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Abstract 

Cloud computing has become the backbone of digital ecosystems, but growing workloads intensify challenges in resource optimization, 

virtual machine (VM) migration, and security assurance. Existing studies often address these issues in isolation, limiting their practical 

applicability. This paper presents a unified framework that integrates three complementary components: (i) an Improved Modified 

Particle Swarm Optimization (IMPSO) algorithm with adaptive inertia scheduling and dynamic mutation control, which outperforms IPSO 

in convergence speed and load distribution accuracy; (ii) a machine learning–assisted hybrid live VM migration method with dirty-page 

clustering and workload prediction to minimize downtime; and (iii) a blockchain-enabled secure migration layer to ensure tamper-proof 

and auditable state transfer. The revised version of this study includes statistical validation (confidence intervals, t-tests) and attack 

simulation experiments (e.g., man-in-the-middle and replay attacks) to ensure methodological rigor and realistic security assessment. 

Experimental results on a real XenServer testbed show that the proposed system improves response time by ~30%, reduces migration 

downtime by ~60%, and ensures 100% migration integrity with ≤15% security overhead. Overall, this work represents among the first 

unified frameworks that jointly optimize resource allocation, downtime reduction, and blockchain-based security in a practically 

validated, end-to-end cloud migration environment. 
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I. INTRODUCTION 

A. Evolution of Cloud Computing and Virtualization 

Cloud computing has emerged as one of the most 
transformative paradigms in information technology, enabling 
organizations and individuals to access computing resources on 
demand through a pay-as-you-go model [1].  

The introduction of virtualization addressed these challenges 
by abstracting physical resources into virtual machines (VMs) 
[1, 3, 4], thereby improving hardware utilization and reducing 
infrastructure expenditures. Hypervisors, particularly Type-1 
hypervisors such as XenServer, became central to this 
transformation, as they allowed multiple VMs to run 
concurrently with isolation, flexibility, and high performance. 
Over time, cloud computing evolved into Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-
a-Service (SaaS), enabling diverse deployment models across 
public, private, and hybrid clouds [1,5,6,7,8,10].  

 

B. Importance of Resource Optimization, Load Balancing, 

and VM Live Migration 

Efficient resource management is at the heart of sustainable 
cloud computing. As workloads continue to grow, diversity, and 
complexity, cloud providers must ensure that resources such as 
CPU, memory, and bandwidth are optimally allocated to meet 
service-level agreements (SLAs) [8]. Resource optimization 
ensures that computational tasks are distributed in a way that 
maximizes utilization without overloading servers, thereby 
enhancing overall system performance and reducing operational 
costs. Load balancing plays a vital role in this regard, as it 
distributes incoming tasks across multiple servers or VMs to 
maintain stability, minimize bottlenecks, and improve user 
response times [17,19].  

C. Challenges: Latency, Downtime, Response Time, and 

Security 

Cloud computing offers many benefits but faces key 
challenges impacting its performance and reliability. Latency, or 
data transmission delay, affects real-time applications like 
gaming and video conferencing [1, 2, 4, 5]. Downtime during 
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VM migration disrupts services, as pre-copy and post-copy 
methods struggle with large workloads and frequently modified 
memory pages [4, 5]. Response time also degrades under heavy 
loads or poor resource allocation [5, 7]. Security remains critical 
during live VM migration, as sensitive data may be intercepted 
or attacked [6]. Although encryption and tunneling reduce risks, 
they add computational overhead. Balancing latency, downtime, 
response time, and security is essential for efficient cloud 
systems [11]. 

D.  Motivation to Integrate PSO-Based Optimization with 

Secure Live VM Migration Strategies 

To overcome these challenges, intelligent and secure 
strategies integrating optimization, workload management, and 
security are essential. Particle Swarm Optimization (PSO) and 
its variants, such as Improved PSO (IPSO) and Modified PSO 
(IMPSO), effectively address complex optimization problems 
by simulating social behaviors [12,14,16]. These algorithms 
enable efficient load balancing and resource allocation by 
dynamically distributing tasks based on workload 
characteristics. When combined with machine learning for 
workload prediction, PSO-based methods enhance response 
time and reduce bottlenecks. Hybrid live VM migration 
strategies integrating pre- and post-copy techniques minimize 
downtime [7, 8, 9], while blockchain ensures secure, tamper-
proof, and decentralized data transfer, improving overall cloud 
reliability and security. 

E. Background, Research Gap, and Contributions 

Despite advances in load balancing, VM migration, and 
cloud security, most studies treat these challenges separately. 
PSO and its variants (e.g., IPSO, IMPSO) enhance resource 
allocation but often neglect migration efficiency and data 
security. Hybrid migration methods reduce downtime yet 
overlook vulnerabilities, while blockchain frameworks ensure 
integrity but ignore performance optimization—resulting in 
fragmented solutions unsuitable for large-scale environments. 

What’s New in IMPSO: The proposed IMPSO algorithm 

enhances IPSO through adaptive inertia reweighting, nonlinear 

velocity clamping, and mutation-driven diversity, preventing 

premature convergence and improving exploration. These yield 

15–20% faster convergence and reduced response-time 

variance. Key Contributions: 

1. IMPSO-based dynamic load balancing improving 

convergence and utilization. 

2. ML-assisted hybrid VM migration achieving ~60% 

downtime reduction. 

3. Blockchain + lightweight encryption ensuring secure 

migration with ≤15% overhead. 

4. Real XenServer validation showing ~30% faster response 

and 100% migration integrity. 

II. LITERATURE REVIEW 

In [23], This paper addresses the security challenges of cloud 
multitenancy, where multiple users share the same resources, 
creating vulnerabilities to cross-tenant attacks. The authors 
propose a resource allocation framework based on Particle 
Swarm Optimization (PSO) to mitigate such risks. The approach 

dynamically allocates virtualized resources by balancing 
workload distribution with security considerations.  

In [24] This systematic review investigates load balancing in 
cloud computing, with a focus on metaheuristic-based dynamic 
algorithms. Load balancing is crucial for optimizing resource 
utilization, minimizing response time, and preventing server 
overload. The authors examine numerous algorithms, including 
Genetic Algorithms, Ant Colony Optimization, Particle Swarm 
Optimization, and Artificial Bee Colony methods, highlighting 
their adaptability to fluctuating workloads.  

A. Overview of Cloud Computing Paradigms 

Cloud computing is widely recognized as the backbone of 
modern digital services, enabling organizations to scale 
resources dynamically, reduce capital expenditures, and 
improve service delivery [16]. IaaS provides users with 
virtualized hardware resources, allowing them to deploy 
operating systems and applications flexibly [12,13,14]. PaaS 
offers a development and deployment environment where users 
can focus on application design without managing the 
underlying infrastructure [16]. SaaS delivers software 
applications directly over the internet, eliminating the need for 
local installations. 

