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Abstract

Cloud computing has become the backbone of digital ecosystems, but growing workloads intensify challenges in resource optimization,
virtual machine (VM) migration, and security assurance. Existing studies often address these issues in isolation, limiting their practical
applicability. This paper presents a unified framework that integrates three complementary components: (i) an Improved Modified
Particle Swarm Optimization (IMPSO) algorithm with adaptive inertia scheduling and dynamic mutation control, which outperforms IPSO
in convergence speed and load distribution accuracy; (ii) a machine learning-assisted hybrid live VM migration method with dirty-page
clustering and workload prediction to minimize downtime; and (iii) a blockchain-enabled secure migration layer to ensure tamper-proof
and auditable state transfer. The revised version of this study includes statistical validation (confidence intervals, t-tests) and attack
simulation experiments (e.g., man-in-the-middle and replay attacks) to ensure methodological rigor and realistic security assessment.
Experimental results on a real XenServer testbed show that the proposed system improves response time by ~30%o, reduces migration
downtime by ~60%, and ensures 100% migration integrity with <15% security overhead. Overall, this work represents among the first
unified frameworks that jointly optimize resource allocation, downtime reduction, and blockchain-based security in a practically
validated, end-to-end cloud migration environment.

Keywords: Cloud Computing, Load Balancing, Virtual Machine Migration, IMPSO, Blockchain Security.
Received: September 16, 2025 / Revised: October 30™, 2025 / Accepted: November 09", 2025 / Online: November 171, 2025

I.  INTRODUCTION B. Importance of Resource Optimization, Load Balancing,

and VM Live Migration

Efficient resource management is at the heart of sustainable
cloud computing. As workloads continue to grow, diversity, and
complexity, cloud providers must ensure that resources such as
CPU, memory, and bandwidth are optimally allocated to meet
service-level agreements (SLAs) [8]. Resource optimization
ensures that computational tasks are distributed in a way that
maximizes utilization without overloading servers, thereby

A. Evolution of Cloud Computing and Virtualization

Cloud computing has emerged as one of the most
transformative paradigms in information technology, enabling
organizations and individuals to access computing resources on
demand through a pay-as-you-go model [1].

The introduction of virtualization addressed these challenges
by abstracting physical resources into virtual machines (VMs)

[1, 3, 4], thereby improving hardware utilization and reducing
infrastructure expenditures. Hypervisors, particularly Type-1
hypervisors such as XenServer, became central to this
transformation, as they allowed multiple VMs to run
concurrently with isolation, flexibility, and high performance.
Over time, cloud computing evolved into Infrastructure-as-a-
Service (laaS), Platform-as-a-Service (PaaS), and Software-as-
a-Service (SaaS), enabling diverse deployment models across
public, private, and hybrid clouds [1,5,6,7,8,10].
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enhancing overall system performance and reducing operational
costs. Load balancing plays a vital role in this regard, as it
distributes incoming tasks across multiple servers or VMs to
maintain stability, minimize bottlenecks, and improve user
response times [17,19].

C. Challenges: Latency, Downtime, Response Time, and
Security

Cloud computing offers many benefits but faces key
challenges impacting its performance and reliability. Latency, or
data transmission delay, affects real-time applications like
gaming and video conferencing [1, 2, 4, 5]. Downtime during
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VM migration disrupts services, as pre-copy and post-copy
methods struggle with large workloads and frequently modified
memory pages [4, 5]. Response time also degrades under heavy
loads or poor resource allocation [5, 7]. Security remains critical
during live VM migration, as sensitive data may be intercepted
or attacked [6]. Although encryption and tunneling reduce risks,
they add computational overhead. Balancing latency, downtime,
response time, and security is essential for efficient cloud
systems [11].

D. Motivation to Integrate PSO-Based Optimization with
Secure Live VM Migration Strategies

To overcome these challenges, intelligent and secure
strategies integrating optimization, workload management, and
security are essential. Particle Swarm Optimization (PSO) and
its variants, such as Improved PSO (IPSO) and Modified PSO
(IMPSO), effectively address complex optimization problems
by simulating social behaviors [12,14,16]. These algorithms
enable efficient load balancing and resource allocation by
dynamically  distributing tasks based on  workload
characteristics. When combined with machine learning for
workload prediction, PSO-based methods enhance response
time and reduce bottlenecks. Hybrid live VM migration
strategies integrating pre- and post-copy techniques minimize
downtime [7, 8, 9], while blockchain ensures secure, tamper-
proof, and decentralized data transfer, improving overall cloud
reliability and security.

E. Background, Research Gap, and Contributions

Despite advances in load balancing, VM migration, and
cloud security, most studies treat these challenges separately.
PSO and its variants (e.g., IPSO, IMPSO) enhance resource
allocation but often neglect migration efficiency and data
security. Hybrid migration methods reduce downtime yet
overlook vulnerabilities, while blockchain frameworks ensure
integrity but ignore performance optimization—resulting in
fragmented solutions unsuitable for large-scale environments.

What’s New in IMPSO: The proposed IMPSO algorithm
enhances IPSO through adaptive inertia reweighting, nonlinear
velocity clamping, and mutation-driven diversity, preventing
premature convergence and improving exploration. These yield
15-20% faster convergence and reduced response-time
variance. Key Contributions:

1. IMPSO-based dynamic load balancing improving
convergence and utilization.

2. ML-assisted hybrid VM migration achieving ~60%
downtime reduction.

3. Blockchain + lightweight encryption ensuring secure
migration with <15% overhead.

4. Real XenServer validation showing ~30% faster response

and 100% migration integrity.

Il.  LITERATURE REVIEW

In [23], This paper addresses the security challenges of cloud
multitenancy, where multiple users share the same resources,
creating vulnerabilities to cross-tenant attacks. The authors
propose a resource allocation framework based on Particle
Swarm Optimization (PSO) to mitigate such risks. The approach
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dynamically allocates virtualized resources by balancing
workload distribution with security considerations.

In [24] This systematic review investigates load balancing in
cloud computing, with a focus on metaheuristic-based dynamic
algorithms. Load balancing is crucial for optimizing resource
utilization, minimizing response time, and preventing server
overload. The authors examine numerous algorithms, including
Genetic Algorithms, Ant Colony Optimization, Particle Swarm
Optimization, and Artificial Bee Colony methods, highlighting
their adaptability to fluctuating workloads.

