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Abstract 

Increasing climate variability and the rapid degradation of natural ecosystems have necessitated the development of intelligent systems 

that can track and assess environmental changes in real-time. By combining multi-modal remote sensing data with advanced machine 

learning and visual analytics techniques, this paper introduces a novel framework for Remote-Sensed Intelligent Visual Analytics (RS-

IVA), which aims to improve environmental monitoring systems. To offer a comprehensive, scalable, and adaptable monitoring system, 

the proposed framework utilizes ground sensor inputs, UAV-based aerial photography, and high-resolution satellite imaging. To identify 

anomalies such as deforestation, urbanization, water pollution, and changes in air quality, a hybrid deep learning-based algorithm is 

employed. Explainable AI (XAI) elements make sure that the decision-making process is transparent and accessible. To assist 

stakeholders, investigate spatiotemporal patterns, forecast environmental hazards, and enhance evidence-based policy decisions, an 

interactive visual analytics dashboard is being developed. Experiments using benchmark datasets demonstrate that the system is highly 

accurate in identifying significant environmental changes and exhibits greater adaptability across a wide range of climatic and geographic 

regions. Intelligent analytics and remote sensing technologies collaborate to improve situational awareness and provide early warnings 

for sustainable resource planning and disaster management. This research advances the development of next-generation innovative 

environmental monitoring systems by integrating human-in-the-loop visualization, AI-driven analytics, and remote sensing for informed 

ecological governance. 
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I. INTRODUCTION 

Environmental monitoring plays a crucial role in the face of 
climate change, ecosystem degradation, and anthropogenic 
pressures [1]. While traditional monitoring approaches, though 
informative, often fail to capture rapid and large-scale 
environmental transformations due to their limited temporal and 
spatial coverage [2]. Advances in remote sensing, enabled by 

high-resolution satellite imagery, UAV-based aerial 
photography, and extensive underground sensor networks, have 
provided multi-scale, near-continuous data with which to assess 
ecological change [3]. The addition of AI and machine learning 
has brought affordable possibilities for analyzing such a 
complex dataset [4]. Deep learning allows us to detect hidden 
patterns, identify anomalies, and predict environmental disasters 
[5]. Building on this picture, visual analytics provide new ways 
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for stakeholders to engage with spatiotemporal data, recognize 
specific forms of spatial and temporal trends, and support 
evidence-based decision-making [6]. Together, these 
technologies will be what enable intelligent, adaptive, and 
accountable environmental monitoring systems [7]. 

Although improvements have been made in addressing some 
of these issues, environmental monitoring remains a pressing 
challenge [8]. Data obtained from satellites, UAVs, and ground 
sensors are highly heterogeneous in terms of resolution, 
modality, and quality, making it challenging to create a unified 
analytical pipeline from such disparate data sources [9]. Remote 
sensing data is also subject to inaccuracies due to limitations 
imposed by cloud cover, the atmospheric environment, and 
temporal sampling issues [10]. The extreme volumes of data 
available are both a blessing and a curse, and more advanced and 
real-time processing capabilities need to be scaled to disaster 
management and early warning systems [11]. Furthermore, 
limitations of algorithms, such as the need for many annotated 
datasets, along with the "black box" approach to deep learning, 
present further limitations to transparency and reliability [12]. 
The absence of accessible visualization and decision-support 
systems hinders the transformation of raw analytics into 
actionable insights relevant to policy.  

● RS-IVA framework that integrates satellite imagery, 
UAV photography, and ground sensors, enabling 
scalable, multimodal environmental monitoring with 
enhanced adaptability across diverse ecosystems. 

● A hybrid deep learning algorithm is designed for 
anomaly detection covering deforestation, urbanization, 
water, and air quality, augmented with XAI techniques 
to ensure interpretability, transparency, and trust in 
decision-making. 

● An interactive dashboard combines spatiotemporal 
analysis, forecasting, and human-in-the-loop 
visualization, supporting stakeholders with actionable 
insights, early warning capabilities, and evidence-based 
policy interventions for sustainable environmental 
management and disaster preparedness. 

II. LITERATURE REVIEW 

Discussed energy savings in smart homes (IoT)-supported 
environmental monitoring and sensing, and even smart sensors 
and comprehensive sensing technologies. Descriptive papers 
have already touched on FLC, SBM, RL, horizontally combined 
deep learning models, real-time monitoring and forecasting, 
sustainability, mounting improvement in energy 
efficiency/saving systems, and addressing the huge scale and 
accuracy of energy and environmental issues in the world, along 
with the importance of these and related decisions in tackling 
these world environmental and energy concerns. 

The purpose of this paper is to enhance energy savings and 
remote monitoring capabilities through a smart home network 
system. The Human Machine Interface (HMI) utilizes a system 
of virtual panels instead of physical hardware panels, thereby 
reducing the hardware footprint. The method employed was 
Fuzzy Logic Control (FLC) to enhance the lighting and air 
conditioning systems, aiming to achieve the bottom-line result 

of reducing electricity consumption [13]. Remote monitoring 
was achieved by embedding network-related syntax into web 
pages, allowing them to be accessed on computers, phones, or 
tablets. This paper demonstrates that the amount of energy saved 
is considerable, while also enjoying the additional convenience 
and security benefits provided by FLC. 

This paper examines existing environmental monitoring 
systems that utilize IoT technology and their potential for 
facilitating sustainability. The paper employs the methodology 
of Sensor-Based Monitoring (SBM) and provides a discussion 
of applications for monitoring air quality, water pollution, and 
waste management [14]. Sensors, connected to an IoT network, 
provide access to real-time data on monitored conditions. This 
data can be used to automate analysis and actions in response to 
changing environmental conditions. This paper assesses and 
categorizes numerous published studies on SBM, illustrating 
how it can enhance sustainability, accuracy, and efficiency in 
relation to global environmental issues, including pollution, 
resource depletion, and climate change. 

Smart Environment Monitoring (SEM) systems address 
issues related to air quality, water pollution, and radiation 
pollution, as applicable. The focus on required technologies for 
SEM systems is on Wireless Sensor Networks (WSN), which 
combine IoT and advanced sensors to collect and deliver 
environmental data in real-time [15]. Moreover, machine 
learning and denoising help improve the accuracy and 
classification of data reporting. By examining many forms of 
studies, the paper demonstrates how SEM can assist with 
sustainable growth and suggests stronger ML methods and 
better standards for WSNs to help improve environmental 
monitoring. 

This paper surveys international regulations and patents 
related to environmental monitoring, with a primary focus on 
water bodies near significant infrastructure and roads. The 
methodology discussed in this article is the use of Reservoir 
Monitoring Systems (RMS) to monitor ecological processes and 
identify substantial environmental changes [16]. This paper 
provides an overview of global practices to illustrate how RMS 
can be used to safeguard the environment, adopt emerging 
ecological trends, maintain safety near transportation systems, 
and utilize new technologies. This paper emphasizes the 
importance of embracing new monitoring technologies to 
manage water quality, contribute to ecosystem sustainability, 
and maintain aquatic balance. 

This paper provides an overview of advancements in sensor 
technologies used for environmental sensing, integrated with the 
IoT in the context of smart platforms. The sensor technology 
discussed is organic sensor technology (OST, really). OST 
consists of chemical sensors, optical sensors, and physical 
sensors, all of which are fabricated from organic materials (e.g., 
polymers, carbon-based nanomaterials). The benefits of OST 
are that it is inherently efficient in detecting environmental 
media while also being flexible and cost-effective. OST is 
compatible with IoT network connectivity [17]. This paper 
highlights the trends to demonstrate how OST is facilitating 
automated smart environmental systems and new, sustainable 
means of monitoring that exhibit ingenuity and potential in 
actual field applications. 
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Design and evaluation of Enviro-IoT, a low-cost sensing 
system for real-time air quality monitoring. This paper employs 
a novel integrative technique, Low-Cost Sensor Integration 
(LCSI), combined with IoT technologies to measure pollutants, 
including PM2.5, PM10, and NO₂. An in-the-wild paper 
conducted over nine months validated Enviro-IoT against 
industry-specific instruments, yielding an accuracy of over 97% 
(with a margin of error of +/-3%) for measured pollutants [18]. 
After analyzing over 57,000 data points, it has been confirmed 
that LCSI, leveraging IoT technology, can support reliable, 
scalable, and accessible urban air quality monitoring. 

