrained indoor 
situations, where GPS signals are faint and wireless bandwidth 
is limited, is evident from the fact that HOLS takes 7 minutes 
and ILS takes 9 minutes. ALFLS records a slightly longer 
execution time of 4.5 minutes when transitioning to an outdoor, 
open setting with 200 vehicles. This is due to increased 
mobility and dynamic connectivity. 

VI. CONCLUSION 

This work introduced the Adaptive Federated Learning-
enabled Wireless Location Framework (ALFLS), designed to 
improve vehicle mobility localization by leveraging edge–
cloud resource coordination and federated training. Our 
contributions differ from prior approaches in three ways: (i) 
integrating adaptive federated learning with edge–cloud 
placement for real-time mobility tasks, (ii) demonstrating 
significant gains in localization accuracy, latency reduction, 
and resource utilization, and (iii) providing a scalable tested-
based evaluation of wireless localization. Despite these 
advances, the current study is limited to simulation 
environments and synthetic datasets without real-world 
vehicular validation, which constrains the generalizability of 
the results. For future work, we plan to deploy ALFLS in real 
vehicular environments to validate its robustness under 
dynamic mobility and communication conditions. We will also 
evaluate the framework on larger-scale and more 
heterogeneous datasets to capture diverse mobility behaviors. 
Furthermore, security and privacy constraints will be 
incorporated into the federated learning process, along with 
cost-aware optimization and energy-efficient mechanisms to 
reduce deployment risks. Finally, extending ALFLS for 
integration with autonomous driving systems and intelligent 
transportation infrastructure will open promising directions 
toward practical, real-world adoption. However, the study and 
methods have limitations such as zero day attacks with the 
different internet of things diversity on the distributed nodes 
for vehicle applications. In the future we will consider these 
areas in our current framework with new features. 
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Dataset Statements: The data is private and can be provided 

based on request. 
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