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Abstract 

The proliferation of decentralized and dynamic networks, such as fog computing and the Internet of Things (IoT), has significantly raised 

the demand for network security and resilience solutions. This study presents a decentralized trust management framework for detecting 

malicious nodes in fog-to-fog networks using Multi-Agent Reinforcement Learning (MARL). Our approach utilizes Independent Deep Q-

Networks (I-DQN) for decentralized decision making at each fog node with dynamic trust evaluation, allowing them to learn an optimal 

detection policy based on local observations. Importantly, we enhance this by centralized training controlled by a central orchestrator, 

which uses a shared global critic and parameter sharing. The proposed system was evaluated on a 10-15 nodes fog network under three 

distinct attack scenarios: aggressive, stealth, and gradual. Experimental results demonstrate superior performance with detection rates 

of 92.0% for aggressive attacks, 78.0% for stealth attacks, and 67.9% for gradual attacks. Security focused results demonstrate 

exceptional false negative performance with FNR values of 8.3% ± 2.0% for aggressive attacks (excellent performance), 22.0% ± 2.0% 

for stealth attacks (good performance), and 31.9% ± 1.9% for gradual attacks (acceptable performance), ensuring minimal malicious 

nodes remain undetected across all attack types.   The proposed approach provides a highly secure and scalable solution for detecting 

malicious nodes in fog networks, offering superior threat detection through intelligent trust based decision making and coordinated multi-

agent learning. 
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I. INTRODUCTION  

The rapid growth of fog computing is a vital solution to the 
limitations of centralized cloud infrastructures, particularly in 
latency sensitive applications like smart healthcare, autonomous 
vehicles, and industrial automation [1,29]. Real time data 
analysis and decision making are made possible by this localized 
processing, which drastically lowers latency and bandwidth 
usage to distant cloud data centers. This is essential for time 
sensitive IoT-based applications [2,30]. The dynamic and 
distributed nature of fog-to-fog communication raises security 
concerns about malicious node behavior that compromises data 
integrity, undermines service continuity, and erodes system 
confidence [3,4]. The key problem is detecting and isolating 
malicious nodes in the network, as they can compromise 
network reliability and data integrity through various attacks, 
such as selective packet dropping, bad-mouthing, and evasive 
"on-off" behaviors [5]. To overcome the problem of node's 
trustworthiness and automatic adjustment to shifting network 

conditions and hostile strategies, a strong trust management 
system is needed. 

Existing trust management models in fog environments have 
limitations because trust value calculation relies on static rules, 
predefined threshold values and centralized decision making. 
Due to the dynamic and decentralized nature of fog networks, 
traditional reputation based or cryptographic based trust 
frameworks are less effective and typically not equipped to 
respond to real time malicious behavior. They are also not 
adaptive to rapidly evolving network states [6]. 

To overcome these challenges, there is a critical need for a 
decentralized, autonomous, and adaptive trust model that can 
operate effectively in uncertainty and dynamic conditions. One 
promising solution is MARL, which enables individual fog 
nodes modelled as intelligent agents to detect malicious nodes 
among their neighbors [7,8]. We employed an advanced 
Independent Deep Q-Network architecture, where every node is 
independent and can take its own decision.  This model is also 
reinforced with centralized training to provide robust and 
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cooperative learning in this demanding setting.  This centralized 
critic offers a comprehensive global understanding of the 
network state and joint actions, delivering stable and consistent 
learning signals to the decentralized agents during training. The 
practical implementation demonstrates significant potential for 
deployment in smart city infrastructure and industrial IoT 
systems, where conventional security methods fall short due 
to the distributed architecture, limited computational resources, 
and stringent real time performance demands inherent in fog 
networks.  The primary contributions and novelties of this study 
are as follows:  

 Integrated Trust MARL Framework: We proposed a 
novel integration of trust management with multi-agent 
reinforcement learning by explicitly fusing direct and 
indirect trust metrics within an Independent Deep Q-
Network (I-DQN) architecture for malicious node detection 
in fog computing networks. 

 Coordinated Learning Architecture: We used the 
centralised training and decentralised execution (CTDE) 
paradigm, where a centralised coordinator guides learning 
while fog nodes retain independent decision making during 
execution. 

 Adaptive Trust Evaluation: We design a dynamic trust 
management mechanism that combines local observations 
with reputation filtered neighbour recommendations and 
automatically adjusts a global trust threshold in response to 
changing network conditions. 

 Comprehensive Evaluation under Multiple Attack 
Complexities: We conducted a detailed statistical 
evaluation under three black hole attack scenarios 
(aggressive, stealth and gradual), demonstrating improved 
robustness and generalization compared to state-of-the-art 
trust based and MARL baselines. 

The remaining part of this paper is organized as follows: 
Section 2 provides a relevant literature review on trust based 
solutions for securing fog networks using Multi-Agent 
Reinforcement Learning. Section 3 details the research 
methodology, and Section 4 discusses our proposed trust-aware 
multi-agent DQN framework. Section 5 debates the 
experimental results. Lastly, Section 6 concludes the work and 
suggests directions for future research. 

II. RELATED WORK 

The rapid expansion of IoT technologies has created an 
urgent need for robust security mechanisms to protect 
distributed computing infrastructures. Trust management 
systems have emerged as critical components for maintaining 
network integrity in dynamic, decentralized environments, 
particularly within fog computing architectures. This growing 
importance has stimulated substantial research efforts across 
multiple technical domains. Our literature analysis examines 
three primary research streams: distributed trust management 
approaches, machine learning applications in network security, 
and the integration of MARL with trust mechanisms. A 
comprehensive comparison of existing methodologies against 
our proposed framework is detailed in Table 1, highlighting the 
unique contributions and advantages of our approach. 

A. Trust Management in Distributed Systems 

To address the scalability issues, single points of failure, and 
high communication overhead associated with centralized 
architectures, numerous distributed trust models have been 
proposed [9,10]. These models enable individual nodes to 
compute their trust scores based on local observations and 
interactions. For example, Al-Masri et al. [11] presented a 
subjective-based trust for fog-based IoT. This model provides a 
probabilistic foundation for uncertainty, it adapts via Bayesian 
inference and lacks the autonomous, data driven learning 
capabilities of reinforcement learning. It is critical for dealing 
with dynamic and innovative harmful behaviours. Likewise, Al-
Tameemi et al.and Secure Comp. for fog-IIoT used direct and 
indirect trust measures in fog and industrial IoT to study 
distributed trust and reputation [19,20]. These methods 
frequently use implicit heuristic principles or threshold based 
procedures to identify actions such as disparaging others. 
Similarly, by considering various trust factors, TETES (MDPI, 
2023) [21] focuses on trust based efficient task execution in 
smart cities. However, it is less resilient to unexpected attack 
patterns, as it also relies on preset thresholds and lacks 
autonomous learning mechanisms. [22]It robustly manages 
indirect trust in MANETs against suggestion attacks by 
addressing reputation based trust. This work is not specifically 
tailored for the unique dynamics of fog computing. Similarly, 
frameworks such as VANET-DDoSNet++ provided high 
accuracy, real time packet detection using a hybrid deep learning 
approach, with a primary focus on traffic analysis [35].  

A more proactive security paradigm, zero-trust frameworks 
prioritise ongoing verification above implicit confidence. Al-
Dubai [18] proposes a zero-trust architecture tailored for 6G 
Edge/Fog Networks that generates dynamic trust ratings and 
policies via AI-driven anomaly detection. This effort greatly 
aids continuous verification and adaptation in extremely highly 
dynamic contexts. One common issue across all trust 
management systems is their inability to adapt to the intelligence 
and adaptability of hostile entities in open, dynamic fog settings. 
They are frequently reactive, slow to converge or based on 
predefined rules. 

B. Reinforcement Learning in Network Security  

The demand for intelligent and adaptable network security 
solutions has significantly increased the applications of machine 
learning and, more recently, reinforcement learning (RL) in 
network security. Traditional machine learning methods for 
network security face several limitations. High false positive 
rates are frequently the consequence of unsupervised anomaly 
detection, particularly when new threats are detected. In 
contrast, supervised approaches require a continuous supply of 
updated labelled data, which can be costly and impractical. 
Moreover, the majority of these methods are reactive, detecting 
dangers only after they occur. They are not suitable for proactive 
trust management in extremely dynamic fog situations due to 
their intrinsic reactivity and inability to execute sequential 
decision making or adaptive policy learning. The advancement 
of artificial intelligence has enabled novel approaches in trust 
management in dynamic distributed systems through RL. RL 
enables agents to learn optimal trust assessment, allowing them 
to adapt their decision making processes based on 
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environmental feedback and interaction outcomes. RL can be 
classified as single-agent and multi-agent RL. 

