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Abstract

The proliferation of decentralized and dynamic networks, such as fog computing and the Internet of Things (1oT), has significantly raised
the demand for network security and resilience solutions. This study presents a decentralized trust management framework for detecting
malicious nodes in fog-to-fog networks using Multi-Agent Reinforcement Learning (MARL). Our approach utilizes Independent Deep Q-
Networks (I-DQN) for decentralized decision making at each fog node with dynamic trust evaluation, allowing them to learn an optimal
detection policy based on local observations. Importantly, we enhance this by centralized training controlled by a central orchestrator,
which uses a shared global critic and parameter sharing. The proposed system was evaluated on a 10-15 nodes fog network under three
distinct attack scenarios: aggressive, stealth, and gradual. Experimental results demonstrate superior performance with detection rates
of 92.0% for aggressive attacks, 78.0% for stealth attacks, and 67.9% for gradual attacks. Security focused results demonstrate
exceptional false negative performance with FNR values of 8.3% + 2.0% for aggressive attacks (excellent performance), 22.0% + 2.0%
for stealth attacks (good performance), and 31.9% + 1.9% for gradual attacks (acceptable performance), ensuring minimal malicious
nodes remain undetected across all attack types. The proposed approach provides a highly secure and scalable solution for detecting
malicious nodes in fog networks, offering superior threat detection through intelligent trust based decision making and coordinated multi-
agent learning.
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conditions and hostile strategies, a strong trust management
I. INTRODUCTION system is needed.

The rapid growth of fog computing is a vital solution to the
limitations of centralized cloud infrastructures, particularly in
latency sensitive applications like smart healthcare, autonomous
vehicles, and industrial automation [1,29]. Real time data
analysis and decision making are made possible by this localized
processing, which drastically lowers latency and bandwidth
usage to distant cloud data centers. This is essential for time
sensitive loT-based applications [2,30]. The dynamic and
distributed nature of fog-to-fog communication raises security
concerns about malicious node behavior that compromises data
integrity, undermines service continuity, and erodes system

Existing trust management models in fog environments have
limitations because trust value calculation relies on static rules,
predefined threshold values and centralized decision making.
Due to the dynamic and decentralized nature of fog networks,
traditional reputation based or cryptographic based trust
frameworks are less effective and typically not equipped to
respond to real time malicious behavior. They are also not
adaptive to rapidly evolving network states [6].

To overcome these challenges, there is a critical need for a
decentralized, autonomous, and adaptive trust model that can

confidence [3,4]. The key problem is detecting and isolating
malicious nodes in the network, as they can compromise
network reliability and data integrity through various attacks,
such as selective packet dropping, bad-mouthing, and evasive
"on-off" behaviors [5]. To overcome the problem of node's
trustworthiness and automatic adjustment to shifting network
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operate effectively in uncertainty and dynamic conditions. One
promising solution is MARL, which enables individual fog
nodes modelled as intelligent agents to detect malicious nodes
among their neighbors [7,8]. We employed an advanced
Independent Deep Q-Network architecture, where every node is
independent and can take its own decision. This model is also
reinforced with centralized training to provide robust and

tpAreimia


http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt71547
https://jastt.org
https://ipacademia.org/
mailto:sheenu.singh@ljku.edu.in
mailto:meetu.joshi@ljku.edu.in
mailto:harshad.bhadka@gmail.com
mailto:sheenu.singh@ljku.edu.in
https://orcid.org/0000-0002-9715-2152
https://orcid.org/0000-0003-1115-2811
https://orcid.org/0000-0003-3762-854X

Singh et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 47 —66 (2026)

cooperative learning in this demanding setting. This centralized
critic offers a comprehensive global understanding of the
network state and joint actions, delivering stable and consistent
learning signals to the decentralized agents during training. The
practical implementation demonstrates significant potential for
deployment in smart city infrastructure and industrial loT
systems, where conventional security methods fall short due
to the distributed architecture, limited computational resources,
and stringent real time performance demands inherent in fog
networks. The primary contributions and novelties of this study
are as follows:

e Integrated Trust MARL Framework: We proposed a
novel integration of trust management with multi-agent
reinforcement learning by explicitly fusing direct and
indirect trust metrics within an Independent Deep Q-
Network (I-DQN) architecture for malicious node detection
in fog computing networks.

e Coordinated Learning Architecture: We used the
centralised training and decentralised execution (CTDE)
paradigm, where a centralised coordinator guides learning
while fog nodes retain independent decision making during
execution.

e Adaptive Trust Evaluation: We design a dynamic trust
management mechanism that combines local observations
with reputation filtered neighbour recommendations and
automatically adjusts a global trust threshold in response to
changing network conditions.

e Comprehensive Evaluation under Multiple Attack
Complexities: We conducted a detailed statistical
evaluation under three black hole attack scenarios
(aggressive, stealth and gradual), demonstrating improved
robustness and generalization compared to state-of-the-art
trust based and MARL baselines.

The remaining part of this paper is organized as follows:
Section 2 provides a relevant literature review on trust based
solutions for securing fog networks using Multi-Agent
Reinforcement Learning. Section 3 details the research
methodology, and Section 4 discusses our proposed trust-aware
multi-agent DQN framework. Section 5 debates the
experimental results. Lastly, Section 6 concludes the work and
suggests directions for future research.

Il. RELATED WORK

The rapid expansion of 10T technologies has created an
urgent need for robust security mechanisms to protect
distributed computing infrastructures. Trust management
systems have emerged as critical components for maintaining
network integrity in dynamic, decentralized environments,
particularly within fog computing architectures. This growing
importance has stimulated substantial research efforts across
multiple technical domains. Our literature analysis examines
three primary research streams: distributed trust management
approaches, machine learning applications in network security,
and the integration of MARL with trust mechanisms. A
comprehensive comparison of existing methodologies against
our proposed framework is detailed in Table 1, highlighting the
unique contributions and advantages of our approach.
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A. Trust Management in Distributed Systems

To address the scalability issues, single points of failure, and
high communication overhead associated with centralized
architectures, numerous distributed trust models have been
proposed [9,10]. These models enable individual nodes to
compute their trust scores based on local observations and
interactions. For example, Al-Masri et al. [11] presented a
subjective-based trust for fog-based loT. This model provides a
probabilistic foundation for uncertainty, it adapts via Bayesian
inference and lacks the autonomous, data driven learning
capabilities of reinforcement learning. It is critical for dealing
with dynamic and innovative harmful behaviours. Likewise, Al-
Tameemi et al.and Secure Comp. for fog-110T used direct and
indirect trust measures in fog and industrial loT to study
distributed trust and reputation [19,20]. These methods
frequently use implicit heuristic principles or threshold based
procedures to identify actions such as disparaging others.
Similarly, by considering various trust factors, TETES (MDPI,
2023) [21] focuses on trust based efficient task execution in
smart cities. However, it is less resilient to unexpected attack
patterns, as it also relies on preset thresholds and lacks
autonomous learning mechanisms. [22]It robustly manages
indirect trust in MANETs against suggestion attacks by
addressing reputation based trust. This work is not specifically
tailored for the unique dynamics of fog computing. Similarly,
frameworks such as VANET-DDoSNet++ provided high
accuracy, real time packet detection using a hybrid deep learning
approach, with a primary focus on traffic analysis [35].

A more proactive security paradigm, zero-trust frameworks
prioritise ongoing verification above implicit confidence. Al-
Dubai [18] proposes a zero-trust architecture tailored for 6G
Edge/Fog Networks that generates dynamic trust ratings and
policies via Al-driven anomaly detection. This effort greatly
aids continuous verification and adaptation in extremely highly
dynamic contexts. One common issue across all trust
management systems is their inability to adapt to the intelligence
and adaptability of hostile entities in open, dynamic fog settings.
They are frequently reactive, slow to converge or based on
predefined rules.

B. Reinforcement Learning in Network Security

The demand for intelligent and adaptable network security
solutions has significantly increased the applications of machine
learning and, more recently, reinforcement learning (RL) in
network security. Traditional machine learning methods for
network security face several limitations. High false positive
rates are frequently the consequence of unsupervised anomaly
detection, particularly when new threats are detected. In
contrast, supervised approaches require a continuous supply of
updated labelled data, which can be costly and impractical.
Moreover, the majority of these methods are reactive, detecting
dangers only after they occur. They are not suitable for proactive
trust management in extremely dynamic fog situations due to
their intrinsic reactivity and inability to execute sequential
decision making or adaptive policy learning. The advancement
of artificial intelligence has enabled novel approaches in trust
management in dynamic distributed systems through RL. RL
enables agents to learn optimal trust assessment, allowing them
to adapt their decision making processes based on
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environmental feedback and interaction outcomes. RL can be need to collaborate and coordinate their trust evaluations for
classified as single-agent and multi-agent RL.

Single-agent

RL has demonstrated effectiveness in
centralized cloud and Internet of Things (IoT) environments but
in decentralized fog computing networks where multiple nodes

policy learning [14]. This collaborative learning can be
addressed by multi-agent Reinforcement Learning which allows
each agent to develop its own trust assessment capabilities while
considering the collective behaviour and shared knowledge of
the entire network.

