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Abstract

Sophisticated ransomware attacks increasingly target cyber-physical systems (CPS), therefore seriously compromising security for vital
infrastructure. Stronger and more intelligent protection systems are necessary, as conventional detection systems can struggle to adapt to
evolving attack patterns. This work proposes a novel hybrid ensemble learning model that is driven by artificial intelligence and makes
use of weighted voting, combining Random Forest classifiers with SVM classifiers and another technique, stacking, which utilizes SVM
with XGBoost as base classifiers and logistic regression as a meta classifier to improve the accuracy of ransomware detection. Experiments
performed on the publicly accessible Kaggle ransomware dataset, containing 62,485 records of process, network activities, validate the
superiority of the proposed approach, as the stacking-based hybrid model provides 93.15% accuracy compared to current single and
ensemble classifiers. The adaptive resilience of the framework is guaranteed by the dynamic weighting, the meta-learning combination,
which reduces the number of false positives and provides low-latency performance that is necessary in the real-world implementation of
CPS. This secure model is the first step towards extending the existing literature and provides a scalable means to defend against future
ransomware attacks on cyber-physical systems, protecting critical infrastructure in smart manufacturing, healthcare, and energy systems.

Keywords: Cyber Physical System, Weighted Voting Mechanism, Support Vector Classifier, Artificial Intelligence, Ransomware,
Extra Tree Classifier
Received: October 03", 2025 / Revised: December 10, 2025/ Accepted: January 05", 2026 / Online: January 10", 2026

Recent years have seen the development of a variety of
safety-critical systems using CPS theory and technology. These
systems are vulnerable to cyberattacks since they allow
communication networks to access data, services, and

I. INTRODUCTION

Cyber-physical systems (CPSs) integrate computer,
communication, and control capabilities and are considered

next-generation intelligent systems. The ability to perceive in
real-time, control dynamically, and provide information service
is a result of ongoing communication and deep integration of
computing devices with physical processes in CPSs [1]. Cyber-
physical systems are often viewed as a bridge between the
physical and cyber worlds due to their calculation,
communication, and control capabilities; they comprise sensors,
actuators, and controllers. Multiple industries have made
extensive use of them, including healthcare, smart
manufacturing, smart transportation, smart grids, water supply,
defence, and avionics [2], [3].

doi: 10.38094/jastt71555

information about physical entities. Now that science and
technology, particularly IT, are advancing at a rapid pace,
cyberattacks can damage physical components. As a result,
CPSs are opening themselves up to cyberattacks, which is a
major concern for system security. As a result of cyberattacks’
ability to alter or delete data as well as introduce misleading
data, decision-makers may make poor choices. The inception of
cyberattacks has the potential to trigger a cascade of failures that
render CPSs inoperable and result in enormous monetary,
property, and fatality losses [2].
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When it comes to cyber defence, ransomware assaults have
recently emerged as a major concern, especially for cyber-
physical systems (CPS), which combine digital controls with
physical operations. Companies in the medical care, power,
transportation, and production industries rely on these systems,
making them straightforward targets for cybercriminals [4], [5].
Encrypted viruses that disrupt the business activities by
interfering with security weak points of the networked systems
can be devastating to the bottom line and the general business
activities. These attacks require a higher level of advanced
detection mechanisms to be put in place due to the dynamic
threat environment [6].
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Fig. 1. Ransomware escalation trends in the CPS environment (2023-2025).

The graph in Figure 1 clearly shows the significant increase
in ransomware threats in CPS/ICS settings between 2023 and
2025, where the industrial attack surge and losses of millions of
dollars per annum were increasing steadily every year. It
emphasizes that, by the year 2025, more than 40 percent of
industrial systems would be attacked and 35 percent would
suffer financial losses amounting to more than one million
dollars. This fact makes the adaptive cybersecurity solutions
urgent, which puts the research gap of the given research, that
is, the development of a hybrid ensemble structure to detect the
real-time CPS ransomware with a measurable effect on the
infrastructure protection.

It has brought a revolution in dealing with cyberattacks using
Al. The solutions provided by this technology are data-driven
and scalable, and contribute to better detection and response
time. Ensemble learning is an example of the most promising Al
techniques that have been established based on the capability of
numerous models to make joint predictions [7]. To identify
ransomware, this research study suggests a novel hybrid
ensemble learning framework that is both a stacking and a
weighted voting. Weighted voting combines model
performance, and stacking is a type of meta-model in order to
gain knowledge about forecasts of base models. This is the
reason why the system is stronger and more flexible in the final
analysis [8].