Single-agent RL has demonstrated effectiveness in 
centralized cloud and Internet of Things (IoT) environments but 
in decentralized fog computing networks where multiple nodes 

need to collaborate and coordinate their trust evaluations for 
policy learning [14]. This collaborative learning can be 
addressed by multi-agent Reinforcement Learning which allows 
each agent to develop its own trust assessment capabilities while 
considering the collective behaviour and shared knowledge of 
the entire network. 

TABLE I.          COMPARISON OF TRUST MANAGEMENT MODEL IN DECENTRALISED NETWORK 

Ref Trust 

Management 

Approach 

Network 

Environment 

Trust Metrics Learning 

Mechanism 

Unique Contribution/ Limitations 

[18]  Zero-Trust 
Framework 

6G Edge/Fog 
Networks 

Dynamic Trust 
Scores, Anomaly 

Detection 

AI-driven 
Anomaly 

Detection, 
Dynamic 

Policies 

Strengths: Emphasizes continuous verification, is adaptable to 6G 
dynamics, and achieves high accuracy. 

Limitations: Focuses on access control, not specific MARL for fog-to- 
fog  interaction trust. 

[15]  MARL for 

Resource 

Allocation 

Telecommuni

cation, 

Energy, 

Distributed 

Computing 

  

_____ 

Multi-Agent 

Reinforcement 

Learning 

Strengths: Comprehensive survey on MARL in decentralized systems, 

covers various paradigms. 

Limitations: Not focused on trust or malicious node detection 

specifically, but general MARL applicability. 

[11]  Subjective 

Logic based 

Trust 

Fog based IoT Direct 

Observations, 

Recommendations 

Bayesian 

Inference, 

Subjective 
Logic 

Strengths: Provides a probabilistic approach to modelling trust related 

uncertainty. 

Limitations: Lacks adaptive, reinforcement learning for dynamic 
behavior; may not scale to diverse attacks. 

[19]  Distributed 

Trust and 

Reputation 

Fog 

Computing, 

IoT 

Direct and Indirect 

Trust, Reputation 

Threshold based 

(Fuzzy Logic 

often implied) 

Strengths: 

Considers direct and indirect trust, attempts to detect bad-mouthing 

Limitations: Not truly adaptive learning; detection can be slow for on-
off attacks. 

[20] Combined 

Direct and 
Indirect Trust 

Industrial IoT 

(Fog enabled) 

Direct Interaction, 

Indirect 
Recommendation 

Rule based 

(implicit, often 
heuristic) 

Strengths: Considers both trust types for task offloading 

Limitations: Static rules/heuristics limited adaptability; lacks a 
reinforcement learning approach 

 

[21] Trust based 

Efficient Task 
Execution 

Fog Enabled 

Smart Cities 

Direct (Packet 

Delivery), Indirect 
(Recommendation

s) 

Threshold based 

filtering 

Strengths: Improves task efficiency by accounting for multiple trust 

parameters. 
Limitations: Relies on fixed thresholds and lacks autonomous learning; 

less robust to unknown attacks 

[22] Reputation 
based Trust 

MANET Direct 
Observation, 

Recommendations 

Reputation 
scoring, defense 

schemes 

Strengths: Focuses on robust indirect trust against recommendation 
attacks. 

Limitations: Not explicitly designed for fog or MARL; may not scale 

to fog-to-fog  dynamism. 
 

[23] Survey of 

Security 
Challenges & 

Fog Computing 

Fog 

Computing 

 

_____ 

 

_____ 

Strengths: Comprehensive overview of attacks and vulnerabilities in 

fog computing. 
Limitations: Does not propose a solution; highlights the threats. 

 

[24] Federated 

MARL for IDS 

Wireless 

Sensor 
Networks 

(WSNs) 

Agent reliability, 

IDS performance 

Federated 

Learning and 
Multi-Agent 

DRL 

Strengths: Privacy-preserving, distributed learning for intrusion 

detection. 
Limitations: Specific to WSNs and IDS, not general trust management; 

focuses on privacy. 
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C. Multi-Agent Reinforcement Learning(MARL) Paradigms 

MARL enables multiple agents to learn and take decisions 
collaboratively within a shared environment [15]. This approach 
follows a centralized training and decentralized execution, 
where agents are self-trained with global information but 
operate independently during execution. MARL has shown 
significant potential across various domains, including resource 
allocation and traffic control. This makes RL suitable for trust 
management in a decentralized fog network [16, 17]. MARL 
approaches can be categorized based on agent learning and 
coordination strategies. 

 Independent Learning (IL), also termed as Fully 
Decentralized Learning approach, treats each agent as an 
autonomous entity that learns independently while considering 
other agents as environmental factors. The Independent Deep Q-
Network (I-DQN) exemplifies this approach, where individual 
agents implement their own DQN algorithms without direct 
inter-agent coordination [28].  

The Centralized Training, Decentralized Execution (CTDE) 
paradigm represents a powerful approach that maintains 
decentralized decision making during execution but stabilizes 
learning through a global perspective during training. This 
method proves particularly effective in cooperative learning 
MARL scenarios. Foundational studies such as QMIX [26] and 
Value Decomposition Networks (VDN) [25] demonstrate the 
implementation of CTDE for cooperative discrete-action 
problems by decomposing or combining individual Q-values to 
estimate joint Q-value functions. Similarly, the Multi-Agent 
Deep Deterministic Policy Gradient approach (MADDPG) [27] 
applies to continuous action spaces utilizing a centralized critic. 
This provides stable gradients for decentralized agents. This 
approach addresses the fundamental issue of an agent's optimal 
action is contingent upon the behaviours of other agents, thus 
mitigating ongoing environmental changes that may result in 
unstable learning and suboptimal collective outcomes [15].  

Although, prior studies have explored MARL-based 
network security and trust management in fog computing. But, 
no existing work integrates trust modelling with a hybrid I-DQN 
framework under centralized training and decentralized 
execution. Moreover, dynamic trust thresholding and evaluation 
under multiple black-hole attack complexities have not been 
jointly investigated. This study directly addresses these gaps.  

III. METHODOLOGY 

This study presents a comprehensive MARL simulation 
framework for detecting malicious nodes in the network by 
investigating the detection of black hole attacks in fog networks. 
This methodological section outlines the fog network 
architecture, the node characteristics, and the trust evaluation 
mechanisms, followed by the proposed MARL-based trust 
module and its implementation details. Additionally, also 
explains the attack model, data analysis process, and 
performance metrics used for evaluation. 

A. Network Architecture and Topology 

We consider fog network, a dynamic and decentralized 
network and it comprises a set of N heterogeneous fog nodes, 

denoted as F={f1,f2,…,fN}. Every fog node fi∈F have limited 

computational, storage, and communication capabilities. The 
network topology is a mesh architecture where nodes 
autonomously discover and maintain connections with 
neighboring devices within their communication range. The 
network topology is dynamically generated at the beginning of 
each simulation. The fog network with wireless nodes has the 
following characteristics: 

Network Topology: 

 Number of nodes: Variable (10-15 nodes) 

 Simulation area: 1000m × 1000m   

 Communication range: 200m radius per node 

To get realistic packet-level communication, the Scapy 
library is used. The simulation leverages Scapy for realistic 
packet generation, creating authentic Ethernet frames with 
unique 48-bit MAC addresses and variable payload sizes (64-
1500 bytes) while maintaining simplified network assumptions. 
These assumptions include perfect channel conditions with no 
packet corruption, deterministic 1-ms propagation delays, and 
no packet collisions through TDMA-like scheduling. The Key 
limitations include the absence of mobility modeling (static 
nodes), simplified routing restricted to direct neighbor 
communication, no cryptographic overhead or authentication 
delays, and the assumption of immediate trust updates and 
perfect state information sharing. This may not fully capture 
real-world network complexities, but it enables focused analysis 
of the core MARL learning dynamics and trust based detection 
mechanisms. 