TABLE I. COMPARISON OF TRUST MANAGEMENT MODEL IN DECENTRALISED NETWORK
Ref Trust Network Trust Metrics Learning Unique Contribution/ Limitations
Management Environment Mechanism
Approach
[18] Zero-Trust 6G Edge/Fog | Dynamic  Trust | Al-driven Strengths: Emphasizes continuous verification, is adaptable to 6G
Framework Networks Scores, Anomaly | Anomaly dynamics, and achieves high accuracy.
Detection Detection, Limitations: Focuses on access control, not specific MARL for fog-to-
Dynamic fog interaction trust.
Policies
[15] MARL for | Telecommuni Multi-Agent Strengths: Comprehensive survey on MARL in decentralized systems,
Resource cation, Reinforcement covers various paradigms.
Allocation Energy, Learning Limitations: Not focused on trust or malicious node detection
Distributed specifically, but general MARL applicability.
Computing
[11] Subjective Fog based IoT | Direct Bayesian Strengths: Provides a probabilistic approach to modelling trust related
Logic based Observations, Inference, uncertainty.
Trust Recommendations | Subjective Limitations: Lacks adaptive, reinforcement learning for dynamic
Logic behavior; may not scale to diverse attacks.
[19] Distributed Fog Direct and Indirect | Threshold based | Strengths:
Trust and | Computing, Trust, Reputation (Fuzzy  Logic | Considers direct and indirect trust, attempts to detect bad-mouthing
Reputation loT often implied) Limitations: Not truly adaptive learning; detection can be slow for on-
off attacks.
[20] Combined Industrial 10T | Direct Interaction, | Rule based | Strengths: Considers both trust types for task offloading
Direct and | (Fogenabled) | Indirect (implicit, often | Limitations: Static rules/heuristics limited adaptability; lacks a
Indirect Trust Recommendation | heuristic) reinforcement learning approach
[21] Trust based | Fog Enabled | Direct (Packet | Threshold based | Strengths: Improves task efficiency by accounting for multiple trust
Efficient Task | Smart Cities Delivery), Indirect | filtering parameters.
Execution (Recommendation Limitations: Relies on fixed thresholds and lacks autonomous learning;
s) less robust to unknown attacks
[22] Reputation MANET Direct Reputation Strengths: Focuses on robust indirect trust against recommendation
based Trust Observation, scoring, defense | attacks.
Recommendations | schemes Limitations: Not explicitly designed for fog or MARL; may not scale
to fog-to-fog dynamism.
[23] Survey of | Fog Strengths: Comprehensive overview of attacks and vulnerabilities in
Security Computing fog computing.
Challenges & Limitations: Does not propose a solution; highlights the threats.
Fog Computing
[24] Federated Wireless Agent reliability, | Federated Strengths: Privacy-preserving, distributed learning for intrusion
MARL for IDS | Sensor IDS performance Learning and | detection.
Networks Multi-Agent Limitations: Specific to WSNs and IDS, not general trust management;
(WSNs) DRL focuses on privacy.
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C. Multi-Agent Reinforcement Learning(MARL) Paradigms

MARL enables multiple agents to learn and take decisions
collaboratively within a shared environment [15]. This approach
follows a centralized training and decentralized execution,
where agents are self-trained with global information but
operate independently during execution. MARL has shown
significant potential across various domains, including resource
allocation and traffic control. This makes RL suitable for trust
management in a decentralized fog network [16, 17]. MARL
approaches can be categorized based on agent learning and
coordination strategies.

Independent Learning (IL), also termed as Fully
Decentralized Learning approach, treats each agent as an
autonomous entity that learns independently while considering
other agents as environmental factors. The Independent Deep Q-
Network (1-DQN) exemplifies this approach, where individual
agents implement their own DQN algorithms without direct
inter-agent coordination [28].

The Centralized Training, Decentralized Execution (CTDE)
paradigm represents a powerful approach that maintains
decentralized decision making during execution but stabilizes
learning through a global perspective during training. This
method proves particularly effective in cooperative learning
MARL scenarios. Foundational studies such as QMIX [26] and
Value Decomposition Networks (VDN) [25] demonstrate the
implementation of CTDE for cooperative discrete-action
problems by decomposing or combining individual Q-values to
estimate joint Q-value functions. Similarly, the Multi-Agent
Deep Deterministic Policy Gradient approach (MADDPG) [27]
applies to continuous action spaces utilizing a centralized critic.
This provides stable gradients for decentralized agents. This
approach addresses the fundamental issue of an agent's optimal
action is contingent upon the behaviours of other agents, thus
mitigating ongoing environmental changes that may result in
unstable learning and suboptimal collective outcomes [15].

Although, prior studies have explored MARL-based
network security and trust management in fog computing. But,
no existing work integrates trust modelling with a hybrid I-DQN
framework under centralized training and decentralized
execution. Moreover, dynamic trust thresholding and evaluation
under multiple black-hole attack complexities have not been
jointly investigated. This study directly addresses these gaps.

I1l. METHODOLOGY

This study presents a comprehensive MARL simulation
framework for detecting malicious nodes in the network by
investigating the detection of black hole attacks in fog networks.
This methodological section outlines the fog network
architecture, the node characteristics, and the trust evaluation
mechanisms, followed by the proposed MARL-based trust
module and its implementation details. Additionally, also
explains the attack model, data analysis process, and
performance metrics used for evaluation.

A. Network Architecture and Topology

We consider fog network, a dynamic and decentralized
network and it comprises a set of N heterogeneous fog nodes,
denoted as F={f,f, --~fn}. Every fog node fi EF have limited
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computational, storage, and communication capabilities. The
network topology is a mesh architecture where nodes
autonomously discover and maintain connections with
neighboring devices within their communication range. The
network topology is dynamically generated at the beginning of
each simulation. The fog network with wireless nodes has the
following characteristics:

Network Topology:

e Number of nodes: Variable (10-15 nodes)
e Simulation area: 1000m x 1000m
e Communication range: 200m radius per node

To get realistic packet-level communication, the Scapy
library is used. The simulation leverages Scapy for realistic
packet generation, creating authentic Ethernet frames with
unique 48-bit MAC addresses and variable payload sizes (64-
1500 bytes) while maintaining simplified network assumptions.
These assumptions include perfect channel conditions with no
packet corruption, deterministic 1-ms propagation delays, and
no packet collisions through TDMA-like scheduling. The Key
limitations include the absence of mobility modeling (static
nodes), simplified routing restricted to direct neighbor
communication, no cryptographic overhead or authentication
delays, and the assumption of immediate trust updates and
perfect state information sharing. This may not fully capture
real-world network complexities, but it enables focused analysis
of the core MARL learning dynamics and trust based detection
mechanisms.

B. Fog Node Characteristics

Each fog node is modelled as an autonomous agent with the
following distinct characteristics, which mirror those of real
world devices.

1) Physical Attributes:
¢ Unique identifier (UUID) and MAC address for network
identification.

e Battery capacity ranging from 80-100% of baseline (100
units) to simulate device heterogeneity.

2) Energy Management System:

e Multi-modal charging capabilities, including solar (0.8
units/second), station-based (3.0 units/second), and
cooperative energy sharing (1.0 units/second)

e Dynamic energy consumption based on operational
state: idle (0.01 units/second), communication (0.1
units/second), and trust evaluation (0.05 units/second)

¢ Intelligent power management with multiple operational
modes: normal, power-saving (<20% battery), critical
(<£10% battery), and emergency (<5% battery)

3) Communication Infrastructure:
e Thread-safe packet processing with separate send and
receive queues

e Three-way handshake protocol implementation (SYN-
ACK-CONFIRM) with timeout handling
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e Packet buffering and transmission rate control (30%
transmission probability per update cycle)

C. Trust Evaluation Mechanisms

Trust is the confidence an entity has in another entity, based
on direct prior experience or feedback from other nodes in the
network. Each fog node evaluates the trustworthiness of its
neighbor nodes using the combined Trust (as shown in equation
4) that uses two metrics: direct trust(as shown in equation 2) and
indirect trust(as shown in equation 3). The initial direct trust and
indirect trust scores of each fog node are 0.7. These trust values
are dynamically updated based on local observations and
feedback that serve as input for the learning agent.

1) Direct Trust: Direct trust is calculated based on direct
packet interactions between node i and node j. It shows how
reliably node j has forwarded or acknowledged packets sent by
node i, and it is computed as follows:

Packet Delivery Ratio is calculated as,
Total Packets Received
PDR =

X1
Total Packet Sent 00

€y

The direct trust score is updated continuously using an
exponentially weighted moving average (EWMA).