This paper presents a unified approach using Reinforcement 
Learning (RL) for active environmental sensing [19]. The 
proposed framework, RL-based Active Sensing (RLAS), allows 
intelligent sensing agents to adapt to their environment while 
performing active sensing tasks such as coverage, patrolling, 
source seeking, and search and rescue. By framing active 
sensing as an RL problem, the framework links theoretical 
advances in RL back to real-world environmental monitoring. 
The review indicates that while RLAS exhibits promising 
potential, most applications remain simulations, with real-world 
implementations currently limited to a small number of 
examples. There is very little research conducted using multi-
agent systems with RLAS. 

An advanced IoT platform that provides real-time data 
collection, along with predictive intelligence. A hybrid method, 
known as Long Short-Term Memory–Gated Recurrent Unit 
(LSTM–GRU), was utilized, designed for the accurate time-
series forecasting of environmental conditions and power 
consumption [20]. This hybrid model utilizes LSTM for long-
term dependencies and GRU for more efficient identification of 
short-term patterns. The integration of this hybrid method 
achieves the computational efficiency of GRU and the raw 
power of LSTM, resulting in more accurate forecasting, relying 
on only one pattern recognition algorithm: the Adaptive-
Network-Based Fuzzy Inference System (ANFIS). This work 
demonstrated superior predictive performance relative to 
models on a stand-alone basis, and it is curious how we can 
provide a more accurate model of IoT systems for real-world 
forecasting purposes. In below Table I, shows the summary of 
related works. 

TABLE I.  SUMMARY OF RELATED WORKS. 

Ref
er. 
No. 

Focus 
Area 

Methodol
ogy 

Key 
Contribu

tion 

Advantag
es 

Limitatio
ns 

[13] Smart 
Home 
Energy 
Savings & 
Remote 
Monitorin
g 

Fuzzy 
Logic 
Control 
(FLC), 
Human-
Machine 
Interface 
(HMI) 

Enhanced 
lighting & 
AC 
efficiency
, reduced 
electricity 
consumpti
on, remote 
monitorin
g via web-
based 
access 

Significan
t energy 
savings, 
convenien
ce, and 
reduced 
hardware 
footprint 

Limited to 
smart 
home 
context; 
scalability 
issues for 
large-
scale 
monitorin
g 

[14] IoT-based 
Environm
ental 

Sensor-
Based 
Monitorin
g (SBM) 

Real-time 
monitorin
g of air, 
water, and 

Automate
s 
environm
ental data 

Dependen
t on IoT 
infrastruct
ure and 

Monitorin
g 

waste 
managem
ent; 
improved 
sustainabi
lity & 
accuracy 

analysis, 
increases 
efficiency
, scalable 
to 
different 
conditions 

network 
connectivi
ty 

[15] Smart 
Environm
ent 
Monitorin
g (SEM) 

Wireless 
Sensor 
Networks 
(WSN), 
Machine 
Learning, 
Denoising 

Improved 
classificat
ion of air, 
water, and 
radiation 
pollution 
data; 
sustainabl
e growth 
support 

Real-time 
data, 
better 
classificat
ion 
accuracy, 
integratio
n with IoT 

Requires 
stronger 
ML 
models 
and better 
standards 
for WSN 

[16] Water & 
Ecological 
Monitorin
g Near 
Infrastruct
ure 

Reservoir 
Monitorin
g Systems 
(RMS) 

Safeguard
s water 
quality 
near 
transport 
systems, 
supports 
ecosystem 
sustainabi
lity 

Helps 
maintain 
aquatic 
balance, 
applicable 
for 
infrastruct
ure safety 

Narrow 
applicatio
n focus 
(mainly 
water 
bodies) 

[17] Organic 
Sensor 
Technolog
y (OST) 

Chemical, 
optical, 
and 
physical 
sensors 
from 
organic 
materials 

Cost-
effective, 
flexible, 
IoT-
compatibl
e 
environm
ental 
sensing 

Low-cost, 
eco-
friendly, 
highly 
adaptable 

Still 
emerging; 
needs 
field 
validation 

[18] Low-Cost 
Air 
Quality 
Monitorin
g 

Enviro-
IoT, Low-
Cost 
Sensor 
Integratio
n (LCSI) 

Real-time 
pollutant 
monitorin
g (PM2.5, 
PM10, 
NO₂) with 
>97% 
accuracy; 
scalable 
for urban 
areas 

Affordabl
e, 
accurate, 
scalable 
for smart 
cities 

Requires 
calibratio
n with 
industry-
grade 
instrumen
ts 

[19] Active 
Environm
ental 
Sensing 

Reinforce
ment 
Learning 
(RL), 
Active 
Sensing 
Framewor
k (RLAS) 

Adaptive 
agents for 
coverage, 
patrolling, 
source-
seeking; 
potential 
for real-
world 
applicatio
ns 

Intelligent 
adaptation
, supports 
multi-
agent 
sensing 

Mostly in 
simulatio
n; limited 
real-world 
deployme
nt 

[20] IoT 
Forecastin
g & 
Monitorin
g 

Hybrid 
LSTM–
GRU 
model + 
ANFIS 

Accurate 
time-
series 
forecastin
g for 
environm
ental 
conditions 
& power 
consumpti
on 

Combines 
long-term 
& short-
term 
prediction 
power, 
high 
accuracy 

High 
computati
onal cost; 
limited 
large-
scale 
validation 

 
This paper reports on smart energy-saving and 

environmental-monitoring systems supported by IoT, sensors, 
and AI. It discusses fuzzy logic for energy efficiency, sensor-
based implementation for monitoring pollution levels, 
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reinforcement learning for active sensing, and hybrid deep 
learning for forecasting.  A strong emphasis on sustainability, 
accuracy, scalability, and the demonstrated utility of energy-
saving and environmental monitoring systems in addressing 
global energy and ecological challenges. 

III. PROPOSED METHOD 

The RS-IVA datastore integrates multiple complementary 
sources of Remote Sensing data, combined with deep learning 
and exhaustive analytics capabilities, to conduct real-time 
environmental monitoring. In this case, real-time monitoring 
combines heterogeneous input data that have the potential to 
detect anomalies and provide traceable information in 
interactive dashboards, supporting sustainability planning, 
hazard forecasting, and evidence-based policy decisions. The 
network architecture consists of three layers: Edge, 
Communication, and Fusion. UAVs and ground sensors gather 
data locally and analyze it using lightweight edge computing 
nodes to reduce latency and bandwidth requirements. The 
central server receives only relevant data from these nodes after 
initial data filtering, feature extraction, and compression. 
Satellite data, which can be enormous, is downlinked directly to 
high-bandwidth data centers for pre-processing before 
transmission to the fusion layer.  

The Communication Layer uses 5G or low-Earth orbit 
(LEO) satellite networks for high-throughput, low-latency data 
transfer between UAVs, ground sensors, and satellites. This 
layer prioritizes vital data streams during congestion using 
dynamic bandwidth allocation and edge-based caching. Finally, 
powerful synchronization algorithms and data fusion methods 
combine data from these varied sensors in the Fusion Layer. 
These techniques synchronize incoming data streams using 
time-stamping, spatial alignment, and real-time interpolation to 
correct for time mismatches and sensor drift. Real-time analytics 
and actionable insights from the fusion layer may be shared via 
cloud platforms with end-users or environmental monitoring 
systems. 