A. Overview of Cloud Computing Paradigms

Cloud computing is widely recognized as the backbone of
modern digital services, enabling organizations to scale
resources dynamically, reduce capital expenditures, and
improve service delivery [16]. laaS provides users with
virtualized hardware resources, allowing them to deploy
operating systems and applications flexibly [12,13,14]. PaaS
offers a development and deployment environment where users
can focus on application design without managing the
underlying infrastructure [16]. SaaS delivers software
applications directly over the internet, eliminating the need for
local installations.

B. XenServer as a Type-1 Hypervisor for Virtualization

At the core of cloud computing lies virtualization, which
abstracts physical computing resources into multiple virtual
instances. XenServer, developed from the Xen Project, is a
Type-1 hypervisor that runs directly on hardware, thereby
offering higher efficiency and security compared to Type-2
hypervisors [4, 5, 6], which run atop a host operating system. As
a bare-metal hypervisor, XenServer manages the allocation of
CPU, memory, and 1/O devices among multiple VMs, ensuring
isolation and efficient use of physical hardware [17]. Its open-
source nature, combined with strong community support, makes
XenServer a preferred choice in both academic research and
enterprise deployments.

C. Existing Techniques for Resource Management and
Migration

Research on cloud resource management has explored load
balancing, VM migration, and security, yet often in isolation.
Load Balancing: Metaheuristic algorithms such as PSO, Genetic
Algorithm, Ant Colony Optimization, and Artificial Bee Colony
are widely used for workload distribution [12]. Variants like
IPSO and IMPSO enhance convergence and adaptability [17,18]
but overlook migration efficiency and security [19].

VM Live Migration: Traditional pre-copy and post-copy
methods struggle with downtime and total migration time.
Optimizations like eBPF-based paravirtualization and dirty-
page similarity detection [11,19], or ML with selective
encryption [20], improve performance but lack integrated
security and global optimization [21].

Security: Blockchain ensures tamper-proof VM transfer
[22], and lightweight cryptography minimizes overhead, yet
both remain underutilized in live migration [22].

Edge and Container Migration: Studies [2,11,18,22]
highlight latency and orchestration challenges at the cloud—edge
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continuum but focus on containers without
optimization or blockchain security.

integrating

D. Research Gaps and Novelty of This Work

Despite extensive research on load balancing, VM
migration, and security, most prior works treat these challenges
in isolation. For example, PSO-based methods improve task
allocation but do not secure migration, while blockchain-
enhanced frameworks protect migration but neglect
optimization. Even studies integrating machine learning with
migration strategies typically overlook end-to-end performance
and trust guarantees.

a). Key Gaps Identified:

Lack of a unified framework that simultaneously
addresses optimization, downtime reduction, and
security.

Limited real testbed validation; most studies rely on
simulations or partial prototypes.

Insufficient consideration of scalability and mission-
critical applicability in existing solutions.

b). Novelty of This Work:
This study bridges the above gaps by proposing a
comprehensive framework that:

1. Employs IMPSO-based load balancing for dynamic CPU
and memory allocation, outperforming standard
PSO/IPSO.

Enhances live VM migration using a hybrid approach with
ML-based workload prediction and dirty page clustering,
reducing downtime by ~60%.

Incorporates a blockchain + lightweight encryption
security model to guarantee tamper-proof and confidential
VM state transfer.

Validates the approach on a real XenServer testbed,
demonstrating ~30% improvement in response time with
<15% overhead.

I1l.  METHODOLOGY / PROPOSED FRAMEWORK

The proposed methodology integrates intelligent load
balancing, optimized live VM migration, and secure migration
mechanisms into a unified framework for cloud environments.
The framework is designed to operate on a XenServer-based
virtualization platform, leveraging optimization algorithms,
machine learning techniques, and blockchain for performance
and security enhancement.

A
a)

Load Balancing and Resource Offloading

Use of PSO, IPSO, and IMPSO Algorithms: Load
balancing in cloud computing ensures that workloads are
evenly distributed across multiple servers to avoid
bottlenecks and maximize utilization. Traditional
algorithms such as round-robin and least-loaded scheduling
are often ineffective under dynamic workloads due to their
inability to adapt to rapidly changing resource demands. To
overcome this limitation, swarm intelligence techniques
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such as Particle Swarm Optimization (PSO) and its variants
have been widely adopted [15,20].

PSO operates on the principle of collective intelligence,
where a swarm of “particles” explores the solution space to find
an optimal or near-optimal solution. Each particle represents a
potential allocation of tasks to VMs, and its position in the
search space is updated iteratively based on its own best
experience (personal best) and the best solution found by the
swarm (global best) [21]. The velocity update equation in
standard PSO is expressed as:

vitt = wvf + oy (P?eSt - xzt) +on(g*™ —x) @
xf*t = xf + vt )
Where:

e v} = velocity of particle i at iteration t.

e x} = position of particle i.

best

p; = personal best solution of particle i.

" = global best solution among all particles.
¢;, ¢, = cognitive and social learning factors.
ry, 7, = random numbers in [0,1].

w = inertia weight controlling exploration vs
explation.

Improved PSO (IPSO) enhances this by dynamically
adjusting inertia weight and learning coefficients based on
system load patterns, ensuring faster convergence and reduced
chances of local minima. Improved Modified PSO (IMPSQ)
[21] extends this by incorporating mutation strategies and
adaptive velocity clamping, leading to better exploration of the
solution space. These enhancements make IPSO and IMPSO
suitable for highly dynamic cloud workloads, where real-time
adaptation is crucial.

b) CPU and RAM Utilization Models: Efficient task
allocation requires accurate modeling of CPU and memory
utilization. Each task is characterized by computational
requirements (measured in Millions of Instructions Per
Second, MIPS) and memory demand (MB). Let Upy and
Ugpay denote CPU and memory utilization of a host,
respectively:

™, MIPS( task .

Ucpy = — ( l) 3)
TotalMIPS( host )
., RAM( task ;)

Uram = (4)
TotalRAM( host )

The objective is to minimize the imbalance across all hosts,
defined as:

(5)

Imbalance = maX(Ucpu, URAM) - min(Ucpu, URAM)
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PSO/IPSO/IMPSO aim to minimize imbalance while
maximizing throughput. Table | present the CPU and RAM
Utilization, before and after optimization.

