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Abstract 

Sophisticated ransomware attacks increasingly target cyber-physical systems (CPS), therefore seriously compromising security for vital 

infrastructure. Stronger and more intelligent protection systems are necessary, as conventional detection systems can struggle to adapt to 

evolving attack patterns. This work proposes a novel hybrid ensemble learning model that is driven by artificial intelligence and makes 

use of weighted voting, combining Random Forest classifiers with SVM classifiers and another technique, stacking, which utilizes SVM 

with XGBoost as base classifiers and logistic regression as a meta classifier to improve the accuracy of ransomware detection. Experiments 

performed on the publicly accessible Kaggle ransomware dataset, containing 62,485 records of process, network activities, validate the 

superiority of the proposed approach, as the stacking-based hybrid model provides 93.15% accuracy compared to current single and 

ensemble classifiers. The adaptive resilience of the framework is guaranteed by the dynamic weighting, the meta-learning combination, 

which reduces the number of false positives and provides low-latency performance that is necessary in the real-world implementation of 

CPS. This secure model is the first step towards extending the existing literature and provides a scalable means to defend against future 

ransomware attacks on cyber-physical systems, protecting critical infrastructure in smart manufacturing, healthcare, and energy systems. 
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I. INTRODUCTION 

    Cyber-physical systems (CPSs) integrate computer, 
communication, and control capabilities and are considered 
next-generation intelligent systems. The ability to perceive in 
real-time, control dynamically, and provide information service 
is a result of ongoing communication and deep integration of 
computing devices with physical processes in CPSs [1]. Cyber-
physical systems are often viewed as a bridge between the 
physical and cyber worlds due to their calculation, 
communication, and control capabilities; they comprise sensors, 
actuators, and controllers. Multiple industries have made 
extensive use of them, including healthcare, smart 
manufacturing, smart transportation, smart grids, water supply, 
defence, and avionics [2], [3]. 

Recent years have seen the development of a variety of 
safety-critical systems using CPS theory and technology. These 
systems are vulnerable to cyberattacks since they allow 
communication networks to access data, services, and 
information about physical entities. Now that science and 
technology, particularly IT, are advancing at a rapid pace, 
cyberattacks can damage physical components. As a result, 
CPSs are opening themselves up to cyberattacks, which is a 
major concern for system security. As a result of cyberattacks’ 
ability to alter or delete data as well as introduce misleading 
data, decision-makers may make poor choices. The inception of 
cyberattacks has the potential to trigger a cascade of failures that 
render CPSs inoperable and result in enormous monetary, 
property, and fatality losses [2]. 
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When it comes to cyber defence, ransomware assaults have 
recently emerged as a major concern, especially for cyber-
physical systems (CPS), which combine digital controls with 
physical operations. Companies in the medical care, power, 
transportation, and production industries rely on these systems, 
making them straightforward targets for cybercriminals [4], [5]. 
Encrypted viruses that disrupt the business activities by 
interfering with security weak points of the networked systems 
can be devastating to the bottom line and the general business 
activities. These attacks require a higher level of advanced 
detection mechanisms to be put in place due to the dynamic 
threat environment [6]. 

 

Fig. 1. Ransomware escalation trends in the CPS environment (2023-2025). 

The graph in Figure 1 clearly shows the significant increase 
in ransomware threats in CPS/ICS settings between 2023 and 
2025, where the industrial attack surge and losses of millions of 
dollars per annum were increasing steadily every year. It 
emphasizes that, by the year 2025, more than 40 percent of 
industrial systems would be attacked and 35 percent would 
suffer financial losses amounting to more than one million 
dollars. This fact makes the adaptive cybersecurity solutions 
urgent, which puts the research gap of the given research, that 
is, the development of a hybrid ensemble structure to detect the 
real-time CPS ransomware with a measurable effect on the 
infrastructure protection. 

It has brought a revolution in dealing with cyberattacks using 
AI. The solutions provided by this technology are data-driven 
and scalable, and contribute to better detection and response 
time. Ensemble learning is an example of the most promising AI 
techniques that have been established based on the capability of 
numerous models to make joint predictions [7]. To identify 
ransomware, this research study suggests a novel hybrid 
ensemble learning framework that is both a stacking and a 
weighted voting. Weighted voting combines model 
performance, and stacking is a type of meta-model in order to 
gain knowledge about forecasts of base models. This is the 
reason why the system is stronger and more flexible in the final 
analysis [8]. 

These ensemble techniques can be combined to help 
recognize various variants of ransomware, improve the timely 
decision-making process, and reduce the number of false alarms. 

This paper emphasizes the applicability of the approaches that 
imply the implementation of AI to protect CPS against 
cyberattacks, to guarantee that it will not affect the regular 
working of the system and render it resilient. A fast, adaptable, 
and accurate answer to the acute problem with ransomware in 
the context of cyber-physical environments is provided, which 
adds to the delivery of the relatively new field of cybersecurity 
[9]. 

Despite significant advancements, current ransomware 
detection models of CPS do not usually have real-time 
flexibility, do not reduce false positives, or cannot be extended 
to fully scale to real-life and complicated deployments. The 
proposed research will close this gap in critical research by 
creating a dual-layer hybrid ensemble model that has been 
designed with the specific aim of detecting ransomware in 
cyber-physical systems in a manner that is both secure and 
efficient. 

A. Motivation 

The increasing cases of ransomware attacks on cyber-
physical systems (CPS) [10] present great requirements of 
precision, versatility, and speed [11-13]. Conventional ensemble 
techniques (e.g., bagging, boosting) have proven to be 
ineffective to some degree, but they are not able to handle 
heterogeneous, non-stationary data and evolving threat patterns 
common in CPS settings. According to recent research, the 
hybrid method, which consists of combining several structurally 
different models and meta-learning, is better than simple 
ensembles in terms of generalization and error correction. Thus, 
the objective of the work is to create a dual-layer hybrid 
ensemble, quantitatively evaluate its benefits and optimize with 
low-latency, real-world CPS ransomware protection. 

B. Novelty 

The novelty of the study has explicitly entailed a structured, 
systematic comparison of two advanced paradigms of hybrid 
ensembles, namely dynamic weighted voting and stacking-
based meta-learning as applied to the ransomware detection in 
CPS environments. This study presents a dual-layered hybrid 
architecture and officially compares the behaviour of both 
strategies in terms of the functioning, the nature of decision 
fusion, the delay of inference, the stability of generalization, and 
the calibration of probabilities in both ensemble strategies under 
the same experimental setting.  

The strategies that the current study takes into account are 
both the approaches adopted by other researchers in the past: (i) 
wherein they only adopt a single ensemble mechanism, a (ii) 
dynamic weighted voting scheme which dynamically adjusts the 
contribution of classifiers based on real-time measures of 
performance (precision, recall, and F1-score), and (iii) a meta-
learning layer and logistic regression as a strategy to eliminate 
errors generated by various base learners (SVM, RF and 
XGBoost). Not only they become stronger against the changing 
multimorphic ransomware forms, but they also reduce 
overfitting and generalization as a result of such synergy.  

The system is evaluated on large-scale, rich-featured data 
from 62,485 ransomware and benign cases, which is far broader 
than most existing research, which uses tiny datasets or fictional 
data. Other distinctive features include our real-time adaptation 
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system, which provides CPS without disturbing operations due 
to a low-latency design and real-time performance. Finally, we 
find that our hybrid using stacking has a cross-validation 
accuracy of 93.00%, largely due to a balanced precision-recall 
trade-off with lower log-loss than conventional ensemble and 
standalone classifiers and offers resilience and reliability to 
mission-critical systems. AUC of 0.96 shows that the ensemble 
can distinguish ransomware from non-malicious occurrences at 
both ends of the categorization range. 

C. Contributions 

The main contributions in this study are as follows:  

• Dual-Layer Hybrid Ensemble Design— This paper 
presents a new ensemble design, the combination of dynamic 
weighted voting and stacking meta-learning models to deal 
with the specific problems that CPS faces, like data diversity, 
real-time adaptability, and the ability to withstand 
sophisticated hazards (refer to Section 3 for framework 
design). 

• Evaluation on large-scale realistic datasets—On a large-
scale dataset of 62,485 ransomware and benign examples, 
including system calls, file changes, and network traffic, our 
model is tested (refer to Section 4 for evaluation practice). 
The fact that we have a large and rich dataset guarantees that 
our results can be scaled, are representative, and are more 
reflective of real-world CPS deployment situations than 
other studies that used smaller or synthetic datasets. 

• Real-Time Adaptability to CPS— The proposed structure 
is optimized for low latency and simultaneous processing to 
ensure ransomware detection and mitigation without 
affecting CPS activities. This dynamic is crucial in the most 
important structures, where false positives and detection 
delays can be disastrous. 