 

Fig. 1. Multi-Modal Data Acquisition Module. 

Fig. 1 demonstrates the multi-method acquisition and 
integration framework for the RS-IVA system, utilizing multiple 
environmental data sources (i.e., ground-based fixed-location 

sensors, UAV high-resolution aerial stock imagery, and satellite 
missions). This data is integrated and time-synchronized with 
the ingestion data gateway. Following ingestions, the data is 
prepared for downstream intelligent analytics and used to 
conduct anomaly detection, as well as spatiotemporal and 
predictive work. Collectively, the framework provides a single, 
common platform for ingestion and processing, reducing waste 
and redundancy by combining real-time sensing with accessible 
computational capacity. This enables sustainable monitoring 
and related objectives, such as evidence-based policy and hazard 
forecasting. 

Unified data capture rate 𝑆𝑣 is expressed using equation 1, 

𝑆𝑣 =
𝑇𝑗

𝑈𝑑

                        (1) 

It explains the unified data capture rate by combining the 
signal streams from many modalities and reducing them by the 
cycle acquisition time. 

In this 𝑆𝑣 is the unified data capture rate, 𝑇𝑗 is the acquired 

signal size from modality, and 𝑈𝑑 is the acquisition cycle 
duration. 

Normalized fusion quality index 𝑅𝑔 is expressed using 

equation 2, 

𝑅𝑔 = 𝑋𝑗 × 𝑁𝑗                           (2)                                                         

Equation 2 explains the normalized fusion quality index 
weights modality data and averages them across all input 
sources to determine the normalized fusion quality. 

In this 𝑅𝑔 is the normalized fusion quality index, 𝑋𝑗 is the 

weight assigned to modality, and 𝑁𝑗 is the measurement 

reliability score of the modality. 

Signal noise filtering 𝑌𝑔(𝑢) is expressed using equation 3, 

𝑌𝑔(𝑢) = 𝑌𝑠(𝑢) − 𝑂(𝑢)                (3) 

Equation 3 explains the signal noise filtering by deducting 
discovered noise signals from the original acquisition signal, this 
formula separates the filtered data stream. 

In this 𝑌𝑔(𝑢) is the filtered signal at time, 𝑌𝑠(𝑢) is the raw 

acquired signal at time, and 𝑂(𝑢) is the noise component 
estimated at time. The Remote-Sensed Intelligent Visual 
Analytics (RS-IVA) framework's detection accuracy statistic 
measures the system's ability to recognize and categorize 
environmental changes using remote sensing data. In a case 
study on Amazon Rainforest deforestation, RS-IVA predictions 
are compared against ground-truth data to determine detection 
accuracy.  

The method detects 98% of deforested regions that field 
surveys or other credible sources validate. RS-IVA can follow 
environmental changes with high detection accuracy, enabling 
informed and timely conservation actions. The malleability 
statistic measures RS-IVA's ability to adapt to different data 
sources and environments without degrading performance. An 
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example study where RS-IVA monitors urban air quality and 
rural agricultural zones tests malleability by processing satellite 
data in high-density metropolitan regions with complex building 
structures and wide rural fields with variable flora. When it 
correctly identifies pollution in both contexts, RS-IVA 
demonstrates its versatility across various geographies, sensor 
types, and climatic conditions. For the worldwide deployment 
of RS-IVA, the system must be flexible enough to handle 
various environmental monitoring tasks across different 
locations and sensor combinations. 

 

Fig. 2. Preprocessing & Data Harmonization Module. 

Fig. 2 depicts the geospatial and refinement process of the 
RS-IVA framework. Multi-platform environmental data can be 
collected from sensors, UAVs, or satellites in various formats, 
scales, and resolutions. The geospatial harmonization layer 
transforms heterogeneous datasets, integrating, synchronizing, 
and standardizing spatial features. The geospatial processes 
calibrate, error correct, and update metadata to ensure that these 
datasets are consistent. This geospatial harmonization will yield 
output that utilizes cleaned and harmonized RS-IVA data for 
anomaly detection through machine learning techniques and 
spatiotemporal analysis. This layer and process are crucial for 
formulating reliable insights, predictive modeling, and 
transparent, evidence-based environmental monitoring and 
governance. 

Scale normalization function 𝑌𝑜(𝑗) is expressed using 
equation 4, 

𝑌𝑜(𝑗) =
𝑌𝑔(𝑗) − 𝜋𝑔

𝜌𝑔

                               (4) 

Equation 4 explains the scale normalization function, which 
centers values around their mean and adjusts them by standard 
deviation to transform filtered data onto a normalized scale. 

In this 𝑌𝑜(𝑗) is the normalized value at the instance, 𝑌𝑔(𝑗) is 

the filtered data value at the instance, 𝜋𝑔 is the mean of the 

filtered dataset, and 𝜌𝑔 is the standard deviation of the filtered 

dataset. 

Temporal harmonization alignment 𝐼𝑢(𝑙) is expressed using 
equation 5, 

𝐼𝑢(𝑙) =
𝑌𝑜

𝑘(𝑙)

𝑛
                                      (5) 

Equation 5 explains the temporal harmonization alignment 
averages across genres at a specified time index, to align 
sanitized data streams from various sources. 

In this 𝐼𝑢(𝑙) is the harmonized value at time index, 𝑌𝑜
𝑘(𝑙) is 

the normalized data from the source, and 𝑛 is the number of 
sources/modalities combined. 

Hybrid feature embedding extraction 𝐺𝑖 is expressed using 
equation 6, 

𝐺𝑖 = 𝛾 × 𝐹𝑐𝑛(𝑌) + 𝛼 × 𝐹𝑟𝑛(𝑌)                       (6) 

Equation 6 explains the extraction of hybrid feature 
embedding. Convergent feature vectors and repeated temporal 
encodings with particular modal weighting are combined in this 
equation to create a hybrid embedding. 

In this 𝐺𝑖 is the hybrid feature embedding vector, 𝐹𝑐𝑛(𝑌) is 
the feature vector extracted using CNN from the input, 𝐹𝑟𝑛(𝑌) 
is the feature vector extracted using RNN from the input, 𝛾 is 
the weight factor for convolutional features, 𝛼 is the weight 
factor for recurrent features, and 𝑌 is the input RS-IVA data 
sample. 

 

Fig. 3. Hybrid Deep Learning-based Anomaly Detection in RS-IVA. 

Fig. 3 depicts the feature fusion and anomaly detection phase 
of the RS-IVA framework. The cleaned and harmonized 
environmental data, in preparation for hybrid deep learning 
models, includes temporal, spatial, and contextual patterns. With 
the cleaned data, the RS-IVA feature fusion layer will combine 
heterogeneous data representations to accurately detect 
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anomalies such as urban sprawl, water contamination, 
deforestation, and air quality degradation. The outcome will be 
labeled environmental anomaly maps, allowing for actionable 
insights. By utilizing multi-source intelligence with explainable 
outputs, RS-IVA will enhance transparency, promote 
consistency, and enable proactive actions for sustainable 
environmental governance, as well as clarity in disaster 
readiness planning and response. 

Anomaly decision score 𝐵𝑡  is expressed using equation 7, 

𝐵𝑡 =
‖𝐺𝑖 − 𝐷𝑜‖2

‖𝐷𝑜‖2

                                (7) 

This equation explains the anomaly decision score by 
calculating the normalized Euclidean separation that separates 
the hybrid feature packing and the origin of normal class 
representations.  