B. XenServer as a Type-1 Hypervisor for Virtualization 

At the core of cloud computing lies virtualization, which 
abstracts physical computing resources into multiple virtual 
instances. XenServer, developed from the Xen Project, is a 
Type-1 hypervisor that runs directly on hardware, thereby 
offering higher efficiency and security compared to Type-2 
hypervisors [4, 5, 6], which run atop a host operating system. As 
a bare-metal hypervisor, XenServer manages the allocation of 
CPU, memory, and I/O devices among multiple VMs, ensuring 
isolation and efficient use of physical hardware [17]. Its open-
source nature, combined with strong community support, makes 
XenServer a preferred choice in both academic research and 
enterprise deployments. 

C. Existing Techniques for Resource Management and 

Migration 

Research on cloud resource management has explored load 
balancing, VM migration, and security, yet often in isolation. 
Load Balancing: Metaheuristic algorithms such as PSO, Genetic 
Algorithm, Ant Colony Optimization, and Artificial Bee Colony 
are widely used for workload distribution [12]. Variants like 
IPSO and IMPSO enhance convergence and adaptability [17,18] 
but overlook migration efficiency and security [19]. 

VM Live Migration: Traditional pre-copy and post-copy 
methods struggle with downtime and total migration time. 
Optimizations like eBPF-based paravirtualization and dirty-
page similarity detection [11,19], or ML with selective 
encryption [20], improve performance but lack integrated 
security and global optimization [21]. 

Security: Blockchain ensures tamper-proof VM transfer 
[22], and lightweight cryptography minimizes overhead, yet 
both remain underutilized in live migration [22]. 

Edge and Container Migration: Studies [2,11,18,22] 
highlight latency and orchestration challenges at the cloud–edge 
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continuum but focus on containers without integrating 
optimization or blockchain security. 

D. Research Gaps and Novelty of This Work 

Despite extensive research on load balancing, VM 
migration, and security, most prior works treat these challenges 
in isolation. For example, PSO-based methods improve task 
allocation but do not secure migration, while blockchain-
enhanced frameworks protect migration but neglect 
optimization. Even studies integrating machine learning with 
migration strategies typically overlook end-to-end performance 
and trust guarantees. 

a). Key Gaps Identified: 

 Lack of a unified framework that simultaneously 
addresses optimization, downtime reduction, and 
security. 

 Limited real testbed validation; most studies rely on 
simulations or partial prototypes. 

 Insufficient consideration of scalability and mission-
critical applicability in existing solutions. 

b). Novelty of This Work: 
This study bridges the above gaps by proposing a 

comprehensive framework that: 

1. Employs IMPSO-based load balancing for dynamic CPU 

and memory allocation, outperforming standard 

PSO/IPSO. 

2. Enhances live VM migration using a hybrid approach with 

ML-based workload prediction and dirty page clustering, 

reducing downtime by ~60%. 

3. Incorporates a blockchain + lightweight encryption 

security model to guarantee tamper-proof and confidential 

VM state transfer. 

4. Validates the approach on a real XenServer testbed, 

demonstrating ~30% improvement in response time with 

≤15% overhead. 

III. METHODOLOGY / PROPOSED FRAMEWORK 

The proposed methodology integrates intelligent load 
balancing, optimized live VM migration, and secure migration 
mechanisms into a unified framework for cloud environments. 
The framework is designed to operate on a XenServer-based 
virtualization platform, leveraging optimization algorithms, 
machine learning techniques, and blockchain for performance 
and security enhancement. 

A. Load Balancing and Resource Offloading 

a) Use of PSO, IPSO, and IMPSO Algorithms: Load 

balancing in cloud computing ensures that workloads are 

evenly distributed across multiple servers to avoid 

bottlenecks and maximize utilization. Traditional 

algorithms such as round-robin and least-loaded scheduling 

are often ineffective under dynamic workloads due to their 

inability to adapt to rapidly changing resource demands. To 

overcome this limitation, swarm intelligence techniques 

such as Particle Swarm Optimization (PSO) and its variants 

have been widely adopted [15,20]. 

PSO operates on the principle of collective intelligence, 
where a swarm of “particles” explores the solution space to find 
an optimal or near-optimal solution. Each particle represents a 
potential allocation of tasks to VMs, and its position in the 
search space is updated iteratively based on its own best 
experience (personal best) and the best solution found by the 
swarm (global best) [21]. The velocity update equation in 
standard PSO is expressed as: 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1 (𝑝𝑖
best 

− 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔best − 𝑥𝑖

𝑡)        (1)

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                                     (2)

  

Where: 

 𝑣𝑖
𝑡 = velocity of particle 𝑖 at iteration 𝑡. 

 𝑥𝑖
𝑡 = position of particle 𝑖. 

 𝑝𝑖
best 

= personal best solution of particle 𝑖. 

 𝑔best = global best solution among all particles. 

  𝑐1, 𝑐2 = cognitive and social learning factors. 

 𝑟1, 𝑟2 = random numbers in [0,1]. 

 𝜔 =  inertia weight controlling exploration vs 

explation. 

 

Improved PSO (IPSO) enhances this by dynamically 
adjusting inertia weight and learning coefficients based on 
system load patterns, ensuring faster convergence and reduced 
chances of local minima. Improved Modified PSO (IMPSO) 
[21] extends this by incorporating mutation strategies and 
adaptive velocity clamping, leading to better exploration of the 
solution space. These enhancements make IPSO and IMPSO 
suitable for highly dynamic cloud workloads, where real-time 
adaptation is crucial. 

 

b) CPU and RAM Utilization Models: Efficient task 

allocation requires accurate modeling of CPU and memory 

utilization. Each task is characterized by computational 

requirements (measured in Millions of Instructions Per 

Second, MIPS) and memory demand (MB). Let 𝑈𝐶𝑃𝑈 and 

𝑈𝑅𝐴𝑀  denote CPU and memory utilization of a host, 

respectively: 

 

𝑈𝐶𝑃𝑈  =
∑  𝑛

𝑖=1  MIPS( task 
𝑖
)

TotalMIPS( host )
                                                (3)

𝑈𝑅𝐴𝑀  =
∑  𝑛

𝑖=1  RAM( task 
𝑖
)

TotalRAM( host )
                                                (4)

 

The objective is to minimize the imbalance across all hosts, 

defined as: 

Imbalance = max(𝑈𝐶𝑃𝑈, 𝑈𝑅𝐴𝑀) − min(𝑈𝐶𝑃𝑈 , 𝑈𝑅𝐴𝑀)         (5) 
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PSO/IPSO/IMPSO aim to minimize imbalance while 

maximizing throughput. Table I present the CPU and RAM 

Utilization, before and after optimization. 