These ensemble techniques can be combined to help
recognize various variants of ransomware, improve the timely
decision-making process, and reduce the number of false alarms.
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This paper emphasizes the applicability of the approaches that
imply the implementation of Al to protect CPS against
cyberattacks, to guarantee that it will not affect the regular
working of the system and render it resilient. A fast, adaptable,
and accurate answer to the acute problem with ransomware in
the context of cyber-physical environments is provided, which
adds to the delivery of the relatively new field of cybersecurity

[a].

Despite significant advancements, current ransomware
detection models of CPS do not usually have real-time
flexibility, do not reduce false positives, or cannot be extended
to fully scale to real-life and complicated deployments. The
proposed research will close this gap in critical research by
creating a dual-layer hybrid ensemble model that has been
designed with the specific aim of detecting ransomware in
cyber-physical systems in a manner that is both secure and
efficient.

A. Motivation

The increasing cases of ransomware attacks on cyber-
physical systems (CPS) [10] present great requirements of
precision, versatility, and speed [11-13]. Conventional ensemble
techniques (e.g., bagging, boosting) have proven to be
ineffective to some degree, but they are not able to handle
heterogeneous, non-stationary data and evolving threat patterns
common in CPS settings. According to recent research, the
hybrid method, which consists of combining several structurally
different models and meta-learning, is better than simple
ensembles in terms of generalization and error correction. Thus,
the objective of the work is to create a dual-layer hybrid
ensemble, quantitatively evaluate its benefits and optimize with
low-latency, real-world CPS ransomware protection.

B. Novelty

The novelty of the study has explicitly entailed a structured,
systematic comparison of two advanced paradigms of hybrid
ensembles, namely dynamic weighted voting and stacking-
based meta-learning as applied to the ransomware detection in
CPS environments. This study presents a dual-layered hybrid
architecture and officially compares the behaviour of both
strategies in terms of the functioning, the nature of decision
fusion, the delay of inference, the stability of generalization, and
the calibration of probabilities in both ensemble strategies under
the same experimental setting.

The strategies that the current study takes into account are
both the approaches adopted by other researchers in the past: (i)
wherein they only adopt a single ensemble mechanism, a (ii)
dynamic weighted voting scheme which dynamically adjusts the
contribution of classifiers based on real-time measures of
performance (precision, recall, and F1-score), and (iii) a meta-
learning layer and logistic regression as a strategy to eliminate
errors generated by various base learners (SVM, RF and
XGBoost). Not only they become stronger against the changing
multimorphic ransomware forms, but they also reduce
overfitting and generalization as a result of such synergy.

The system is evaluated on large-scale, rich-featured data
from 62,485 ransomware and benign cases, which is far broader
than most existing research, which uses tiny datasets or fictional
data. Other distinctive features include our real-time adaptation
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system, which provides CPS without disturbing operations due
to a low-latency design and real-time performance. Finally, we
find that our hybrid using stacking has a cross-validation
accuracy of 93.00%, largely due to a balanced precision-recall
trade-off with lower log-loss than conventional ensemble and
standalone classifiers and offers resilience and reliability to
mission-critical systems. AUC of 0.96 shows that the ensemble
can distinguish ransomware from non-malicious occurrences at
both ends of the categorization range.

C. Contributions
The main contributions in this study are as follows:

* Dual-Layer Hybrid Ensemble Design— This paper
presents a new ensemble design, the combination of dynamic
weighted voting and stacking meta-learning models to deal
with the specific problems that CPS faces, like data diversity,
real-time adaptability, and the ability to withstand
sophisticated hazards (refer to Section 3 for framework
design).

« Evaluation on large-scale realistic datasets—On a large-
scale dataset of 62,485 ransomware and benign examples,
including system calls, file changes, and network traffic, our
model is tested (refer to Section 4 for evaluation practice).
The fact that we have a large and rich dataset guarantees that
our results can be scaled, are representative, and are more
reflective of real-world CPS deployment situations than
other studies that used smaller or synthetic datasets.

» Real-Time Adaptability to CPS— The proposed structure
is optimized for low latency and simultaneous processing to
ensure ransomware detection and mitigation without
affecting CPS activities. This dynamic is crucial in the most
important structures, where false positives and detection
delays can be disastrous.