In this 𝐵𝑡  is the anomaly score, 𝐺𝑖 is the hybrid feature 
embedding vector of current input, 𝐷𝑜 is the centroid vector of 
the normal class embedding, and ‖. ‖2 is the Euclidean norm 
operator. 

Attribution relevance mapping 𝑆𝑗 is expressed using 

equation 8, 

𝑆𝑗 =
𝛿𝑃

𝛿𝑌𝑗

× 𝑌𝑗                                (8) 

It explains that the attribution relevance mapping determines 
the characteristic attribution importance by multiplying the 
model's output gradient by its input value. 

In this 𝑆𝑗 is the relevance score of the feature, 𝑃 is the model 

output, 𝑌𝑗 is the input feature, and 
𝛿𝑃

𝛿𝑌𝑗
 is the gradient of output 

with respect to the feature. Attribution relevance mapping helps 
anomaly detection models by showing which characteristics 
influence their predictions. If an area is labeled as an anomaly 
for deforestation detection, mapping shows that low NDVI and 
high temperature drive the model's forecast. These factors 
influence the choice more than precipitation or soil moisture. If 
the model identifies a pollution spike in air quality anomaly 
detection, attribution relevance mapping reveals that NO2 levels 
are the primary contributor, with low wind speed and high 
humidity also contributing. The mapping pinpoints the 
environmental alterations that caused the anomaly by focusing 
on these key elements, enabling more targeted responses. This 
strategy makes the model more transparent, making its decisions 
explicit and thereby increasing its trustworthiness for real-world 
decision-making. 

Local interpretability score 𝑀𝑡(𝑦) is expressed using 
equation 9, 

𝑀𝑡(𝑦) = 𝑋𝑘 × ∅𝑘(𝑦)                             (9)       

Equation 9 explains that the local interpretability score 
aggregates the weighted Shapley-like outputs of features for the 
input parameter to calculate a local interpretability score. 

In this 𝑀𝑡(𝑦) is the local interpretability score for input, 𝑋𝑘 
is the weight assigned to the feature, and ∅𝑘(𝑦) is the 
contribution value of the feature. 

Global explanation fidelity 𝐺ℎ is expressed using equation 
10, 

𝐺ℎ =
1

𝑂
|𝑧̂𝑙 − 𝑧̃𝑙|                             (10) 

Equation 10 explains the global explanation fidelity by 
calculating the mean absolute difference between predictions 
from the model and surrogate usable model outputs. 

In this 𝐺ℎ is the global explanation fidelity score, 𝑧̂𝑙 is the 
prediction from the original model, for instance, 𝑧̃𝑙 is the 
prediction from an interpretable surrogate, for instance, and 𝑂 is 
the total number of evaluated instances. 

Algorithm 1: Remote-Sensed Intelligent Visual Analytics 
(RS-IVA) 

1. 𝐼𝑛𝑝𝑢𝑡𝑠: 𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝐺, 𝑈𝐴𝑉 𝑖𝑚𝑎𝑔𝑒𝑠 𝑈, 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑆𝑎𝑡𝑒, 𝑎𝑛𝑐𝑖𝑙𝑙𝑎𝑟𝑦 𝐴 
2. 𝑂𝑢𝑡𝑝𝑢𝑡𝑠: 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑚𝑎𝑝 𝑌𝑎𝑛𝑜𝑚 , 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠 𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 , 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝐸 

3. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑠 𝜃𝑒𝑛𝑐𝑚
, 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝑄 , 𝐾, 𝑉 

4. 𝐹𝑜𝑟 𝑏𝑎𝑡𝑐ℎ 𝐵: 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒, 𝑝𝑎𝑡𝑐ℎ𝑖𝑓𝑦, 𝑚𝑎𝑠𝑘 𝑚𝑖) 
𝑓𝑜𝑟 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑚 𝑖𝑛 {𝐺, 𝑈, 𝑆𝑎𝑡𝑒}: 

5. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛: 𝐸𝑚 =  𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑚(𝑖𝑛𝑝𝑢𝑡𝑠𝑚,𝜃𝑒𝑛𝑐𝑚) 

                                                        + 𝑃𝑜𝑠𝐸𝑛𝑐(𝑡) 
𝑓𝑜𝑟 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑚 𝑖𝑛 {𝐺, 𝑈, 𝑆𝑎𝑡𝑒}: 

6. 𝑆𝑒𝑙𝑓 − 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛: 𝑓𝑜𝑟 ℎ𝑒𝑎𝑑 ℎ 𝑖𝑛 {1. . 𝐻}: 
𝑄, 𝐾, 𝑉 =  𝐸𝑚@ 𝑊𝑄[ℎ,𝑚], 𝐸𝑚@ 𝑊𝐾[ℎ,𝑚], 𝐸𝑚@ 𝑊𝑉[ℎ,𝑚] 

𝐴 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 @ 𝐾. 𝑇

𝑠𝑞𝑟𝑡(𝑑𝑘)
) ; 𝐻ℎ =  𝐴 @ 𝑉 

𝐸𝑚 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑐𝑎𝑡(𝐻ℎ)@ 𝑊𝑂[𝑚] +  𝐸𝑚) 

7. 𝐶𝑟𝑜𝑠𝑠 − 𝑚𝑜𝑑𝑎𝑙 𝑓𝑢𝑠𝑖𝑜𝑛: 𝑋𝑎𝑙𝑙 =  𝐶𝑜𝑛𝑐𝑎𝑡(𝐸𝑚𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚) 
8. 𝑀𝑢𝑙𝑡𝑖 − ℎ𝑒𝑎𝑑 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛: 𝑓𝑜𝑟 ℎ𝑒𝑎𝑑 ℎ 𝑖𝑛 {1. . 𝐻}: 

𝑄, 𝐾, 𝑉 =  𝑋𝑎𝑙𝑙@𝑊𝑄[ℎ], 𝑋𝑎𝑙𝑙@𝑊𝐾[ℎ], 𝑋𝑎𝑙𝑙@𝑊𝑉[ℎ] 

𝐴 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄@𝐾. 𝑇

𝑠𝑞𝑟𝑡(𝑑𝑘)
) ; 𝐻ℎ =  𝐴@𝑉 

𝐹 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑐𝑎𝑡(𝐻ℎ)@𝑊𝑂 +  𝑋𝑎𝑙𝑙) 
9. 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛: 𝑌𝑎𝑛𝑜𝑚

=  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑃𝑜𝑜𝑙(𝐹)@𝑊𝑐𝑙𝑠 +  𝑏𝑐𝑙𝑠) 
10. 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔: 𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

=  𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝐹, ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 𝐻𝑝𝑟𝑒𝑑) 

11. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖𝑛𝑔: 𝑖𝑓 𝑌𝑎𝑛𝑜𝑚

≥  𝜏𝑎𝑛𝑜𝑚: 𝐴𝑙𝑒𝑟𝑡(𝑟𝑒𝑔𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒) 
12. 𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠: 𝐸 

=  𝐸𝑥𝑝𝑙𝑎𝑖𝑛(𝐹, 𝑌𝑎𝑛𝑜𝑚 , 𝑚𝑒𝑡ℎ𝑜𝑑
= {𝐺𝑟𝑎𝑑𝐶𝐴𝑀, 𝐼𝐺, 𝑆𝐻𝐴𝑃}) 

13. 𝑉𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑. 𝑢𝑝𝑑𝑎𝑡𝑒(𝑌𝑎𝑛𝑜𝑚 , 𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 , 𝐸) 

14. 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑜𝑠𝑠: 𝐿𝑜𝑠𝑠 

=  𝐵𝐶𝐸(𝑌𝑎𝑛𝑜𝑚 , 𝑌𝑔𝑡) +  𝜆1

∗ 𝑀𝑆𝐸(𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 , 𝑌𝑔𝑡) 

15. 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑢𝑝𝑑𝑎𝑡𝑒 ∶  𝜃 =  𝜃 −  𝜂 ∗ 𝛻𝐿𝑜𝑠𝑠 
16. 𝐹𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑌𝑎𝑛𝑜𝑚 , 𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 , 𝐸 
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The RS-IVA framework integrates multi-modal data from 
sensors, UAVs, and satellites using a hybrid deep learning 
approach with multi-head attention , as explained in Algorithm 
1. It detects anomalies, forecasts hazards, and generates 
explainable outputs. A dashboard visualizes results for 
stakeholders, while human feedback refines models. This 
system ensures transparency, adaptability, and accurate 
environmental monitoring for sustainable governance. 