TABLE I. CPU AND RAM UTILIZATION BEFORE AND AFTER
OPTIMIZATION USING PSO, IPSO, AND IMPSO
CPU CPU RAM RAM
Algorithm  Utilization Utilization Utilization Utilization
Before (%) After (%) Before (%) After (%)
PSO 785 62.3 81.2 65.7
IPSO 79.1 59.8 82.0 63.4
IMPSO 80.4 55.6 83.5 60.2

B. Comparative Evaluation of Task Allocation Efficiency

To evaluate efficiency, experiments measure average
response time, makespan (total completion time), throughput,
and SLA violation rate. Results consistently demonstrate that
IMPSO achieves higher resource utilization with reduced
response time compared to PSO and IPSO as shown below in
Fig. 1 and Table Il Consist comparative results of load balancing
efficiency for sample workloads.

250
200
150

100

Response Time (ms)

50

PSO IMPSO

Algorithms

Fig. 1. Graph comparing Response Time under PSO, IPSO,IMPSO

PSO

TABLE II. COMPARATIVE RESULTS OF LOAD BALANCING EFFICIENCY
FOR SAMPLE WORKLOADS

Workload PSO Efficiency (%) IPSO Efficiency (%) IMPSO Efficiency (%)
W1 724 78.6 84.3
w2 70.8 76.9 82.7
W3 74.1 79.2 85.1
W4 73.0 77.8 83.9
Average 72.6 78.1 84.0

C. Live VM Migration Optimization

Pre-copy, Post-copy, and Hybrid Techniques: Live VM
migration is essential for redistribution, fault tolerance, and
energy conservation in cloud environments.

Pre-copy Migration: VM state is transferred iteratively
while VM runs on the source host. Dirty pages
(frequently modified memory) are resent, causing long
total migration times.

Post-copy Migration: Minimal state (CPU registers,
memory metadata) is transferred first, and VM resumes
on the destination. Remaining pages are fetched on
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demand, leading to reduced total migration but higher
risk of page faults.

Hybrid Migration: Combines pre-copy and post-copy to
minimize both downtime and migration time. Initial bulk
transfer (pre-copy) is followed by selective on-demand
fetching (post-copy), ensuring reduced latency and better
reliability.

Fig. 2 shows Comparative diagram of Pre-copy, Post-copy,
Hybrid VM migration

Iterative
memory —>» Stop VM —> Resume
\__transfer—/
Minimal Demand
Stop WM “tate paging
\_transfer—/
Initial Stop VM Post-copy
pre-copy ’ remaining
\__pages—/

Fig. 2. Comparative diagram of Pre-copy, Post-copy, Hybrid VM migration

D. Machine Learning for Workload Prediction

Workload patterns in cloud systems are highly dynamic.
Machine learning models, such as LSTM (Long Short-Term
Memory) networks and regression-based predictors, can
forecast workload intensity and memory modification rates.
These predictions guide the migration process by pre-identifying
high dirty-page VMs, enabling efficient scheduling [22].

For example, if predicted CPU utilization exceeds 80%, the
VM is flagged for proactive migration. ML-based migration
scheduling reduces SLA violations by anticipating resource
contention before bottlenecks occur [23]. Fig. 3 shows
Flowchart of ML-assisted hybrid VM migration strategy.

Collect system
metrics
Select migration
algorithm

Pre-copy
migration?

Yes

Perform
pre-copy

Perform
post-copy
migration

Fig. 3. Flowchart of ML-assisted hybrid VM migration strategy

migration
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E. Dirty Page Clustering for Latency Reduction

A major performance bottleneck in VM migration [24] is the
handling of dirty pages. Instead of treating all pages equally,
dirty page clustering groups frequently modified memory
regions and prioritizes their transfer. This minimizes
retransmission overhead and reduces downtime. Clustering
algorithms such as K-means or hierarchical clustering can be
applied to identify high-update regions.

The optimized transfer model is expressed as:
Total Memory — Clustered Dirty Pages

Bandwidth
Clustered Dirty Pages

Enhanced Bandwidth ©
This approach reduces both total migration time and
downtime compared to traditional page-by-page transfer which
is shown below in Table IlI.

Migration Time

TABLE Ill. COMPARATIVE RESULTS OF LOAD BALANCING EFFICIENCY
FOR SAMPLE WORKLOADS

Workload Migration Time without Migration_Time with  Improvement
Clustering (ms) Clustering (ms) (%)
w1 520 410 21.2
W2 600 470 217
W3 580 455 21.6
W4 610 480 213
Average 577.5 453.8 21.5

F. Security in VM Migration

Blockchain Framework for Tamper-Proof Migration Records:
Live VM migration is vulnerable to man-in-the-middle attacks,
replay attacks, and tampering during state transfer [24]. To
address this, a blockchain-based security framework is
introduced. Each migration event is recorded as a block
containing:
Source host ID
Destination host ID
Timestamp
Hash of VM state data

These records form an immutable ledger that prevents
tampering and provides accountability. Smart contracts ensure
that only authenticated hosts can initiate or validate migration
requests. Fig. 4 shows Blockchain-enabled secure VM
migration framework

Blockchain-enabled Secure
VM Migration Framework

Source VM | pigration Target VM
Q Request % Q
_— —_—

Blockchain
Authorization
Validator
Q VM Migration

Fig. 4. Blockchain-enabled secure VM migration framework
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G. Encryption Methods to Ensure Data Confidentiality

While blockchain ensures integrity and authenticity,
encryption ensures confidentiality. Symmetric key algorithms
(e.g., AES-256) can encrypt VM state data before transmission,
while TLS-based secure channels protect communication. To
reduce encryption overhead, lightweight cryptography (e.g.,
ChaCha20) may be adopted [24].

The encryption model can be expressed as:

Ency (VMState) =C @)

(8)

Where K is the secret key, CCC is ciphertext, and VMstate IS
the original VM state. Integration with blockchain ensures that
keys are securely distributed using smart contracts.

Table IV shows Performance Overhead of AES vs.
Lightweight Encryption Methods During VM Migration.

Decy ©) = V Mstate

TABLE IV. Performance Overhead of AES vs. Lightweight Encryption
Methods During VM Migration
Encryption Migration Utiﬁsaléion Memory Security
Method Time (ms) %) Overhead (%)  Strength
AES-256 .
(Standard) 650 78 12 Very High
AES-128 600 72 10 High
SPECK
(Lightweight) 480 55 7 Moderate
PRESENT Moderate-
(Lightweight) 500 58 8 High
LEA .
(Lightweight) 470 53 6 High
H. Integrated Framework

The proposed framework combines IMPSO for load
balancing, ML-enhanced hybrid migration for performance, and
blockchain + encryption for secure migration into a unified

system [23]. Implemented on XenServer, it ensures:
¢ Reduced response time (via optimized load balancing).

e Lower downtime and migration latency (via ML + dirty

page clustering).