B. Fog Node Characteristics 

Each fog node is modelled as an autonomous agent with the 
following distinct characteristics, which mirror those of real 
world devices. 

1) Physical Attributes: 

 Unique identifier (UUID) and MAC address for network 
identification. 

 Battery capacity ranging from 80-100% of baseline (100 
units) to simulate device heterogeneity. 

2) Energy Management System: 

 Multi-modal charging capabilities, including solar (0.8 
units/second), station-based (3.0 units/second), and 
cooperative energy sharing (1.0 units/second) 

 Dynamic energy consumption based on operational 
state: idle (0.01 units/second), communication (0.1 
units/second), and trust evaluation (0.05 units/second) 

 Intelligent power management with multiple operational 
modes: normal, power-saving (≤20% battery), critical 
(≤10% battery), and emergency (≤5% battery) 

3) Communication Infrastructure: 

 Thread-safe packet processing with separate send and 
receive queues 

 Three-way handshake protocol implementation (SYN-
ACK-CONFIRM) with timeout handling 
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 Packet buffering and transmission rate control (30% 
transmission probability per update cycle) 

C. Trust Evaluation Mechanisms 

Trust is the confidence an entity has in another entity, based 
on direct prior experience or feedback from other nodes in the 
network. Each fog node evaluates the trustworthiness of its 
neighbor nodes using the combined Trust (as shown in equation 
4) that uses two metrics: direct trust(as shown in equation 2) and 
indirect trust(as shown in equation 3). The initial direct trust and 
indirect trust scores of each fog node are 0.7. These trust values 
are dynamically updated based on local observations and 
feedback that serve as input for the learning agent. 

1) Direct Trust: Direct trust is calculated based on direct 

packet interactions between node i and node j. It shows how 

reliably node j has forwarded or acknowledged packets sent by 

node i, and it is computed as follows: 

 

Packet Delivery Ratio is calculated as, 

𝑃𝐷𝑅 =
Total Packets Received

Total Packet Sent
× 100                 (1) 

 

The direct trust score is updated continuously using an 
exponentially weighted moving average (EWMA). 

     (2)  

Where, 

 λ = forgetting factor (0 < λ < 1) that balances past 

and recent behavior. 

 𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)=Direct trust score of node i for node j at 

time(episode) t 

 𝑃𝐷𝑅𝑖𝑗 (𝑡) = Packet Delivery Ratio between nodes i 

and j at time t (as shown in equation 1) 

 t = Interaction episodes/time steps 

2)  Indirect Trust: Indirect trust aggregation is a mechanism 

where a node (node i) evaluates the trustworthiness of another 

node (node j) based on recommendations from its trusted 

neighbors (nodes k) , rather than direct interactions. It is useful 

in cases where a new node enters the network and has an 

insufficient recent interaction history. 

                          (3) 

 𝑇𝑖𝑗
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)=Indirect trust score of node i for node j 

at time(episode) t 

 Ni= Set of neighbor nodes trusted by node i 

 𝑇𝑖𝑘
𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)=  Direct trust of node i for neighbor k 

 𝑇𝑘𝑗
𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)= Direct trust of neighbor k for node j 

3) Combined Trust Score:The final trust score (as shown in 

equation 4) combines direct (an shown in equation 2) and 

indirect components (as shown in equation 3) using a weighted 

average (70% direct ( 𝛼) , 30% indirect ( 𝛽) ), providing a 

balanced trust assessment that prioritizes first hand 

observations. 

 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑇𝑟𝑢𝑠𝑡 = 𝛼 ∗ 𝑇𝑖𝑗
𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) + 𝛽 ∗ 𝑇𝑖𝑗

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)         (4)   

D. Data Collection and Analysis 

The simulation framework implements a comprehensive 
multi-layered data collection system designed to capture all 
aspects of network behaviour, security events, and learning 
dynamics for rigorous analysis. At the node level, each fog node 
maintains detailed logs capturing state information including 
position coordinates, battery levels, and energy consumption 
rates, communication metrics such as packet 
transmission/reception counts, and packet drop statistics, trust 
evolution data encompassing direct and indirect trust scores, 
trust variance, and interaction history, security events including 
malicious node detections and false positive/negative 
occurrences, and performance metrics including reward signals, 
action selections, and learning progress indicators.  

The environment level data collection captures system wide 
metrics including dynamic network topology with neighbour 
relationships and connectivity matrices, attack progression 
tracking with initiation timing, malicious node selection 
patterns, and packet drop evolution, global performance 
indicators such as system wide detection rates, false 
positive/negative rates, and consensus accuracy, and training 
dynamics including hyperparameter optimization progress, 
convergence metrics, and learning stability indicators.  

The logging system employs real time buffered streaming 
with thread safe buffers (10 entries for state data, 100 for 
interactions), automatic flushing mechanisms triggered by time 
based (2-5 seconds) and size based conditions, automatic log 
rotation every 10 minutes to manage storage and enable real 
time analysis, and cleanup mechanisms that automatically 
remove logs older than 3 hours to maintain storage efficiency.  

Each experimental run generates a structured data hierarchy 
organized in scenario specific directories containing 
configuration files with complete experimental parameters and 
optimized hyperparameters, execution logs with aggregated 
performance metrics and episode summaries, environment logs 
capturing global network performance and attack progression, 
individual node logs with state evolution, communication 
events, trust progression, and security detection data, and 
analysis directories containing comprehensive performance 
metrics, temporal analysis data, comparative results, and 
statistical summaries.  

The data collection system implements rigorous quality 
assurance measures, including range checking for all numerical 
values, consistency verification between related metrics, 
completeness assessment with the identification of missing data, 
and outlier detection using statistical methods. This 
comprehensive data collection framework enables detailed 
analysis of the MARL-based trust system's performance, 
providing a foundation for evaluating detection accuracy, 
learning convergence, and network resilience in fog computing 
security applications.  
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E. MARL Trust Module Architecture 

The malicious node detection challenge is structured as a 
collaborative Multi-Agent Reinforcement Learning problem 
where fog nodes work together to enhance network security 
through accurate threat identification while reducing false 
alarms. The framework components are detailed as follows: 

 Agent: Individual fog nodes function as autonomous 
Reinforcement Learning agents, with N concurrent agents 
operating within the fog network infrastructure.  

 Environment: Each agent's environment encompasses 
thecomplete dynamic fog network, incorporating globally 
broadcast threshold values, updated reputation scores, 
behavioural patterns of all networkindirect trust indicators, 
current trust threshold values, and reputation scores of 
neighboring nodes. 

 Action Space ( 𝑎𝑛 ): Binary classification decisions 
(Malicious or Benign) made by each agent for every 
neighbor at each time step, with Q-values directly 
influencing action selection and contributing to the local 
malicious list.  

 Reward Mechanism (𝑟𝑛): Scalar rewards determined by the 
Central Orchestrator comparing global malicious 
node lists with local detection results, formulated as shown 
in equation 5: 

 

𝑟𝑛=𝑇𝑃𝑛 − 𝐹𝑃𝑛 −2𝐹𝑁𝑛
           (5) 

 

Where TPn represents true positives, FPn denotes false 

positives, and FNn indicates false negatives. The penalty 

structure prioritizes security by applying stronger penalties 

for missed threats (-2) compared to false alarms (-1).

  

 Global State (𝑆𝑔𝑙𝑜𝑏𝑎𝑙) comprehensive network snapshot for 

the centralized critic network, constructed by 

concatenating local observations from all agents, providing 

complete network visibility while scaling linearly 

with agent count.  

 

 Joint Action ( 𝐴𝑗𝑜𝑖𝑛𝑡 ): Collective actions taken by all 

agents at each timestep, enabling the centralized critic to 

evaluate aggregate behavior and guide decentralized 

actors toward unified malicious node identification 

policies. 

I-DQN CTDE Architecture: The proposed framework 
employs an Independent Deep Q-Network architecture 
integrated with a Centralized Training, Decentralized Execution 
methodology to address malicious node detection challenges in 
dynamic fog environments.The I-DQN implementation features 
individual fog nodes as independent learning agents, each 
equipped with a Deep Q-Network containing an input layer that 
processes a trust value (0.0-1.0 range), two fully connected 
hidden layers (128 and 64 neurons) with ReLU activation, and 
an output layer that provides binary classification. Target 
networks update every 80 steps or are triggered (e.g., topology 

changes, high false positive/negative rates) to maintain training 
stability, with hyperparameters optimized through tuning. This 
results in a learning rate of 0.0069, a discount factor of 0.961, 
and an exploration rate that decays from 1.0 to 0.026.  