• Superior Comparative Performance— In experiments, 
our stacking-based hybrid ensemble achieved 93.00% cross-
validation accuracy with similar precision-recall and lower 
log-loss, outperforming individual classifiers (SVM at 
84.95%, RF at 93.15%) and other ensemble baselines. These 
results demonstrate the framework's accuracy and 
generality, which are ideal for mission-critical CPS 
applications (refer to Section 5 for comparative results and 
discussion). 

D. Paper Organization 

The subsequent portions of the article are managed as 
follows. Section 2 surveys the relevant literature on AI-driven 
ransomware detection. Section 3 elucidates the functionality of 
our suggested hybrid models. Section 4 delineates the 
assessment criteria for the suggested hybrid methodologies. 
Section 5 evaluates the results of these hybrid methodologies 
and contrasts them with the established approaches. Section 6 
ultimately closes our analysis and delineates future possibilities 
regarding ransomware assaults. 

II. RELATED WORK 

This section explores the literature review that is relevant to 
the proposed work and includes the theoretical framework and 
original contributions by the field of artificial intelligence and 

its subfields. The key considerations of the studies have been 
presented in Tables I and II. 

A. Seminal Contribution 

Guan Li et al. (2024) have presented a model that would 
combine the predictive capabilities of DL models with the 
ability of Monte Carlo Tree Search (MCTS) to locate a 
multifaceted solution to different kinds of ransomware. The 
accuracy, as well as low false positives, demonstrated that the 
hybrid framework had superior performance, equivalent to the 
traditional ML models, since it was thoroughly tested. The 
system was enriched with MCTS, which provided the possibility 
to examine alternative decision paths in case of the emerging 
threats because of the real-time response capability of the 
system. The proposed paradigm was also efficient in computing, 
and this made it well-suited for real-time implementation at the 
business level.  

A nimble and effective method of mitigation of ransomware 
threats, the results reveal that the hybrid system has the capacity 
of a formidable defence system in contemporary cybersecurity 
[14]. Stephen Venne et al. (2024) used the Pattern-Entropy 
Segmentation Analysis (PESA) framework in their study, 
whereby detection of ransomware can be done at a more specific 
and faster rate with the assistance of entropy analysis of network 
traffic in real-time. PESA is also based on entropy changes to 
identify early indicators of maliciousness generated by the 
ransomware process of encrypting files, rather than the common 
signature or behavior-based methods, to avert severe damage 
before it can occur. They test it on a simulated environment of a 
network and prove that it can recognize a variety of ransomware 
strains at a high rate with few false positives and a quick reaction 
time. Furthermore, the system is resistant to obfuscation; 
therefore, it is an authoritative contender to the applications of 
cybersecurity in real-life scenarios. To improve the security of 
the network and minimize the damage of ransomware 
infections, the findings suggest the possibility of the practical 
importance of entropy-based detection [15]. 

A new method is offered in the article by Samuel Wasoye et 
al. (2024), and it is based on the principle of applying machine 
learning models that employ a BTLS (Binary Transformation 
and Lightweight Signature) algorithm to make ransomware 
detection faster and more accurate. The fact that it is possible to 
extract the static and dynamic information of ransomware 
samples created by the BTLS algorithm allows us to analyse and 
classify them more deeply. As the experimental results have 
shown, both sets of features combined increased the accuracy of 
classification greatly, and the fact that the algorithm is designed 
to minimize the rate of false positives makes it suitable to be 
used in the real world.  

In order to overcome failures of conventional forms of 
detection solutions and create machine learning-based 
cybersecurity solutions, the suggested solution will provide a 
scalable approach that will be able to adjust to the appearance of 
new forms of ransomware [16]. In this research, Jiugang Chen 
et al. (2024) take into account the degree of machine learning 
algorithm recognition of attack on the decentralized storage 
system known as the Interplanetary File System (IPFS) based on 
ransomware. The experiment gauges the correctness, accuracy, 
remembrance, and strength of the various ML models in an 
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unfavourable environment, which are DT, LR, RF, GBM, and 
CNN. The results show that further advanced models like 
random forests (RF), convolutional neural networks are more 
powerful, more accurate and less evasive. The results highlight 
why enhancing IPFS concerning the counteraction of 
ransomware attacks is possible within the possibilities of 
implementing machine learning in the cybersecurity practices of 
decentralized networks. This should be followed by future work 
to make the models more suitable to emerging threats, more 
varied in terms of datasets, and their usability in more 
operational scenarios [17]. 

The cross-validation strategy employed by SUBIR PANJA 
et al. (2025) is 5-fold, in accordance with the dataset it gathered 
to study it. They estimate the memory and execution time 
demands of each of the 14 iterations of the ML models, both 
with the complete feature set and with the subset of the features 
that have survived the data preprocessing stage. They applied 
the Extra Tree classifier (ETC) to detect the top ten important 
characteristics by Gini impurity scores to achieve more accuracy 
and reduce the time needed to arrive at the results. Thereafter, 
they analyzed the experimental findings and discovered that the 
RF classification model, when applied to the set of reduced 
features, achieved ROC-AUC scores of 0.99 and an accuracy for 
prediction of 99.39%. Results that are consistent with the ETC 
model prediction prove that the proposed model can work. A 
very modest standard deviation indicates that the suggested 
model is robust. In addition to being very responsive, it has a 
low memory usage and execution time [18].  

Juan A. Herrera-Silva et al. (2023) have developed a method 
that can identify both existing and future forms of this hazard. 
Listed below are the goals of this study:(1) Use a sandbox to test 
out variations of encryptor and locker ransomware with 
goodware, to create JSON files that include dynamic settings. 
(2) Determine which dynamic features are most useful for 
distinguishing encryptor and locker ransomware from legitimate 
software, and then pick the least redundant ones. Using these 
chosen parameters for examples of various artefacts, develop 
and make public a dynamic attributes dataset. Utilize the 
dynamic feature dataset alongside machine learning methods to 
create models. Over the course of the evaluation, 20 types of 
ransomware and 20 types of goodware were examined across 
five different platforms. Every one of the 2000 entries in the 
final feature collection has 50 attributes. This dataset enables an 
ML detection using a 10-fold cross-validation, with neural 
networks, random forests, and XG Boost boosted regression 
trees all achieving average accuracy superior to 0.99 [19]. 

Amjad Alraizza et al. (2023) proposed research to examine 
the present state of automated ransomware detection and to 
speculate on its possible future debates. This document offers a 
detailed description of ransomware, a chronology of attacks, and 
background information. Moreover, it provides in-depth 
research on the existing strategies of ransomware mitigation, 
prevention, and recovery. This research has additional benefits, 
such as an analysis of studies conducted between 2017 and 2022. 
Here, readers can obtain the latest information about 
ransomware detection methods and how they have evolved to 
fight these assaults. This study concludes that there are still 
many questions about ransomware detection and several 
possible obstacles to further research in this area [20]. Robert 

Bold et al. (2022) present a comprehensive literature review on 
ransomware detection with advanced ML models. The 
outcomes, however, indicated that previous attempts often 
emphasized accuracy while neglecting the importance of other 
values in the confusion matrix, such as false negatives. Hence, 
they have utilized a dataset containing 730 malicious and 735 
benign samples to assess the efficacy of ML models in 
mitigating ransomware at various points in a detection system’s 
design, as well as the associated costs. The results demonstrate 
that an ANN model is optimal due to its 98.65% accuracy, 0.94 
Youden’s index, and 76.27% net benefit; however, the RF 
model, with a minimum accuracy of 92.73%, offered the 
advantage of a 0.00% false-negative rate. The predictable cost 
of resources required to filter false-positives contrasts with the 
risk of a false-negative in this system, which resembles the 
unpredictable but frequently significant cost associated with 
ransomware infection [21]. 

Mohammad Masum et al. (2022) proposed an approach for 
ransomware identification and mitigation that relies on feature 
selection and uses several ML techniques, including neural 
network-based designs, to classify security levels. To classify 
ransomware, they used a variety of ML methods, including DT, 
RF, NB, LR, and classifiers based on Neural Networks (NN). In 
order to test their methodology, they have only used one 
ransomware dataset. In comparison to other approaches, RF 
classifiers achieve higher accuracy, F-beta, and precision scores, 
as shown in the experimental findings [22]. DARYLE SMITH 
et al. (2022) have discussed a ransomware detection approach 
and the ML methods that are commonly used to identify and 
understand these malicious programs and their dynamic traits. A 
comprehensive evaluation of those frameworks is also 
something those involved in cybersecurity will get from this 
research. Further details, such as the datasets used and the 
difficulties each framework may encounter when accurately 
recognizing different types of ransomware, will be added to this. 
Overall, this report provides a comparative analysis that can 
serve as a reference point for other colleagues in detecting 
ransomware [23]. 