Tt (¢) = X- T (¢ — 1) + (1 X) - PDRy;(¢)
Where,
o )\ = forgetting factor (0 <A < 1) that balances past
and recent behavior.
o Ti‘}”e“(t):Direct trust score of node i for node j at
time(episode) t
e PDR;; (t) = Packet Delivery Ratio between nodes i
and j at time t (as shown in equation 1)
e t=Interaction episodes/time steps

2

2) Indirect Trust: Indirect trust aggregation is a mechanism
where a node (node i) evaluates the trustworthiness of another
node (node j) based onrecommendations from its trusted
neighbors (nodes k) , rather than direct interactions. It is useful
in cases where a new node enters the network and has an
insufficient recent interaction history.

1 . .

INZ’ Z T’gl;rect i Tic'll;rect
keN; (3)

o Tjr4Tect(t)=Indirect trust score of node i for node j
at time(episode) t

e Ni= Set of neighbor nodes trusted by node i

e THirect(¢)= Direct trust of node i for neighbor k

. T,fj"”“(t)= Direct trust of neighbor k for node j

indirect __
ij -

3) Combined Trust Score: The final trust score (as shown in
equation 4) combines direct (an shown in equation 2) and
indirect components (as shown in equation 3) using a weighted
average (70% direct (a), 30% indirect (f)), providing a
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balanced trust assessment that prioritizes first hand
observations.
Combined Trust = a * T"e(¢) + B * T4 (¢) (4)

D. Data Collection and Analysis

The simulation framework implements a comprehensive
multi-layered data collection system designed to capture all
aspects of network behaviour, security events, and learning
dynamics for rigorous analysis. At the node level, each fog node
maintains detailed logs capturing state information including
position coordinates, battery levels, and energy consumption
rates, ~ communication  metrics such as  packet
transmission/reception counts, and packet drop statistics, trust
evolution data encompassing direct and indirect trust scores,
trust variance, and interaction history, security events including
malicious node detections and false positive/negative
occurrences, and performance metrics including reward signals,
action selections, and learning progress indicators.

The environment level data collection captures system wide
metrics including dynamic network topology with neighbour
relationships and connectivity matrices, attack progression
tracking with initiation timing, malicious node selection
patterns, and packet drop evolution, global performance
indicators such as system wide detection rates, false
positive/negative rates, and consensus accuracy, and training
dynamics including hyperparameter optimization progress,
convergence metrics, and learning stability indicators.

The logging system employs real time buffered streaming
with thread safe buffers (10 entries for state data, 100 for
interactions), automatic flushing mechanisms triggered by time
based (2-5 seconds) and size based conditions, automatic log
rotation every 10 minutes to manage storage and enable real
time analysis, and cleanup mechanisms that automatically
remove logs older than 3 hours to maintain storage efficiency.

Each experimental run generates a structured data hierarchy
organized in scenario specific directories containing
configuration files with complete experimental parameters and
optimized hyperparameters, execution logs with aggregated
performance metrics and episode summaries, environment logs
capturing global network performance and attack progression,
individual node logs with state evolution, communication
events, trust progression, and security detection data, and
analysis directories containing comprehensive performance
metrics, temporal analysis data, comparative results, and
statistical summaries.

The data collection system implements rigorous quality
assurance measures, including range checking for all numerical
values, consistency verification between related metrics,
completeness assessment with the identification of missing data,
and outlier detection wusing statistical methods. This
comprehensive data collection framework enables detailed
analysis of the MARL-based trust system's performance,
providing a foundation for evaluating detection accuracy,
learning convergence, and network resilience in fog computing
security applications.
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E. MARL Trust Module Architecture

The malicious node detection challenge is structured as a
collaborative Multi-Agent Reinforcement Learning problem
where fog nodes work together to enhance network security
through accurate threat identification while reducing false
alarms. The framework components are detailed as follows:

Agent: Individual fog nodes function as autonomous
Reinforcement Learning agents, with N concurrent agents
operating within the fog network infrastructure.

Environment: Each agent's environment encompasses
thecomplete dynamic fog network, incorporating globally
broadcast threshold values, updated reputation scores,
behavioural patterns of all networkindirect trust indicators,
current trust threshold values, and reputation scores of
neighboring nodes.

Action Space ( a, ): Binary classification decisions
(Malicious or Benign) made by each agent for every
neighbor at each time step, with Q-values directly
influencing action selection and contributing to the local
malicious list.

Reward Mechanism (r;,): Scalar rewards determined by the
Central Orchestrator ~ comparing  global  malicious
node lists with local detection results, formulated as shown
in equation 5:

Tn=TPy,, — FPy, —2FNy, %)

Where TPn represents true positives, FPn denotes false
positives, and FNn indicates false negatives. The penalty
structure prioritizes security by applying stronger penalties
for missed threats (-2) compared to false alarms (-1).

e Global State (Sg;05q:) cOMprehensive network snapshot for
the centralized critic network, constructed by
concatenating local observations from all agents, providing
complete  network visibility while scaling  linearly
with agent count.

e Joint Action (A, ): Collective actions taken by all
agents at each timestep, enabling the centralized critic to
evaluate aggregate behavior and guide decentralized
actors toward unified malicious node identification
policies.

I-DQN CTDE Architecture: The proposed framework
employs an Independent Deep Q-Network architecture
integrated with a Centralized Training, Decentralized Execution
methodology to address malicious node detection challenges in
dynamic fog environments.The I-DQN implementation features
individual fog nodes as independent learning agents, each
equipped with a Deep Q-Network containing an input layer that
processes a trust value (0.0-1.0 range), two fully connected
hidden layers (128 and 64 neurons) with ReL U activation, and
an output layer that provides binary classification. Target
networks update every 80 steps or are triggered (e.g., topology
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changes, high false positive/negative rates) to maintain training
stability, with hyperparameters optimized through tuning. This
results in a learning rate of 0.0069, a discount factor of 0.961,
and an exploration rate that decays from 1.0 to 0.026.

The CTDE paradigm addresses multi-agent non-stationarity
through a two-phase approach. Firstly, computerized training
enables nodes to share trust evaluations and detection results
with a coordinator that aggregates decisions, distributes global
feedback as rewards, and broadcasts optimized parameters.
Secondly, decentralized execution enables autonomous
operation, where every node utilizes trained policies for local
trust evaluation, select actions through individual DQN policies,
and maintain ~ real  time  operation  without incurring
communication overhead.

This hybrid architecture delivers key advantages including
scalability through decentralized execution for large scale
networks, privacy preservation through local decision making,
robustness ensuring continued  functionality  during partial
failures, and learning efficiency through centralized training.
This mechanism accelerates convergence and improves
detection accuracy. The framework effectively balances the
requirements for coordinated learning with the needs of
practical distributed fog computing, enabling sophisticated trust
evaluation  capabilities  while  maintaining operational
autonomy for real time security in dynamic network
environments.

F. Implementation and Reproducibility

The simulation environment is developed in Python using
the Gymnasium framework to provide a standardized interface
for reinforcement learning. The learning components were
implemented with PyTorch library and extended to support fog
computing capabilities required by proposed model.

Hyperparameter optimization was performed using the
Optuna framework with the Tree-structured Parzen Estimator
(TPE) algorithm. A total of 80 optimization trials were
conducted to tune model parameters and improve learning
stability and performance systematically. The selected
hyperparameters were kept fixed across all experimental
scenarios. To obtain better performance, optuna framework with
Tree-structured Parzen Estimator (TPE) optimization with 80
trials is used for systematic hyperparameter tuning.

To ensure both experimental determinism and
reproducibility, a comprehensive seeding strategy is used across
30 multi-run simulations. A global random seed of 42 was used
to initialize all experiments. In addition, all random number
generators used with PyTorch and the Gymnasium environment
were consistently seeded to ensure independent, verifiable trials.

Each attack scenario was executed for 500 simulation steps.
The experimental design consisted of three black-hole attack
scenarios, with 30 independent runs per scenario, resulting in a
total of 90 simulation runs. To control computational overhead,

Each simulation run was executed with a maximum runtime
limit of 2 hours on an Intel-class multi-core CPU with 8 GB
memory allocation. This experimental configuration provides
sufficient statistical power, achieving 80% power for robust
ANOVA testing and enabling reliable estimation of 95%
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confidence intervals across all performance metrics. Reported
results represent the average performance across independent
runs, thereby reducing the impact of stochastic variability.

G. Black Hole Attack detection

The proposed MARL trust based detection system is
carefully tested against three different black hole attack
scenarios in our assessment. Malicious behavior is activated at
step 150 of the 500-step simulation (30% simulation progress),
allowing sufficient time for normal network establishment and
post attack recovery analysis to occur. The attack duration varies
by scenario but typically spans 200 to 350 simulation steps.

The following parameters are common to all attack scenarios:

o Packet Dropping Approach: To target specific packet types,
malicious nodes employ a hierarchical packet dropping
approach. When the drop probability is fully configured,
DATA packets (payload) are discarded. The SYN, ACK,
and CONFIRM handshake packets, which are essential for
preserving the appearance of network connectivity, are
dropped at a rate 70% lower than the overall Drop
Probability. The whole drop probability is used to drop
unknown packets. In certain situations, this selective
dropping process is crucial for achieving stealth.