TABLE I.  CPU AND RAM UTILIZATION BEFORE AND AFTER 

OPTIMIZATION USING PSO, IPSO, AND IMPSO 

Algorithm 

CPU 

Utilization 
Before (%) 

CPU 

Utilization 
After (%) 

RAM 

Utilization 
Before (%) 

RAM 

Utilization 
After (%) 

PSO 78.5 62.3 81.2 65.7 

IPSO 79.1 59.8 82.0 63.4 

IMPSO 80.4 55.6 83.5 60.2 
 

B. Comparative Evaluation of Task Allocation Efficiency 

To evaluate efficiency, experiments measure average 
response time, makespan (total completion time), throughput, 
and SLA violation rate. Results consistently demonstrate that 
IMPSO achieves higher resource utilization with reduced 
response time compared to PSO and IPSO as shown below in 
Fig. 1 and Table II Consist comparative results of load balancing 
efficiency for sample workloads. 

 
Fig. 1. Graph comparing Response Time under PSO, IPSO,IMPSO 

TABLE II.  COMPARATIVE RESULTS OF LOAD BALANCING EFFICIENCY 

FOR SAMPLE WORKLOADS 

Workload PSO Efficiency (%) IPSO Efficiency (%) IMPSO Efficiency (%) 

W1 72.4 78.6 84.3 

W2 70.8 76.9 82.7 

W3 74.1 79.2 85.1 

W4 73.0 77.8 83.9 

Average 72.6 78.1 84.0 

 

C. Live VM Migration Optimization 

Pre-copy, Post-copy, and Hybrid Techniques: Live VM 

migration is essential for redistribution, fault tolerance, and 

energy conservation in cloud environments. 

 Pre-copy Migration: VM state is transferred iteratively 
while VM runs on the source host. Dirty pages 
(frequently modified memory) are resent, causing long 
total migration times. 

 Post-copy Migration: Minimal state (CPU registers, 
memory metadata) is transferred first, and VM resumes 
on the destination. Remaining pages are fetched on 

demand, leading to reduced total migration but higher 
risk of page faults. 

 Hybrid Migration: Combines pre-copy and post-copy to 
minimize both downtime and migration time. Initial bulk 
transfer (pre-copy) is followed by selective on-demand 
fetching (post-copy), ensuring reduced latency and better 
reliability. 

Fig. 2 shows Comparative diagram of Pre-copy, Post-copy, 
Hybrid VM migration 

 
Fig. 2. Comparative diagram of Pre-copy, Post-copy, Hybrid VM migration 

D. Machine Learning for Workload Prediction 

Workload patterns in cloud systems are highly dynamic. 
Machine learning models, such as LSTM (Long Short-Term 
Memory) networks and regression-based predictors, can 
forecast workload intensity and memory modification rates. 
These predictions guide the migration process by pre-identifying 
high dirty-page VMs, enabling efficient scheduling [22]. 

For example, if predicted CPU utilization exceeds 80%, the 
VM is flagged for proactive migration. ML-based migration 
scheduling reduces SLA violations by anticipating resource 
contention before bottlenecks occur [23]. Fig. 3 shows 
Flowchart of ML-assisted hybrid VM migration strategy. 

 
Fig. 3. Flowchart of ML-assisted hybrid VM migration strategy 
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E. Dirty Page Clustering for Latency Reduction 

A major performance bottleneck in VM migration [24] is the 
handling of dirty pages. Instead of treating all pages equally, 
dirty page clustering groups frequently modified memory 
regions and prioritizes their transfer. This minimizes 
retransmission overhead and reduces downtime. Clustering 
algorithms such as K-means or hierarchical clustering can be 
applied to identify high-update regions. 

The optimized transfer model is expressed as: 

Migration Time =
 Total Memory −  Clustered Dirty Pages 

 Bandwidth 

+
 Clustered Dirty Pages 

 Enhanced Bandwidth 
                      (6) 

This approach reduces both total migration time and 
downtime compared to traditional page-by-page transfer which 
is shown below in Table III. 

TABLE III.  COMPARATIVE RESULTS OF LOAD BALANCING EFFICIENCY 

FOR SAMPLE WORKLOADS 

Workload 
Migration Time without 

Clustering (ms) 

Migration Time with 

Clustering (ms) 

Improvement 

(%) 

W1 520 410 21.2 

W2 600 470 21.7 

W3 580 455 21.6 

W4 610 480 21.3 

Average 577.5 453.8 21.5 

F. Security in VM Migration 

Blockchain Framework for Tamper-Proof Migration Records: 

Live VM migration is vulnerable to man-in-the-middle attacks, 

replay attacks, and tampering during state transfer [24]. To 

address this, a blockchain-based security framework is 

introduced. Each migration event is recorded as a block 

containing: 

 Source host ID 

 Destination host ID 

 Timestamp 

 Hash of VM state data 

These records form an immutable ledger that prevents 
tampering and provides accountability. Smart contracts ensure 
that only authenticated hosts can initiate or validate migration 
requests. Fig. 4 shows Blockchain-enabled secure VM 
migration framework 

 
Fig. 4. Blockchain-enabled secure VM migration framework 

G. Encryption Methods to Ensure Data Confidentiality 

While blockchain ensures integrity and authenticity, 
encryption ensures confidentiality. Symmetric key algorithms 
(e.g., AES-256) can encrypt VM state data before transmission, 
while TLS-based secure channels protect communication. To 
reduce encryption overhead, lightweight cryptography (e.g., 
ChaCha20) may be adopted [24]. 

The encryption model can be expressed as: 

 

𝐸𝑛𝑐𝑘(𝑉𝑀State) = 𝐶                              (7) 

𝐷𝑒𝑐𝑘(𝐶) = 𝑉𝑀State                                (8) 

Where k is the secret key, CCC is ciphertext, and VMState is 
the original VM state. Integration with blockchain ensures that 
keys are securely distributed using smart contracts.  

Table IV shows Performance Overhead of AES vs. 
Lightweight Encryption Methods During VM Migration. 

TABLE IV.  Performance Overhead of AES vs. Lightweight Encryption 
Methods During VM Migration 

Encryption 

Method 

Migration 

Time (ms) 

CPU 

Utilization 
(%) 

Memory 

Overhead (%) 

Security 

Strength 

AES-256 

(Standard) 
650 78 12 Very High 

AES-128 600 72 10 High 

SPECK 

(Lightweight) 
480 55 7 Moderate 

PRESENT 

(Lightweight) 
500 58 8 

Moderate-

High 

LEA 
(Lightweight) 

470 53 6 High 

 

H. Integrated Framework 

The proposed framework combines IMPSO for load 
balancing, ML-enhanced hybrid migration for performance, and 
blockchain + encryption for secure migration into a unified 
system [23]. Implemented on XenServer, it ensures: 

 Reduced response time (via optimized load balancing). 

 Lower downtime and migration latency (via ML + dirty 
page clustering). 

 Strong confidentiality and integrity (via blockchain + 
encryption). 

Fig. 5 shows final integrated framework architecture. 
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Fig. 5. Final integrated framework architecture. 

 

I. Reproducibility and Configuration Details 

To ensure reproducibility and transparency, all experimental 
parameters and system configurations are explicitly detailed 
below in Table V and Table VI shows Machine Learning Model 
for Workload Prediction.  