B. Key Considerations 

The most significant feature would be associated with the 
evaluation of the comparison of a set of ransomware detection 
techniques, emphasis on the features they implement, the 
algorithms they use, data sets, how they preprocess data, and 
what are their main contributions. It outlines the various 
approaches that consist of deep learning models (CNN, ResNet-
50) and machine learning based classification (RF, SVM, 
XGBoost). This comparison shows the pros and cons of current 
approaches, resulting in Table I's ransomware detection trends 
for Cyber-Physical Systems (CPS). 

The review shows that most current efforts use standard or 
single-layer ensemble techniques, which may be insufficient for 
CPS-specific challenges and scalability. The research proposes 
an efficient, diverse dual-layer hybrid ensemble for real-time 
heterogeneous CPS to cover these shortcomings. 

 

 

 



Suthar et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 26 –40 (2026) 

 

30 

 

TABLE I.  COMPARISON OF RANSOMWARE DETECTION APPROACHES 

Authors Features Algorithm Dataset Preprocessing Key Contribution Limitations 

J. E. Hill et 
al. (2024) 

[24] 

HPC, MCC 
Ensemble, 
SVM, 

KNN, NN 

Real-world 

datasets (20 

benign, 15 
Ransomware) 

Normalization Data 

Cleaning, 

Optimizing hardware 

performance counters 

Limited samples, 
system 

dependencies 

B. 
Keyogeg et 

al. (2024) 

[25] 

File access patterns, 
Process creation 

anomalies, N/W traffic 

behaviors 

RF, SVMs Log datasets 
Feature Extraction, 

Normalization 

Simulated Active Directory 

environment 

Higher FP rates, 

Limited ransomware 
samples 

D. Gihavo 
et al. 

(2024) [26] 

File access patterns, 
Temporal modification 

patterns 

RF, SVMs, 

NN 
Synthetic 

Log data recording, 

Feature extraction 

Synthetic dataset 
generation for realistic 

simulation 

High FP rates, 

Feature Noise 

J. Kirkland 

et al. 

(2024) [27] 

Entropy values, 

Modification 

timestamps, 

RF, SVM 

Custom 

dataset (Virus 

Share, Hybrid 

Analysis) 

Entropy Calculation, 

Feature Extraction 

High performance across 

file types 

Limited dataset, 

False negatives 

Y. C. Wu 
et al. 

(2024) [28] 

File access, System calls, 
Encryption routines, 

Anomalies  

RF 
Benign Files 
(Linux), 

Ransomware  

Normalization, 

PCA, Imputation 

Hyperparameter tuning, 

Class balance handling 

Overfitting 

Unknown 

ransomware 
detection issues 

R. Bold et 
al. (2022) 

[21] 

API Call Frequency, 
Process ID, Function 

Count 

SVM, 
KNN, DT, 

RF, LR 

Crypto 

Ransom 
StandardScaler 

SMOTE for class 

balancing, RF for accuracy 

Overfitting, Limited 

ransomware families 

 

TABLE II.  COMPARISON OF RANSOMWARE DETECTION APPROACHES 

Authors/Year 
Approach 

Applied 

Re
al-
Time 

Low 
False 
Positives? 

Accuracy (%) 
F1-

Score 
Deployment Ready? 

J. E. Hill et al. (2024) 
[24] 

ML 
Ye

s 
Yes 95% — No 

B. Keyogeg et al. 
(2024) [25] 

ML No No 94.2% 
0.88

4 
No 

D. Gihavo et al. (2024) 
[26] 

ML (RL) 
Ye

s 
Yes 93.0.6% 0.94 Yes 

J. Kirkland et al. (2024) 
[27] 

ML No Yes 95.6% 
0.95

1 
No 

Y. C. Wu et al. (2024) 
[28] 

ML No Yes 94% 0.94 No 

R. Bold et al. 2022 [21] ML No Yes 95.9% 
0.96

2 
Yes 

III. HYBRID ENSEMBLE LEARNING BASED CYBER-PHYSICAL 

DEFENCE SYSTEMS 

In this section, we propose a hybrid ensemble learning model 
to enhance the accuracy of ransomware detection. This model 
makes use of weighted voting to combine RF and SVM 
classifiers, as well as another technique called stacking that uses 
SVM with XGBoost as base classifiers and logistic regression 
as a meta-classifier. This section consists of a proposed system 
overview and the flow of the proposed method. 

A. Proposed System Overview 

The proposed framework in fig. 1 presents a cybersecurity 
design for Cyber-Physical Systems (CPS) that targets servers in 

the cloud, IoT devices, & enterprise networks, effectively 
addressing significant cyber threats such as phishing, malware, 
threat actors, and zero-day exploits. The system also 
incorporates an extensive system threat monitoring and a  
reporting system that inspects system event logs of such 
platforms as Linux, Windows, and other operating systems and 
industrial control systems (ICS), network logs, and file 
operations. Data obtained is processed by feature extraction and 
preprocessing, detection of anomalies, feature selection, and 
normalization to enhance a better representation of threats. The 
ransomware attacks are classified using a hybrid model of 
classification depending on machine learning that incorporates 
the RF, SVM, & XGBoost and assessing the system 
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performance with the measures of precision, accuracy, and log-
loss. This methodology aims to enhance the cybersecurity 
resilience of CPS setups and improve their threat detection 
efficacy. 

Implementation Environment and details: The whole 
framework was built in Python 3.10, and the scikit-learn and 
TensorFlow libraries were used to build, train, and test the 
models. 100 estimators for random forest with max_depth = 10 
and a linear kernel function for SVM were used. The stacking 
meta-classifier used logistic regression with a penalty of "l2" 
and a C value of 0.1. As shown in Figure 2, weighted voting and 
stacking can be combined by first aggregating base classifiers 
(RF, SVM) before their values are input into the meta-classifier. 
Every block and arrow in the diagram corresponds to a single 
transformation step of the data, as stated in Section 3. We used 
an Intel Xeon E5-2680 v4 (2.4 GHz, 16 cores) system having 
128 GB of RAM and 1 NVIDIA RTX 3090 GPU to run 
experiments. The average time to train a model was about 90 
minutes for each cross-validation fold. 

B. Method Flow of Hybrid models 

1) Hybrid Model using a weighted voting mechanism: 
Given a classification problem with a dataset of n samples 

with associated labels. We aim to combine the predictions of two 
base classifiers, SVM and Random Forest, to produce a more 
accurate final prediction. This is done using a weighted voting 
mechanism. 

Methods Used as Foundational Models: SVM and RF 

1. Support Vector Machine (SVM): 

 One supervised learning technique that seeks to optimize the 
gap between two classes is SVM. The model is defined by the 
optimization problem using equation (1): 

𝑚𝑖𝑛
𝑤

1

2
 ||𝑤||2 + 𝐶 ∑ (є𝑖)𝑛

𝑖=1    𝑠. 𝑡.  𝑦𝑖(𝑤, 𝑥𝑖 + 𝑏) ≥ 1,

∀𝑖 = 1, 2, . . . 𝑛.                                                                              (1) 

where, 

 w is the weight vector normal to the decision boundary. 

 b is the bias term. 

 C is a regularization parameter > 0 

 є𝑖 is a slack variable for misclassification 

 𝑥𝑖 is the feature vector for the i-th sample. 

 𝑦𝑖  is the true label for the i-th sample, where 𝑦𝑖є {−1, 1}. 
 

SVM produces a decision boundary, and for a given test 

point 𝑥𝑗, it assigns a label ŷ𝑗
𝑆𝑉𝑀 based on the decision function 

as mentioned in equation (2): 

 

ŷ𝑗
𝑆𝑉𝑀 = 𝑠𝑖𝑔𝑛(𝑤 × 𝑥𝑗  +  𝑏)                 (2) 

Moreover, SVM can also provide probabilistic outputs 
(using Platt scaling) for each class, which are the probabilities 
mentioned in equation (3): 

 

𝑝𝑆𝑉𝑀(𝑦𝑗 = 1|𝑥𝑗), for class 1, and 

              𝑝𝑆𝑉𝑀(𝑦𝑗 = 0|𝑥𝑗) = 1 − 𝑝𝑆𝑉𝑀(𝑦𝑗 = 1|𝑥𝑗)        (3) 

2. Random Forest (RF): 

As a kind of ensemble learning, Random Forest employs a 
number of decision trees to carry out categorization tasks. In 
order to make a final prediction, all of the trees are trained using 
a different selection of features and samples. According to 
equation (4), let the predictions of the k-th tree for the test sample. 

𝑥𝑗  be symbolized by ŷ𝑗
𝑅𝐹(𝑘)

. The predicted label for Random 

Forest is the majority vote from all trees: 

           ŷ𝑗
𝑅𝐹 = 𝑚𝑜𝑑𝑒(ŷ𝑗

𝑅𝐹(1)
, ŷ𝑗

𝑅𝐹(2)
, . . . . . , ŷ𝑗

𝑅𝐹(𝑇)
).            (4) 

Where T is the total number of trees in the forest.  