 

Fig. 4. XAI Integration. 

The last aspect of the RS-IVA framework is depicted in 
Fig.4. This aspect applies decision insights from labeled 
environmental anomaly maps and previous components to 
produce explainable and trustworthy intelligence. This 
integrated component is the result of the outputs from anomaly 
detection processes and is integrated into visualization 
components, reasoning models, and user-centered interpretation 
components to ensure adequate transparency.  

Explainable AI can reveal some of the reasoning used in the 
predictive framework, which helps end-users understand the 
outputs from systems to verify or validate critical environmental 
phenomena. The framework is then conducive to informed 
decision-making by policymakers, researchers, and planners 
because it provides an interpretable element for producing 
actionable insights, offering relevant intelligence for hazard 
forecasts, resource allocation, and informing environmental 
governance. This aspect of the framework is also accountable 
for the trustworthy and actionable intelligence when building an 
operational ecological monitoring system.  

Grad-CAM demonstrated whether the areas of satellite or 
UAV pictures influenced the model's categorization decision. 
This technique emphasizes picture locations (e.g., deforested 
zones, pollution hotspots) that prompt a high-confidence 
prediction, allowing users to identify the environmental 
attributes the model prioritizes instantly. This visual input 
enhances the model's predictions, helping field specialists 
identify key areas for further study. SHAP quantified the impact 
of each input characteristic (e.g., vegetation index, air quality 
measures, temperature) on the final choice. The system shows 
users how environmental variables affect model output by 

giving SHAP values to each feature. In environmental 
monitoring, SHAP can illustrate the extent to which temperature 
or plant cover has increased or decreased, enabling the 
prediction of deforestation events and providing actionable 
insights into their causes.  

LIME was used to produce local explanations for individual 
predictions by approximating the model's behavior with simpler, 
interpretable models (e.g., linear regression) near an input. This 
approach was useful for real-time dashboard analysis because it 
allowed users to understand specific predictions (such as why a 
region was flagged for pollution monitoring) without needing to 
comprehend the complexity of the deep learning model. 

Dynamic visualization update rate 𝑉𝑒 is expressed using 
equation 11, 

𝑉𝑒 =
𝐹𝑟

𝑈𝑠

                                (11) 

Equation 11 explains the dynamic visualization update rate 
is calculated by dividing the number of queries conducted by the 
refresh interval, which determines the dashboard display update 
rate. 

In this 𝑉𝑒 is the dynamic visualization update rate, 𝐹𝑟 is the 
number of executed queries per refresh cycle, and 𝑈𝑠 is the 
dashboard refresh interval. The proposed RS-IVA framework 
employs a modular, distributed architecture to handle large-
scale, real-time data from diverse sensor modalities, thereby 
improving scalability over RMS and LCSI approaches. RMS 
and LCSI utilize centralized processing and static models, which 
struggle with large datasets and changing environmental 
conditions.  

In contrast, RS-IVA employs edge computing to handle data 
locally at the sensor level, thereby decreasing server load and 
improving response times. A distributed method allows the 
system to grow effectively by processing massive volumes of 
satellite, UAV, and ground sensor data concurrently without 
straining CPU resources. Due to its data fusion algorithms, RS-
IVA can easily incorporate additional sensor modalities and data 
sources without requiring retraining, thereby increasing its 
flexibility in responding to changing environmental conditions 
and monitoring demands. Due to their pre-defined models and 
centralized processing frameworks, conventional RMS and 
LCSI techniques struggle to scale to multi-sensor, multi-
resolution data.  

RS-IVA can expand to cover larger geographic regions and 
more complex monitoring tasks, as it can handle heterogeneous 
data in real-time. Cloud computing integration enables RS-IVA 
to analyze and store large datasets while ensuring data 
consistency and synchronization across remote systems. 
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Fig. 5. Interactive Visual Analytics Dashboard. 

Fig. 5 presents the RS-IVA visual analytics interface, which 
converts explainable decision insights and spatiotemporal data 
into interactive views for stakeholders. This visualization 
component comprises layers (different perspectives of the 
environment), dynamic graphs, and hazard simulations, 
providing stakeholders with the necessary information to 
enhance awareness and prediction capabilities. The dashboard is 
another interactive tool that helps policymakers, researchers, 
environmental managers, and interested stakeholders better 
understand anomalies, hazards, and mitigation strategies. The 
dashboard is also an interactive visualization that provides 
transparency and accessibility to complex data, serving as 
another form of grounded decision-making governance. Overall, 
this visualization component provides stakeholders with the 
level of actionable intelligence needed to identify challenges for 
sustainable planning, prepare for disasters, or manage long-term 
environmental tasks. 

User interaction effectiveness index 𝐽𝑓 is expressed using 

equation 12, 

𝐽𝑓 =
𝑆𝑗 × 𝐵𝑗

𝑜
                                    (12)  

Equation 12 explains the user interaction effectiveness index 
by summing weighted relevance-action ratings from all user 
interactions. 

In this 𝐽𝑓 is the user interaction effectiveness index, 𝑆𝑗 is the 

relevance score of the interaction, 𝐵𝑗  is the action execution 

success factor of interaction, and 𝑜 is the total number of user 
interactions considered. 

The RS-IVA framework effectively integrates ground 
sensors, UAV imaging, and satellite data through advanced 

analytical and visualization capabilities. It enables 
straightforward anomaly detection, spatiotemporal assessments, 
and outputs for stakeholders, including proactive environmental 
management, sustainable and responsible resource use, and 
disaster preparedness across a range of climates and geographic 
contexts. In the deforestation detection task, RS-IVA achieved a 
precision of 0.92, a recall of 0.89, and an F1-score of 0.90, 
outperforming the baseline Random Forest (RF) model, which 
obtained a precision of 0.84, a recall of 0.81, and an F1-score of 
0.82.  

For pollution hotspot detection, RS-IVA’s precision was 
0.88, recall was 0.85, and the F1-score was 0.86, surpassing the 
support vector machine (SVM) baseline, which had a precision 
of 0.75, recall of 0.70, and an F1-score of 0.72. Similarly, in 
land-cover change detection, RS-IVA achieved a precision of 
0.91, a recall of 0.87, and an F1-score of 0.89, compared to the 
k-nearest neighbors (KNN) model, which had a precision of 
0.78, a recall of 0.74, and an F1-score of 0.76. 

 

IV. RESULT AND DISCUSSION 

The RS-IVA framework is evaluated based on seven 
parameters, which are compared to current approaches (FLC, 
RMS, LCSI). The measures indicate that RS-IVA is highly 
accurate, adaptable, efficient, and usable, providing a very 
effective and scalable method for real-time and intelligent 
environmental monitoring. Multi-modal remote sensing data 
from satellite, UAV, and ground sensors must be harmonized 
before being input into the system for analysis. Data 
normalization, spatial alignment, and temporal synchronization 
from sensor inputs with variable resolutions and acquisition 
durations consume the majority of the pre-processing time. Pre-
processing each picture takes 4-5 seconds per frame, depending 
on data complexity.  