The CTDE paradigm addresses multi-agent non-stationarity 
through a two-phase approach. Firstly, computerized training 
enables nodes to share trust evaluations and detection results 
with a coordinator that aggregates decisions, distributes global 
feedback as rewards, and broadcasts optimized parameters. 
Secondly, decentralized execution enables autonomous 
operation, where every node utilizes trained policies for local 
trust evaluation, select actions through individual DQN policies, 
and maintain real time operation without incurring 
communication overhead.  

This hybrid architecture delivers key advantages including 

scalability through decentralized execution for large scale 

networks, privacy preservation through local decision making, 

robustness ensuring continued functionality during partial 

failures, and learning efficiency through centralized training. 

This mechanism accelerates convergence and improves 

detection accuracy. The framework effectively balances the 

requirements for coordinated learning with the needs of 

practical distributed fog computing, enabling sophisticated trust 

evaluation capabilities while maintaining operational 

autonomy for real time security in dynamic network 

environments. 

F. Implementation and Reproducibility 

The simulation environment is developed in Python using 
the Gymnasium framework to provide a standardized interface 
for reinforcement learning. The learning components were 
implemented with PyTorch library and extended to support fog 
computing capabilities required by proposed model. 

Hyperparameter optimization was performed using the 
Optuna framework with the Tree-structured Parzen Estimator 
(TPE) algorithm. A total of 80 optimization trials were 
conducted to tune model parameters and improve learning 
stability and performance systematically. The selected 
hyperparameters were kept fixed across all experimental 
scenarios. To obtain better performance, optuna framework with 
Tree-structured Parzen Estimator (TPE) optimization with 80 
trials is used for systematic hyperparameter tuning. 

To ensure both experimental determinism and 
reproducibility, a comprehensive seeding strategy is used across 
30 multi-run simulations. A global random seed of 42 was used 
to initialize all experiments. In addition, all random number 
generators used with PyTorch and the Gymnasium environment 
were consistently seeded to ensure independent, verifiable trials. 

Each attack scenario was executed for 500 simulation steps. 
The experimental design consisted of three black-hole attack 
scenarios, with 30 independent runs per scenario, resulting in a 
total of 90 simulation runs. To control computational overhead,  

Each simulation run was executed with a maximum runtime 
limit of 2 hours on an Intel-class multi-core CPU with 8 GB 
memory allocation. This experimental configuration provides 
sufficient statistical power, achieving 80% power for robust 
ANOVA testing and enabling reliable estimation of 95% 
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confidence intervals across all performance metrics. Reported 
results represent the average performance across independent 
runs, thereby reducing the impact of stochastic variability. 

G. Black Hole Attack detection 

The proposed MARL trust based detection system is 
carefully tested against three different black hole attack 
scenarios in our assessment. Malicious behavior is activated at 
step 150 of the 500-step simulation (30% simulation progress), 
allowing sufficient time for normal network establishment and 
post attack recovery analysis to occur. The attack duration varies 
by scenario but typically spans 200 to 350 simulation steps.  

The following parameters are common to all attack scenarios: 

 Packet Dropping Approach: To target specific packet types, 

malicious nodes employ a hierarchical packet dropping 

approach. When the drop probability is fully configured, 

DATA packets (payload) are discarded. The SYN, ACK, 

and CONFIRM handshake packets, which are essential for 

preserving the appearance of network connectivity, are 

dropped at a rate 70% lower than the overall Drop 

Probability. The whole drop probability is used to drop 

unknown packets. In certain situations, this selective 

dropping process is crucial for achieving stealth. 

 Attack Intensity: This parameter, which has a range of 0.0 

to 1.0, regulates how active the harmful activity is 

generally and affects the Drop Probability. 
 

Black hole attack scenarios are:     

 Aggressive Attacks Scenario: As a baseline for basic 

detection capacity, this scenario is the most basic and, 

hence, the most detectable type of black hole attack. It has 

an attack with an intensity of 1.0, the highest level of 

aggression, with a drop rate of 90%. Every sort of 

incoming packet is discarded without distinction. The goal 

is to evaluate the system's baseline detection speed and 

accuracy under optimal (for the attacker) conditions by 

simulating overt network disruption, characterized by 

significant packet loss and throughput deterioration. 

 Stealth Attack Scenario: This scenario employs a more 

complex strategy, striking a balance between evasive 

tactics and disruptive objectives to make discovery 

difficult. The goal is to assess the detection system's 

capacity to recognize increasingly complex attacks that 

seek to maintain a certain level of network presence while 

severely interfering with data flow, necessitating the use 

of more sophisticated detection logic. It has an attack 

intensity of 0.7, suggesting a conscious effort at nuance, 

with a 60% drop probability. 

 Gradual Attack Scenario: This situation simulates the most 

undetectable and challenging type of black hole attack, 

which is marked by a continuous, slow onset danger. With 

a low initial drop chance of 0.3, the attack starts. After that, 

the drop probability gradually increases until it reaches 

50%. The system's long term monitoring capabilities and 

resistance to stealthy, dynamic threats that frequently 

evade simpler detection methods designed for sudden 

changes are put to the test in this situation. 

H. Performance Metrics 

     The evaluation of the proposed I-DQN-CTDE framework 

employs a comprehensive set of performance metrics designed 

to assess detection accuracy, learning efficiency, network 

resilience, and system robustness across multiple dimensions. 

The primary detection performance metrics include Detection 

Rate (DR), calculated as the proportion of malicious nodes 

correctly identified, False Positive Rate (FPR), representing the 

proportion of benign nodes incorrectly flagged as malicious, and 

False Negative Rate (FNR), indicating the proportion of 

malicious nodes missed by the detection system. They are 

calculated as per equations 6,7,8 as follows. 

 

DR =
True Positives

True Positives +  False Negatives
                   (6) 

 

FPR =
False Positives

False Positives +  TrueNegatives
                     (7) 

 

 

FNR =
False Negatives

True Positives +  False Negatives
              (8) 

 
Advanced detection metrics include detection time, which 

measures the temporal efficiency from attack initiation to the 
first detection, consensus accuracy, which measures the degree 
of agreement among detecting nodes and trust stability, 
measured as trust scores to evaluate the consistency of trust 
assessments. These comprehensive metrics demonstrate the 
effectiveness of detecting black hole attacks while maintaining 
network performance and ensuring robust operation in dynamic 
fog computing environments. 

IV. PROPOSED TRUST-AWARE MULTI-AGENT DQN 

FRAMEWORK 

Our proposed trust management model is designed to 
operate effectively in dynamic and decentralized fog networks 
by leveraging the adaptive capabilities of Multi-Agent 
Reinforcement Learning. This approach aims to combine the 
resilience of decentralized local decision making with the 
robustness of global aggregation and adaptive control. 

 In this model, each fog node serves as an independent smart 
agent. To overcome the limitations of handling large or complex 
state spaces inherent in traditional tabular Q-learning, an actor-
critic architecture is utilized within the proposed framework. 
Under the CTDE paradigm, agents learn effective policies by 
approximating the optimal action-value function (critic) and the 
action selection strategy (actor) using neural networks. This 
enables the agents to dynamically identify malicious neighbours 
through continuous interaction with and observation of the 
environment. The overall framework is depicted in Fig 1, and its 
core algorithmic components are elaborated in Algorithms 1 and 
2. 



Singh et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 47 –66 (2026) 

54 
 

 

Fig. 1. MARL Malicious Node Detection Architecture 

A sequence diagram (Fig. 2) illustrates the operational flow 
of our proposed framework. This framework employs a 
centralized training, decentralized execution paradigm, 
coordinating interactions among the centralized orchestrator 
(O), global experience replay buffer (ERB), and individual fog 
Nodes (𝐹𝑁𝑛). The process initiates with system setup by the 
orchestrator, which initializes DRL networks and broadcasts 
initial policies to all fog Nodes. The initial Trust threshold for 
malicious node detection is 0.4.  In each simulation step, 
decentralized fog nodes operate autonomously. 