Strong confidentiality and integrity (via blockchain +
encryption).

Fig. 5 shows final integrated framework architecture.
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VM Migration
Request

i

Authentication

Encryption

L]
Uil

Migration

U

Fig. 5. Final integrated framework architecture.

I.  Reproducibility and Configuration Details

To ensure reproducibility and transparency, all experimental
parameters and system configurations are explicitly detailed
below in Table V and Table VI shows Machine Learning Model
for Workload Prediction.

TABLE V. PSO, IPSO, AND IMPSO PARAMETER SETTINGS
Parameter PSO IPSO IMPSO (Proposed)
P_opulatlon 30 30 30
size
Iterations 100 100 100
Inertia weight 0.9 — 0.4 (linear Adaptive Adgptlye nonllnear
W) decay) (0.9-0.5) reweighting (w= 0.9 —
T 0.5%e"(-0.05xiter))
Cognitive
coefficient 2.0 2.0 1.8
()
Social
coefficient 2.0 2.0 2.2
(c2)
. Adaptive velocity
?{;Iiczglty +0.6 +0.6 clamping based on
population diversity
Mutation 0.05 (applied when
probability - - stagnation > 5
iterations)
Weighted sum of
Fitness response time,
function utilization, and SLA Same Same
violation rate
TABLE VI. MACHINE LEARNING MODEL FOR WORKLOAD PREDICTION
Parameter Specification
Model Type Long Short-Term Memory (LSTM) neural

network

Historical CPU utilization, memory usage,
1/0 throughput, and migration frequency

10,000 time-series samples collected from
XenServer monitoring logs

Input Features

Dataset Size
Train/Validation/Test
Split

Sequence Length
Loss Function

70% / 20% / 10%

50 time steps
Mean Squared Error (MSE)
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Parameter Specification
Adam (learning rate = 0.001)

Root Mean Square Error (RMSE) = 0.042;
Mean Absolute Error (MAE) = 0.031

TensorFlow 2.12 (Python 3.9)

Optimizer
Evaluation Metrics

Implementation

The LSTM model predicts CPU and memory load trends to
proactively trigger VM migration. Its prediction error (RMSE <
0.05) ensures reliable scheduling decisions for the hybrid
migration layer.

J. Dirty Page Clustering Algorithm

Dirty page clustering is implemented using K-means
clustering (K = 3), which groups memory pages based on
modification frequency and access locality. Feature vectors
include:

o Page write frequency,

Access interval,

e Page size, and

Recency of modification.

The clustering frequency is set to once per migration cycle,
with a computational overhead of <2%. Clustering reduces
redundant retransmissions, achieving an average 21.5%
migration time improvement.

Table VII shows Blockchain Network Configuration.

TABLE VII. BLOCKCHAIN NETWORK CONFIGURATION
Parameter Configuration
Platform Hyperledger Fabric v2.5
Consens_us RAFT (crash fault-tolerant)
Mechanism
Peers / Orderers 5 peers, 3 orderers
Block Time 2 seconds
Block Size 500 transactions

Endorsement Policy Majority (>3 of 5 peers)

Manage key exchange, access control,
and migration event logging

ChaCha20 (128-bit key) integrated via
OpenSSL

Session keys generated and rotated per
migration event via Fabric chaincode

Smart Contracts
Encryption Layer

Key Management

Average Blockchain 210 transactions/sec under testbed
Throughput conditions
This  configuration ensures strong integrity and

confidentiality guarantees while maintaining acceptable
performance overhead (<15%). Smart contracts enforce
authenticated initiation of migration and automatic logging of
events for auditability.
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IV. MATHEMATICAL MODELS AND ALGORITHMS

A. Equations for CPU Utilization, Response Time, and
Migration Downtime

a) CPU and RAM Utilization

For a host H; running n tasks:

iy MIPS( task )

Ueru () = MIPS(H,) ©)
]
=1 RAM( task ;
Uran () = lRAM(I(-[.) ) (10)
)
where:

e MIPS (task ;) = computational requirement of task i,
e MIPS(H;) = total CPU capacity of host j,

e RAM(task ;) = memory demand of task i,

e RAM(H;) = total available RAM of host j.

b) Response Time
The response time for a task i assigned to VMk is defined as:

L

RT, =W, + ————— 11
i WlJ’MIPS(VMk) an

where:

e W, = waiting time of task i,
e L, = length of task i in Million Instructions (M),
e MIPS(VM,) = processing speed of VM k.
The average response time is:
i=1 RT;

RTypg = _T (12)

c) Migration Downtime
In live migration, downtime D is defined as:

M,
D= ?p + Tswitch (13)

where:
e My, = size of dirty pages to be transferred during
stop-and-copy,
e B = available bandwidth,

o T = Switchover time between source and
destination hosts.

The total migration time is:

Mt tal
Tmig = ;a

+R (14)

where M., = total VM memory size, R = retransmission
overhead due to frequently dirtied pages.

B. Formal Definitions of PSO, IPSO, and IMPSO
a) Particle Swarm Optimization (PSO)

Each solution is a particle with position x; and velocity v;.
Update rules:

best

= wvf +cn (pl. — xf) + comy (gt — xf)

xf*t = xb + vttt

vit+1

o p™ :best position of particle i.

e g'*t :global best solution found by swarm.

e w :inertia weight, c;, ¢, : learning coefficients.

b) Improved PSO (IPSO)
In IPSO, inertia weight is adaptive:

(wmax - wmin) X iter

W = Wmpax — iter, .. (17)
¢) Improved Modified PSO (IMPSO)
IMPSO integrates mutation and velocity clamping:
vi* = min(max(vf*, v )b Vinax ) (18)

Mutation operator introduces randomness if swarm stagnates:

xft=x*1+68; 6 ~U(—¢,€) (19)

C. Algorithmic Flowcharts / Pseudocode for Hybrid
Migration + PSO

Pseudocode for Hybrid VM Migration with PSO
Algorithm Hybrid_Migration_PSO

Input: VM set V, Hosts H, Bandwidth B

Output: Optimized migration with minimal downtime

1. Initialize swarm with random task-to-VM allocations
2. For each particle:
Evaluate fitness = f(response_time, utilization, downtime)
Update pbest and gbest
3. Update velocity and position of particles (PSO/IPSO/IMPSO
rules)
4. Select overloaded host — candidate VM for migration
5. Predict workload using ML model
6. If predicted dirty pages high:
Apply Hybrid Migration:



Dave / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 393 —407 (2025)

Step 1: Pre-copy bulk pages
Step 2: Stop VM and transfer CPU state
Step 3: Post-copy remaining dirty pages
Else:
Use standard pre-copy
7. Record migration event on blockchain
8. Encrypt VM state before transfer
9. Repeat until resource imbalance < threshold
End Algorithm

D. Experimental Setup for Blockchain Evaluation

All blockchain-related tests were executed on the same
XenServer testbed environment, using Hyperledger Fabric
v2.5.

e Consensus: RAFT (crash fault—tolerant)

e Peers:3 — 5 — 9 (scaled gradually)
e Block Time: 2 seconds

Block Size: 500 transactions
Network Bandwidth: 10 Gbps

Chaincode Functions: Key rotation, migration event
logging, host authentication

Each migration event generated one blockchain transaction.
Transactions were injected using a custom Fabric SDK client at
controlled rates (100-500 tx/s). Performance was measured
using the Hyperledger Caliper benchmarking toolkit.

Table VIII Shows Transaction Throughput and Latency.

TABLE VIII.  TRANSACTION THROUGHPUT AND LATENCY
Number of ~ Mean Throughput ~ Mean Latency CPU Load per Peer
Peers (tx/s) (ms) (%)
3 265 145 38
5 210 195 46
9 165 265 54

Throughput decreases moderately (= 38 %) when scaling
from 3 to 9 peers, as consensus messaging overhead grows.
Latency remains below 300 ms even in the 9-peer setup,
confirming that the blockchain layer can support real-time
migration auditing without perceptible service delay.

E. Consensus Overhead Analysis

The RAFT consensus mechanism adds minimal CPU and
network overhead relative to baseline migration performance.

TABLE IX. AVERAGE CONSENSUS DELAY PER BLOCK
Peers  Consensus Delay (ms) Additional Overhead (%)
3 42 21
5 57 2.8
9 74 35

In Table IX Show Average consensus delay per block and
these results demonstrate the scalability of RAFT-based Fabric
networks for medium-sized cloud clusters. Even with 9 peers,

400

consensus overhead remained under 4 %, aligning with the 15
% global security overhead reported earlier.
F. Encryption Algorithm Trade-off

In Table X Below Shows Encryption Algorithm

Comparison.
TABLE X. ENCRYPTION ALGORITHM COMPARISION
. . CPU .

- Encryption Time o Security  Overhead
Algorithm (ms) per VM Utll(loz/(?)tlon Level %)
AES-256 650 78 Very High 15
AES-128 600 72 High 12
ChaCha20 -
(Lightweight) 480 55 High 8
LEA .
(Lightweight) 470 53 High 7

ChaCha20 and LEA achieved the optimal balance of
performance and security, lowering overhead by ~45 %
compared to AES-256 while maintaining strong confidentiality.
ChaCha20 was therefore selected for all subsequent
experiments.

G. Key Management and Security Mechanisms

Smart contracts (chaincode) govern key generation, rotation,
and validation:

Session Keys: Generated per migration event using a
Fabric chaincode-based pseudo-random function
seeded with peer IDs and timestamps.

Rotation Policy: Keys expire after every 3 migration
cycles or 30 minutes (whichever occurs first).

Distribution: Endorsed via 3-of-5 peer approval;
invalid or delayed transactions automatically rejected.

Audit Trail: Hash of each VM state stored immutably
in the ledger for non-repudiation.

Cryptographic integrity was verified through hash-chain
validation; no invalid or replayed block was accepted during
10,000 test transactions.

H. Scalability under Migration Load

To assess combined scalability, the integrated system was
tested with 50, 75, and 100 concurrent VM migrations Shows
in Table XI.

TABLE XI. VIRTUAL MACHINE COMPARISON
Concurrent  Avg. Tx/s Avg. Migration Security
VMs (Blockchain) Latency (ms) Overhead (%)
50 205 240 8.1
75 190 260 9.4
100 175 280 10.7
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Even wunder 100 concurrent migrations, blockchain
throughput exceeded 175 tx/s, demonstrating scalability suitable
for multi-tenant cloud data centers. The total overhead remained
within 11 %, validating the framework’s practical deployability.

I. Security Audit and Attack Resilience Summary

Integrating results from attack simulation section, all
migration events were logged on-chain and independently
verified by Fabric peers. The blockchain successfully detected
or prevented every tested attack scenario (MITM, replay,
tampering, compromised host). Consensus-based validation
ensured that no unauthorized host could initiate migration
without endorsement.

[

Initialize swarm with random
task-to-VM allccations

For each particle:

’

Evaluate fitness =, e
time, utilization, downtime)

r— — fp—

Update pbest and gbest

Update veloc:ty and position
of particles (PSOMWPSO/
IMPSO rules)

J
)
]
)
|

Tos hag

Select overicaded host
= candidate VM for migratior

Predict workload using ML
model

[ Encrypt VM state before tra ;
: ¥

Repeat until resource l
Fig. 6. Flowchart of Hybrid Migration + PSO Integration

Use slandard
pre- CODY

imbalance < threshold

In Above Figure (Fig. 6) flowchart shows Hybrid Migration +
PSO Integration

J. Security Model Equations for Blockchain-Enabled
Migration
a) Blockchain Integrity Model

Each migration record is stored as:
B]OCk i = HaSh( BIOCk L'—1||Mstate ”Tstamp ”Hsrc ”Hdst) (20)
where:

M = hash of VM state data,

® state

T = timestamp,

stamp

b)
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e Hg.., Hu = source and destination host IDs.

Integrity is guaranteed since any alteration changes the block
hash.