Compared to UAV photography, which has a resolution of 
0.5m per pixel, satellite photos with better spatial resolution 
(10m per pixel) require more computational work for 
normalization and alignment. Handling vast, diverse datasets 
affects the harmonization of computing overhead. Combining 
these disparate information into a cohesive model requires 10–
12% more processing time than utilizing a single data modality. 
Edge computing for local pre-processing offloads most of the 
computational strain from central servers, thereby reducing the 
associated cost. Parallel processing distributes the 
harmonization task across multiple nodes, thereby accelerating 
the handling of large-scale data. 

A. Dataset 

Kaggle Remote Sensing Satellite images are high-resolution 
satellite image data that are expected to be employed in 
geospatial and environmental analysis. It aids in activities such 
as land-use classification, urbanization monitoring, 
deforestation detection, and anomaly detection using machine 
learning and computer vision models.  

In every picture, a variety of landscapes are captured, 
providing variability in terms of vegetation, urban settings, and 
natural resources, which can be used to develop powerful 
classification and prediction systems. The data allows scientists 



Priya et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI, pp. 01 –14 (2025) 

 

9 

to experiment with algorithms in remote sensing, environmental 
surveillance, and AI-supported decision systems. It is a flexible 
instrument that can be applied to study sustainability planning 
and ecological governance [21]. Table II presents the remote 
sensing satellite images , along with their aspects and 
explanations.  

Real-time environmental monitoring and prediction 
activities benefit from the dataset's high-resolution satellite 
images of metropolitan areas, woods, water bodies, and 
agricultural regions. These characteristics enable RS-IVA to 
train and test its data fusion and forecasting skills across various 
landscapes, ensuring its scalability across different 
environments. A dataset with well-annotated land use and land 
cover labels is essential for training reliable algorithms to 
monitor environmental changes, including deforestation, 
pollution, and urbanization. The framework's compatibility with 
RS-IVA's land categorization and forecasting aims enables its 
effectiveness in varied environmental settings.  

RS-IVA's development is visible and repeatable due to the 
Kaggle dataset's openness, making it easy to evaluate and 
compare against environmental monitoring models. Since the 
dataset offers flexible data processing and fusion, additional 
sensor modalities can be incorporated into RS-IVA without 
requiring considerable retraining. The dataset's geographic 
properties enable real-time fusion with additional sensor data, 
such as data from UAVs and ground-based sensors, which RS-
IVA combines to provide a comprehensive perspective on 
environmental changes. 

TABLE II.  REMOTE SENSING SATELLITE IMAGES. 

Aspect Explanation 

Dataset Title Remote Sensing Satellite Images 

Source Kaggle (by Umer Adnaan) 

Domain Remote Sensing & Environmental Monitoring 

Content Satellite imagery for geospatial analysis, land-cover 
classification, and anomaly detection 

Relevance to 
RS-IVA 

Supports detection of deforestation, urbanization, 
and pollution using AI and visual analytics 

Use Case Training hybrid deep learning models, anomaly 
detection, spatiotemporal analysis 

Advantages Labeled, scalable, suitable for diverse geographic 
regions; compatible with Explainable AI (XAI) 

Contribution Provides foundational data for building multimodal, 
intelligent environmental monitoring systems 

 

B. Detection Accuracy  

Fig. 6 illustrates that Detection Accuracy refers to the 
system's ability to identify environmental abnormalities, such as 
deforestation, pollution, and urbanization. It evaluates the true 
positive rate (sensitivity) and the false positive rate (specificity) 
as being multimodal. A high level of detection is guaranteed to 
provide a high level of monitoring with few errors.  

 

Fig. 6. Analysis of Detection Accuracy. 

RS-IVA is a hybrid deep learning model that fuses sensor 
data to increase accuracy, outperforming other models in terms 
of misclassification and confidence in automated anomaly 
detection across diverse terrains and data sizes. In low-resource 
computing contexts, such as edge devices, RS-IVA strikes a 
balance between computational efficiency and real-time 
environmental monitoring. Processing power, memory, and 
storage limits on edge devices may limit computationally 
complex systems like RS-IVA. However, RS-IVA solves these 
restrictions in numerous ways. Before transferring only relevant 
data to central servers, the framework employs lightweight data 
preparation methods to compress images, aggregate sensor data, 
and extract features at the edge, thereby reducing computing 
effort. The amount of data processed and delivered is reduced, 
resulting in lower bandwidth consumption and latency.  

For resource-constrained devices, RS-IVA uses edge-based 
machine learning models. RS-IVA utilizes decision trees or 
shallow neural networks instead of complex deep learning 
models to provide accurate predictions without overstraining the 
edge device's resources. Model compression methods, such as 
quantization and pruning, reduce model size to make it suitable 
for devices with limited memory and processing capacity.  

RS-IVA handles continuous data streams in real-time 
without delays. Parallel processing across several edge nodes 
and distributed computing enable the system to run effectively 
and provide timely insights, even with limited resources. In low-
resource contexts, RS-IVA processed UAV images and sensor 
data quickly enough for anomaly identification and 
environmental monitoring, with just a little performance penalty 
compared to higher-capacity systems. 

Detection accuracy 𝛻𝐸 is expressed using equation 13, 

𝛻𝐸 = 1 −
𝐺𝑄 + 𝐺𝑂

𝑄 + 𝑂
                                      (13) 

Equation 13 explains the detection accuracy by comparing 
the false warnings and missing events to all instances. This 
metric calculates the frequency of accurate decisions, with 
values close to 1 denoting minimal judgment mistakes. 
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In this 𝛻𝐸 is the detection integrity index, 𝐺𝑄 is the count of 
false positives, 𝐺𝑂 is the count of false negatives, 𝑄 is the total 
true-positive cases, and 𝑂 is the total true-negative cases. 

C. Spatiotemporal Adaptability  

Fig. 7 illustrates the spatiotemporal adaptability of the RS-
IVA system, analyzed in terms of consistency and strength 
across the broadest geographical conditions and time periods. 
An effective monitoring system should also function effectively 
in forests, cities, deserts, and in the face of seasonal variations 
or climatic changes. This metric represents the framework's 
generalization capacity, ensuring that it does not require 
retraining on different regions. Compared to more traditional 
systems (FLC or RMS), RS-IVA is significantly more flexible 
due to relying on scalable data fusion algorithms and spatially 
aware AI models. 

 

Fig. 7. Analysis of Spatiotemporal Adaptability. 

Spatiotemporal adaptability 𝑏𝑡𝑢 is expressed using equation 14, 

𝐵𝑡𝑢 = 𝑋𝑡,𝑢∆𝑡,𝑢                                      (14) 

Equation 14 explains the spatiotemporal adaptability and 
average performance in operations  
𝑥𝑡,𝑢 is weighed according to the locality-novelty variables to 

measure the method's generalizability over epochs and 
geographic cells. 

In this 𝑏𝑡𝑢 is the spatiotemporal adaptability index, 𝑥𝑡,𝑢 is the 

novelty-weight for cell, and ∆𝑡,𝑢 is the performance measure at 

spatial cell. The system's spatiotemporal flexibility is measured 
by location and novelty. Locality refers to how well the present 
place or time aligns with model observations. Novelty quantifies 
the difference between the model's current environment and 
previous ones.  

Adaptability measures the model's ability to generalize 
across geographies and time periods by multiplying these two 
elements. If the model encounters a new environment with 
circumstances similar to those in its training data (low novelty, 
high locality), it should perform well, exhibiting good 

adaptability. Adaptability will be reduced if the model meets an 
area with markedly diverse circumstances (high novelty, low 
locality), indicating the difficulty of generalizing to new data. 
This method implies that location and novelty affect adaptation 
equally, albeit one may dominate the other depending on the 
tasks. 