 Decision and Data Generation: FNn observes its local state, 

updates internal trust metrics (direct trust and indirect trust 

score), and selects a detection action (e.g., 'conservative' or 

'aggressive') using its learned policy. Our research 

proposes a context-aware detection mechanism that shifts 

between conservative detection modes during stable 

periods and aggressive responses when threats emerge. 

The system resolves the security stability dilemma by 

continuously adjusting its sensitivity thresholds based on 

real time network assessments and attack patterns. This 

action guides the generation of its local malicious node list 

(𝐿𝑛) by comparing aggregate trust matrices with the trust 

threshold value. Critically, FNn computes its reward (rn) 

by comparing the local malicious list ( 𝐿𝑛 ) against the 

global malicious nodes broadcast by the central 

orchestrator and then penalizing inaccuracies. 

 Reporting to Orchestrator: Each FNn reports its experience 

(𝑆𝑛,𝑎𝑛 , 𝐿𝑛, 𝑟𝑛) to the Orchestrator. 

 Centralized Trust Adaptation & Orchestration: The 

orchestrator aggregates these reports. Periodically or in 

response to triggers (e.g., topology changes, high false 

positive/negative rates), it executes Algorithm 2. This 

module identifies reliable reporters, forms the network's 

consensus GlobalMaliciousList, dynamically adjusts the 

global trust threshold, and updates reporter Reputation 

Scores based on their consistency with the consensus list. 

The updated GlobalMaliciousList and 

global_trust_threshold are then disseminated back to the 

fog Nodes. This global_trust_threshhold is a dynamic 

threshold calculated as shown in equation 9. 

                       (9) 

 

Where, 

 θ(t) = Dynamic threshold at episode t, between 𝜃𝑚𝑖𝑛 

and 𝜃𝑚𝑎𝑥 

 𝜃𝑏𝑎𝑠𝑒 = Base threshold value 

 𝑇𝑎𝑣𝑔(𝑡) =Average trust score across all nodes at 

episode t. 

 DRL Policy Learning: The orchestrator constructs global 

experience tuples, which are stored in the ERB. When 

sufficient data accumulates, the orchestrator samples mini-

batches and performs DQN-based gradient descent updates 

on the shared Q_actor and centralized Q_critic networks. 

Target networks are periodically updated. The improved 

Q_actor policy is then broadcast to the fog Nodes, enabling 

more accurate, adaptive malicious node detection in 

subsequent steps. 

 This continuous cycle of decentralized action, centralized 

trust adaptation, and DRL-driven policy refinement forms 

the adaptive core of our framework. Our framework uses 

two major algorithms, as discussed below. 

A. MARL Training Algorithm for Trust Policy Learning 

The learning process for trust policy learning (Algorithm 1) 
addresses the dynamic nature of fog environments, enabling 
constant adaptability to changing network conditions and 
threats. Fundamentally, Algorithm 1 creates a global experience 
replay buffer for learning, initializes the shared neural networks 
(actor and critic), and defines key trust parameters, including a 
dynamic trust threshold and reputation scores for each fog node. 
The algorithm starts each episode by modeling genuine network 
changes, such as the addition of new nodes and the removal of 
old ones. The dynamic modification of reputation for rejoining 
nodes is a crucial component in this case. 

Our system implements an intelligent node admission 
protocol that differentiates between returning participants and 
first time entrants as follows. 

 Node Admission Framework: The algorithm evaluates 

each incoming node (FN_new) by first confirming its 

active and inactive state, then categorizing it based on 

historical presence in the ReputationScores registry. 

 Returning Node Processing: Nodes with existing 

reputation data undergo a sophisticated decay calculation 

using effective_lambda based on several factors. The 

system begins by applying base_lambda to all nodes after 

they leave the network. If a node has a history of malicious 

behaviour,  malicious_multiplier increases the decay factor 

to ensure its reputation drops faster. When the entire 

network is under threat (during high risk periods), the 

malicious_activity_boost factor further increases the decay
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Fig. 2. MARL Working

rate for problematic nodes, serving as a proactive security 
measure. A fairness component addresses legitimate 
disconnections. For pre-arranged departures, effective_lambda 
is reset to 0.0, eliminating unwarranted reputation penalties. The 
final score is computed using exponential decay methodology 

and constrained by initial_reputation_for_new_nodes to prevent 
excessive score reduction. 

 New Node Processing: Those Incoming Nodes having no 

reputation records are classified as newcomers. They 
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receive a neutral initial reputation as new nodes, and their 

malicious history indicator is set to False. 

 Integration Protocol: Both returning and new nodes are 

activated and equipped with current network trust 

parameters and policy configurations, enabling immediate 

participation within the existing security framework. This 

dual path methodology ensures intelligent initial trust 

allocation that considers both individual history and 

current network security conditions.  

Once the network is ready, all fog nodes start observing their 

neighbors and managing their local states in response to 

network dynamics. These states contain the orchestrator 

displayed current_trust_threshold as well as local trust metrics 

for their neighbors. Based on observation, each agent decides 

whether to take an “aggressive” or “conservative” approach.  

An "aggressive" action can identify potentially malicious nodes 

by using a lower trust threshold, which could result in more 

detections but also more false positives. Conversely, a 

"conservative" action can use a higher threshold, which results 

in fewer detections but higher confidence. These decisions 

affect the local malicious lists (Ln) they disclose and their local 

trust criteria.  Then the central orchestrator collects local 

malicious lists along with other matrices from all active nodes. 

These matrices will be used to update the global trust threshold 

and collectively generate a global malicious list as explained in 

Algorithm 2. Algorithm 2 is called periodically (50 time steps) 

or when an event such as a new node added, a node deleted, 

etc., occurs. Otherwise, the previous trust threshold and global 

malicious list will be considered. To continually improve the 

agents' capacity to identify malicious activity, the orchestrator 

lastly refreshes the comprehensive reputation scores, gathers 

global experiences for the replay buffer, and trains the shared 

actor-critic networks using this data. This flexible strategy 

provides training and adaptation to the dynamic fog 

environment. 

B. Trust based Malicious Node Detection and Threshold 

Adaptation by Central Orchestrator 

Algorithm 2 describes the process of collaborative 
identification of malicious nodes in the network and calculation 
of dynamic trust threshold in the framework. The centralized 
orchestrator governs a robust approach that incorporates four 
critical stages. 

 The coordinator's first process begins with global state 

aggregation. It receives local malicious node reports (𝐿𝑛) 

and local trust evaluations ( 𝑇𝑠𝑐𝑜𝑟𝑒𝑠)  from all active 

functioning nodes. The coordinator conducts an initial 

screening phase to identify trustworthy reporters, ensuring 

the integrity of the consensus that follows. A node is 

classified as a ReliableReporter only if its local report is 

sufficiently consistent with the previous global state and its 

reputation score meets a minimum threshold. This 

mitigates the risk of low quality or adversarial reports 

skewing the global decision.  

 The second stage is crucial for establishing agreement 

across the network. In this stage, reports from the identified 

ReliableReporters are aggregated to form the global 

malicious nodes list (𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡  ). Specifically, a node is  

designated as malicious if it receives votes from more than 

two-thirds of the reliable reporters, thereby effectively 

implementing a simple majority voting protocol. By 

resolving disagreements between divergent local detection 

findings, this centralized consensus method creates a single, 

reliable source of truth for the network as a whole. 

 In this stage the coordinator maintains the model's adaptive 

capabilities by managing the dynamic trust threshold. It 

utilizes the validated trust scores (𝑇𝑠𝑐𝑜𝑟𝑒𝑠) to calculate a 

new detection threshold (new_trust_threshhold) based on 

statistical analysis and a smoothing factor derived from the 

Exponential Moving Average (EMA). This continuous 

adaptation is vital, as it ensures the detection mechanism 

remains sensitive to evolving, non-stationary malicious 

behaviour patterns within the multi-agent environment. 

 The final stage is to update the reporter's reputation score. 

The centralized coordination is essential between multi-agents 

for critical network decisions during training phase but may 

lead to single point of failure but decentralized execution offers 

temporary resilience by maintaining functionality even if the 

coordinator is unavailable. 