TABLE V.  PSO, IPSO, AND IMPSO PARAMETER SETTINGS 

Parameter PSO IPSO IMPSO (Proposed) 

Population 

size 
30 30 30 

Iterations 100 100 100 

Inertia weight 
(w) 

0.9 → 0.4 (linear 
decay) 

Adaptive 
(0.9–0.5) 

Adaptive nonlinear 

reweighting (w = 0.9 − 

0.5×e^(-0.05×iter)) 

Cognitive 

coefficient 

(c₁) 

2.0 2.0 1.8 

Social 

coefficient 

(c₂) 

2.0 2.0 2.2 

Velocity 
limits 

±0.6 ±0.6 

Adaptive velocity 

clamping based on 

population diversity 

Mutation 
probability 

– – 

0.05 (applied when 

stagnation > 5 

iterations) 

Fitness 

function 

Weighted sum of 

response time, 

utilization, and SLA 
violation rate 

Same Same 

 

TABLE VI.  MACHINE LEARNING MODEL FOR WORKLOAD PREDICTION 

Parameter Specification 

Model Type 
Long Short-Term Memory (LSTM) neural 

network 

Input Features 
Historical CPU utilization, memory usage, 

I/O throughput, and migration frequency 

Dataset Size 
10,000 time-series samples collected from 

XenServer monitoring logs 

Train/Validation/Test 

Split 
70% / 20% / 10% 

Sequence Length 50 time steps 

Loss Function Mean Squared Error (MSE) 

Parameter Specification 

Optimizer Adam (learning rate = 0.001) 

Evaluation Metrics 
Root Mean Square Error (RMSE) = 0.042; 

Mean Absolute Error (MAE) = 0.031 

Implementation TensorFlow 2.12 (Python 3.9) 

 

The LSTM model predicts CPU and memory load trends to 
proactively trigger VM migration. Its prediction error (RMSE ≤ 
0.05) ensures reliable scheduling decisions for the hybrid 
migration layer. 

J. Dirty Page Clustering Algorithm 

Dirty page clustering is implemented using K-means 
clustering (K = 3), which groups memory pages based on 
modification frequency and access locality. Feature vectors 
include: 

 Page write frequency, 

 Access interval, 

 Page size, and 

 Recency of modification. 

The clustering frequency is set to once per migration cycle, 
with a computational overhead of <2%. Clustering reduces 
redundant retransmissions, achieving an average 21.5% 
migration time improvement. 

Table VII shows Blockchain Network Configuration. 

TABLE VII.  BLOCKCHAIN NETWORK CONFIGURATION 

Parameter Configuration 

Platform Hyperledger Fabric v2.5 

Consensus 

Mechanism 
RAFT (crash fault-tolerant) 

Peers / Orderers 5 peers, 3 orderers 

Block Time 2 seconds 

Block Size 500 transactions 

Endorsement Policy Majority (≥3 of 5 peers) 

Smart Contracts 
Manage key exchange, access control, 

and migration event logging 

Encryption Layer 
ChaCha20 (128-bit key) integrated via 

OpenSSL 

Key Management 
Session keys generated and rotated per 

migration event via Fabric chaincode 

Average Blockchain 

Throughput 

210 transactions/sec under testbed 

conditions 

 

This configuration ensures strong integrity and 
confidentiality guarantees while maintaining acceptable 
performance overhead (<15%). Smart contracts enforce 
authenticated initiation of migration and automatic logging of 
events for auditability. 
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IV. MATHEMATICAL MODELS AND ALGORITHMS 

A. Equations for CPU Utilization, Response Time, and 

Migration Downtime 

a) CPU and RAM Utilization 

For a host 𝐻𝑗 running 𝑛 tasks: 

𝑈𝐶𝑃𝑈(𝐻𝑗) =
∑  𝑛

𝑖=1  𝑀𝐼𝑃𝑆( task 
𝑖
)

𝑀𝐼𝑃𝑆(𝐻𝑗)
                                    (9)

𝑈𝑅𝐴𝑀(𝐻𝑗) =
∑  𝑛

𝑖=1  𝑅𝐴𝑀( task 
𝑖
)

𝑅𝐴𝑀(𝐻𝑗)
                                   (10)

 

where: 

 MIPS (task  𝑖) = computational requirement of task 𝑖, 

 𝑀𝐼𝑃𝑆(𝐻𝑗) = total CPU capacity of host 𝑗, 

 𝑅𝐴𝑀( task  𝑖) = memory demand of task 𝑖, 

 𝑅𝐴𝑀(𝐻𝑗) = total available RAM of host 𝑗. 

 

b) Response Time 

The response time for a task 𝑖 assigned to VM𝑘 is defined as: 

𝑅𝑇𝑖 = 𝑊𝑖 +
𝐿𝑖

𝑀𝐼𝑃𝑆(𝑉𝑀𝑘)
                         (11) 

where: 

 𝑊𝑖 = waiting time of task 𝑖, 

 𝐿𝑖 = length of task 𝑖 in Million Instructions (MI), 

 𝑀𝐼𝑃𝑆(𝑉𝑀𝑘) = processing speed of VM 𝑘. 

The average response time is: 

𝑅𝑇𝑎𝑣𝑔 =
∑  𝑛

𝑖=1  𝑅𝑇𝑖

𝑛
                                         (12) 

c) Migration Downtime 

In live migration, downtime 𝐷 is defined as: 

𝐷 =
𝑀𝑑𝑝

𝐵
+ 𝑇switch                                           (13) 

where: 

 𝑀𝑑𝑝 =  size of dirty pages to be transferred during 

stop-and-copy, 

 𝐵 = available bandwidth, 

 𝑇switch =  switchover time between source and 

destination hosts. 

The total migration time is: 

𝑇𝑚𝑖𝑔 =
𝑀𝑡𝑜𝑡𝑎𝑙

𝐵
+ 𝑅                                                                     (14) 

where 𝑀total =  total VM memory size, 𝑅 =  retransmission 

overhead due to frequently dirtied pages. 

B. Formal Definitions of PSO, IPSO, and IMPSO 

a) Particle Swarm Optimization (PSO) 

Each solution is a particle with position 𝑥𝑖 and velocity 𝑣𝑖. 
Update rules: 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1 (𝑝𝑖
best 

− 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔best − 𝑥𝑖

𝑡)                   (15)

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                                                  (16)

 

 𝑝𝑖
best 

 : best position of particle 𝑖. 

 𝑔best  : global best solution found by swarm. 

 𝜔 : inertia weight, 𝑐1, 𝑐2 : learning coefficients. 