D. Computational Efficiency 

Fig. 8 illustrates the computational efficiency of the RS-IVA 
system in terms of time and resource savings. It also involves 
three key metrics: time to process, memory usage, and power 
consumption in processing large datasets with UAVs, satellites, 
and sensors, which help explainability and Transparency (XAI 
Metrics).  

It enables the real-time monitoring of edge devices, both on 
cloud platforms and on actual computing infrastructure, and 
makes timely decisions without affecting performance or 
clogging the computing infrastructure. 

 

Fig. 8. Analysis of Computational Efficiency. 

Computational efficiency 𝑓𝑑 is expressed using equation 15, 

𝐹𝑑 =
𝑂𝑝𝑜𝑐

𝑃𝑝𝑟 × 𝑈𝑒𝑥𝑐

                                      (15) 

Equation 15 explains that the computational efficiency 
relevant metric for comparing models on fixed hardware is 
throughput per computational effort. 

In this 𝑓𝑑 is the computational economy, 𝑜𝑝𝑜𝑐 is the number 

of data instances processed, 𝑝𝑝𝑟 is the average arithmetic/logic 

operations consumed per instance, and 𝑢𝑒𝑥𝑐  is the total 
execution time. 

E. Explainability & Transparency (XAI Metrics)  

Fig. 9 illustrates the system's ability to explain its outputs to 
stakeholders, in contrast to black-box models such as LCSI. RS-
IVA is more applicable to high-stakes settings, including 
environmental policy, hazard response, and regulatory 
reporting. RS-IVA combines XAI technologies, such as 
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attention maps and decision paths, which provide insight into the 
process of concluding. This contrasts with black-box models, 
such as LCSI, which render RS-IVA more suitable for high-
stakes applications, including environmental policy, hazard 
response, and regulatory reporting. RS-IVA's integrated real-
time forecasting system uses spatial data fusion and real-time 
analytics, while the suggested model uses ARIMA and LSTM 
for time-series forecasting. Both models predicted deforestation, 
air quality, and water contamination in environmental 
monitoring tasks. Over various time periods, MAE and RMSE 
were utilized for assessment. The suggested model has a 2.1% 
RMSE for six-month deforestation forecasts, compared to 3.4% 
for the RS-IVA model. In real-time forecasting, RS-IVA made 
accurate short-term forecasts with a 0.8% MAE, whereas the 
suggested model had 2.3% for equivalent tasks. 

 

Fig. 9. Analysis of Forecasting Accuracy. 

Forecast fidelity 𝑔𝑔 is expressed using equation 16, 

𝐺𝑔 = 1 −
√1

𝑁
(𝑧𝑛 − 𝑧̂𝑛)2

𝑧 + ∁
                               (16) 

Equation 16 explains the forecast fidelity, where higher 
scores indicate more accurate forecasts , obtained by inverting 
the normalized root-mean-square deviation. 

In this 𝑔𝑔 is the forecasting fidelity, 𝑁 is the number of 

forecast instances, 𝑧𝑛 is the observed value, for instance, 𝑧̂𝑛 is 
the predicted value, for instance, 𝑧 is the mean of observed 

values, and ∁ is the tiny positive constant to stabilise the 
denominator. 

F. Forecasting Accuracy  

Fig. 10 illustrates the system's ability to forecast future 
environmental conditions, including pollution levels, 
deforestation rates, and trends in water scarcity. It evaluates 
short- and long-term forecasting using both real-time and 
historical data. RS-IVA utilizes deep temporal models and 
spatiotemporal data fusion to deliver highly precise forecasts. 
This approach is superior to traditional methods, such as RMS, 
which often exhibit limited predictive power. Successful 
predictions lead to preventive actions and effective policies in 

resource management. To enhance the experiment, LiDAR data, 
which provides very precise topographic information, was 
added using UAV and satellite data to identify terrain changes 
such as erosion and land subsidence. Hyperspectral sensors, 
which can detect multiple bands, have also been developed to 
monitor vegetation health and water quality. RS-IVA utilized 
data fusion methods to interpret and combine sensor data in real-
time, thereby smoothly incorporating these new sensor 
modalities. Specifically, sensor data normalization and 
alignment algorithms addressed discrepancies in data format, 
spatial resolution, and collection time. Since it utilized transfer 
learning and modular architectures, the system did not require 
retraining to incorporate sensor data into existing insights, 
without affecting the core model. 

 

Fig. 10. Analysis of Explainability and Transparency. 

Explainability & openness 𝑓𝑦 is expressed using equation 17, 

𝐹𝑦 =
𝛽𝑔𝑓𝑡ℎ + 𝛾 (1 −

𝑚𝑙𝑛

𝑀𝑚𝑥
)

𝛽 + 𝛾
                             (17) 

Equation 17 explains the explainability & openness 
composite score combining fidelity explanation and 
compactness to reward arguments that are both truthful and 
succinct. 

In this 𝑓𝑦 is the explainability–openness index, 𝛽, 𝛾 are the 

scalar weights, 𝑔𝑓𝑡ℎ is the fidelity of explanation to model, 𝑚𝑙𝑛 

is the length/complexity measure of explanation, and 𝑚𝑚𝑥 is the 
maximum acceptable explanation length. 

G. System Flexibility  

Fig. 11 illustrates that the system's flexibility is the extent to 
which the monitoring system can be reconfigured to 
accommodate new needs (such as the introduction of new 
sensors, new data formats, or new areas of monitoring). A 
flexible system is capable of updating without requiring 
retraining or redesign. RS-IVA is scalable, future-proof, with 
modular architectures and interoperable data ingestion layers. 

This is preferable to rigorous systems, such as FLC or RMS, 
which tend to be hard-coded and limited to specific types of 
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configurations. Long-term deployment requires flexibility in 
changing environments. 

 

Fig. 11. Analysis of System Flexibility. 

System malleability 𝑛𝑚 is expressed using equation 18, 

𝑁𝑚 =
𝐷𝑝𝑢𝑔

𝐷𝑡𝑜𝑙

×
1

1 + 𝑢𝑟𝑐𝑛𝑓

                         (18) 

Equation 18 explains the system malleability scaling the 
fraction of connected devices via inverse reconfiguration. The 
system's ability to adjust to changes in architecture is measured 
by latency. 

In this 𝑛𝑚 is the malleability measure, 𝑑𝑝𝑢𝑔 is the count of 

interchangeable modules, 𝑑𝑡𝑜𝑙 is the total modules in the system, 
and 𝑢𝑟𝑐𝑛𝑓 is the average reconfiguration time. RS-IVA's 

computational efficiency was assessed by evaluating data fusion 
and analysis processing time on GPU and CPU platforms. On a 
standard setup with NVIDIA Tesla V100 GPUs and Intel Xeon 
CPUs, the RS-IVA framework processed satellite data in 0.35 
seconds per image and UAV data in 0.28 seconds per frame on 
the GPU, outperforming the CPU in 2.1 seconds and 1.8 
seconds, respectively. The framework may utilize GPU 
acceleration for real-time data processing, making it well-suited 
for large-scale deployments with high data throughput. A typical 
32GB RAM machine was used to monitor memory usage during 
the execution of the RS-IVA framework.  

The system's max memory footprint for real-time fusion of 
UAV, satellite, and ground sensor data was 4.5GB, including 
data pretreatment and fusion. When LiDAR and hyperspectral 
sensors were added, the memory footprint reached 6.2GB. This 
increase is reasonable, as the system is modular and allocates 
RAM efficiently based on the sensors. GPU and CPU power 
meters measured power usage. The GPU-based arrangement 
used 220W during heavy data processing, whereas the CPU-
based system used 180W. When adding LiDAR sensors, the 
GPU power usage increased to 240W. The computational 
difficulty of processing denser sensor data in real time drives 

this power rise. RS-IVA was more power-efficient than CPU-
based systems due to the GPU's strong parallelism, making it 
superior for continuous, large-scale environmental monitoring. 