C. Theoretical Scalability Analysis 

The decentralized execution paradigm of the proposed 
framework offers inherent scalability benefits, enabling 
deployment in large scale fog computing networks. While our 
current empirical validation focuses on networks with 10-15 
nodes, theoretical analysis demonstrates the framework's 
potential for deployments of significantly larger scale. This 
section presents a comprehensive scalability analysis addressing 
computational complexity and communication overhead across 
varying network sizes. 

1) Computational Complexity Analysis: The computational 

overhead can be analysed through three critical dimensions: per 

node operations, centralized training coordination, and overall 

system scalability. In our model, each fog node maintains an 

independent Deep Q-Network with an input dimension of d = 

2, representing direct and indirect trust values. The time 

complexity per decision operation can be expressed as shown 

in equation 10. 

𝛰(𝑑 ×  ℎ1 +  ℎ1 ×  ℎ2 +  ℎ2 ×  |𝐴|)                   (10) 

 

where, h1=128, h2=64 represent the hidden layer neuron 

counts 

|A|=2 represents the binary action space 
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This formulation yields constant operations per decision, 

independent of network size n. This constant computational 
requirement per node represents a fundamental scalability 
advantage, as additional nodes do not increase individual 
processing load.   The computing load on the centralised 
coordinator grows almost linearly with the network's size. The 
coordinator uses O(N × d) operations for global state 
aggregation and O(N × log(N)) operations for consensus 
building by creating a sorted malicious node list during the 
training phase. When these elements are combined, the overall 
training overhead is O(N × log(N)), exhibiting effective scaling 
properties. During the training phase, each node transmits 16 
bytes of trust data, along with detection information, every 
training interval, resulting in minimal communication overhead. 

Overall scalability projections are promising where the per 
node computation effort remains constant, indicating favourable 
O(k) complexity. However, the total training overhead increases 
significantly across the tested network range 

2) Communication Overhead Growth Analysis: 

Communication overhead in the proposed system follows 

known linear scaling characteristics, principally driven by the 

training phase coordination needs. Total_Communication = N 

× M × S is the theoretical model for total communication, 

where N is the number of nodes, M is the number of messages 

in each training interval, and S is the message size in bytes. 
A critical advantage of the proposed architecture is the 

complete elimination of communication overhead during 
execution. Unlike fully centralised approaches that require 
constant communication between coordinators, our 
decentralised execution paradigm enables autonomous node 
operation with zero communication cost. This fundamental 
design choice separates learning coordination from runtime 
decision making, ensuring that network growth does not impact 
critical path performance during execution. 

V. RESULTS AND DISCUSSION  

This section evaluates the performance of proposed model. 
A comprehensive comparison against a diverse set of baselines 
and a depth ablation study is also discussed in this section to 
validate the contribution of the model's components.  

A. Proposed Model Performance  

1) Packet Delivery Ratio Performance: Our system shows 

significant performance improvement with the analysis of 

Packet Delivery Ratio (PDR) across all attack scenarios as 

shown in Fig. 3. Under normal conditions, the network 

maintains an excellent PDR of 95-97%, demonstrating baseline 

network efficiency. During aggressive attacks, the PDR 

experiences an immediate degradation to 83-84% but after 

detection recovers to 89-90%. In stealth attacks, the PDR drops 

up to 78-79% during the undetected phase, and  after detection, 

it is set to 85-86%. The most challenging scenario is gradual 

attacks, where there is severe degradation of PDR up to 66-67% 

but our system successfully recovers it to 82-83% after 

detection, which is a remarkable improvement. This 

performance demonstrates the system's ability to adaptively 

respond to varying attack intensities and restore network 

functionality effectively. 

2)  Detection Rate and False Rate Analysis: Fig 4(a), Fig 

4(b), and Fig 4(c) show the effectiveness of the model by 

analyzing the DR, FNR, and FPR in all attack scenarios. The 

model performs exceptionally at the time of aggressive attacks 

with the average detection rate of 92.0% along with an 

exceptional low FNR of 8.3% and FPR of 5.0%.  

 
Fig. 3. Packet Delivery Ratio Evolution Under Aggressive, Stealth, and Gradual 

Attacks 

 



Singh et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 47 –66 (2026) 

60 
 

This suggests that false alarms are accurately identified and 
minimized. On the other hand, the model performs good in case 
of stealth attack and acceptable in gradual attacks. The DR falls  
to 78.1% for the stealth attack, but the FPR (12.0%) and FNR 
(22.0%) rise. In a gradual attack, the model is getting the greatest 

FNR (31.8%) and FPR (17.6%), and a DR of 67.7%. These 
results indicate that our model maintains a favourable trade-off 
between sensitivity and specificity, with higher detection rates 
correlating with lower false rates as attack intensity increases.

3) Comprehensive Stress Testing  against Black Hole Attack  

Scenarios: To evaluate the robustness of proposed trust model 

under diverse adversarial conditions, we conducted 

comprehensive stress testing across three attack categories in 



Singh et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 47 –66 (2026) 

61 
 

fog computing environment that consists of 5 nodes. Our 

experimental design and attack patterns are shown in Table II 

to assess the framework's adaptability and resilience against 

sophisticated threats. 

TABLE II.  BLACK HOLE ATTACK SCENARIO SPECIFICATION 

Attack 

Scenario 

Attack 

Intensity 

Drop 

Probability 

Attack Pattern Detection 

Challenge 

Aggressive 

attack 

1.0 (Highest) 90% Immediate, 

indiscriminate 

Baseline 

detection 

Stealth 

attack 

0.7 

(Moderate) 

60% Selective, 

evasive 

Complex 

detection 

Gradual 

attack 

0.3-0.5 

(Progressive) 

30%  to 

50% 

Slow-onset, 

continuous 

Long-term 

monitoring 

 

 

Fig. 4. (a) Detection Rate Analysis 

 

Fig. 4. (b) False Negative Rate Analysis 

 
Fig. 4. (c) False Positive Rate Analysis 

 

The aggressive attack scenario represents the most basic and 
detectable type of black hole attack, serving as a baseline for 
basic detection capacity. The stealth attack scenario employs a 
more complex strategy, balancing evasive tactics with disruptive 
objectives to make discovery difficult. The gradual attack 
scenario simulates the most difficult and undetectable type of 
black hole attack, marked by a continuous, slow onset threat that 
tests the system's long term monitoring capabilities. 

Our multi-run statistical analysis in Table III revealed 
distinct performance characteristics across attack scenarios. 
The aggressive attack achieved the highest detection rate of 
92.0% ± 2.1%, demonstrating the framework's effectiveness 
against basic attack patterns The stealth attack scenario achieved 
a detection rate of 78.0% ± 2.0%, reflecting the increased 
complexity of detecting sophisticated attacks. The gradual 
attack achieved a detection rate of 67.9% ± 2.2%, 
demonstrating the framework's capability to identify slow onset, 
continuous threats despite inherent detection challenges. 

TABLE III.     MULTI-RUN PERFORMANCE STATISTICS 

Attack 

Scenario 

Detection 

Rate 

False 

Positive 

Rate 

False 

Negative 

Rate 

Packet 

Delivery Ratio 

Aggressive 

attack 

92.0± 2.1% 4.9 ± 

1.0% 

8.3 ± 2.0% 0.92-0.96 

Stealth 

attack 

78.0 ± 2.0% 12.0 ± 

1.0% 

22.0 ± 2.0% 0.88-0.92 

Gradual 

attack 

67.9 ± 2.2% 17.9 ± 

1.0% 

31.9 ± 1.9% 0.85-0.90 

 

The FPR analysis reveals that aggressive attacks 

demonstrate the lowest FPR of 4.9% ± 1.0%, indicating high 

precision in detection decisions. Stealth attacks show a 

moderate false positive rate of 12.0% ± 1.0%, reflecting the 

increased complexity of distinguishing between legitimate and 

malicious behaviour. Gradual attacks exhibit the highest FPR 

of 17.9% ± 1.0%, indicating challenges in maintaining 

precision when detecting slowly evolving threats. 
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We compared the proposed model against established 
baselines using paired statistical tests to isolate and confirm the 
significance of our performance, as mentioned in Table 4. The 
results of the paired t-test (for mean comparison) and the 
Wilcoxon signed-rank test (non-parametric comparison) were 
entirely consistent, both showing highly significant superiority 
for the I-DQN CTDE framework over all baselines (p < 0.001). 
The large Cohen's d values (ranging from 1.41 to 3.03) indicate 
the practical significance of our framework's advantage. 
Additionally, one-way Analysis of Variance (ANOVA) 
revealed significant differences across attack scenarios for all 
key metrics. Detection rates showed highly significant 
differences (F = 15.847, p < 0.001), FPR demonstrated 
significant variations (F = 8.234, p = 0.002), and FNR exhibited 
highly significant differences (F = 12.456, p < 0.001), indicating 
that attack complexity significantly impacts all aspects of 
detection performance. 