 

b) Improved PSO (IPSO) 

In IPSO, inertia weight is adaptive: 

𝜔 = 𝜔max −
(𝜔max − 𝜔min) × 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟max

                              (17) 

 

c) Improved Modified PSO (IMPSO) 

IMPSO integrates mutation and velocity clamping: 

𝑣𝑖
𝑡+1 = min(max(𝑣𝑖

𝑡+1, 𝑣min ), 𝑣max )                       (18) 

Mutation operator introduces randomness if swarm stagnates: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+1 + 𝛿 ;  𝛿 ∼ 𝑈(−𝜖, 𝜖)                              (19) 

 

C. Algorithmic Flowcharts / Pseudocode for Hybrid 

Migration + PSO 

Pseudocode for Hybrid VM Migration with PSO 

Algorithm Hybrid_Migration_PSO 

Input: VM set V, Hosts H, Bandwidth B 

Output: Optimized migration with minimal downtime 

 

1. Initialize swarm with random task-to-VM allocations 

2. For each particle: 

      Evaluate fitness = f(response_time, utilization, downtime) 

      Update pbest and gbest 

3. Update velocity and position of particles (PSO/IPSO/IMPSO 

rules) 

4. Select overloaded host → candidate VM for migration 

5. Predict workload using ML model 

6. If predicted dirty pages high: 

      Apply Hybrid Migration: 
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          Step 1: Pre-copy bulk pages 

          Step 2: Stop VM and transfer CPU state 

          Step 3: Post-copy remaining dirty pages 

      Else: 

          Use standard pre-copy 

7. Record migration event on blockchain 

8. Encrypt VM state before transfer 

9. Repeat until resource imbalance < threshold 

End Algorithm 

 

D. Experimental Setup for Blockchain Evaluation 

All blockchain-related tests were executed on the same 

XenServer testbed environment, using Hyperledger Fabric 

v2.5. 

 Consensus: RAFT (crash fault–tolerant) 

 Peers: 3 → 5 → 9 (scaled gradually) 

 Block Time: 2 seconds 

 Block Size: 500 transactions 

 Network Bandwidth: 10 Gbps 

 Chaincode Functions: Key rotation, migration event 
logging, host authentication 

Each migration event generated one blockchain transaction. 
Transactions were injected using a custom Fabric SDK client at 
controlled rates (100–500 tx/s). Performance was measured 
using the Hyperledger Caliper benchmarking toolkit. 

Table VIII Shows Transaction Throughput and Latency. 

TABLE VIII.  TRANSACTION THROUGHPUT AND LATENCY 

Number of 

Peers 

Mean Throughput 

(tx/s) 

Mean Latency 

(ms) 

CPU Load per Peer 

(%) 

3 265 145 38 

5 210 195 46 

9 165 265 54 

Throughput decreases moderately (≈ 38 %) when scaling 
from 3 to 9 peers, as consensus messaging overhead grows. 
Latency remains below 300 ms even in the 9-peer setup, 
confirming that the blockchain layer can support real-time 
migration auditing without perceptible service delay. 

 

E. Consensus Overhead Analysis 

The RAFT consensus mechanism adds minimal CPU and 
network overhead relative to baseline migration performance.  

TABLE IX.  AVERAGE CONSENSUS DELAY PER BLOCK 

Peers Consensus Delay (ms) Additional Overhead (%) 

3 42 2.1 

5 57 2.8 

9 74 3.5 

In Table IX Show Average consensus delay per block and 
these results demonstrate the scalability of RAFT-based Fabric 
networks for medium-sized cloud clusters. Even with 9 peers, 

consensus overhead remained under 4 %, aligning with the 15 
% global security overhead reported earlier. 

F. Encryption Algorithm Trade-off 

In Table X Below Shows Encryption Algorithm 
Comparison. 

TABLE X.  ENCRYPTION ALGORITHM COMPARISION 

Algorithm 
Encryption Time 

(ms) per VM 

CPU 

Utilization 

(%) 

Security 
Level 

Overhead 
(%) 

AES-256 650 78 Very High 15 

AES-128 600 72 High 12 

ChaCha20 
(Lightweight) 

480 55 High 8 

LEA 

(Lightweight) 
470 53 High 7 

 

ChaCha20 and LEA achieved the optimal balance of 
performance and security, lowering overhead by ~45 % 
compared to AES-256 while maintaining strong confidentiality. 
ChaCha20 was therefore selected for all subsequent 
experiments. 

G. Key Management and Security Mechanisms 

Smart contracts (chaincode) govern key generation, rotation, 

and validation: 

 Session Keys: Generated per migration event using a 

Fabric chaincode-based pseudo-random function 

seeded with peer IDs and timestamps. 

 Rotation Policy: Keys expire after every 3 migration 

cycles or 30 minutes (whichever occurs first). 

 Distribution: Endorsed via 3-of-5 peer approval; 

invalid or delayed transactions automatically rejected. 

 Audit Trail: Hash of each VM state stored immutably 

in the ledger for non-repudiation. 

Cryptographic integrity was verified through hash-chain 
validation; no invalid or replayed block was accepted during 
10,000 test transactions. 

H. Scalability under Migration Load 

To assess combined scalability, the integrated system was 

tested with 50, 75, and 100 concurrent VM migrations Shows 

in Table XI. 
 

TABLE XI.  VIRTUAL MACHINE COMPARISON 

Concurrent 
VMs 

Avg. Tx/s 
(Blockchain) 

Avg. Migration 
Latency (ms) 

Security 
Overhead (%) 

50 205 240 8.1 

75 190 260 9.4 

100 175 280 10.7 
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Even under 100 concurrent migrations, blockchain 
throughput exceeded 175 tx/s, demonstrating scalability suitable 
for multi-tenant cloud data centers. The total overhead remained 
within 11 %, validating the framework’s practical deployability. 

 

I. Security Audit and Attack Resilience Summary 

Integrating results from attack simulation section, all 
migration events were logged on-chain and independently 
verified by Fabric peers. The blockchain successfully detected 
or prevented every tested attack scenario (MITM, replay, 
tampering, compromised host). Consensus-based validation 
ensured that no unauthorized host could initiate migration 
without endorsement. 

 
 

Fig. 6. Flowchart of Hybrid Migration + PSO Integration 

In Above Figure (Fig. 6) flowchart shows  Hybrid Migration + 

PSO Integration 

J. Security Model Equations for Blockchain-Enabled 

Migration 

a) Blockchain Integrity Model 

Each migration record is stored as: 

 Block 
𝑖

= Hash( Block 
𝑖−1

‖𝑀state ‖𝑇stamp ‖𝐻src ‖𝐻dst )    (20) 

where: 

 𝑀state = hash of VM state data, 

 𝑇stamp = timestamp, 

 𝐻𝑠𝑟𝑐 , 𝐻𝑑𝑠𝑡 = source and destination host IDs. 

Integrity is guaranteed since any alteration changes the block 

hash. 

 

b)  Encryption Model 

Confidentiality is maintained using symmetric encryption: 

𝐶 = 𝐸𝑛𝑐𝑘(𝑀state )                                       (21)

𝑀state = Dec𝑘(𝐶)                                       (22)
 

where k is a session key managed through blockchain smart 

contracts. 
 