Encryption Model

Confidentiality is maintained using symmetric encryption:
C = Ency (Mstate) 21

M. = Dec(C) (22)
where Kk is a session key managed through blockchain smart
contracts.

V. HARDWARE AND SOFTWARE CONFIGURATION

The experimental environment was deployed on a private
cloud testbed built using XenServer, a Type-1 hypervisor well-
suited for live VM migration experiments [22, 24]. The
hardware and software specifications are summarized below and
shows in Table XII:

e Host Machines (Physical Servers)

o Processor: Intel Xeon E5-2650 v4 @ 2.2
GHz, 24 cores

o Memory: 128 GB DDR4 RAM

o Storage: 2 TB SSD + RAID configuration

o Network: 10 Gbps Ethernet

e Virtualization Platform

o Hypervisor: Citrix XenServer 8.2 (Type-1
hypervisor)

o  Guest Operating System: Ubuntu 20.04 LTS
(64-bit)

o VM Configuration:

VvCPU: 24 per VM
Memory: 4-8 GB RAM
Disk: 40 GB virtual disk

e Software Stack

Programming Environment: Python 3.9, Java
11

Simulation Tools: CloudSim Plus, MATLAB
(for algorithm validation)

Security Framework: Hyperledger Fabric

(Blockchain Layer), OpenSSL (Encryption)

o

TABLE XII. HARDWARE AND SOFTWARE CONFIGURATION OF

EXPERIMENTAL SETUP

Category Specification

Processor Intel Xeon E5-2650 v4 @ 2.2 GHz, 24 cores
Memory 128 GB DDR4 RAM

Storage 2 TB SSD + RAID configuration

Network 10 Ghps Ethernet

Hypervisor Citrix XenServer 8.2 (Type-1 hypervisor)
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Category
Guest OS

Specification
Ubuntu 20.04 LTS (64-bit)

VCPU: 2-4 per VM, Memory: 4-8 GB RAM, Disk:
40 GB virtual disk

VM Configuration

Programming

Environment Python 3.9, Java 11

Simulation Tools CloudSim Plus, MATLAB (for algorithm validation)

Hyperledger Fabric (Blockchain Layer), OpenSSL

Security Framework (Encryption)

A. Workload Generation Tools [17]
To ensure diverse and realistic workloads, the following
benchmarking tools were used:

e stress-ng: CPU-intensive and memory stress testing
tool, generating synthetic workloads to simulate real-
time cloud demand.

SysBench: Evaluates CPU, memory, and /O
performance by executing parallel queries and stress
tasks.

UnixBench: Provides a comprehensive performance
benchmark for system throughput and responsiveness.
ApacheBench (ab): Benchmarks web server response
under concurrent client requests, simulating workload
spikes in real-world web applications.

Each tool was configured with multiple workloads ranging
from low-intensity (10-20% utilization) to high-intensity (80—
90% utilization), ensuring evaluation under varied conditions.

B. Performance Metrics [18]

The following performance metrics were collected and
analyzed to evaluate the effectiveness of the proposed
framework:

1. Migration Time (Tmig)
o Defined as the total time required to complete VM
state transfer from source to destination.
o Measured in seconds using XenServer logs and
network traces.
2. Migration Downtime (D)
o Period during which VM services are unavailable
due to final state transfer.
o Measured in milliseconds using XenAPI.
3. Response Time (RT) Reduction
o Average time taken to complete user requests
before and after load balancing.
o Computed from ApacheBench and SysBench
logs.
4. Resource Utilization
o CPU and memory utilization across all hosts to
measure load distribution efficiency.
5. Security Overhead

402

o Additional computational and latency overhead
introduced by blockchain logging and encryption.
o Measured as:

Tsecure _Tbaseline
Overhead = ——— x 100

baseline

6. (23)

C. Experimental Workflow
The experiments followed a structured workflow:

1. Workload Initialization: Workload generators (stress-ng,
SysBench, UnixBench, ApacheBench) applied different
CPU, memory, and 1/O stress patterns on VMs.

2. Load Balancing: Tasks were allocated using PSO, IPSO,
and IMPSO algorithms.

3. VM Migration: Overloaded hosts triggered VM live
migration using Pre-copy, Post-copy, and Hybrid methods.

4. Security Enforcement: Migration state encrypted and
logged into blockchain.

5. Data Collection: Metrics collected and stored for analysis.

D. Experimental Objectives

The experiments aim to validate the following hypotheses:
1. Hi: IMPSO achieves statistically significant improvement

in response time and resource utilization over PSO and
IPSO.

Ha: The ML-assisted hybrid migration with dirty-page
clustering significantly reduces downtime compared to
standard pre-copy and post-copy methods.

Hs: The blockchain + lightweight encryption layer
maintains integrity under adversarial attack scenarios with
acceptable performance overhead (< 15%).

E. Experimental Design and Fairness

Each configuration (PSO, IPSO, IMPSO; pre-copy, post-
copy, hybrid; secure vs non-secure) was evaluated using
identical workload seeds, ensuring fair comparison.
Workloads were randomized and executed using stress-ng,
SysBench, UnixBench, and ApacheBench across multiple VMs
with balanced initial loads.

For each experiment:

30 independent runs were conducted to ensure statistical
reliability.

Each run used a different random seed for task generation
and migration triggers.

Average values, standard deviation (o), and 95%
confidence intervals (Cl) were computed for all metrics
(response time, migration time, downtime, throughput, and
security overhead).

F. Statistical Analysis Methods

Statistical validation was performed using paired t-tests and
one-way ANOVA, following IEEE publication standards:
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1. Paired t-test: Used to evaluate pairwise improvements
(e.g., IMPSO vs IPSO; Hybrid + Clustering vs Pre-copy).
o Significance threshold: p < 0.05 (95% confidence
level).
o Null hypothesis (Ho): No significant improvement
between compared techniques.

2. One-way ANOVA: Applied to compare three or more
groups (e.g., PSO, IPSO, IMPSO) across multiple
workloads.

o Followed by post-hoc Tukey HSD test to identify
which groups differ significantly.

3. Error Bars and Cl Visualization:

o All bar charts and performance graphs include
error bars representing + 1 standard deviation, and
95% confidence intervals were added to Tables 7—
9.

o This visual representation improves transparency

and scientific credibility.

G. Statistical Validation Results

TABLE XIIl.  PARAMETER AND TECHNIQUES COMPARISON
Metric Compared Mean 959%Cl P~ significance
Techniques Improvement value
Response [15.9, I
Time IMPSO vs IPSO  +18.4 % 20.8] 0.003 Significant
[-20.1, -
Makespan  IMPSO vs IPSO -16.7 % “13.2] 0.004 Significant
S Hybrid +
Migration Clustering vs —61.2 % [58.1, 0.002 Significant
Downtime -64.3]
Pre-copy
N Hybrid +
Migration Clustering  vs —19.8 % [167, 0.008 Significant
Time -22.4]
Post-copy
Security ChaCha20 Vs o [4.2, - -
Overhead AES-256 —6.7% 9.3] 0.012 Significant

All results confirm statistically significant differences (p <
0.05), validating the performance advantages claimed in this
study. Variance across runs was within 4.2 % for most metrics,
confirming experimental consistency.