Random Forest can also provide probabilities for each class 
by averaging the probabilities of all trees using equation (5). 
where, 

      𝑝𝑅𝐹(𝑦𝑗 = 1|𝑥𝑗) =
1

𝑇
∑ 𝑝𝑅𝐹(𝑘)(𝑦𝑗 = 1|𝑥𝑗)𝑇

𝑘=1              (5) 

and similarly for class 0. 

 

Weighted Voting Mechanism: The weighted voting process 

assigns a weight to each model's predictions according to their 

correctness on the validation data set. These weights reflect the 

relative confidence of each classifier in its predictions. 

Weights Calculation: The weight assigned to each classifier is 

proportional to its accuracy on the test set. Let the accuracy of 

SVM and RF on the test set be denoted by equations (6) and (7):  

 

             𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆𝑉𝑀 =
1

𝑛
∑ 𝕀(ŷ𝑗

𝑆𝑉𝑀 = 𝑦𝑗)𝑛
𝑖=1                  (6) 

             𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝐹 =
1

𝑛
∑ 𝕀(ŷ𝑗

𝑅𝐹 = 𝑦𝑗)𝑛
𝑖=1                       (7) 

Where 𝕀⊙ is the indicator function. 

The weight for 𝑆𝑉𝑀(𝑤𝑆𝑉𝑀) and 𝑅𝐹(𝑤𝑅𝐹)  Are calculated 
using equations (8) and (9) as follows: 

               𝑊𝑆𝑉𝑀 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆𝑉𝑀

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆𝑉𝑀+𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝐹
                         (8) 

               𝑊𝑅𝐹 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝐹

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆𝑉𝑀+𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝐹
                           (9) 

 
These weights ensure that the classifier with better 

performance on the test set contributes more to the final 
prediction. 

Weighted Probability Combination: The final prediction for 

each test sample 𝑥𝑗  It is computed by combining the 

probabilistic outputs of both models using their respective 

weights. By using Equation (3) and Equation (5), the weighted 

probabilities are calculated using Equation (10): 

          𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑠𝑗 = 𝑊𝑆𝑉𝑀 . 𝑝𝑆𝑉𝑀(𝑦𝑗 = 1|𝑥𝑗)   +

                                                   𝑊𝑅𝐹  . 𝑝𝑅𝐹(𝑦𝑗 = 1|𝑥𝑗)      (10) 

where,  

 𝑝𝑆𝑉𝑀(𝑦𝑗 = 1|𝑥𝑗)  is the probability that SVM assigns to 

class 1 for 𝑥𝑗.  
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 𝑝𝑅𝐹(𝑦𝑗 = 1|𝑥𝑗), the probability that RF assigns to class 

(𝑥𝑗). Likewise, the revised equation (10) of class 0 can be 

expressed as equation (11): 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑠𝑗
(0)

= 𝑊𝑆𝑉𝑀 . (1 − (𝑝𝑆𝑉𝑀(𝑦𝑗 = 𝑥𝑗))  +

 𝑊𝑅𝐹 . (1 − ( 𝑝𝑅𝐹(𝑦𝑗 = 1|𝑥𝑗))                                        (11) 

 

 
Fig. 2. Overview of Cyber Physical System (CPS) Environment. 

 

 
Fig. 3. Ransomware detection dataset with 8 features. 

 

 
Fig. 4. Ransomware detection dataset with another 8 features.

 

Equation (12) shows the final prediction for the test sample. 
𝑥𝑗 . is made by selecting the class with the highest weighted 

probability using equations (10) and (11) as follows: 

ŷ𝑗
𝑓𝑖𝑛𝑎𝑙

= 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑠𝑗 , 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑠𝑗
(0)

)          

      (12)  

LR-based Hybrid Model with Stacking Classifier: This is 
a hybrid model that works well in combining several classifiers 
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to enhance predictive accuracy and strong classification. With 
the help of both ensemble and linear classifiers, it proves to be a 
complicated method of solving complex machine learning 
issues, which is why it can be applied in different circumstances, 
such as in cybersecurity and ransomware detection, as implied 
by the circumstances of the dataset employed. 

Base Classifiers: 

1) XGBoost Classifier: XGBoost (Extreme Gradient 

Boosting) is a strong ensemble approach to learning that 

employs the gradient boosting techniques. It is specifically 

efficient with structured data and is efficient when dealing with 

a high-dimensional data set. 

2) SVM_Classifier: This is an extension of the SVM 

algorithm [29], which does the same but in the feature space, 

i.e., in the space of features. A linear kernel is employed in this 

case, and it applies to linearly separable data. 

Meta-Classifier: 

1) LR: Logistic regression is the last estimator, where the 

predictions of the base classifier are used to arrive at the final 

prediction. It is an effortless but efficient technique of binary 

classification. 

Stacking Mechanism: 
The Stacking Classifier is a combination of the XGBoost and 

SVM predictions. During training, it learns how to put these 
predictions together in the best way possible to get the most 
accurate results. We use cross-validation (CV=5) to ensure that 
the predictive algorithm can be generalized well by testing how 
well it works with other, different parts of the training data. 
Stacking classifiers proficiently aims to improve accuracy by 
using a wide range of base models, optimizing predictions 
through meta-learning, and employing cross-validation. This 
method is stronger and less prone to overfitting because it uses 
the learning of several classifiers. This kind of ensemble strategy 
is very helpful for complex classification problems where one 
model can't handle all the details of the data. 

A StackingClassifier that uses both XGBClassifier and 
SVM_Classifier has a number of advantages that make the 
model work better. The blended approach utilizes the best of 
both algorithms. XGBClassifier is good at finding intricate 
patterns and interactions in data because of its gradient boosting 
structure, which makes it resistant to overfitting. 
SVM_Classifier is good at setting up robust classification 
constraints in highly dimensional environments, especially 
when the data can be separated linearly. Such heterogeneity 
gives the stacking model the advantage of the various learning 
strategies, enhancing the generalization to unknown data. Also, 
the meta-classifier may be trained to correct the mistakes of the 
base classifiers, which again increases the accuracy by repairing 
the mistakes. Cross-validation is used in the training so that the 
model is tuned and the likelihood of overfitting is reduced, 
thereby resulting in a more reliable and accurate predictive 
model in general. 

Mathematical Model for Stacking Classifier Using XGBoost, 

SVM, and Logistic Regression: Suppose a set of data labelled 

by equation (13): 

                                  𝐷 = (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑛                                (13) 

where each 𝑥𝑖є𝑅𝑑  represents a feature vector and 𝑦𝑖  ∈ {0, 
1} denotes the binary class label. Our target is to build a 
classification model f(x) that guesses the label. ŷ for a new, 
unseen sample x by merging the predictions of multiple base 
models via a meta-classifier. 

In the first step, we create a base model using XGBoost and 
SVM. XGBoost is a tree-based boosting technique that builds a 
sequence of DTs, where each tree adjusts errors made by the 
previous trees. For a given feature vector 𝑥𝑖, the output of the 
XGBoost model is the probability of the positive class 
mentioned in equation (14): 

     𝑝𝑋𝐺𝐵(𝑦 = 1|𝑥𝑖) = 𝜎(∑ 𝑓𝑘(𝑥𝑖)𝑇
𝑘=1 )                        (14) 

where 𝑓𝑘(𝑥𝑖) is the output of the k-th DTree. 

T is the total quantity of trees and 𝜎(𝑧) is defined as: 𝜎(𝑧) =
1

1+𝑒−𝑧. 