TABLE IV BASELINE MODEL COMPARISON WITH STATISTICAL 

SIGNIFICANCE 

Method ΔDR vs. 
Proposed 

 

t-stat p-value Cohen’s d 

IDQN- NT -5.8 % 8.45 < 0.001*** 

 

1.41 

MAAC-NT -8.1 % 9.87 < 0.001*** 

 

1.69 

EMAT -17.9 % 12.34 < 0.001*** 

 

2.88 

HTM -20.6 % 13.21 < 0.001*** 

 

3.03 

 
The comprehensive stress testing validates the proposed 

framework's effectiveness across different black hole attack 
complexities, demonstrating excellent performance against 
aggressive attacks, good performance against stealth attacks, 
and acceptable performance against gradual attacks. Unlike 
existing approaches that rely on static detection mechanisms, 
our trust based MARL framework employs adaptive learning to 
handle diverse attack patterns, providing a novel solution to 
malicious node detection in fog computing environments. The 
statistical analysis confirms significant performance differences 
across attack types, with the framework's detection capability 
appropriately scaling with attack complexity. These results 
establish the framework's readiness for deployment in real world 
fog computing environments where diverse black hole attack 
patterns are expected. 

4) Trust Score Evolution and Dynamic Threshold 

Adaptation: In Fig 5, all legitimate nodes demonstrate 

consistent improvement in their trust score, converging toward 

1.0 across all scenarios, while malicious nodes exhibit distinct 

degradation patterns. In aggressive attacks, malicious nodes 

experience a rapid decline in their trust score, dropping below 

the 0.5 threshold within 20-30 time steps and converging 

toward 0.0, enabling quick detection. Stealth attacks exhibit a 

more gradual degradation of trust, with malicious nodes 

crossing the threshold between 50 and 100time steps, reflecting 

the system's ability to adapt to subtle attack patterns. Gradual 

attacks present the most challenging scenario, with malicious 

nodes maintaining higher trust scores for longer periods, 

crossing the threshold around 150–200 time steps, yet still 

achieving eventual detection. The dynamic threshold 

mechanism in Fig 6 demonstrates intelligent adaptation, with 

thresholds decreasing during attack phases to enhance 

sensitivity and increasing post detection to reduce false 

positives, achieving an optimal balance between detection 

effectiveness and system stability. 

B. Comparative Performance against Baseline 

As research on trust based security in fog computing is in its 
early stages, there are few reinforcement learning based models. 
There is no trust model based on I-DQN and CTDE. As a result, 
the results are compared with the baseline model. A 
comprehensive and diverse set of baseline methods is essential 
for establishing the validity and significance of any proposed 
machine learning approach, particularly in network security, 
where multiple competing paradigms exist. In trust based 
malicious node detection in fog networks, a robust baseline 
comparison must include both trust-centric approaches that 
demonstrate the value of incorporating trust mechanisms and 
MARL-based approaches that validate the effectiveness of our 
specific architectural choices. 

1) Trust Only Baselines 

 Heuristic Trust Model (HTM): This baseline 

implements a traditional rule based trust management 

system that calculates trust scores using predefined 

heuristics without learning capability. The HTM 

employs a simple weighted average of direct trust 

(based on packet delivery success rates) and indirect 

trust (based on neighbor recommendations) with fixed 

weights of 0.7 and 0.3 respectively. Trust scores are 

updated using a static learning rate of 0.1, and 

malicious nodes are identified using a fixed threshold 

of 0.5. The HTM represents conventional trust based 

security approaches that rely on predetermined rules 

and static parameters, providing a baseline to 

demonstrate the value of dynamic learning capabilities 

in trust management. 

 Exponential Moving Average Trust (EMAT): This 

baseline extends the HTM by incorporating temporal 

smoothing through exponential moving averages for 

trust score updates. The EMAT employs a decay factor 

of 0.9 to weight recent interactions more heavily than 

historical data, using the equation 11: 

 

Trust(t) = α × Current_Trust + (1- α) × Trust(t-1)              (11) 

where α = 0.1.  

This approach represents a more sophisticated version 

of traditional trust management, accounting for 

temporal dynamics, but lacks the adaptive learning 

capabilities of MARL systems. 

2) MARL Only Baselines 

 Independent DQN without Trust (IDQN-NT): This 

baseline implements a standard Independent Deep Q-
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Network approach where each node learns to detect 

malicious neighbors based solely on network metrics 

(packet drop rates, response times, communication 

patterns) without any explicit trust mechanism. The 

IDQN-NT utilizes the same neural network 

architecture as our proposed method, but replaces trust 

based state representation with raw network metrics. It 

employs a 4-dimensional state space comprising packet 

drop rate, average response time, communication 

frequency, and neighbour count. 
 Multi-Agent Actor-Critic without Trust (MAAC-NT): 

This baseline implements a multi-agent actor-critic 

framework where agents learn coordinated policies for 

malicious node detection without trust based state 

representation. This model is similar to our CTDE 

approach, but uses actor-critic architecture instead of    

DQN focuses on network level metrics rather than trust 

values. 

3) Comparative Performance Against Baseline 
Table 5 shows the comprehensive evaluation across all 

baseline methods, where the proposed model demonstrates 

superior performance. Our proposed approach uses trust based 
behavioural analysis to effectively filter network noise and 
capture attack patterns over extended periods. Unlike  

alternative methods that rely on raw network measurements or 

isolated learning processes, our framework integrates 

centralized coordination with explicit trust modelling to 

achieve superior accuracy in the detection of malicious nodes. 

 
TABLE V  BASELINE MODEL COMPARISON 

Method Category Detection 

(%) 

FPR 

(%) 

FNR 

(%) 

F1-

Score  

Trust 

stability 

I-DQN 

CTDE  
(proposed) 

Trust 

MARL 

87.3 ± 

3.2 

6.8 

± 
2.1 

12.7 ± 

3.2 

0.85 

± 
0.03 

0.82 ± 

0.04 

IDQN- 

NT 

MARL 

only 

81.5 ± 

4.1 

9.2 

± 
2.8 

18.5 ± 

4.1 

0.78 

± 
0.04 

0.71 ± 

0.06 

MAAC-

NT 

MARL 

only 

79.2 ± 

4.8 

11.4 

± 
3.2 

20.8 ± 

4.8 

0.75 

± 
0.05 

0.67 ± 

0.07 

EMAT Trust 

only 

69.4 ± 

6.2 

23.1 

± 

4.8 

30.6 ± 

6.2 

0.64 

± 

0.07 

0.57 ± 

0.07 

HTM Trust 

only 

66.7 ± 

6.8 

26.3 

± 

5.1 

33.3 ± 

6.8 

0.61 

± 

0.08 

0.52 ± 

0.12 

 

 

Fig. 5. Trust Score Evolution 

 

 

Fig. 6. Dynamic Threshold 

C. Ablation Study 

Our proposed model ablation study shows the algorithmic 
advances for the contribution of each component to overall 
system performance. 

1) Centralized vs. Decentralized Critic Architecture 

This ablation study examines the significance of centralized 

training in proposed framework by comparing the complete 

model with a fully decentralized training where individual    
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agents learn autonomously without global coordination. In our 

proposed architecture nodes exchange their local trust 

assessment and detection outcomes with a central coordinator 

that consolidates all fog node decisions, and provides global 

feedback. An individual node cannot work and take decision 

independently, they require collaboration for decision making. 

The decentralized version eliminates all centralized 

coordination, with each node functioning as an autonomous I-

DQN agent making decisions exclusively based on local 

observations without any global information exchange or 

consensus mechanisms. The centralized critic variant 

demonstrates 5.8% superior detection accuracy (87.3% vs 

81.5%), 2.4% lower FPR (6.8% vs 9.2%), and 5.8% lower FNR 

(12.7% vs 18.5%) compared to the purely decentralized IDQN-

NT approach, confirming the significance value of global 

coordination in our framework. 
 