H. Attack Simulation Experiments

To substantiate the security layer’s robustness, controlled
adversarial simulations were conducted and Table XIV Shows
the Comparison of different types of attacks.

TABLE XIV. CoMPARISON OF ATTACK TYPES

Attack Type  Description Mitigation / Detection  Outcome
TLS + ChaCha20 o
Man-in-the- In_terce_pted encryption blocked 100 % attack
: migration channel L .~ failure, logged
Middle usin acket decryption; blockchain event . within
(MITM) re Ig scri tg audit detected 125
play scripts. tampering. e
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Attack Type Description Mitigation / Detection  Outcome
Re-sent previous Hash mismatch detected Event rejected;
Replay Attack migration hash to by  smart  contract block not
ledger. verification. appended.
N . . 100 %
Payload Altered migration In_tegrlty m!sma'tch detection, zero
- payload before triggered migration
Tampering VM
transfer. abort. -
corruption.
. Unauthorized peer Fab_nc endorsgment Request
Compromised policy rejected L
attempted . denied; no
Host Node L unauthenticated
migration request. state loss.

transaction.

Average detection latency was < 1.5 seconds, with no
compromise of VM state integrity in any of the 50 simulated
attacks.

I. Interpretation and Statistical Discussion

The validated results demonstrate that the proposed IMPSO-
driven load balancer statistically outperforms both PSO and
IPSO in convergence and task completion time. Hybrid
migration with dirty-page clustering significantly reduces
downtime, confirming H:.
Security experiments verify Hs, showing the blockchain layer
can withstand replay and interception attacks without
compromising service continuity.

Observed improvements are not artifacts of random
variation; statistical significance across 30 runs confirms the
reliability of all claims.

J.  Reproducibility Artifacts

To promote transparency and reproducibility, all experiment
scripts, datasets, and configuration files have been archived and
are available upon reasonable request. Each figure and table in
this paper corresponds to a logged experiment under XenServer
v8.2.

VI.

A. Load Balancing: PSO vs IPSO vs IMPSO

To evaluate load balancing efficiency, the system was tested
under varying workloads (light, medium, heavy). Results
demonstrated that IMPSO consistently outperformed PSO and
IPSO by providing faster convergence, reduced response time,
and higher throughput shows in Table XV and the same plotted
in Fig. 7.

RESULTS AND ANALYSIS

e Response Time:

o PSO=120ms
o IPSO =100 ms
o IMPSO=85ms
e Makespan (total task completion time):
o PSO=35s
o IPSO=30s
o IMPSO=25s
e  Throughput:
o PSO =280 tasks/sec
o IPSO = 320 tasks/sec
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o IMPSO = 360 tasks/sec

TABLE XV. COMPARATIVE PERFORMANCE OF PSO, IPSO, IMPSO IN

TASK ALLOCATION

Algorithm Response Time (ms) Makespan (s) Throughput (tasks/sec)

PSO 120 35 280
IPSO 100 30 320
IMPSO 85 25 360
120
__loot
w
£
] 80
E
=
w 60f
wn
=
[=]
o 4ot
a
o
20
0 PSO IPSO IMPSO
Algorithms
Fig. 7. Graph showing Response Time Reduction under PSO, IPSO, IMPSO

B. Live VM Migration: Pre-copy vs Post-copy vs Hybrid

The experiments revealed that Hybrid migration with dirty
page clustering achieved the lowest downtime and migration
time compared to pre-copy and post-copy methods shows in
Fig.8 and Table XVI.

e Migration Time:

o Pre-copy=40s
o Post-copy=35s
o Hybrid + Clustering = 28 s

Downtime:

o Pre-copy =250 ms
o Post-copy = 300 ms
o Hybrid + Clustering = 120 ms

Migration Time (s)
e Downtime (ms)

300

250

[
L=1
=

150

Walue (s/ms)

=
[=1
[=]

L
[=]

0 Pre-copy Post-copy Hybrid + Clustering

Fig. 8. Bar chart of Migration Time and Downtime across techniques
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TABLE XVI.  MIGRATION PERFORMANCE COMPARISON OF PRE-COPY,
POST-COPY, HYBRID APPROACHES
Technique Migration Time () Downtime (ms)
Pre-copy 40 250
Post-copy 35 300
Hybrid + Clustering 28 120

C. Secure vs Non-Secure Migration

To assess the impact of security, blockchain-enabled
migration with encryption was compared against standard
migration in Table XVII and Fig. 9 shows line graph of
Migration Downtime with/without Security.

Overhead:

AES-256 encryption = 15%

ChaCha20 encryption = 8%

Downtime Increase: ~5-8% compared to non-secure
migration

Integrity: 100% tamper-proof audit trail ensured with
blockchain logging

O
O

TABLE XVII. PERFORMANCE OVERHEAD OF SECURE VS NON-SECURE
MIGRATION
Migration Encryption  Overhead  Downtime Integrlty_
Type Algorithm (%) Increase (%) (Blockpham
Logging)
Non-Secure ;
Migration None 0 0 Not Applicable
Secure 100% Tamper-
Migration AES-256 15 5-8 Proof
Secure 100% Tamper-
Migration ChaCha20 8 5-8 Proof
150 . +— Without Security
L\\1 —m— With Security
140 s
-—
)E o l\\
"
'E 120
5
a \M
110 ‘HH&
HH""-._‘__\_
100 T

2
Migration Round
Fig. 9. Line graph of Migration Downtime with/without Security

D. Overall Findings

1. IMPSO provided the best load balancing performance,
improving response time by ~30% compared to standard
PSO.

2. Hybrid + Dirty Page Clustering reduced downtime by

~60% compared to Pre-copy and ~50% compared to Post-
copy.
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3. Blockchain + Encryption introduced a small overhead
(<15%) but significantly improved security and trust.

4. The integrated framework achieved better SLA
compliance, minimized service interruptions, and ensured
tamper-proof migration logs.

Fig. 10 illustrate Consolidated Framework Performance
Gains — Response Time, Downtime, Security Overhead.

50
40%

40
35%

30
25%

20

Improvement (%)

10

Security Overhead

Fig. 10. Consolidated Framework Performance Gains — Response Time,
Downtime, Security Overhead.

Response Time Downtime

E. Energy Measurement Setup
Energy consumption was monitored at the host and VM

levels using on-board sensors and XenServer’s xentop

telemetry.

e Tool: Powerstat and IPMI-based sensors for per-host
wattage.

e Sampling Frequency: 1 Hz (one sample per second).

e Metrics Recorded: CPU power (W), total host energy
(kWh), and energy per task (Joules/task).

e Baseline: Idle host power measured before experiment
(<162 W).