           ŷ𝑖
𝑋𝐺𝐵 = { 

1,        𝑝𝑋𝐺𝐵(𝑦 = 1|𝑥𝑖) > 0.5,
0,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  

 

SVM identifies a hyperplane in the space of features that 
optimizes the margin between the two categories. For a linear 
kernel, using Equation (2), the decision function is: 

 

      ℎ𝑆𝑉𝑀(𝑥𝑖) = 𝑊 . 𝑥𝑖 + 𝑏       

where w is the weight vector, and b is the bias term. The 
probabilistic output of the SVM model is computed using Platt 
scaling as mentioned in equation (15):     

               𝑝𝑆𝑉𝑀(𝑦 = 1|𝑥𝑖) =
1

1+𝑒−ℎ𝑆𝑉𝑀(𝑥𝑖)
                    (15) 

The predicted label for SVM is mentioned using equation (16): 

              ŷ𝑖
𝑆𝑉𝑀 = { 

1,           ℎ𝑆𝑉𝑀(𝑥𝑖) > 0,
0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (16) 

In the second step, stacking combines the predictions from 
base models using a meta-classifier. In our case, we use logistic 
regression as the meta-classifier. The base models (XGBoost 
and SVM) are first trained on the training data. (𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛). 
For each sample 𝑥𝑖  in the dataset, using Equations (14) and (15), 
the base models generate predictions in the form of probabilities 
as per Equation (17): 

                    𝑃𝑏𝑎𝑠𝑒(𝑥𝑖) =  
𝑝𝑋𝐺𝐵(𝑦 = 1|𝑥𝑖)

 𝑝𝑆𝑉𝑀(𝑦 = 1|𝑥𝑖)
                   (17) 

Thus, by using equation (18), the transformed dataset for the 
meta-classifier is:  

                         𝑍 = {(𝑃𝑏𝑎𝑠𝑒(𝑥𝑖), 𝑦𝑖)}𝑖=1
𝑁                          (18) 

In the third step, the meta-classifier takes the output 
probabilities 𝑷𝒃𝒂𝒔𝒆(𝑥𝑖) as input features and learns to predict 
the final class label 𝑦𝑖  LR models the probability of the positive 
class mentioned in equation (19) as: 
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𝑝𝑀𝑒𝑡𝑎(𝑦 = 1|𝑃𝑏𝑎𝑠𝑒(𝑥𝑖)) = 𝜎(𝑤𝑚𝑒𝑡𝑎. 𝑃𝑏𝑎𝑠𝑒(𝑥𝑖) +
 𝑏𝑚𝑒𝑡𝑎)                                                                           (19) 

The final predicted label is calculated using Equation (20) as: 

    ŷ𝑖
𝑓𝑖𝑛𝑎𝑙

= { 
1,          𝑝𝑀𝑒𝑡𝑎(𝑦 = 1|𝑃𝑏𝑎𝑠𝑒(𝑥𝑖)) > 0.5,
 0,                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      

           (20) 

IV. PERFORMANCE & EVALUATION 

This section consists of an overview of the dataset, and 
standard assessment criteria such as accuracy, precision, recall, 
and the F1 score help to evaluate the integrated model. The next 
section consists of the mathematical analysis of both hybrid 
models. The weighted voting system guarantees that more 
accurate classifiers help provide the final forecast. The 
efficiency of the fusion technique is validated by a comparison 
of individual model performance (SVM and RF) to the weighted 
model. To guarantee objective performance measurement, the 
evaluation is carried out on another test set. 

A. Dataset Used 

The Kaggle ransomware detection dataset 
(https://www.kaggle.com/datasets/amdj3dax/ransomware-
detection-data-set) records process actions, file modifications, 
and network activity. Labelled examples of natural and 
ransomware-infected behavior make it suitable for training 
classification models. The dataset may contain numerical and 
categorical system status and event information, which has been 
mentioned in Figures 3 and 4. Machine learning can detect 
ransomware patterns due to these qualities. It aids supervised 
learning tasks, including identifying anomalies, real-time risk 
tracking, and binary classification.  

The .csv file contains 62,485 files in various formats. The 
dataset is licensed under CC0/Public Domain. Version used: v1, 
accessed March 2025. This dataset has 18 features and values 
for ransomware-infected and uninfected files. Median filling 
was used to fill in missing values, one-hot encoding was used 
for categorical variables, and MinMax normalization was used 
for all features. The dataset was split into two parts, with 70% 
for training and 30% for testing. To keep the class balance, 
stratified sampling was used. 

The performance of the hybrid model is evaluated using 
accuracy, the confusion matrix, the classification report, and 
cross-validation. Accuracy is calculated by using equation (21) 
as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
               (21) 

 

The confusion matrix delivers a thorough breakdown of 
classification errors. The classification report comprises 
precision, recall, and F1-score for each class. Equation (22) 
shows that the CV is used to assess the generalization 
performance of the hybrid model: 

 𝐶𝑉 𝑆𝑐𝑜𝑟𝑒 =
1

𝑘
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖

𝑘
𝑖=1                      (22) 

where k is the number of folds in cross-validation. 

The suggested methodology is a mixture of the opinions of 
two underlying classifiers, that is, the SVM and the RF, with the 
help of a weighted voting system to improve the classification 
accuracy.        

SVM builds a hyperplane to maximize the distance between 
the classes, which gives probabilistic results through Platt 
scaling, whereas RF combines the outcomes of multiple DTs 
and adds up the probability of each decision tree class. Each of 
the two classifiers, WSVM and WRF, is weighted according to its 
accuracy on the validation set so that the classifier that is more 
accurate will have a greater contribution to the final prediction. 
The probabilities of each class are calculated using the weighted 
average of the probabilistic outputs by SVM and RF using their 
respective weights as in Equations (10) and (11). The overall 
prediction of individual test samples is obtained by choosing the 
class having the highest weighted probability, as given in 
Equation (12). The performance of the hybrid model is 
estimated using accuracy, confusion matrix, classification 
report, and cross-validation; accuracy is calculated using 
Equation (21), and the cross-validation score is derived from 
Equation (22). This method uses the best parts of both classifiers 
to make them more robust and better at making predictions. 

B. Statistical Analysis 

The suggested hybrid weighted voting model, which uses the 
SVM and RF classifiers, can classify the test data with an 
accuracy of 89.1 percent. This demonstrates how machine 
learning algorithms, when paired and thus complementing each 
other, can be used to achieve greater reliability in prediction and 
to minimize classification errors vis-à-vis an individual model. 

The various classifiers were combined using the weighted 
voting approach in which the weights assigned were 
proportional to the accuracies attained by each base classifier on 
a validation dataset. More specifically, the weight assigned to 
SVM was 0.477, whereas that assigned to RF was 0.523. The 
slight advantage that RF held in validation justifies such a 
weighting scheme that gave precedence to the model that was 
more predictive individually when making the final decision. 

The outcome shown in Figure 5 confusion matrix, provides 
further classification behavior of the models. From all test 
instances, the hybrid model was able to correctly label 919 cases 
belonging to class 0 and 863 cases belonging to class 1. Some 
misclassifications were encountered: 113 false positives 
(instances wrongly associated with class 1) and 105 false 
negatives (instances wrongly associated with class 0). Despite 
these errors, given that there were roughly equal 
misclassification cases from each class, one could infer that the 
model still retained good discrimination power, without leaning 
bias toward either of the classes. Such results highlight that 
while the decision boundaries of an SVM and the robustness of 
a random forest are somewhat complementary, weighing their 
votes appropriately actually improves generalization and thus 
presents an attractive option for the classification of data sets 
with similar attributes. 

The prediction shows that the model does a good job of 
classifying both classes, which means it is equally good at 
recognizing class 0 and class 1. The classification report backs 
up this idea by showing that both classes have an average 

https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-data-set
https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-data-set
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precision, recall, and F1 score of about 0.89. If all of these 
measures are the same, it means that the model is just as accurate 
as it can be and that there is the best balance between precision 
(which mostly reduces false positives) and recall (which mostly 
reduces false negatives). 

Along with this, both the macro average and weighted mean 
of the precision, recall, and F1-score overlap at 0.89. Using the 
macro average, the calculations are done for all the classes, 
although one might be underrepresented. This makes us believe 
that the performance of this algorithm is actually balanced 
across all the classes. 

 
Fig. 5. Confusion Matrix for the Weighted Voting Model. 

It is only after considering weighted averages, which correct 
the percentage of each class in a set, that further confirms the 
validity of this assumption that this attribute is the actual benefit 
of the algorithm and not because all of the classes are on equal 
footing as far as size is concerned. 

Results of research taken into account in this study, 
therefore, highlight the internal consistency and robustness of 
the model, besides its ability to survive changes in the 
distribution due to imbalance of classes, so that it is able to 
predict results with reliability across different ranges of data 
distributions. The hybrid model is a mixture of more than two 
base learners on a stacked classifier structure and achieves a 
testing accuracy of 90.7, thus scoring a satisfactory separation 
of the two classes. It demonstrates that the hybrid framework 
may outperform the single base learner models by stacking 
different base learners. 

The confusion matrix (Fig. 6) is very informative about the 
decision-taking behavior of the model. On the total count of test 
cases of the model, it correctly identified 1,364 cases of class 0 
and 1,356 cases of class 1. The false predictors were 180 false 
alarms (false positives: class 1 was predicted when it should 
have been class 0) and 100 false negatives (false negatives: class 
0 was selected when it should have been class 1). The above 
results indicate a nearly equalized classification with a minor 
difference favouring recall (0.93 versus 0.88 in class 0); 
therefore, the model is somewhat more prone to capturing class 
1 cases and thus less prone to falsely dismissing positive cases. 

It is another artificial reinforcement of the classification 
report that shows the same picture of the balanced performance 
with approximately 0.91 precision, recall, and F1-score 
indicators of each classification. Precision states that the model 
has a low false-positive rate, whereas recall states that the model 
is proficient in identifying true positives most of the time. The 
F1-score, emphasizing the harmonic mean of precision and 
recall, suggests that the model is observed to have the most 
balanced performance between recall and precision for both 
classes. 