Attack Intensity: This parameter, which has a range of 0.0
to 1.0, regulates how active the harmful activity is
generally and affects the Drop Probability.

Black hole attack scenarios are:

e Aggressive Attacks Scenario: As a baseline for basic
detection capacity, this scenario is the most basic and,
hence, the most detectable type of black hole attack. It has
an attack with an intensity of 1.0, the highest level of
aggression, with a drop rate of 90%. Every sort of
incoming packet is discarded without distinction. The goal
is to evaluate the system's baseline detection speed and
accuracy under optimal (for the attacker) conditions by
simulating overt network disruption, characterized by
significant packet loss and throughput deterioration.

e Stealth Attack Scenario: This scenario employs a more
complex strategy, striking a balance between evasive
tactics and disruptive objectives to make discovery
difficult. The goal is to assess the detection system's
capacity to recognize increasingly complex attacks that
seek to maintain a certain level of network presence while
severely interfering with data flow, necessitating the use
of more sophisticated detection logic. It has an attack
intensity of 0.7, suggesting a conscious effort at nuance,
with a 60% drop probability.

Gradual Attack Scenario: This situation simulates the most

undetectable and challenging type of black hole attack,

which is marked by a continuous, slow onset danger. With

a low initial drop chance of 0.3, the attack starts. After that,

the drop probability gradually increases until it reaches

50%. The system's long term monitoring capabilities and

resistance to stealthy, dynamic threats that frequently
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evade simpler detection methods designed for sudden
changes are put to the test in this situation.

H. Performance Metrics

The evaluation of the proposed I-DQN-CTDE framework
employs a comprehensive set of performance metrics designed
to assess detection accuracy, learning efficiency, network
resilience, and system robustness across multiple dimensions.
The primary detection performance metrics include Detection
Rate (DR), calculated as the proportion of malicious nodes
correctly identified, False Positive Rate (FPR), representing the
proportion of benign nodes incorrectly flagged as malicious, and
False Negative Rate (FNR), indicating the proportion of
malicious nodes missed by the detection system. They are
calculated as per equations 6,7,8 as follows.

True Positives

= 6
True Positives + False Negatives ®
FPR = False Positives ;
" False Positives + TrueNegatives )
False Negatives
FNR = (8)

True Positives + False Negatives

Advanced detection metrics include detection time, which
measures the temporal efficiency from attack initiation to the
first detection, consensus accuracy, which measures the degree
of agreement among detecting nodes and trust stability,
measured as trust scores to evaluate the consistency of trust
assessments. These comprehensive metrics demonstrate the
effectiveness of detecting black hole attacks while maintaining
network performance and ensuring robust operation in dynamic
fog computing environments.

IV. PROPOSED TRUST-AWARE MULTI-AGENT DQN
FRAMEWORK

Our proposed trust management model is designed to
operate effectively in dynamic and decentralized fog networks
by leveraging the adaptive capabilities of Multi-Agent
Reinforcement Learning. This approach aims to combine the
resilience of decentralized local decision making with the
robustness of global aggregation and adaptive control.

In this model, each fog node serves as an independent smart
agent. To overcome the limitations of handling large or complex
state spaces inherent in traditional tabular Q-learning, an actor-
critic architecture is utilized within the proposed framework.
Under the CTDE paradigm, agents learn effective policies by
approximating the optimal action-value function (critic) and the
action selection strategy (actor) using neural networks. This
enables the agents to dynamically identify malicious neighbours
through continuous interaction with and observation of the
environment. The overall framework is depicted in Fig 1, and its
core algorithmic components are elaborated in Algorithms 1 and
2.
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Centralized Orchestrator

FOG Agent

Trust Metrcs

m—-

FOG ENVIRONMENT
Fig. 1. MARL Malicious Node Detection Architecture

A sequence diagram (Fig. 2) illustrates the operational flow
of our proposed framework. This framework employs a
centralized training, decentralized execution paradigm,
coordinating interactions among the centralized orchestrator
(O), global experience replay buffer (ERB), and individual fog
Nodes (FN,,). The process initiates with system setup by the
orchestrator, which initializes DRL networks and broadcasts
initial policies to all fog Nodes. The initial Trust threshold for
malicious node detection is 0.4. In each simulation step,
decentralized fog nodes operate autonomously.

o Decision and Data Generation: FNn observes its local state,
updates internal trust metrics (direct trust and indirect trust
score), and selects a detection action (e.g., ‘conservative' or
‘aggressive’) using its learned policy. Our research
proposes a context-aware detection mechanism that shifts
between conservative detection modes during stable
periods and aggressive responses when threats emerge.
The system resolves the security stability dilemma by
continuously adjusting its sensitivity thresholds based on
real time network assessments and attack patterns. This
action guides the generation of its local malicious node list
(L,) by comparing aggregate trust matrices with the trust
threshold value. Critically, FNn computes its reward (rn)
by comparing the local malicious list (L,) against the
global malicious nodes broadcast by the central
orchestrator and then penalizing inaccuracies.

e Reporting to Orchestrator: Each FNn reports its experience
(Sn.an, Ly, 1) to the Orchestrator.

o Centralized Trust Adaptation & Orchestration: The
orchestrator aggregates these reports. Periodically or in
response to triggers (e.g., topology changes, high false
positive/negative rates), it executes Algorithm 2. This
module identifies reliable reporters, forms the network's
consensus GlobalMaliciousList, dynamically adjusts the
global trust threshold, and updates reporter Reputation
Scores based on their consistency with the consensus list.
The updated GlobalMaliciousL.ist and
global_trust_threshold are then disseminated back to the
fog Nodes. This global_trust_threshhold is a dynamic
threshold calculated as shown in equation 9.
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G(t) = Opase + B X (1 - 'Ta‘.-g(f}) ©)

Where,

e A(t) = Dynamic threshold at episode t, between 6,,;,
and 6,4

e 0, = Base threshold value
o Tuy(t) =Average trust score across all nodes at
episode t.

e DRL Policy Learning: The orchestrator constructs global
experience tuples, which are stored in the ERB. When
sufficient data accumulates, the orchestrator samples mini-
batches and performs DQN-based gradient descent updates
on the shared Q_actor and centralized Q_critic networks.
Target networks are periodically updated. The improved
Q_actor policy is then broadcast to the fog Nodes, enabling
more accurate, adaptive malicious node detection in
subsequent steps.

e  This continuous cycle of decentralized action, centralized
trust adaptation, and DRL-driven policy refinement forms
the adaptive core of our framework. Our framework uses
two major algorithms, as discussed below.

A. MARL Training Algorithm for Trust Policy Learning

The learning process for trust policy learning (Algorithm 1)
addresses the dynamic nature of fog environments, enabling
constant adaptability to changing network conditions and
threats. Fundamentally, Algorithm 1 creates a global experience
replay buffer for learning, initializes the shared neural networks
(actor and critic), and defines key trust parameters, including a
dynamic trust threshold and reputation scores for each fog node.
The algorithm starts each episode by modeling genuine network
changes, such as the addition of new nodes and the removal of
old ones. The dynamic modification of reputation for rejoining
nodes is a crucial component in this case.

Our system implements an intelligent node admission
protocol that differentiates between returning participants and
first time entrants as follows.

e Node Admission Framework: The algorithm evaluates
each incoming node (FN_new) by first confirming its
active and inactive state, then categorizing it based on
historical presence in the ReputationScores registry.

e Returning Node Processing: Nodes with existing
reputation data undergo a sophisticated decay calculation
using effective_lambda based on several factors. The
system begins by applying base_lambda to all nodes after
they leave the network. If a node has a history of malicious
behaviour, malicious_multiplier increases the decay factor
to ensure its reputation drops faster. When the entire
network is under threat (during high risk periods), the
malicious_activity boost factor further increases the decay
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1
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i
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i
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Fig. 2. MARL Working

rate for problematic nodes, serving as a proactive security  and constrained by initial_reputation_for_new_nodes to prevent
measure. A fairness component addresses legitimate  excessive score reduction.
disconnections. For pre-arranged departures, effective_lambda . . .

P g P T e New Node Processing: Those Incoming Nodes having no

is reset to 0.0, eliminating unwarranted reputation penalties. The ) o
final score is computed using exponential decay methodology reputation records are classified as newcomers. They
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receive a neutral initial reputation as new nodes, and their
malicious history indicator is set to False.

e Integration Protocol: Both returning and new nodes are
activated and equipped with current network trust
parameters and policy configurations, enabling immediate
participation within the existing security framework. This
dual path methodology ensures intelligent initial trust
allocation that considers both individual history and
current network security conditions.