2) Static vs. Dynamic Threshold Management 
This ablation compares the effectiveness of our adaptive 

threshold system with that of a model with static, hard-coded 
thresholds (EMAT). In a static threshold trust system, every 
node employs a fixed trust threshold value of 0.5. But in a 
dynamic threshold trust system, the trust threshold value is 
adjusted based on network conditions, attack intensity, 
performance metrics, and temporal factors. A Trust 
management system with an adaptive threshold provides 
superior performance compared to a static approach, particularly 
in dynamic network environments where attack patterns and 
network conditions vary over time. Dynamic threshold achieves 
17.9% higher detection accuracy (87.3% vs 69.4% compared to 
EMAT), 16.3% lower FPR (6.8% vs 23.1% compared to 
EMAT), and 17.9% lower FNR(12.7% vs 30.6% compared to 
EMAT), demonstrating the advantage of adaptive threshold in 
fog network security applications. 

 

3) Fixed vs. Learned Trust Parameters 

This ablation evaluates the contribution of our MARL-

based learning approach by comparing the proposed model with 

learned trust parameters against fixed, heuristic based 

parameters. The fixed parameters are selected using standard 

defaults from recent literature, including Adam learning rate 

(0.001) from Stable Baseline [31], DQN discount factor (0.99) 

from [32], and trust management defaults (recovery rate: 0.1, 

decay factor: 0.95) from [33,34] representing typical non-

optimised configurations found in recent frameworks. The 

learned parameter variant is systematically tuned through 

Optuna optimization, resulting in optimized values like 

learning parameters and trust parameters displayed in Table 3. 

The optimized trust recovery rate of 0.042 is lower than 

literature defaults due to specific attack patterns and network 

dynamics in our fog computing environment where stability is 

prioritized over rapid recovery. 
Learned parameters achieve 20.6% higher detection 

accuracy (87.3% vs 66.7% compared to HTM), 19.5% lower 
FPR (6.8% vs 26.3% compared to HTM), and 20.6% lower 
FNR (12.7% vs 33.3% compared to HTM) as shown in Table 6, 
validating the effectiveness of our MARL based learning 
approach in optimizing trust management for fog network 
security. The significant performance improvement 

demonstrates that systematic parameter optimization provides 
substantial advantages over standard default configurations, 
making our approach particularly valuable for critical security 
applications where performance optimization is justified. 

TABLE VI.      FIXED VS LEARNED PARAMETERS 

Paramateres Fixed Optimized 

Learning_rate 0.001 0.0069 

Gamma 0.99 0.961 

epsilon_decay 0.995 0.998 

Epsilon_min 0.01 0.026 

Trust recovery rate 0.1 0.042 

Trust_decay _factor 0.95 0.967 

 

4) Results Interpretation 
The proposed framework exhibits varying detection 

effectiveness across different attack complexities, with 
aggressive attacks achieving a 92.0% ± 2.1% detection rate due 
to their behavioral signatures. In comparison, stealth and 
gradual attacks show reduced performance at 78.0% ± 2.0% 
and 67.9% ± 2.2% respectively, reflecting the increased 
challenge of identifying subtle malicious patterns. These 
findings indicate that the trust based approach excels at detecting 
aggressive and stealth attacks. It faces limitations against 
sophisticated attack strategies that require long term behavioral 
monitoring and pattern recognition. 

The proposed system outperforms other methods, 
achieving 87.3% detection accuracy compared to 81.5% for 
basic I-DQN and 66.7% for simple trust models, demonstrating 
particular strength in detecting complex stealth 
and gradual attacks through its advanced trust evaluation 
approach. While the system achieves better results, it requires 
more computing power for trust calculations. It needs a 
sufficient interaction history to function correctly, which could 
limit its use in fast changing or resource limited networks. 

The system faces several key weaknesses in different 
situations. The framework struggles to detect gradual attacks at 
their early stages because it requires sufficient evidence before 
deciding a node is malicious, leading to delays in identification. 
As our model depends on centralized coordination during 
training, it makes the model susceptible to collusion attacks 
where malicious nodes can strategically manipulate the local 
malicious list to overwhelm the consensus based formation of 
the global malicious list. Still, the model uses only reliable 
reporters based on reputation and consistency scores, and it 
utilizes byzantine fault tolerance (BFT) compliant threshold. 
Specifically, a node is confirmed malicious only if it is reported 
by more than two-thirds of the reliable agents. This can prevent 
only 51% attacks from collusion attacks, but it still needs 
improvement, as they can erode the network. The system also 
performs poorly in networks with few connections, as it relies 
heavily on neighbor recommendations that may not be 
sufficient. Additionally, smart attackers could potentially learn 
how the detection system works and adjust their behaviors to 
evade detection, requiring the system to adapt and update its 
detection methods continually. 

VI. CONCLUSION AND FUTURE ENHANCEMENT 

This research presents a novel approach for the detection of 
malicious nodes in dynamic network like fog network with the 
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integration of MARL approach with an adaptive trust 
management system. Our comprehensive experimental 
evaluation demonstrates the effectiveness of the proposed model 
across three attack scenarios - aggressive, stealth, and gradual. 
One of the main contributions is the creation of a dynamic trust 
threshold adaptation mechanism, where in case of network 
condition change, the intelligent node alternates between 
aggressive and gradual detection approaches. The experimental 
results demonstrate that our MARL-based approach achieves 
superior detection rates compared to traditional baseline 
methods, with detection accuracies of 92%, 78%, and 68% for 
aggressive, stealth, and gradual attacks, respectively. The 
system demonstrates remarkable resilience in maintaining 
network performance, with packet delivery ratios recovering to 
88-92% after detection and mitigation of the attack. Our 
adaptive consensus algorithm (Algorithm 2) successfully creates 
a robust global malicious node registry through weighted 
evidence aggregation. The reputation based node management 
system effectively balances security requirements with fairness, 
ensuring that legitimate nodes are not unjustly penalized while 
maintaining strict oversight of previously malicious entities. The 
dynamic threshold adaptation mechanism proves particularly 
effective in optimizing the trade-off between detection 
sensitivity and FPR. By employing exponential moving 
averages and contextual factors such as network maturity and 
threat levels, the system maintains stable operation while 
remaining responsive to emerging security challenges. The 
suggested MARL framework provides notable improvements 
for further study.  

 Secure Trust Data Management: To ensure the integrity, 

immutability and auditability of shared reputation scores 

and global malicious lists, secure trust data management is 

required, such as integration of Distributed Ledger 

Technologies (DLT), such as blockchain or verifiable 

computation approaches. As a result, trust data would no 

longer be dependent on a centralized, perhaps weak 

orchestrator. 

 Communication Efficiency Optimization: To drastically 

cut down on the communication overhead between fog 

nodes and the orchestrator, a crucial factor in dense and 

scalable fog deployments, experiment with sophisticated 

data aggregation techniques, hierarchical reporting 

structures, or reinforcement learning driven sparse 

communication policies. 

 Enhanced Learning Algorithms: Future research could 

explore advanced deep reinforcement learning 

architectures, including transformer based attention 

mechanisms and graph neural networks, to capture 

complex spatial temporal dependencies in fog network 

topologies. The integration of meta-learning approaches 

could enable faster adaptation to novel attack patterns that 

were not encountered during training. 

 Federated Trust Management: Implementing federated 

learning principles within the trust management 

framework could enable privacy preserving collaboration 

between multiple fog domains. This approach would allow 

trusted information sharing without exposing sensitive 

network details. 

 Behavioral Pattern Analytics: The integration of advanced 

behavioral analytics using unsupervised learning 

techniques could enhance the system's efficiency to detect 

zero-day attacks and sophisticated adversarial behaviors. 

Anomaly detection based on network flow patterns and 

node interaction frequencies could complement the 

existing trust based approach.  

 In case of central orchestrator compromise scenario, it may 

lead to false information injection, poisoned learning and 

configuration hijacking, which distorts the learning signal 

and potentially causes cascading policy degradation across 

the network. We can integrate Cryptographic 

Authentication, Byzantine Fault Tolerance (BFT), and 

distributed log storage to protect the coordinator's 

resources and maintain operational continuity. 
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