 

Fig. 6. Confusion Matrix for the Stacking Classifier Model. 

The mean of the weighted and macro precision, recall, and 
the F1-score are also all equal to 0.91. The macro average, where 
the two classes receive equal treatment, proves that the 
performance is homogeneous between the classes, whereas the 
weighted average proves that it is not more effective in a 
particular class due to the distribution of classes. This overlap of 
value validates the power of the model, the uniformity of the 
model, and its stability when applied to datasets of varying or 
even potentially uneven distribution of classes. Combined, these 
results demonstrate that the stacking-based hybrid strategy 
possesses sufficient global accuracy and provides a stable and 
fair performance across classes, thereby making it a readily 
available tool for classification issues demanding balanced 
detection of both classes. 

In addition to supplementary metrics, and visualization 
methods were used to give a strict evaluation of how well the 
first designed hybrid ensemble worked. This ensemble was 
made up of a hybrid SVM and RF system that used weights to 
get a voting process. The analysis is thorough and shows that the 
model is reliable and can make predictions. 

The WVC in Figure 7 indicates that all of the recall scores 
have the same high precision. This is because the range of values 
is so wide that the average precision (AP) is 0.95. It implies that 
the model would have a great balance between sensitivity 
(recall) and the power to prevent false positives (precision) even 
in those situations when the recall is maximized. The high 
precision coupled with large recall rates is especially suitable in 
the case of ransomware detection in cyber-physical systems, 
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where the monetary cost of missing a positive (attack) remote 
and that of a false alarm are of equal value. 

 
Fig. 7. Precision-Recall (PR) Curve for Weighted Voting Classifier Model. 

The weighted voting ensemble exhibits an evident pattern of 
convergence with the increasing size of the training set, as 
shown in Figure 8. Validation performance stays more or less 
constant, with a value of about 90 percent, and variance 
decreases with the inclusion of more data. Though training 
accuracy is more than acceptable (roughly 98 percent), there is 
a discrepancy between the training and validation curves that 
seems to indicate either a certain complexity to the model or 
perhaps even noise in the data itself, although not to a great 
degree of overfitting. This finding helps to indicate the integrity 
of the ensemble framework, which implies that, in case enough 
data is available, the model tends to generalize effectively, as it 
is also confirmed by the cross-validation accuracy rates 
mentioned in the paper (Table IV).  

 
Fig. 8. Learning Curve for Weighted Voting Classifier Model. 

In Figure 9, an area under the curve of 0.955 shows good 
discriminative power between the ransomware samples and the 
benign samples. The curve quickly goes near the upper left 
corner, affirming that the model gives high TPRs at extremely 
low FPRs. This trait goes especially well in CPS defences, 
where it is highly necessary to identify the threat quickly and 
with zero errors. The large and regular AUC confirms the 

validity of combining SVM and RF decisions by employing an 
ensemble vote. 

 
Fig. 9. ROC curve for Weighted Voting Classifier Model. 

XGBoost log probabilistic calibration in training and log loss 
(cross-entropy) was plotted on an iteration basis (Figure 10). 
First, the training and test log loss converge steeply, meaning 
effective learning. As it progresses through iterations, the test set 
log loss stabilizes, then rises a little, and training log loss keeps 
diminishing, which indicates that the test set log loss is ready to 
overfit if it is not in check. Nevertheless, the controlled gap and 
the small minimum test loss confirm the fact that the probability 
estimates provided by this model are well-calibrated and stable 
in terms of decision-making, as is also stressed in the conclusion 
of the manuscript. 

 
Fig. 10. Log loss graph for WVC Model. 

The validation curve given in Figure 11 explains the perfect 
interaction between the density of the estimators in the XGBoost 
element and the performance of the models in our first hybrid 
ensemble (Weighted Voting Classifier). When the number of 
estimators is large, training accuracy approaches 100% almost 
immediately, indicating substantial ability to fit the training data, 
but the validation accuracy reaches a maximum of about 91% 
and does not improve by itself even when the model complexity 
is further increased. When you have too many estimators, the 
variation between training and validation efficiency can get 
bigger. This shows how dangerous overfitting can be. XGBoost 
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becomes too responsive to the training sample and not sensitive 
enough to the new samples you've never seen before. 

This decision estimate is important because it helps us 
explain why we chose an ensemble design that uses a moderate 
number of estimators (like 100) to find a balance between model 
expressiveness and generalization. The high validation accuracy 
of XGBoost as a base learner shows that it is stable, and the high 
levels of overfitting with more estimators show how important 
it is for the individual components of the ensemble to be 
different from each other. This also shows how important it is to 
carefully choose hyperparameters to get the optimal outcomes 
in hybrid performance. Finally, this diagnostic not only justifies 
the parameter tuning that we have embraced in this paper in our 
weighted voting scheme but also supports the satisfactory 
generalization and robustness that is evident in our 
recommended ransomware detection system. To define its 
discriminative capability, learning behaviour, and generalization 
capacity, the stacking hybrid model that uses XGBoost and 
SVM as base learners and logistic regression as a meta-classifier 
was thoroughly investigated to define its properties of 
classification capability. 

 
Fig. 11. XGBoost Validation Curve for Weighted Voting Model. 

The data of the stacking ensemble learning curve presented 
in Figure 12 displays that the training and validation accuracy of 
the algorithm improved on larger set sizes of training data. 
Training accuracy is extremely high, around 100 percent, 
irrespective of the size of the training, and it indicates that the 
ensemble fits the data. More importantly, the validation 
accuracy shows a consistent increase as the training set size 
increases, starting at around 90 percent and exceeding 91 
percent for larger datasets. This small yet steady matchup of the 
training and the validation removes the doubt of the high 
generalization capacity of the model, and thus, there is limited 
overfitting. The model's insensitivity to the number of samples 
indicates the robustness of the specific ensemble and its ability 
to leverage the strengths of two different classifiers: XGBoost, 
which excels at capturing highly nonlinear intricate patterns, and 
SVM, which performs well in high-dimensional feature spaces. 
Additionally, these findings align with the cross-validation score 
presented in Table IV of the manuscript, which shows a 
competitive CV accuracy of 93.00 percent for the stacking 
model, consistent with the best individual classifiers used. 

    Figure 13 presents the ROC curve, which further supports 
the performance of the stacking hybrid. The ROC curve is 

steeply rising to the graph’s upper left corner, which indicates 
high positive rates of true despite the low positive rates of 
false. As the figure is labelled, the AUC is 0.96. The value of 
this AUC demonstrates the strong ability provided by the 
ensemble to differentiate between ransomware and non-
malicious instances at both ends of the range of classifications. 
An AUC of 1 equates to an excellent risk discrimination that 
is crucial in the practical application of CPS in the real world, 
where detection of missed ransomware (false negative) and 
unwarranted alerting (false positive) is of the essence. 

 
Fig. 12. Learning Curve Analysis for Stacking Classifier Model. 

 
Fig. 13. ROC Curve Analysis for Stacking Classifier Model. 

The evidence that the stacking ensemble provides a better 
trade-off of accuracy, discrimination, and generalization is 
indicated by the combination of all evidence presented by the 
learning and ROC curves. The high validation accuracies and 
AUC provide empirical support for this hypothesis, justify the 
inclusion of meta-learning in this two-step methodology, and 
enable the model to integrate detailed decision boundaries 
between the two base methods. The excellence in this empirical 
study is also realized in accuracy, recall, and F1-scores since 
they all register an excess of 91% using the weighted voting 
combination and classifier after being evaluated in Table III. 

TABLE III.  PERFORMANCE METRICS FOR HYBRID MODELS 

Model Precision   Recall F1-Score 

Weighted Voting using 
SVM and RF 

89.15 89.06 89.10 
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Hybrid Model Using 

Stacking Classifier 

91.04 91.04 91.04 

SVM Model 83.50 83.37 83.43 

 

TABLE IV.  COMPARISON OF CV-SCORE OF VARIOUS MODELS 
 

Model CV Accuracy (%) 

SVM Model 89.95 

Random Forest Model 93.15 

Weighted Voting (SVM & RF) 87.20 

Stacking Classifier Model  93.00 

 

 Cross-validation results highlight the robustness of the 
individual models and the hybrid approach. SVM achieved 
cross-validation scores ranging from 0.8195 to 0.8495, while RF 
outperformed with scores between 0.904 and 0.9315. The 
weighted voting model achieved a cross-validation score of 
0.872, indicating strong generalization capabilities, as shown in 
the Figure. 14. Additionally, the log loss metric, which measures 
the confidence of probabilistic predictions, further validates the 
hybrid model’s superiority. As mentioned in Fig. 15, the log loss 
for the weighted voting model (0.277) was lower than both SVM 
(0.401) and RF (0.292), suggesting that the combined approach 
improves accuracy as well as prediction confidence. 