Once the network is ready, all fog nodes start observing their
neighbors and managing their local states in response to
network dynamics. These states contain the orchestrator
displayed current_trust_threshold as well as local trust metrics
for their neighbors. Based on observation, each agent decides
whether to take an “aggressive” or “conservative” approach.
An "aggressive™ action can identify potentially malicious nodes
by using a lower trust threshold, which could result in more
detections but also more false positives. Conversely, a
""conservative" action can use a higher threshold, which results
in fewer detections but higher confidence. These decisions
affect the local malicious lists (Ln) they disclose and their local
trust criteria. Then the central orchestrator collects local
malicious lists along with other matrices from all active nodes.
These matrices will be used to update the global trust threshold
and collectively generate a global malicious list as explained in
Algorithm 2. Algorithm 2 is called periodically (50 time steps)
or when an event such as a new node added, a node deleted,
etc., occurs. Otherwise, the previous trust threshold and global
malicious list will be considered. To continually improve the
agents' capacity to identify malicious activity, the orchestrator
lastly refreshes the comprehensive reputation scores, gathers
global experiences for the replay buffer, and trains the shared
actor-critic networks using this data. This flexible strategy
provides training and adaptation to the dynamic fog
environment.

B. Trust based Malicious Node Detection and Threshold
Adaptation by Central Orchestrator

Algorithm 2 describes the process of collaborative
identification of malicious nodes in the network and calculation
of dynamic trust threshold in the framework. The centralized
orchestrator governs a robust approach that incorporates four
critical stages.

e The coordinator's first process begins with global state
aggregation. It receives local malicious node reports (L,,)
and local trust evaluations ( Ty..res) from all active
functioning nodes. The coordinator conducts an initial
screening phase to identify trustworthy reporters, ensuring
the integrity of the consensus that follows. A node is
classified as a ReliableReporter only if its local report is
sufficiently consistent with the previous global state and its
reputation score meets a minimum threshold. This
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mitigates the risk of low quality or adversarial reports
skewing the global decision.

e The second stage is crucial for establishing agreement
across the network. In this stage, reports from the identified
ReliableReporters are aggregated to form the global
malicious nodes list (M,,ren: )- Specifically, a node is
designated as malicious if it receives votes from more than
two-thirds of the reliable reporters, thereby effectively
implementing a simple majority voting protocol. By
resolving disagreements between divergent local detection
findings, this centralized consensus method creates a single,
reliable source of truth for the network as a whole.

e Inthis stage the coordinator maintains the model's adaptive
capabilities by managing the dynamic trust threshold. It
utilizes the validated trust scores (Tscores) tO Calculate a
new detection threshold (new_trust_threshhold) based on
statistical analysis and a smoothing factor derived from the
Exponential Moving Average (EMA). This continuous
adaptation is vital, as it ensures the detection mechanism
remains sensitive to evolving, non-stationary malicious
behaviour patterns within the multi-agent environment.

e The final stage is to update the reporter's reputation score.

The centralized coordination is essential between multi-agents
for critical network decisions during training phase but may
lead to single point of failure but decentralized execution offers
temporary resilience by maintaining functionality even if the
coordinator is unavailable.

C. Theoretical Scalability Analysis

The decentralized execution paradigm of the proposed
framework offers inherent scalability benefits, enabling
deployment in large scale fog computing networks. While our
current empirical validation focuses on networks with 10-15
nodes, theoretical analysis demonstrates the framework's
potential for deployments of significantly larger scale. This
section presents a comprehensive scalability analysis addressing
computational complexity and communication overhead across
varying network sizes.

1) Computational Complexity Analysis: The computational
overhead can be analysed through three critical dimensions: per
node operations, centralized training coordination, and overall
system scalability. In our model, each fog node maintains an
independent Deep Q-Network with an input dimension of d =
2, representing direct and indirect trust values. The time
complexity per decision operation can be expressed as shown
in equation 10.

(10)

0(d X hl + hl X h2 + h2 x |A])

where, h1=128, h2=64 represent the hidden layer neuron
counts

|A]=2 represents the binary action space
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Algorithm 1 Trust-Aware Multi-Agent DQN Training

Input:

Finitiar: Set of initial Fog Nodes

4: Discount Factor; aaetor, Qeritie: Learning Rates

periodic_training_interval: Time steps/duration for periodic Algorithm 2 call > NEW Input
event_driven_threshold_maliciousness: Threshold for event-driven trigger > NEW Input

Cactor_update , Ceritic_update: Target Network Update Frequencies
€initial: Initial Exploration Rate decay_rate: Exploration Decay Factor
Diyin size: Minimum Replay Buffer size for training

O Max capacity of Global Experience Replay Buffer D

Aggressive: 1rust adjustment for "aggressive” action

Aconservative: 1rust adjustment for ”conservative” action

initial_reputation_for_new nodes: Default reputation for brand new nodes

Abase: Base decay constant for node reputation > For rejoining nodes
Amaticious_multiplier: Multiplier for A if node has malicious history > Differentiated Decay
Amalicious_activityboost: Additional A for high network maliciousness > Contextual Decay
network_maliciousness_threshold: Threshold for current_malicious_activity_level

Orecavery’ Learning rate for reputation recovery of active nodes > Fxplicit recovery term

Output: Shared Quctor network g cior
Initialize: (on Centralized Orchestrator)

e W b =

03w

20:
21:

Initialize Shared Qgueior network with random weights #gctor

Initialize Shared Target @), .;,, network with weights @/ ;.. + factor

Initialize Centralized Qcritic network with random weights @critic

Initialize Centralized Target Q' ;,;, network with weights ¢ ;. + Qeritie

Initialize Global Experience Replay Buffer D

Initialize ReputationScores = {} (a dictionary mapping FN;4 to “'score’, 'has_malicious_history™)
Initialize DepartureTimes = {} (a dictionary to store last departure time for nodes)

Initialize TrustHistory

Initialize current_trust_threshold with 0.5.

Initialize ActiveFNs =

Initialize current_malicious_activity_level = 0.0 > Tracks network-wide maliciousness

Initialize planned_departures_log = {} (a dictionary: FN;q — boolean for planned departure)

Initialize GlobalMaliciousList = () > NEW: Default for initial state
Initialize Algorithm2_ReputationUpdates = {} > NEW: Default for initial state
Initialize last_algorithm2_run_time =0 e NEW: To track periadic trigger
Initialize next_periodic_training_time = periodic_training_interval = NEW: First periodic trigger

. for each FN; in Finitia; do

‘ReputationScores[FN;] = {'score’ : initial reputation_for_new_nodes," has_malicious_history' : Falsc}‘.
Add FN; to ‘ActiveFNs*.

s current_€ = Enitial

. for each episode do

Reset Environment: Initialize fog network, agent states, malicious node distribution.
‘current_simulation_time* + Get current overall simulation time.
e Simulate /Oblain nefwork changes and planned departures for this episode

‘newly_joined_nodes®, ‘departed_nodes® +— Simulate network changes.

for each FNicpartea in ‘departed_nodes* do
if FNuepartea in ‘ActiveFNs* then
Remove FNaeparted from ‘ActiveFNs‘.
‘DepartureTimes[FNaeparted) = current_simulation_time*.
> Imilial call to Algori
Collect all Ly from FN, in ActiveFNs. & Will be empty ini
(GlobalMaliciousList, new_trust_threshold, Algorithm2 ReputationUpdates) +—
Execute Algorithm 2(L,., GroundTruthMaliciousSet, ReputationScores, current_trust_threshold, TrustHistory,
ActiveFNs).
GlobalMaliciousList last = GlobalMaliciousList > Store for next
timeste ps
current_trust_threshold <— new_trust_threshold
Algorithm?2_ReputationUpdates last = Algorithin2_ReputationUpdates > Store for next
timeste ps
last_algorithm2_run_time = current_simulation_time
next_periodic_training_time = current_simulation_timd + periodic_training_interval

pisode start

ally or based on reset

hm 2 for e
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: for each FNpew in newly_joined nodes do
if FN,ew not in ActiveFNs then
if FNpey in ReputationScores then > Rejoining node
time_since_departure = current_simulation_time - DepartureTimes.get (FN_new,
0)

previous_reputation = ReputationScores[FN_new] ['score’]

effective_lambda = Apagse

if ReputationScores[FN new] [*has malicious history’] is True then

|_ effective_lambda = effective_lambda ')\malicious_multiplier-

if current malicious_activity_level > network maliciousness_threshold then
| effective_lambda = effective_lambda + )\malicims_activity_bugst.

if planned departures_log.get (FN_new, False) is True then

| effective_lambda = 0.0.

ReputationScores [FN_new] [’score’] = max(previous_reputation -
e—effectiveJambda-time_since_departme: initial _reputation._for_new_nodes)

Remove FNyey from DepartureTimes.

Remove F'Nyey from planned_departures_log if present.

else > Brand-new node
ReputationScores [FN_new] = {’sczore’ 1 initial reputation for new nodes,
'hasmalicioushistory’: False}.

Add FN,ew to ActiveFNs.

FNpew receives current_trust_threshold and shared faeior.