V.  HARDWARE AND SOFTWARE CONFIGURATION 

The experimental environment was deployed on a private 
cloud testbed built using XenServer, a Type-1 hypervisor well-
suited for live VM migration experiments [22, 24]. The 
hardware and software specifications are summarized below and 
shows in Table XII: 

 Host Machines (Physical Servers) 

o Processor: Intel Xeon E5-2650 v4 @ 2.2 

GHz, 24 cores 

o Memory: 128 GB DDR4 RAM 

o Storage: 2 TB SSD + RAID configuration 

o Network: 10 Gbps Ethernet 

 Virtualization Platform 

o Hypervisor: Citrix XenServer 8.2 (Type-1 

hypervisor) 

o Guest Operating System: Ubuntu 20.04 LTS 

(64-bit) 

o VM Configuration: 

 vCPU: 2–4 per VM 

 Memory: 4–8 GB RAM 

 Disk: 40 GB virtual disk 

 Software Stack 

o Programming Environment: Python 3.9, Java 

11 

o Simulation Tools: CloudSim Plus, MATLAB 

(for algorithm validation) 

o Security Framework: Hyperledger Fabric 

(Blockchain Layer), OpenSSL (Encryption) 

 

TABLE XII.  HARDWARE AND SOFTWARE CONFIGURATION OF 

EXPERIMENTAL SETUP 

Category Specification 

Processor Intel Xeon E5-2650 v4 @ 2.2 GHz, 24 cores 

Memory 128 GB DDR4 RAM 

Storage 2 TB SSD + RAID configuration 

Network 10 Gbps Ethernet 

Hypervisor Citrix XenServer 8.2 (Type-1 hypervisor) 
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Category Specification 

Guest OS Ubuntu 20.04 LTS (64-bit) 

VM Configuration 
vCPU: 2–4 per VM, Memory: 4–8 GB RAM, Disk: 

40 GB virtual disk 

Programming 

Environment 
Python 3.9, Java 11 

Simulation Tools CloudSim Plus, MATLAB (for algorithm validation) 

Security Framework 
Hyperledger Fabric (Blockchain Layer), OpenSSL 

(Encryption) 

 

A. Workload Generation Tools [17] 

To ensure diverse and realistic workloads, the following 
benchmarking tools were used: 

 stress-ng: CPU-intensive and memory stress testing 

tool, generating synthetic workloads to simulate real-

time cloud demand. 

 SysBench: Evaluates CPU, memory, and I/O 

performance by executing parallel queries and stress 

tasks. 

 UnixBench: Provides a comprehensive performance 

benchmark for system throughput and responsiveness. 

 ApacheBench (ab): Benchmarks web server response 

under concurrent client requests, simulating workload 

spikes in real-world web applications. 

Each tool was configured with multiple workloads ranging 
from low-intensity (10–20% utilization) to high-intensity (80–
90% utilization), ensuring evaluation under varied conditions. 

B. Performance Metrics [18] 

The following performance metrics were collected and 
analyzed to evaluate the effectiveness of the proposed 
framework: 

1. Migration Time (Tmig) 

o Defined as the total time required to complete VM 

state transfer from source to destination. 

o Measured in seconds using XenServer logs and 

network traces. 

2. Migration Downtime (D) 

o Period during which VM services are unavailable 

due to final state transfer. 

o Measured in milliseconds using XenAPI. 

3. Response Time (RT) Reduction 

o Average time taken to complete user requests 

before and after load balancing. 

o Computed from ApacheBench and SysBench 

logs. 

4. Resource Utilization 

o CPU and memory utilization across all hosts to 

measure load distribution efficiency. 

5. Security Overhead 

o Additional computational and latency overhead 

introduced by blockchain logging and encryption. 

o Measured as: 

6.  Overhead =
𝑇

secure 
−𝑇

baseline 

𝑇
baseline 

× 100                      (23) 

C. Experimental Workflow 

The experiments followed a structured workflow: 

1. Workload Initialization: Workload generators (stress-ng, 

SysBench, UnixBench, ApacheBench) applied different 

CPU, memory, and I/O stress patterns on VMs. 

2. Load Balancing: Tasks were allocated using PSO, IPSO, 

and IMPSO algorithms. 

3. VM Migration: Overloaded hosts triggered VM live 

migration using Pre-copy, Post-copy, and Hybrid methods. 

4. Security Enforcement: Migration state encrypted and 

logged into blockchain. 

5. Data Collection: Metrics collected and stored for analysis. 

D. Experimental Objectives 

The experiments aim to validate the following hypotheses: 

1. H₁: IMPSO achieves statistically significant improvement 

in response time and resource utilization over PSO and 

IPSO. 

2. H₂: The ML-assisted hybrid migration with dirty-page 

clustering significantly reduces downtime compared to 

standard pre-copy and post-copy methods. 

3. H₃: The blockchain + lightweight encryption layer 

maintains integrity under adversarial attack scenarios with 

acceptable performance overhead (< 15%). 

E. Experimental Design and Fairness 

Each configuration (PSO, IPSO, IMPSO; pre-copy, post-
copy, hybrid; secure vs non-secure) was evaluated using 
identical workload seeds, ensuring fair comparison. 
Workloads were randomized and executed using stress-ng, 
SysBench, UnixBench, and ApacheBench across multiple VMs 
with balanced initial loads. 

For each experiment: 

 30 independent runs were conducted to ensure statistical 

reliability. 

 Each run used a different random seed for task generation 

and migration triggers. 

 Average values, standard deviation (σ), and 95% 

confidence intervals (CI) were computed for all metrics 

(response time, migration time, downtime, throughput, and 

security overhead). 
 

F. Statistical Analysis Methods 

Statistical validation was performed using paired t-tests and 
one-way ANOVA, following IEEE publication standards: 
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1. Paired t-test: Used to evaluate pairwise improvements 

(e.g., IMPSO vs IPSO; Hybrid + Clustering vs Pre-copy). 

o Significance threshold: p < 0.05 (95% confidence 

level). 

o Null hypothesis (H₀): No significant improvement 

between compared techniques. 

2. One-way ANOVA: Applied to compare three or more 

groups (e.g., PSO, IPSO, IMPSO) across multiple 

workloads. 

o Followed by post-hoc Tukey HSD test to identify 

which groups differ significantly. 

3. Error Bars and CI Visualization: 

o All bar charts and performance graphs include 

error bars representing ± 1 standard deviation, and 

95% confidence intervals were added to Tables 7–

9. 

o This visual representation improves transparency 

and scientific credibility. 

 

G. Statistical Validation Results 

TABLE XIII.  PARAMETER AND TECHNIQUES COMPARISON 

Metric 
Compared 

Techniques 

Mean 

Improvement 
95% CI 

p-

value 
Significance 

Response 
Time 

IMPSO vs IPSO +18.4 % 
[15.9, 
20.8] 

0.003 Significant 

Makespan IMPSO vs IPSO –16.7 % 
[–20.1, 
–13.2] 

0.004 Significant 

Migration 

Downtime 

Hybrid + 

Clustering vs 
Pre-copy 

–61.2 % 
[–58.1, 

–64.3] 
0.002 Significant 

Migration 

Time 

Hybrid + 

Clustering vs 
Post-copy 

–19.8 % 
[–16.7, 

–22.4] 
0.008 Significant 

Security 

Overhead 

ChaCha20 vs 

AES-256 
–6.7 % 

[–4.2, –

9.3] 
0.012 Significant 

 

All results confirm statistically significant differences (p < 
0.05), validating the performance advantages claimed in this 
study. Variance across runs was within ± 4.2 % for most metrics, 
confirming experimental consistency. 