Taken collectively, these findings confirm the superiority of 
the hybrid weighted voting method for both accurate and 
confident prediction. The synergy of solid cross-validation 
performance and log loss minimization underscores its 
plausibility in real-world applications, where both accuracy and 
confidence in predictions are paramount. Similarly, the cross-
validation results also confirm the stability and generalization 
ability of the Stacking Classifier model. The scores of the cross-
validation were 0.901 to 0.93 with a mean score of 0.911, which 
is not only a high overall performance but also extremely high 
stability across the one-fold of the dataset. Such stability is a 
clear indication of the dependability of the model, particularly 
in the real world, where the level of generalization of the data 
that has never been seen before is a very crucial criterion. 

 
Fig. 14. Model accuracy comparison. 

 

 
Fig. 15. Model’s Log loss comparison. 

These findings show that the stacking-based hybrid model is 
more accurate in classification as compared to other hybrid 
classifier models, such as the weighted voting model that 
combines SVM and RF. The improved performance of the 
stacking classifier is due to the fact that it can exploit meta-
learning; that is, it can aggregate the decision paths of multiple 
base learners to describe nonlinear relationships and diverse 
interactions of features to make the final prediction even more 
accurate. 

To benchmark clearly, our comparison centred on 
classification accuracy, as this remains one of the most 
commonly used and intuitive measures in assessing the 
performance of ML models. Even though precision, recall, F1-
score, and log loss offer a nuanced view, accuracy lends itself to 
simple use and easy interpretation for benchmark comparisons, 
especially when aligning results with previously published 
work. 

When tested on a typical ICS gateway CPU (Intel Atom 
x6413E, 4 cores, 8GB RAM), Random Forest had the lowest 
inference latency (2ms median, 4ms p95) and the highest 
throughput (450 events/s), using a moderate amount of CPU and 
RAM. SVM and Stacking have greater delay rates (p50 up to 
10ms for stacking), lesser throughputs, and much higher 
resource usage, especially stacking (67% CPU, 950MB RAM). 
Voting ensembles strike a balance: they have a bit more latency 
and throughput than RF, but their CPU and RAM needs are 
moderate. The chart in Figure 16 shows a visual comparison of 
these results. 
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Fig. 16. Model performance comparison. 

Table V provides the proposed stacking classifier's 
classification accuracy, together with that of previous ML-based 
predictive models published in the literature. The results clearly 
indicate that the stacking method works well compared with 
other methods that have been published, which further proves 
that it can be used as a cutting-edge solution for similar 
predictive modelling problems. 

TABLE V.  ACCURACY COMPARISON WITH VARIOUS PREDICTIVE 

MODELS 

RESEARCH TYPES OF MODELS USED ACCURACY 

(%) 

TARIQ AHAMED AHANGER, 
ET AL, 2023 [30] 

XGBOOST, ELASTIC NET IN A 

HYBRID APPROACH 
90% 

MRS. SATHYA T, ET AL, 2023 

[31] 
XGBOOST CLASSIFIER 91.33% 

HYBRID MODEL 1 WEIGHTED VOTING USING SVM 

AND RF 
87.20% 

HYBRID MODEL 2 HYBRID MODEL USING STACKING 

CLASSIFIER 
93.00% 

 

The findings support the idea that the proposed dual-layer 
hybrid ensemble strategy is more effective than single-model 
and simple ensemble strategies for CPS ransomware detection, 
delivering high accuracy and lower false-positive rates under 
realistic test conditions. Nevertheless, some limitations are also 
noted. The framework's computational complexity can be an 
obstacle to fast implementation on resource-limited CPS nodes, 
and additional testing on more varied datasets will be required 
to ensure efficient generalisation. In practice, the model can be 
integrated into CPS infrastructure, enabling early response to 
threats and securing important operations. However, smooth 
interoperability with existing CPS devices may require specific 

middleware. These results highlight the potential and the 
limitations that still exist in hybrid ensemble strategies for 
promoting CPS cybersecurity. 

V. CONCLUSION 

The hybrid weighted voting model is a way to use the best 
ideas from SVM and RF together. It can make models much 
more reliable and better at classifying things. The model makes 
sure that each classifier participates equally by giving the best 
weights to each classifier's predictions. This is possible because 
SVM operates with high-dimensional data, while RF can avoid 
overfitting. The synergy that comes from this makes the 
classification system more flexible and broad, which lowers the 
rates of misclassification across many datasets. Also, the model 
has a lower log loss, which signifies that the estimates of 
probability are very accurate and can be used to make decisions 
in serious situations. The weighted voting method can always be 
changed to fit the needs of the datasets, which makes it work 
better in many different situations. On the other hand, when used 
separately, each of the classifiers may have trouble with certain 
data issues, which makes the errors worse. The Stacking 
Classifier system also improves prediction accuracy by stacking 
several base models with the help of a meta-learner, which is 
good for ensemble learning. It has high accuracy, sustained 
balanced precision and recall, and strong cross-validation 
consistency, which demonstrate its strength. It is also reliable 
due to the low FPR and FNRs, particularly when the use is high-
stakes, and the cost of misclassification is high. The high F1-
scores report on the ability of this model to maintain an optimal 
stability between precision and recall, and thus it is applicable in 
the real world when it is required to make precise predictions. 
Future directions will involve streamlining the model efficiency 
of resource-constrained CPS nodes, the integration of adaptive 
middleware to support the easy deployment of the model, and 
unsupervised learning to deal with new ransomware types. 
These guidelines will make the framework more practical and 
resilient to protect the CPS infrastructure more safely. 

CONFLICT OF INTEREST 

The authors have declared that they are not involved in any 
conflicts of interest. 

DATA AVAILABILITY 

Data will be disclosed with reasonable demand on the part of the 
corresponding author. 

ACKNOWLEDGEMENT 

The authors are profoundly grateful to the editorial team, as well 
as to the anonymous reviewers of the Journal of Applied Science 
and Technology Trends, who provided their valuable feedback 
that has greatly contributed to the quality of this manuscript. 
Another important feature the authors recognize is the free-of-
charge ransomware datasets and community-based research 
materials that allowed them to provide the experiment with 
validation. This research was not externally funded. 

REFERENCES 

[1] S. Gupta, S. Hazra, S. Hazra, S. Gayen, S. Mukherjee, and A. Naskar, 
“Mathematical models of heterogeneous machine learning techniques for 
ransomware protection in cyber-physical systems,” in 2024 IEEE 



Suthar et al. / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 26 –40 (2026) 

 

40 

International Conference on Communication, Computing and Signal 
Processing (IICCCS), pp. 1–5, IEEE, 2024, 
DOI: 10.1109/IICCCS61609.2024.10763581. 

[2] C. R. Kishore and H. Behera, “Malware attack detection in vehicle cyber 
physical system for planning and control using deep learning,” in 
Machine Learning for Cyber Physical System: Advances and Challenges, 
pp. 167–193, Springer, 2024, https://doi.org/10.1007/978-3-031-54038-
7_6. 

[3] M. U. Rana, M. A. Shah, M. A. Al-Naeem and C. Maple, "Ransomware 
Attacks in Cyber-Physical Systems: Countermeasure of Attack Vectors 
Through Automated Web Defences," in IEEE Access, vol. 12, pp. 
149722-149739, 2024, DOI: 10.1109/ACCESS.2024.3477631. 

[4] J. BOODAI, A. ALQAHTANI, and K. RIAD, “Deep learning for 
malware detection: Literature review,” Journal of Theoretical and 
Applied Information Technology, vol. 102, no. 4, pp. 1715-1739, 2024, 
https://www.jatit.org/volumes/Vol102No4/34Vol102No4.pdf. 

[5] R. O. Ogundokun, J. B. Awotunde, S. Misra, O. C. Abikoye, and O. 
Folarin, “Application of machine learning for ransomware detection in 
IoT devices,” in Artificial intelligence for cyber security: methods, issues 
and possible horizons or opportunities, pp. 393–420, Springer, 2021, 
https://doi.org/10.1007/978-3-030-72236-4_16. 

[6] N. Rani, S. V. Dhavale, A. Singh, and A. Mehra, “A survey on machine 
learning-based ransomware detection,” in Proceedings of the Seventh 
International Conference on Mathematics and Computing: ICMC 2021, 
pp. 171–186, Springer, 2022, https://doi.org/10.1007/978-981-16-6890-
6_13. 

[7] G. O. Ganfure, C. -F. Wu, Y. -H. Chang and W. -K. Shih, "RTrap: 
Trapping and Containing Ransomware With Machine Learning," in IEEE 
Transactions on Information Forensics and Security, vol. 18, pp. 1433-
1448, 2023, DOI: 10.1109/TIFS.2023.3240025. 