. for each time step ¢ in the current episode do > Decentralized Action Selection (Evecution)
for each agent N, € ActiveFNs do
Observe local state s,
(includes direct/indirect trust metrics for active neighbors, current_trust_threshold).
Update local trust scores T, (e.g., based on recent interactions with FN,, € ActiveFNs, trust
decay).
With probability current_e: select random overall action a,, € {0,1}.
Else: select a,, = arg maxy Qactor(Sn, @ Oactor)-
Add ay, to Ajoint (corresponding to FNy,).
Initialize L, = 0.
for each active neighbor FN,,, of FN,, where FN,;, € ActiveFNs do
Let T, be FN,'s trust score for FN,,.

if a, =1 then > "Aggressive” identification
| Thresholdyy, = current_trust_threshold — A esive
else(a,, = 0) & "Conservative” identification

| Thresholdioeal = current _trust_threshold + A conservative
if Ty, < Threshold)oca) then
|  Add FN,, to L,,.
: for each time step do
Central Orchestrator Role
Collect all L, from FN, in ActiveFNs.
current_simulation_time < Get current overall simulation time.
Check for periodic trigger
is_periodic_due = (current_simulation_time > next_periodic_training_time)
Check for event-driven trigger
is_event_driven_due = (current_malicious_activity level > threshold AND changed significantly)
if is_periodic.due OR is_event_driven_due then
(GlobalMaliciousList_temp, new_trust_threshold_temp, Algorithm2 ReputationUpdates_temp)
Execute Algorithm 2(...).
GlobalMaliciousList = GlobalMaliciousList_temp
current_trust_threshold < new_trust_threshold_temp
Algorithm2_ReputationUpdates = Algorithm2_ReputationUpdates_temp
GlobalMaliciousList_last = GlobalMaliciousList_temp
Algorithm2_ReputationUpdates_last = Algorithm2_ReputationUpdates_temp
last_algorithm2_run_time = current_simulation_time
if is_periodic.due then
next_periodic_training_time = current_simulation_time + periodic_training_interval
else
GlobalMaliciousList = GlobalMaliciousList last
Algorithm2_ReputationUpdates = Algorithm2_ReputationUpdates_last
Disseminate GlobalMaliciousList to all FN,, in ActiveFNs.
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76:
77 for each FN,, in ActiveFNs do

78: rn < CalculateReward(...)

79: Global Data Collection and Storage
80:
81:
82:

Update Reputation Scores
for each FN;; in ActiveFNs do
83:
84:
85:
Mark as malicious history
Update malicious activity level
if |D| > D,,in_si-e then
Sample mini-batch

87:
88:
89:
90:
91:
92:
93:
94:

95:

if t (mod Cactor_update) == 0 then
Update actor target
if t (mod Ceritic_update) == 0 then
Update critic target
Update exploration rate

Reward Calculation (Individual Nodes, collected by Orchestrator)

Collect and store global state, actions, rewards, next states into buffer D.

if FN;q in Algorithm2_ReputationUpdates_last AND not empty then
Update reputation score with score_change .
if F'N;4 in GroundTruthMaliciousSet then

Update critic and actor using targets Y;, yx

This formulation yields constant operations per decision,
independent of network size n. This constant computational
requirement per node represents a fundamental scalability
advantage, as additional nodes do not increase individual
processing load.  The computing load on the centralised
coordinator grows almost linearly with the network's size. The
coordinator uses O(N x d) operations for global state
aggregation and O(N x log(N)) operations for consensus
building by creating a sorted malicious node list during the
training phase. When these elements are combined, the overall
training overhead is O(N x log(N)), exhibiting effective scaling
properties. During the training phase, each node transmits 16
bytes of trust data, along with detection information, every
training interval, resulting in minimal communication overhead.

Overall scalability projections are promising where the per
node computation effort remains constant, indicating favourable
O(k) complexity. However, the total training overhead increases
significantly across the tested network range

2) Communication Overhead Growth Analysis:
Communication overhead in the proposed system follows
known linear scaling characteristics, principally driven by the
training phase coordination needs. Total Communication = N
x M x S is the theoretical model for total communication,
where N is the number of nodes, M is the number of messages
in each training interval, and S is the message size in bytes.

A critical advantage of the proposed architecture is the
complete elimination of communication overhead during
execution. Unlike fully centralised approaches that require
constant ~ communication  between  coordinators,  our
decentralised execution paradigm enables autonomous node
operation with zero communication cost. This fundamental
design choice separates learning coordination from runtime
decision making, ensuring that network growth does not impact
critical path performance during execution.

V. RESULTS AND DISCUSSION

This section evaluates the performance of proposed model.
A comprehensive comparison against a diverse set of baselines
and a depth ablation study is also discussed in this section to
validate the contribution of the model's components.
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A. Proposed Model Performance

1) Packet Delivery Ratio Performance: Our system shows
significant performance improvement with the analysis of
Packet Delivery Ratio (PDR) across all attack scenarios as
shown in Fig. 3. Under normal conditions, the network
maintains an excellent PDR of 95-97%, demonstrating baseline
network efficiency. During aggressive attacks, the PDR
experiences an immediate degradation to 83-84% but after
detection recovers to 89-90%. In stealth attacks, the PDR drops
up to 78-79% during the undetected phase, and after detection,
it is set to 85-86%. The most challenging scenario is gradual
attacks, where there is severe degradation of PDR up to 66-67%
but our system successfully recovers it to 82-83% after
detection, which is a remarkable improvement. This
performance demonstrates the system's ability to adaptively
respond to varying attack intensities and restore network
functionality effectively.

2) Detection Rate and False Rate Analysis: Fig 4(a), Fig
4(b), and Fig 4(c) show the effectiveness of the model by
analyzing the DR, FNR, and FPR in all attack scenarios. The
model performs exceptionally at the time of aggressive attacks
with the average detection rate of 92.0% along with an
exceptional low FNR of 8.3% and FPR of 5.0%.

Packet Delivary Ratio Evolution - Attack Scanarios
10

Packet Delivery Ratio

] 1w 200 0

200 200
Simulation Time Step

Fig. 3. Packet Delivery Ratio Evolution Under Aggressive, Stealth, and Gradual
Attacks



Singh et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 47 —66 (2026)

This suggests that false alarms are accurately identified and FNR (31.8%) and FPR (17.6%), and a DR of 67.7%. These
minimized. On the other hand, the model performs good in case results indicate that our model maintains a favourable trade-off
of stealth attack and acceptable in gradual attacks. The DR falls ~ between sensitivity and specificity, with higher detection rates
to 78.1% for the stealth attack, but the FPR (12.0%) and FNR correlating with lower false rates as attack intensity increases.
(22.0%) rise. In a gradual attack, the model is getting the greatest

Alporithm 2 Trust-Based Malicious Node Detection and Threshold Adaptation

Input:
Tecorest 5ot of curvent trest soores { T ow b reported by all active FN, .
Loz Set of all local malickhous lsts (L, } reported by active BN
Mirevicns: Global maliciows st Fom the previows iberation.
current st threshold: The cureently active global trust threshold.
ReputationScores: Global dictionary of reputation scores for all FN

e Acceptance vatio for reliable reporter identification (eg., L8]
=k HII:I-:.-II':!I.iIIH factor fo |'::Lj.u.un'||l:i.u|. :‘\]-:.-'.'iuH .'1I.'|‘1'J|IH,'!! I: ['::".].-"L:I (e, O 1 I
outlicr_threshold: Threshobd for outlier detection in trust scores [eg., 3 standard deviations).
s Reputation update rate (eg., 0.01).
Ot punt:
Mot Uprilated Global malleiows 1ist.
rew_trust _threshold: Adapted global trust threshold.
Algorithm?2 ReputatbonUpdates: Dictionary of reputation changes suggested by Algorithm 2.
Initialize:
Mearrone +— H.
]1!.'|.i1'|.||]|.']{I.'|.|-|.ll.'l1'1:- i
MosdeVotes +— Dictionary of connts, initialized to 0 for all nodes.
Algorithm2_ReputathonUpdates +— Empty Dictionary.

1: for cach FN, < ActiveFPNs do
2 Neonwistont_with_Mprec $— (0
3 MNce L | L]
1 for each node m in f.-.. do
5 If m & Mrevions then_ M
6 I Nuisope = 0 AND 2 | =
Reputation ThreshaldForRelt
7 Addd FNL o ReliableReporters.
& I ]{I.'liu|a-|l.']{l.'5:-|||:I:L'l'- 4] CIpLy then
4 Moarrunt — Mpravious-
ik else
11 for each FN, € H-e:liul::-h:]h:[:-lu1.I.'I.'.-i il
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14 if ModeVotesm| = [2 % num_reliable_reporters/ 3] then
o 0 T N I S——
15: Collect all valkd trust scoves ffom Toeone nto a lst ageregated trost_values.
L b agpregated trust values 5 empty then
LT e teast_threshold +— current frast thieesfold. Elae
18 fieemat — mneanagpregated trust valoes).
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3) Comprehensive Stress Testing against Black Hole Attack ~ under  diverse adversarial conditions, we conducted
Scenarios: To evaluate the robustness of proposed trust model comprehensive stress testing across three attack categories in

60



Singh et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 47 —66 (2026)

fog computing environment that consists of 5 nodes. Our
experimental design and attack patterns are shown in Table Il
to assess the framework's adaptability and resilience against
sophisticated threats.