 

H. Attack Simulation Experiments 

To substantiate the security layer’s robustness, controlled 

adversarial simulations were conducted and Table XIV Shows 

the Comparison of different types of attacks. 

TABLE XIV.  COMPARISON OF ATTACK TYPES 

Attack Type Description Mitigation / Detection Outcome 

Man-in-the-

Middle 
(MITM) 

Intercepted 
migration channel 

using packet 

replay scripts. 

TLS + ChaCha20 

encryption blocked 

decryption; blockchain 
audit detected 

tampering. 

100 % attack 
failure, logged 

event within 

1.2 s. 

Attack Type Description Mitigation / Detection Outcome 

Replay Attack 

Re-sent previous 

migration hash to 

ledger. 

Hash mismatch detected 

by smart contract 

verification. 

Event rejected; 

block not 

appended. 

Payload 

Tampering 

Altered migration 
payload before 

transfer. 

Integrity mismatch 
triggered migration 

abort. 

100 % 

detection, zero 

VM 
corruption. 

Compromised 
Host Node 

Unauthorized peer 

attempted 

migration request. 

Fabric endorsement 

policy rejected 
unauthenticated 

transaction. 

Request 

denied; no 

state loss. 

Average detection latency was ≤ 1.5 seconds, with no 
compromise of VM state integrity in any of the 50 simulated 
attacks. 
 

I. Interpretation and Statistical Discussion 

The validated results demonstrate that the proposed IMPSO-
driven load balancer statistically outperforms both PSO and 
IPSO in convergence and task completion time. Hybrid 
migration with dirty-page clustering significantly reduces 
downtime, confirming H₂. 
Security experiments verify H₃, showing the blockchain layer 
can withstand replay and interception attacks without 
compromising service continuity. 

Observed improvements are not artifacts of random 
variation; statistical significance across 30 runs confirms the 
reliability of all claims. 
 

J. Reproducibility Artifacts 

To promote transparency and reproducibility, all experiment 
scripts, datasets, and configuration files have been archived and 
are available upon reasonable request. Each figure and table in 
this paper corresponds to a logged experiment under XenServer 
v8.2. 

VI. RESULTS AND ANALYSIS 

A. Load Balancing: PSO vs IPSO vs IMPSO 

To evaluate load balancing efficiency, the system was tested 
under varying workloads (light, medium, heavy). Results 
demonstrated that IMPSO consistently outperformed PSO and 
IPSO by providing faster convergence, reduced response time, 
and higher throughput shows in Table XV and the same plotted 
in Fig. 7. 

 Response Time: 

o PSO = 120 ms 

o IPSO = 100 ms 

o IMPSO = 85 ms 

 Makespan (total task completion time): 

o PSO = 35 s 

o IPSO = 30 s 

o IMPSO = 25 s 

 Throughput: 

o PSO = 280 tasks/sec 

o IPSO = 320 tasks/sec 
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o IMPSO = 360 tasks/sec 

TABLE XV.  COMPARATIVE PERFORMANCE OF PSO, IPSO, IMPSO IN 

TASK ALLOCATION 

Algorithm Response Time (ms) Makespan (s) Throughput (tasks/sec) 

PSO 120 35 280 

IPSO 100 30 320 

IMPSO 85 25 360 

    

 
Fig. 7. Graph showing Response Time Reduction under PSO, IPSO, IMPSO 

 

B. Live VM Migration: Pre-copy vs Post-copy vs Hybrid 

The experiments revealed that Hybrid migration with dirty 
page clustering achieved the lowest downtime and migration  
time compared to pre-copy and post-copy methods shows in 
Fig.8 and Table XVI. 

 Migration Time: 

o Pre-copy = 40 s 

o Post-copy = 35 s 

o Hybrid + Clustering = 28 s 

 Downtime: 

o Pre-copy = 250 ms 

o Post-copy = 300 ms 

o Hybrid + Clustering = 120 ms 

 

 

 
Fig. 8. Bar chart of Migration Time and Downtime across techniques 

TABLE XVI.  MIGRATION PERFORMANCE COMPARISON OF PRE-COPY, 
POST-COPY, HYBRID APPROACHES 

Technique Migration Time (s) Downtime (ms) 

Pre-copy 40 250 

Post-copy 35 300 

Hybrid + Clustering 28 120 
 

C. Secure vs Non-Secure Migration 

To assess the impact of security, blockchain-enabled 
migration with encryption was compared against standard 
migration in Table XVII and Fig. 9 shows line graph of 
Migration Downtime with/without Security. 

 Overhead: 

o AES-256 encryption = 15% 

o ChaCha20 encryption = 8% 

 Downtime Increase: ~5–8% compared to non-secure 

migration 

 Integrity: 100% tamper-proof audit trail ensured with 

blockchain logging 

TABLE XVII.  PERFORMANCE OVERHEAD OF SECURE VS NON-SECURE 

MIGRATION 

Migration 

Type 

Encryption 

Algorithm 

Overhead 

(%) 

Downtime 

Increase (%) 

Integrity 
(Blockchain 

Logging) 

Non-Secure 

Migration 
None 0 0 Not Applicable 

Secure 

Migration 
AES-256 15 5–8 

100% Tamper-

Proof 

Secure 
Migration 

ChaCha20 8 5–8 
100% Tamper-

Proof 

 

 
Fig. 9. Line graph of Migration Downtime with/without Security 

 

D. Overall Findings 

1. IMPSO provided the best load balancing performance, 

improving response time by ~30% compared to standard 

PSO. 

2. Hybrid + Dirty Page Clustering reduced downtime by 

~60% compared to Pre-copy and ~50% compared to Post-

copy. 
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3. Blockchain + Encryption introduced a small overhead 

(≤15%) but significantly improved security and trust. 

4. The integrated framework achieved better SLA 

compliance, minimized service interruptions, and ensured 

tamper-proof migration logs. 
 

Fig. 10 illustrate Consolidated Framework Performance 
Gains – Response Time, Downtime, Security Overhead. 

 
Fig. 10. Consolidated Framework Performance Gains – Response Time, 

Downtime, Security Overhead. 

 

E. Energy Measurement Setup 

Energy consumption was monitored at the host and VM 
levels using on-board sensors and XenServer’s xentop 
telemetry. 

 Tool: Powerstat and IPMI-based sensors for per-host 

wattage. 

 Sampling Frequency: 1 Hz (one sample per second). 

 Metrics Recorded: CPU power (W), total host energy 

(kWh), and energy per task (Joules/task). 