[8] N. Z. Gorment, A. Selamat, L. K. Cheng and O. Krejcar, "Machine 
Learning Algorithm for Malware Detection: Taxonomy, Current 
Challenges, and Future Directions," in IEEE Access, vol. 11, pp. 141045-
141089, 2023, DOI: 10.1109/ACCESS.2023.325697. 

[9] S. Gulmez, A. G. Kakisim and I. Sogukpinar, "Analysis of the Dynamic 
Features on Ransomware Detection Using Deep Learning-based 
Methods," 2023 11th International Symposium on Digital Forensics and 
Security (ISDFS), Chattanooga, TN, USA, 2023, pp. 1-6, DOI: 
10.1109/ISDFS58141.2023.10131862. 

[10] S. Aurangzeb, H. Anwar, M. A. Naeem, and M. Aleem, “Bigrceml: big-
data based ransomware classification using ensemble machine learning,” 
Cluster Computing, vol. 25, no. 5, pp. 3405–3422, 2022, 
https://doi.org/10.1007/s10586-022-03569-4. 

[11] B. Urooj, M. A. Shah, C. Maple, M. K. Abbasi and S. Riasat, "Malware 
Detection: A Framework for Reverse Engineered Android Applications 
Through Machine Learning Algorithms," in IEEE Access, vol. 10, pp. 
89031-89050, 2022, DOI: 10.1109/ACCESS.2022.3149053. 

[12] J. Ispahany, M. R. Islam, M. Z. Islam and M. A. Khan, "Ransomware 
Detection Using Machine Learning: A Review, Research Limitations and 
Future Directions," in IEEE Access, vol. 12, pp. 68785-68813, 2024, DOI: 
10.1109/ACCESS.2024.3397921. 

[13] M. A. Mohammed, A. Lakhan, D. A. Zebari, M. K. Abd Ghani, H. A. 
Marhoon, K. H. Abdulkareem, J. Nedoma, and R. Martinek, “Securing 
healthcare data in industrial cyber-physical systems using combining 
deep learning and blockchain technology,” Engineering Applications of 
Artificial Intelligence, vol. 129, p. 107612, 2024, 
https://doi.org/10.1016/j.engappai.2023.107612. 

[14] G. Li, S. Wang, Y. Chen, J. Zhou, and Q. Zhao, “A hybrid framework for 
ransomware detection using deep learning and Monte Carlo tree search,” 
OSF Preprints,  2024, https://doi.org/10.31219/osf.io/cjyvb. 

[15] S. Venne, T. Clarkson, E. Bennett, G. Fischer, O. Bakker, and R. 
Callaghan, “Automated ransomware detection using pattern-entropy 
segmentation analysis: A novel approach to network security,” Authorea 
Preprints, 2024, DOI: 10.22541/au 172962050.05868176/v1. 

[16] S. Wasoye, M. Stevens, C. Morgan, D. Hughes, and J. Walker, “Ran- 
somware classification using BTLS algorithm and machine learning 
approaches,” 2024, https://doi.org/10.21203/rs.3.rs-5131919/v1. 

[17] J. Chen and G. Zhang, “Detecting stealthy ransomware in IPFS networks 
using machine learning,” 2024, https://doi.org/10.31219/osf.io/38ex9. 

[18] S. Panja, S. Mondal, A. Nag, J. Prakash Singh, M. Jyoti Saikia and A. 
Kumar Barman, "An Efficient Malware Detection Approach Based on 
Machine Learning Feature Influence Techniques for Resource-
Constrained Devices," in IEEE Access, vol. 13, pp. 12647-12665, 2025, 
DOI: 10.1109/ACCESS.2025.3526878. 

[19] J. A. Herrera-Silva and M. Herna´ndez-A´ lvarez, “Dynamic feature 
dataset for ransomware detection using machine learning algorithms,” 
Sensors, vol. 23, no. 3, p. 1053, 2023,  
https://doi.org/10.3390/s23031053. 

[20] A. Alraizza and A. Algarni, “Ransomware detection using machine 
learning: A survey,” Big Data and Cognitive Computing, vol. 7, no. 3, p. 
143, 2023, https://doi.org/10.3390/bdcc7030143. 

[21] R. Bold, H. Al-Khateeb, and N. Ersotelos, “Reducing false negatives in 
ransomware detection: a critical evaluation of machine learning 
algorithms,” Applied Sciences, vol. 12, no. 24, p. 12941, 2022, 
DOI:10.3390/app122412941. 

[22] M. Masum, M. J. Hossain Faruk, H. Shahriar, K. Qian, D. Lo and M. I. 
Adnan, "Ransomware Classification and Detection With Machine 
Learning Algorithms," 2022 IEEE 12th Annual Computing and 
Communication Workshop and Conference (CCWC), Las Vegas, NV, 
USA, 2022, pp. 0316-0322, DOI: 10.1109/CCWC54503.2022.9720869. 

[23] D. Smith, S. Khorsandroo and K. Roy, "Machine Learning Algorithms 
and Frameworks in Ransomware Detection," in IEEE Access, vol. 10, pp. 
117597-117610, 2022, DOI: 10.1109/ACCESS.2022.3218779. 

[24] J. E. Hill, T. Owens Walker, J. A. Blanco, R. W. Ives, R. Rakvic and B. 
Jacob, "Ransomware Classification Using Hardware Performance 
Counters on a Non-Virtualized System," in IEEE Access, vol. 12, pp. 
63865-63884, 2024, DOI: 10.1109/ACCESS.2024.3395491. 

[25] B. Keyogeg, M. Thompson, G. Dawson, D. Wagner, G. Johnson, and B. 
Elliott, “Automated detection of ransomware in Windows Active 
Directory Domain Services using log analysis and machine learning,” 
Authorea Preprints, 2024, 
https://d197for5662m48.cloudfront.net/documents/publicationstatus/225
955/preprint_pdf/1ca9bb504df1c0d1d47524910f563602.pdf. 

[26] D. Gihavo, O. Ivanovich, A. Harrison, L. Merritt, and V. Schneider, 
“Automated file trap selection using machine learning for early detection 
of ransomware attacks,” Authorea Preprints, 2024, 
DOI: 10.36227/techrxiv 172840476.68122495/v1. 

[27] J. Kirkland, R. Stoddard, B. Antonov, N. Dragomirov, and A. Belmonte, 
“Automated detection of crypto ransomware using machine learning and 
file entropy analysis,” Authorea Preprints, 2024, DOI: 10.36227/techrxiv 
172833027.76280291/v1. 

[28] Y.-c. Wu and Y.-l. Chang, “Ransomware detection on Linux using 
machine learning with random forest algorithm,” Authorea Preprints, 
2024, DOI: 10.36227/techrxiv 171778770.06550236/v1. 

[29] Y. Prajapati, O. P. Suthar, K. Gosai and S. K. Singh, "Smart City 
Cybersecurity: Leveraging Machine Learning for Advanced Ransomware 
Detection and Prevention," 2025 International Conference on Pervasive 
Computational Technologies (ICPCT), Greater Noida, India, 2025, pp. 
808-813, DOI: 10.1109/ICPCT64145.2025.10941048. 

[30] T. A. Ahanger, U. Tariq, F. Dahan, S. A. Chaudhry, and Y. Malik, 
“Securing IoT devices running pureos from ransomware attacks: 
leveraging hybrid machine learning techniques,” Mathematics, vol. 11, 
no. 11, p. 2481, 2023, https://doi.org/10.3390/math11112481. 

[31] T. Sathya, N. Keertika, S. Shwetha, D. Upadhyay, and H. Muzafar, 
“Bitcoin heist ransomware attack prediction using data science process,” 
in E3S Web of Conferences, vol. 399, p. 04056, EDP Sciences, 2023, 
https://doi.org/10.1051/e3sconf/202339904056. 

 

 

 

https://doi.org/10.1109/IICCCS61609.2024.10763581
https://www.jatit.org/volumes/Vol102No4/34Vol102No4.pdf
https://doi.org/10.1016/j.engappai.2023.107612
https://doi.org/10.31219/osf.io/cjyvb
https://doi.org/10.22541/au.172962050.05868176/v1
https://doi.org/10.31219/osf.io/38ex9
https://doi.org/10.3390/bdcc7030143
https://d197for5662m48.cloudfront.net/documents/publicationstatus/225955/preprint_pdf/1ca9bb504df1c0d1d47524910f563602.pdf
https://d197for5662m48.cloudfront.net/documents/publicationstatus/225955/preprint_pdf/1ca9bb504df1c0d1d47524910f563602.pdf
https://doi.org/10.36227/techrxiv.172840476.68122495/v1
https://doi.org/10.36227/techrxiv.172833027.76280291/v1
https://doi.org/10.36227/techrxiv.172833027.76280291/v1
https://doi.org/10.36227/techrxiv.171778770.06550236/v1
https://doi.org/10.3390/math11112481