TABLE Il. BLACK HOLE ATTACK SCENARIO SPECIFICATION

Attack Attack Drop Attack Pattern | Detection
Scenario Intensity Probability Challenge
Aggressive | 1.0 (Highest) | 90% Immediate, Baseline
attack indiscriminate | detection
Stealth 0.7 60% Selective, Complex
attack (Moderate) evasive detection
Gradual 0.3-0.5 30%  to | Slow-onset, Long-term
attack (Progressive) | 50% continuous monitoring
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The aggressive attack scenario represents the most basic and
detectable type of black hole attack, serving as a baseline for
basic detection capacity. The stealth attack scenario employs a
more complex strategy, balancing evasive tactics with disruptive
objectives to make discovery difficult. The gradual attack
scenario simulates the most difficult and undetectable type of
black hole attack, marked by a continuous, slow onset threat that
tests the system's long term monitoring capabilities.

Our multi-run statistical analysis in Table Il revealed
distinct performance characteristics across attack scenarios.
The aggressive attack achieved the highest detection rate of
92.0% + 2.1%, demonstrating the framework's effectiveness
against basic attack patterns The stealth attack scenario achieved
a detection rate of 78.0% + 2.0%, reflecting the increased
complexity of detecting sophisticated attacks. The gradual
attack achieved a detection rate of 67.9% + 2.2%,
demonstrating the framework's capability to identify slow onset,
continuous threats despite inherent detection challenges.

TABLE lll.  MULTI-RUN PERFORMANCE STATISTICS
Attack Detection False False Packet
Scenario Rate Positive Negative Delivery Ratio
Rate Rate
Aggressive | 92.0+2.1% | 4.9 + | 83+20% | 0.92-0.96
attack 1.0%
Stealth 780+2.0% | 120 £ | 22.0+£2.0% | 0.88-0.92
attack 1.0%
Gradual 67.9+22% | 179 £ | 31.9+1.9% | 0.85-0.90
attack 1.0%
The FPR analysis reveals that aggressive attacks

demonstrate the lowest FPR of 4.9% + 1.0%, indicating high
precision in detection decisions. Stealth attacks show a
moderate false positive rate of 12.0% + 1.0%, reflecting the
increased complexity of distinguishing between legitimate and
malicious behaviour. Gradual attacks exhibit the highest FPR
of 17.9% + 1.0%, indicating challenges in maintaining
precision when detecting slowly evolving threats.
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We compared the proposed model against established
baselines using paired statistical tests to isolate and confirm the
significance of our performance, as mentioned in Table 4. The
results of the paired t-test (for mean comparison) and the
Wilcoxon signed-rank test (non-parametric comparison) were
entirely consistent, both showing highly significant superiority
for the I-DQN CTDE framework over all baselines (p < 0.001).
The large Cohen's d values (ranging from 1.41 to 3.03) indicate
the practical significance of our framework’'s advantage.
Additionally, one-way Analysis of Variance (ANOVA)
revealed significant differences across attack scenarios for all
key metrics. Detection rates showed highly significant
differences (F = 15.847, p < 0.001), FPR demonstrated
significant variations (F = 8.234, p = 0.002), and FNR exhibited
highly significant differences (F = 12.456, p < 0.001), indicating
that attack complexity significantly impacts all aspects of
detection performance.

TABLE IV BASELINE MODEL COMPARISON WITH STATISTICAL

SIGNIFICANCE
Method ADR  vs. | t-stat p-value Cohen’s d
Proposed
IDQN- NT -5.8% 8.45 < 0.001*** 141
MAAC-NT -8.1% 9.87 < 0.001*** 1.69
EMAT -17.9% 12.34 < 0.001*** 2.88
HTM -20.6 % 13.21 < 0.001*** 3.03

The comprehensive stress testing validates the proposed
framework’s effectiveness across different black hole attack
complexities, demonstrating excellent performance against
aggressive attacks, good performance against stealth attacks,
and acceptable performance against gradual attacks. Unlike
existing approaches that rely on static detection mechanisms,
our trust based MARL framework employs adaptive learning to
handle diverse attack patterns, providing a novel solution to
malicious node detection in fog computing environments. The
statistical analysis confirms significant performance differences
across attack types, with the framework's detection capability
appropriately scaling with attack complexity. These results
establish the framework's readiness for deployment in real world
fog computing environments where diverse black hole attack
patterns are expected.

4) Trust Score Evolution and Dynamic Threshold
Adaptation: In Fig 5, all legitimate nodes demonstrate
consistent improvement in their trust score, converging toward
1.0 across all scenarios, while malicious nodes exhibit distinct
degradation patterns. In aggressive attacks, malicious nodes
experience a rapid decline in their trust score, dropping below
the 0.5 threshold within 20-30 time steps and converging
toward 0.0, enabling quick detection. Stealth attacks exhibit a
more gradual degradation of trust, with malicious nodes
crossing the threshold between 50 and 100time steps, reflecting
the system's ability to adapt to subtle attack patterns. Gradual
attacks present the most challenging scenario, with malicious
nodes maintaining higher trust scores for longer periods,

crossing the threshold around 150-200 time steps, yet still
achieving eventual detection. The dynamic threshold
mechanism in Fig 6 demonstrates intelligent adaptation, with
thresholds decreasing during attack phases to enhance
sensitivity and increasing post detection to reduce false
positives, achieving an optimal balance between detection
effectiveness and system stability.

B. Comparative Performance against Baseline

As research on trust based security in fog computing is in its
early stages, there are few reinforcement learning based models.
There is no trust model based on I-DQN and CTDE. As a result,
the results are compared with the baseline model. A
comprehensive and diverse set of baseline methods is essential
for establishing the validity and significance of any proposed
machine learning approach, particularly in network security,
where multiple competing paradigms exist. In trust based
malicious node detection in fog networks, a robust baseline
comparison must include both trust-centric approaches that
demonstrate the value of incorporating trust mechanisms and
MARL-based approaches that validate the effectiveness of our
specific architectural choices.

1) Trust Only Baselines

e Heuristic Trust Model (HTM): This baseline
implements a traditional rule based trust management
system that calculates trust scores using predefined
heuristics without learning capability. The HTM
employs a simple weighted average of direct trust
(based on packet delivery success rates) and indirect
trust (based on neighbor recommendations) with fixed
weights of 0.7 and 0.3 respectively. Trust scores are
updated using a static learning rate of 0.1, and
malicious nodes are identified using a fixed threshold
of 0.5. The HTM represents conventional trust based
security approaches that rely on predetermined rules
and static parameters, providing a baseline to
demonstrate the value of dynamic learning capabilities
in trust management.

e Exponential Moving Average Trust (EMAT): This
baseline extends the HTM by incorporating temporal
smoothing through exponential moving averages for
trust score updates. The EMAT employs a decay factor
of 0.9 to weight recent interactions more heavily than
historical data, using the equation 11:

Trust(t) = a X Current_Trust + (1- o)) X Trust(t-1) (11)
where o= 0.1.

This approach represents a more sophisticated version
of traditional trust management, accounting for
temporal dynamics, but lacks the adaptive learning
capabilities of MARL systems.

2) MARL Only Baselines
e Independent DQN without Trust (IDQN-NT): This
baseline implements a standard Independent Deep Q-
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Network approach where each node learns to detect
malicious neighbors based solely on network metrics
(packet drop rates, response times, communication
patterns) without any explicit trust mechanism. The
IDON-NT utilizes the same neural network
architecture as our proposed method, but replaces trust
based state representation with raw network metrics. It
employs a 4-dimensional state space comprising packet
drop rate, average response time, communication
frequency, and neighbour count.

Multi-Agent Actor-Critic without Trust (MAAC-NT):
This baseline implements a multi-agent actor-critic
framework where agents learn coordinated policies for
malicious node detection without trust based state
representation. This model is similar to our CTDE
approach, but uses actor-critic architecture instead of
DQN focuses on network level metrics rather than trust
values.

3) Comparative Performance Against Baseline
Table 5 shows the comprehensive evaluation across all
baseline methods, where the proposed model demonstrates
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superior performance. Our proposed approach uses trust based
behavioural analysis to effectively filter network noise and
capture attack patterns over extended periods. Unlike

alternative methods that rely on raw network measurements or
isolated learning processes, our framework integrates
centralized coordination with explicit trust modelling to
achieve superior accuracy in the detection of malicious nodes.