H. User Engagement  

Fig. 12 illustrates that the User Engagement measures the 
effectiveness with which stakeholders interact with the system, 
utilizing both visual and analytical tools. It entails usability, 
responsiveness of the dashboard, and decision support. RS-IVA 
features an interactive visual analytics dashboard that enables 
intuitive exploration of spatiotemporal trends and system 
outputs. RS-IVA has been shown to enhance active user 
engagement, facilitate faster information dissemination, and 
support more informed decision-making compared to traditional 
and relatively stagnant reporting systems , such as RMS or 
LCSI, playing a significant role in emergency responses, 
environmental planning, and community-based governance. 

 

Fig. 12. Analysis of User Engagement. 

User engagement 𝑣ℎ is expressed using equation 19, 

𝑉ℎ =
1

𝑂
(𝐸𝑗 × 𝐵𝑗 + 𝑙 × 𝑔𝑗)                         (19) 

Equation 19 explains the user engagement average for each 
user,a composite combination of the frequency bonus, 
interaction intensity, and session duration , which weights repeat 
engagement. 

In this 𝑣ℎ is the aggregate engagement index, 𝑂 is the 
number of users sampled, 𝑒𝑗 is the session duration for user, 𝑏𝑗 

is the interaction intensity for user, 𝑔𝑗 is the revisit frequency for 

the user, and 𝑙 is the frequency weight. 

Remote-sensing image utility 𝑗𝑠 is expressed using equation 
20, 

𝐽𝑠 =
𝑆𝑡 × 𝑇𝑂𝑆 × 𝑏𝑑

1 + 𝑞𝑐𝑙𝑢𝑑

                                    (20) 
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Equation 20 explains the remote-sensing image utility as 
geographical granularity increases, utility increases ground 
coverage, signal purity and but is diminished by the likelihood 
of cloud obscuration. 

In this 𝑗𝑠 is the image utility index, 𝑠𝑡 is the nominal spatial 
resolution reciprocal to make a higher resolution larger, 𝑇𝑂𝑆 is 
the signal-to-noise ratio of the image, 𝑏𝑑 is the area coverage, 
and 𝑞𝑐𝑙𝑢𝑑 is the fractional cloud cover probability. 

It shows that RS-IVA is superior in all the measured 
parameters. It is most appropriate when the situation requires 
dynamism due to its high hit rate, ability to perform 
computations, and spatiotemporal flexibility. Improved 
explainability, predictive accuracy, system adaptability, and 
user interaction further make RS-IVA a new generation of 
environmental governance, grounded in data and sustainability. 

The RS-IVA framework provides actionable insights from 
continuous environmental monitoring data, enabling easy 
connection with real-time policy decision procedures. RS-IVA 
can quickly identify environmental abnormalities, including 
deforestation, air pollution, and water quality deterioration by 
integrating real-time sensor data streams from UAVs, satellites, 
and ground sensors. These insights are analyzed in real-time and 
delivered directly into policymakers' and environmental 
authority decision support systems (DSS). Explainable AI (XAI) 
approaches, such as SHAP and LIME, provide explicit and 
transparent logic behind forecasts, enabling policymakers to 
trust and comprehend data-driven decisions.  

Real-time projections from RS-IVA enable proactive policy 
responses. If the system predicts a pollution increase or 
deforestation event, it may send notifications and suggest 
mitigation measures. Policymakers, local governments, and 
environmental groups may receive these notifications 
immediately to issue public health warnings or allocate 
conservation resources. The system updates data and insights as 
fresh sensor data is collected, enabling policies to react to 
changing environmental circumstances. RS-IVA's cloud 
platform integration enables stakeholders to access data and 
analytics, facilitating collaborative decision-making across 
governance levels. RS-IVA streamlines crucial environmental 
data and projections into policy decision-making processes, 
enabling the development of timely, well-informed, and 
scientifically sound solutions. 

UAV images for environmental monitoring are difficult in 
severe rain, fog, or high winds. These circumstances may cause 
motion blur, limited visibility, and low resolution. Flight 
instability and difficulties maintaining altitude or position in 
rough weather may potentially lead to errors in UAV data 
collection. Poor weather conditions may increase sensor noise, 
thereby affecting the reliability of image-based feature 
extraction. Advanced data pre-processing, sensor fusion, and 
robust modeling help RS-IVA overcome these constraints. The 
framework utilizes image enhancement algorithms to minimize 
noise and improve picture quality in adverse weather conditions. 
RS-IVA combines data from satellite and ground sensors to 
supplement UAV images when it is degraded, using multi-
sensor fusion. Satellite data may offer wider geographical 
coverage if UAV data is incorrect, while ground sensors can 

provide weather-insensitive observations of air quality and 
temperature. RS-IVA predictive modeling uses interpolation 
and temporal synchronization to correct for missing or distorted 
data. 

RS-IVA collects sensitive data from UAVs, satellites, and 
ground sensors, making privacy and security a crucial concern. 
For GDPR compliance, data anonymization and secure transfer 
mechanisms safeguard personal and environmental data. Since 
system performance may vary by area, algorithmic bias must be 
addressed. RS-IVA leverages Explainable AI (XAI) tools, such 
as SHAP and LIME, to provide transparency and mitigate 
disproportionate effects on certain communities or ecosystems 
through bias audits. In areas where monitoring may impact local 
livelihoods, community engagement is essential.  

Social acceptability and local relevance need informed 
consent and stakeholder engagement. In policy, RS-IVA must 
fit with environmental governance frameworks like the UN 
SDGs or national climate policies. Local airspace, data 
exchange, and environmental rules must be followed. 
Policymakers must ensure that RS-IVA results support 
evidence-based decision-making without compromising 
national sovereignty. As environmental issues typically 
transcend borders, cross-border coordination is essential. Policy 
must facilitate international data exchange while maintaining 
data ownership and use rights. Finally, RS-IVA must be 
incorporated into local infrastructures with accountability and 
sustainability in mind. To maintain system efficacy and 
empower local stakeholders, promoting open-source models and 
capacity-building initiatives is essential. 

V. CONCLUSION AND FUTURE WORK 

This paper highlights the revolutionary effect of smart and 
information-driven systems in environmental surveillance. The 
proposed RS-IVA framework, which utilizes multiple modes of 
remote sensing (satellite-based imaging, UAV imaging, and 
ground sensors), combined with hybrid deep learning and XAI, 
can detect anomalies with high accuracy, flexibility, and 
transparency. RS-IVA offers better spatiotemporal flexibility, 
higher forecasting quality, and enhanced user interaction 
through its interactive visual analytics dashboard, surpassing 
traditional methods that include Fuzzy Logic Control, Reservoir 
Monitoring Systems, and low-cost sensing networks. These 
characteristics qualify it as a strong tool in addressing global 
problems such as deforestation, urbanization, water pollution, 
and air quality degradation. 

The next step in future research is to expand RS-IVA to a 
heterogeneous and dynamic environment with minimal 
computational cost. Federated learning and edge AI are 
approaches that address privacy issues and reduce reliance on 
centralized infrastructure in the future. Increasing field 
experiments beyond simulated conditions will strengthen and 
enhance the framework's reliability. In addition, establishing 
standards to develop global data interoperability, sensor 
calibration, and visualization practices can help build trust, 
comparability, and mass adoption. Lastly, a greater convergence 
of human decision-makers, AI systems, and policy frameworks 
will lead to the realization that intelligent monitoring 
technologies can be effectively integrated to play a crucial role 
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in sustainable environmental management and long-term 
ecological balance. 
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