Three configurations were tested:

1. Baseline: Standard PSO + pre-copy migration.

2. Optimized: IMPSO + hybrid migration (no security).

3. Unified: IMPSO + hybrid + blockchain security.

F. Energy Efficiency Results

TABLE XVIII. ENERGY EFFICIENCY RESULTS

\e} SLA

Configuration Power Energy/Task AEn?rgy Vs Compliance
) Baseline (%)
Draw (W) (%)

Baseline (PSO + Pre-

258 4.26 — 91.2
copy)
Optimized (IMPSO _ 0
+ Hybrid) 231 3.52 174 % 97.5
Unified (IMPSO +
Hybrid + 242 3.68 -13.6 % 97.1
Blockchain)

405

Table XVIII Shows Energy Efficiency Results and The
optimized IMPSO-based approach reduced total energy
consumption by = 17% while maintaining higher SLA
compliance. The small rise (+4%) in the unified configuration
stems from blockchain and encryption overhead, but the
framework remains significantly more power-efficient than the
PSO baseline.

G. Power—Performance Trade-off

e The IMPSO configuration achieved a 30 % faster response
at 17 % lower power, evidencing superior energy-
performance efficiency (EPE).

e  The unified system’s EPE gain is = 24 % compared with
the baseline.

This demonstrates that lightweight security layers can
coexist with energy-aware scheduling when optimization
algorithms minimize idle cycles and CPU throttling.

H. Scalability Stress Test

To examine scalability, the framework was evaluated on an
increasing number of hosts (3 — 6 — 12) and VMs (30 — 60
— 120) Shows in Table XIX.

TABLE XIX. HosT AND VM COMPARISON
I . Energy
Avg. Response  Migration Blockchain
Hosts VMs Time (ms)  Downtime (ms) Latency (ms) Ovzjrz )ead
3 30 92 135 145 8.2
60 108 160 182 9.4
12 120 126 195 245 10.6

System throughput scaled linearly up to 12 hosts, with
modest latency growth (< 18 %). Energy overhead remained
below 11 %, confirming scalability to moderate-size clusters.

. Parameter Sensitivity Analysis

A one-at-a-time (OAT) sensitivity analysis was performed
on key IMPSO hyperparameters and migration parameters
Shows in Table XX.

TABLE XX.  DIFFERENT PARAMETER COMPARISON
Tested  Sensitivity (A Response ~ Optimal
Parameter Range %) Value
Inertia Weight (w) 04-0.9 +72% 0.68
Mutation Probability 0.01—-0.10 +54% 005
(Pm)
Population Size (N) 20-60 +31% 30
Clustering K 2-6 +4.8%

Block Time (s) 1-4 +2.6% 2

The framework remains stable within wide parameter
ranges, confirming robustness and easy tunability for different
cloud scale.
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J.  Comparative Energy Discussion

Compared with recent studies such as Raghav & Vyas
(2024), which focused solely on power-aware scheduling, the
proposed unified model achieves similar energy savings while
simultaneously improving migration security and SLA
performance—a capability absent in earlier energy-centric
works. This multi-objective efficiency strengthens the
framework’s relevance for sustainable, mission-critical
deployments.

K. Implications and Future Enhancements

The energy and scalability findings indicate that:

IMPSO can be extended with energy-aware fitness
weighting, integrating joule-per-task as an optimization
variable.

The blockchain layer’s energy cost can be reduced by
batch-signing or side-chain aggregation for high-volume
environments.

Future experiments will include GPU-intensive and edge
workloads to analyze heterogeneous energy behavior.

VII. DIsSCUSSION

A. Comparison with State-of-the-Art

The proposed framework demonstrates measurable
improvements over recent approaches. For example, [7] applied
machine learning with selective encryption to reduce migration
latency, but lacked an optimization layer, limiting system-wide
efficiency. Mohanty et al. (2024) combined blockchain with
Blowfish encryption, yet did not address downtime reduction or
intelligent task allocation. Similarly, Kim et al. (2024) enhanced
pre-copy migration efficiency but ignored security and holistic
optimization. By contrast, our framework integrates IMPSO-
based load balancing, ML-assisted hybrid migration, and
blockchain-enabled security, delivering 30% faster response
time, 60% lower downtime, and 100% integrity assurance on a
real XenServer testbed.

B. Trade-offs Between Efficiency and Security

While blockchain and encryption introduce modest
overhead (~8-15%), the trade-off is justified by the enhanced
confidentiality and auditability of migration events. This
balance is essential in domains such as healthcare or finance,
where trustworthiness is as critical as performance. Our results
show that lightweight cryptography (e.g., ChaCha20) mitigates
performance loss while maintaining security guarantees.

C. Scalability and Practical Impact

Although validated on a controlled XenServer testbed, the
framework is extendable to large-scale cloud and edge
environments. Scalability can be achieved by:

o Federated PSO clusters for multi-data center
optimization.
e Hierarchical blockchain  structures  (sidechains,

sharding) to reduce consensus delays.
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e Al-based workload forecasting for proactive elasticity
management.

These features enable deployment in mission-critical
infrastructures such as e-governance, telemedicine, and
financial services, where downtime or data compromise can
have severe consequences.

D. Limitations and Future Enhancements

Despite its advantages, certain limitations remain:

Security mechanisms still introduce overhead during
frequent migrations.

Blockchain scalability may degrade under very large
networks.

Experiments were limited to CPU/memory-intensive
workloads; GPU and latency-sensitive workloads remain
to be studied.

Energy consumption was not explicitly measured, which is
crucial for sustainable cloud systems.

VIIl.  CONCLUSION AND FUTURE WORK

This paper proposed a unified framework for intelligent
resource management and secure live VM migration in cloud
environments. It integrates IMPSO-based load balancing, ML-
assisted hybrid migration with dirty-page clustering, and a
blockchain-enabled security model, addressing performance,
downtime, and trust collectively. Experiments on a XenServer
testbed show ~30% faster response, ~60% less downtime, and
100% migration integrity with only 8-15% security overhead—
outperforming existing isolated solutions. The approach is ideal
for mission-critical domains like healthcare, finance, and e-
governance. Future work includes energy-aware resource
allocation, heterogeneous workload support, scalable
blockchain mechanisms, and integration with edge and multi-
cloud systems, advancing unified cloud optimization and
security.
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