TABLE V BASELINE MODEL COMPARISON

Method Category | Detection | FPR | FNR F1- Trust
(%) (%) | (%) Score | stability
I-DQN Trust 873 £ |68 127+ | 085 | 082 =*
CTDE MARL 3.2 + 3.2 + 0.04
(proposed) 2.1 0.03
IDQN- MARL 815 £ 92 185+ | 078 | 0.71 =*
NT only 41 + 41 + 0.06
2.8 0.04
MAAC- MARL 792 £ | 114|208+ | 075 | 067 =*
NT only 48 + 48 + 0.07
3.2 0.05
EMAT Trust 69.4 + 231 | 306+ | 064 | 057 =
only 6.2 + 6.2 + 0.07
4.8 0.07
HTM Trust 66.7 + 263 | 333+ | 061 | 052 =*
only 6.8 + 6.8 + 0.12
5.1 0.08
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C. Ablation Study

Our proposed model ablation study shows the algorithmic
advances for the contribution of each component to overall
system performance.
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1) Centralized vs. Decentralized Critic Architecture

This ablation study examines the significance of centralized
training in proposed framework by comparing the complete
model with a fully decentralized training where individual
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agents learn autonomously without global coordination. In our
proposed architecture nodes exchange their local trust
assessment and detection outcomes with a central coordinator
that consolidates all fog node decisions, and provides global
feedback. An individual node cannot work and take decision
independently, they require collaboration for decision making.
The decentralized version eliminates all centralized
coordination, with each node functioning as an autonomous I-
DQN agent making decisions exclusively based on local
observations without any global information exchange or
consensus mechanisms. The centralized critic variant
demonstrates 5.8% superior detection accuracy (87.3% vs
81.5%), 2.4% lower FPR (6.8% vs 9.2%), and 5.8% lower FNR
(12.7% vs 18.5%) compared to the purely decentralized IDQN-
NT approach, confirming the significance value of global
coordination in our framework.

2) Static vs. Dynamic Threshold Management

This ablation compares the effectiveness of our adaptive
threshold system with that of a model with static, hard-coded
thresholds (EMAT). In a static threshold trust system, every
node employs a fixed trust threshold value of 0.5. But in a
dynamic threshold trust system, the trust threshold value is
adjusted based on network conditions, attack intensity,
performance metrics, and temporal factors. A Trust
management system with an adaptive threshold provides
superior performance compared to a static approach, particularly
in dynamic network environments where attack patterns and
network conditions vary over time. Dynamic threshold achieves
17.9% higher detection accuracy (87.3% vs 69.4% compared to
EMAT), 16.3% lower FPR (6.8% vs 23.1% compared to
EMAT), and 17.9% lower FNR(12.7% vs 30.6% compared to
EMAT), demonstrating the advantage of adaptive threshold in
fog network security applications.

3) Fixed vs. Learned Trust Parameters

This ablation evaluates the contribution of our MARL-
based learning approach by comparing the proposed model with
learned trust parameters against fixed, heuristic based
parameters. The fixed parameters are selected using standard
defaults from recent literature, including Adam learning rate
(0.001) from Stable Baseline [31], DQN discount factor (0.99)
from [32], and trust management defaults (recovery rate: 0.1,
decay factor: 0.95) from [33,34] representing typical non-
optimised configurations found in recent frameworks. The
learned parameter variant is systematically tuned through
Optuna optimization, resulting in optimized values like
learning parameters and trust parameters displayed in Table 3.
The optimized trust recovery rate of 0.042 is lower than
literature defaults due to specific attack patterns and network
dynamics in our fog computing environment where stability is
prioritized over rapid recovery.

Learned parameters achieve 20.6% higher detection
accuracy (87.3% vs 66.7% compared to HTM), 19.5% lower
FPR (6.8% vs 26.3% compared to HTM), and 20.6% lower
FNR (12.7% vs 33.3% compared to HTM) as shown in Table 6,
validating the effectiveness of our MARL based learning
approach in optimizing trust management for fog network
security.  The significant performance improvement
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demonstrates that systematic parameter optimization provides
substantial advantages over standard default configurations,
making our approach particularly valuable for critical security
applications where performance optimization is justified.

TABLE VI.  FIXED VS LEARNED PARAMETERS
Paramateres Fixed Optimized
Learning_rate 0.001 0.0069
Gamma 0.99 0.961
epsilon_decay 0.995 0.998
Epsilon_min 0.01 0.026
Trust recovery rate 0.1 0.042
Trust_decay _factor 0.95 0.967

4) Results Interpretation

The proposed framework exhibits varying detection
effectiveness across different attack complexities, with
aggressive attacks achieving a 92.0% =+ 2.1% detection rate due
to their behavioral signatures. In comparison, stealth and
gradual attacks show reduced performance at 78.0% + 2.0%
and 67.9% + 2.2% respectively, reflecting the increased
challenge of identifying subtle malicious patterns. These
findings indicate that the trust based approach excels at detecting
aggressive and stealth attacks. It faces limitations against
sophisticated attack strategies that require long term behavioral
monitoring and pattern recognition.

The proposed system outperforms other methods,
achieving 87.3% detection accuracy compared to 81.5% for
basic I-DQN and 66.7% for simple trust models, demonstrating
particular  strength in  detecting complex stealth
and gradual attacks through its advanced trust evaluation
approach. While the system achieves better results, it requires
more computing power for trust calculations. It needsa
sufficient interaction history to function correctly, which could
limit its use in fast changing or resource limited networks.

The system faces several key weaknesses in different
situations. The framework struggles to detect gradual attacks at
their early stages because it requires sufficient evidence before
deciding a node is malicious, leading to delays in identification.
As our model depends on centralized coordination during
training, it makes the model susceptible to collusion attacks
where malicious nodes can strategically manipulate the local
malicious list to overwhelm the consensus based formation of
the global malicious list. Still, the model uses only reliable
reporters based on reputation and consistency scores, and it
utilizes byzantine fault tolerance (BFT) compliant threshold.
Specifically, a node is confirmed malicious only if it is reported
by more than two-thirds of the reliable agents. This can prevent
only 51% attacks from collusion attacks, but it still needs
improvement, as they can erode the network. The system also
performs poorly in networks with few connections, as it relies
heavily on neighbor recommendations that may not be
sufficient. Additionally, smart attackers could potentially learn
how the detection system works and adjust their behaviors to
evade detection, requiring the system to adapt and update its
detection methods continually.

V1. CONCLUSION AND FUTURE ENHANCEMENT

This research presents a novel approach for the detection of
malicious nodes in dynamic network like fog network with the
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integration of MARL approach with an adaptive trust
management system. Our comprehensive experimental
evaluation demonstrates the effectiveness of the proposed model
across three attack scenarios - aggressive, stealth, and gradual.
One of the main contributions is the creation of a dynamic trust
threshold adaptation mechanism, where in case of network
condition change, the intelligent node alternates between
aggressive and gradual detection approaches. The experimental
results demonstrate that our MARL-based approach achieves
superior detection rates compared to traditional baseline
methods, with detection accuracies of 92%, 78%, and 68% for
aggressive, stealth, and gradual attacks, respectively. The
system demonstrates remarkable resilience in maintaining
network performance, with packet delivery ratios recovering to
88-92% after detection and mitigation of the attack. Our
adaptive consensus algorithm (Algorithm 2) successfully creates
a robust global malicious node registry through weighted
evidence aggregation. The reputation based node management
system effectively balances security requirements with fairness,
ensuring that legitimate nodes are not unjustly penalized while
maintaining strict oversight of previously malicious entities. The
dynamic threshold adaptation mechanism proves particularly
effective in optimizing the trade-off between detection
sensitivity and FPR. By employing exponential moving
averages and contextual factors such as network maturity and
threat levels, the system maintains stable operation while
remaining responsive to emerging security challenges. The
suggested MARL framework provides notable improvements
for further study.

e Secure Trust Data Management: To ensure the integrity,
immutability and auditability of shared reputation scores
and global malicious lists, secure trust data management is
required, such as integration of Distributed Ledger
Technologies (DLT), such as blockchain or verifiable
computation approaches. As a result, trust data would no
longer be dependent on a centralized, perhaps weak
orchestrator.

e Communication Efficiency Optimization: To drastically
cut down on the communication overhead between fog
nodes and the orchestrator, a crucial factor in dense and
scalable fog deployments, experiment with sophisticated
data aggregation techniques, hierarchical reporting
structures, or reinforcement learning driven sparse
communication policies.

e Enhanced Learning Algorithms: Future research could
explore  advanced deep reinforcement learning
architectures, including transformer based attention
mechanisms and graph neural networks, to capture
complex spatial temporal dependencies in fog network
topologies. The integration of meta-learning approaches
could enable faster adaptation to novel attack patterns that
were not encountered during training.

o Federated Trust Management: Implementing federated
learning principles within the trust management
framework could enable privacy preserving collaboration
between multiple fog domains. This approach would allow
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trusted information sharing without exposing sensitive
network details.

Behavioral Pattern Analytics: The integration of advanced
behavioral analytics using unsupervised learning
techniques could enhance the system's efficiency to detect
zero-day attacks and sophisticated adversarial behaviors.
Anomaly detection based on network flow patterns and
node interaction frequencies could complement the
existing trust based approach.

In case of central orchestrator compromise scenario, it may
lead to false information injection, poisoned learning and
configuration hijacking, which distorts the learning signal
and potentially causes cascading policy degradation across
the network. We can integrate  Cryptographic
Authentication, Byzantine Fault Tolerance (BFT), and
distributed log storage to protect the coordinator's
resources and maintain operational continuity.
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