 Baseline: Idle host power measured before experiment 

(~162 W). 

Three configurations were tested: 

1. Baseline: Standard PSO + pre-copy migration. 

2. Optimized: IMPSO + hybrid migration (no security). 

3. Unified: IMPSO + hybrid + blockchain security. 

 

F. Energy Efficiency Results 

TABLE XVIII.  ENERGY EFFICIENCY RESULTS 

Configuration 
Avg. 

Power 

Draw (W) 

Energy/Task 
(J) 

Δ Energy vs 
Baseline (%) 

SLA 
Compliance 

(%) 

Baseline (PSO + Pre-
copy) 

258 4.26 — 91.2 

Optimized (IMPSO 

+ Hybrid) 
231 3.52 −17.4 % 97.5 

Unified (IMPSO + 

Hybrid + 

Blockchain) 

242 3.68 −13.6 % 97.1 

 

Table XVIII Shows Energy Efficiency Results and The 
optimized IMPSO-based approach reduced total energy 
consumption by ≈ 17% while maintaining higher SLA 
compliance. The small rise (+4%) in the unified configuration 
stems from blockchain and encryption overhead, but the 
framework remains significantly more power-efficient than the 
PSO baseline. 

 

G. Power–Performance Trade-off 

 The IMPSO configuration achieved a 30 % faster response 

at 17 % lower power, evidencing superior energy-

performance efficiency (EPE). 

 The unified system’s EPE gain is ≈ 24 % compared with 

the baseline. 

This demonstrates that lightweight security layers can 
coexist with energy-aware scheduling when optimization 
algorithms minimize idle cycles and CPU throttling. 

 

H. Scalability Stress Test 

To examine scalability, the framework was evaluated on an 
increasing number of hosts (3 → 6 → 12) and VMs (30 → 60 
→ 120) Shows in Table XIX. 

TABLE XIX.  HOST AND VM COMPARISON  

Hosts VMs 
Avg. Response 

Time (ms) 

Migration 

Downtime (ms) 

Blockchain 

Latency (ms) 

Energy 

Overhead 
(%) 

3 30 92 135 145 8.2 

6 60 108 160 182 9.4 

12 120 126 195 245 10.6 

 

System throughput scaled linearly up to 12 hosts, with 
modest latency growth (< 18 %). Energy overhead remained 
below 11 %, confirming scalability to moderate-size clusters. 

 

I. Parameter Sensitivity Analysis 

A one-at-a-time (OAT) sensitivity analysis was performed 
on key IMPSO hyperparameters and migration parameters 
Shows in Table XX. 

TABLE XX.  DIFFERENT PARAMETER COMPARISON 

Parameter 
Tested 
Range 

Sensitivity (Δ Response 
%) 

Optimal 
Value 

Inertia Weight (w) 0.4 – 0.9 ± 7.2 % 0.68 

Mutation Probability 

(Pm) 
0.01 – 0.10 ± 5.4 % 0.05 

Population Size (N) 20 – 60 ± 3.1 % 30 

Clustering K 2 – 6 ± 4.8 % 3 

Block Time (s) 1 – 4 ± 2.6 % 2 

 

The framework remains stable within wide parameter 
ranges, confirming robustness and easy tunability for different 
cloud scale. 
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J. Comparative Energy Discussion 

Compared with recent studies such as Raghav & Vyas 
(2024), which focused solely on power-aware scheduling, the 
proposed unified model achieves similar energy savings while 

simultaneously improving migration security and SLA 
performance—a capability absent in earlier energy-centric 
works. This multi-objective efficiency strengthens the 
framework’s relevance for sustainable, mission-critical 
deployments. 
 

K. Implications and Future Enhancements 

The energy and scalability findings indicate that: 

 IMPSO can be extended with energy-aware fitness 

weighting, integrating joule-per-task as an optimization 

variable. 

 The blockchain layer’s energy cost can be reduced by 

batch-signing or side-chain aggregation for high-volume 

environments. 

 Future experiments will include GPU-intensive and edge 

workloads to analyze heterogeneous energy behavior. 

 

VII. DISCUSSION 

A. Comparison with State-of-the-Art 

The proposed framework demonstrates measurable 
improvements over recent approaches. For example, [7] applied 
machine learning with selective encryption to reduce migration 
latency, but lacked an optimization layer, limiting system-wide 
efficiency. Mohanty et al. (2024) combined blockchain with 
Blowfish encryption, yet did not address downtime reduction or 
intelligent task allocation. Similarly, Kim et al. (2024) enhanced 
pre-copy migration efficiency but ignored security and holistic 
optimization. By contrast, our framework integrates IMPSO-
based load balancing, ML-assisted hybrid migration, and 
blockchain-enabled security, delivering 30% faster response 
time, 60% lower downtime, and 100% integrity assurance on a 
real XenServer testbed. 

B.  Trade-offs Between Efficiency and Security 

While blockchain and encryption introduce modest 
overhead (~8–15%), the trade-off is justified by the enhanced 
confidentiality and auditability of migration events. This 
balance is essential in domains such as healthcare or finance, 
where trustworthiness is as critical as performance. Our results 
show that lightweight cryptography (e.g., ChaCha20) mitigates 
performance loss while maintaining security guarantees. 

C. Scalability and Practical Impact 

Although validated on a controlled XenServer testbed, the 
framework is extendable to large-scale cloud and edge 
environments. Scalability can be achieved by: 

 Federated PSO clusters for multi-data center 

optimization. 

 Hierarchical blockchain structures (sidechains, 

sharding) to reduce consensus delays. 

 AI-based workload forecasting for proactive elasticity 

management. 

These features enable deployment in mission-critical 
infrastructures such as e-governance, telemedicine, and 
financial services, where downtime or data compromise can 
have severe consequences. 

 

D. Limitations and Future Enhancements 

Despite its advantages, certain limitations remain: 

 Security mechanisms still introduce overhead during 

frequent migrations. 

 Blockchain scalability may degrade under very large 

networks. 

 Experiments were limited to CPU/memory-intensive 

workloads; GPU and latency-sensitive workloads remain 

to be studied. 

 Energy consumption was not explicitly measured, which is 

crucial for sustainable cloud systems. 
 

VIII. CONCLUSION AND FUTURE WORK 

This paper proposed a unified framework for intelligent 
resource management and secure live VM migration in cloud 
environments. It integrates IMPSO-based load balancing, ML-
assisted hybrid migration with dirty-page clustering, and a 
blockchain-enabled security model, addressing performance, 
downtime, and trust collectively. Experiments on a XenServer 
testbed show ~30% faster response, ~60% less downtime, and 
100% migration integrity with only 8–15% security overhead—
outperforming existing isolated solutions. The approach is ideal 
for mission-critical domains like healthcare, finance, and e-
governance. Future work includes energy-aware resource 
allocation, heterogeneous workload support, scalable 
blockchain mechanisms, and integration with edge and multi-
cloud systems, advancing unified cloud optimization and 
security. 
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