» Superior Comparative Performance— In experiments,
our stacking-based hybrid ensemble achieved 93.00% cross-
validation accuracy with similar precision-recall and lower
log-loss, outperforming individual classifiers (SVM at
84.95%, RF at 93.15%) and other ensemble baselines. These
results demonstrate the framework's accuracy and
generality, which are ideal for mission-critical CPS
applications (refer to Section 5 for comparative results and
discussion).

D. Paper Organization

The subsequent portions of the article are managed as
follows. Section 2 surveys the relevant literature on Al-driven
ransomware detection. Section 3 elucidates the functionality of
our suggested hybrid models. Section 4 delineates the
assessment criteria for the suggested hybrid methodologies.
Section 5 evaluates the results of these hybrid methodologies
and contrasts them with the established approaches. Section 6
ultimately closes our analysis and delineates future possibilities
regarding ransomware assaults.

This section explores the literature review that is relevant to
the proposed work and includes the theoretical framework and
original contributions by the field of artificial intelligence and

RELATED WORK
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its subfields. The key considerations of the studies have been
presented in Tables I and I1.

A. Seminal Contribution

Guan Li et al. (2024) have presented a model that would
combine the predictive capabilities of DL models with the
ability of Monte Carlo Tree Search (MCTS) to locate a
multifaceted solution to different kinds of ransomware. The
accuracy, as well as low false positives, demonstrated that the
hybrid framework had superior performance, equivalent to the
traditional ML models, since it was thoroughly tested. The
system was enriched with MCTS, which provided the possibility
to examine alternative decision paths in case of the emerging
threats because of the real-time response capability of the
system. The proposed paradigm was also efficient in computing,
and this made it well-suited for real-time implementation at the
business level.

A nimble and effective method of mitigation of ransomware
threats, the results reveal that the hybrid system has the capacity
of a formidable defence system in contemporary cybersecurity
[14]. Stephen Venne et al. (2024) used the Pattern-Entropy
Segmentation Analysis (PESA) framework in their study,
whereby detection of ransomware can be done at a more specific
and faster rate with the assistance of entropy analysis of network
traffic in real-time. PESA is also based on entropy changes to
identify early indicators of maliciousness generated by the
ransomware process of encrypting files, rather than the common
signature or behavior-based methods, to avert severe damage
before it can occur. They test it on a simulated environment of a
network and prove that it can recognize a variety of ransomware
strains at a high rate with few false positives and a quick reaction
time. Furthermore, the system is resistant to obfuscation;
therefore, it is an authoritative contender to the applications of
cybersecurity in real-life scenarios. To improve the security of
the network and minimize the damage of ransomware
infections, the findings suggest the possibility of the practical
importance of entropy-based detection [15].

A new method is offered in the article by Samuel Wasoye et
al. (2024), and it is based on the principle of applying machine
learning models that employ a BTLS (Binary Transformation
and Lightweight Signature) algorithm to make ransomware
detection faster and more accurate. The fact that it is possible to
extract the static and dynamic information of ransomware
samples created by the BTLS algorithm allows us to analyse and
classify them more deeply. As the experimental results have
shown, both sets of features combined increased the accuracy of
classification greatly, and the fact that the algorithm is designed
to minimize the rate of false positives makes it suitable to be
used in the real world.

In order to overcome failures of conventional forms of
detection solutions and create machine learning-based
cybersecurity solutions, the suggested solution will provide a
scalable approach that will be able to adjust to the appearance of
new forms of ransomware [16]. In this research, Jiugang Chen
et al. (2024) take into account the degree of machine learning
algorithm recognition of attack on the decentralized storage
system known as the Interplanetary File System (IPFS) based on
ransomware. The experiment gauges the correctness, accuracy,
remembrance, and strength of the various ML models in an
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unfavourable environment, which are DT, LR, RF, GBM, and
CNN. The results show that further advanced models like
random forests (RF), convolutional neural networks are more
powerful, more accurate and less evasive. The results highlight
why enhancing IPFS concerning the counteraction of
ransomware attacks is possible within the possibilities of
implementing machine learning in the cybersecurity practices of
decentralized networks. This should be followed by future work
to make the models more suitable to emerging threats, more
varied in terms of datasets, and their usability in more
operational scenarios [17].

The cross-validation strategy employed by SUBIR PANJA
et al. (2025) is 5-fold, in accordance with the dataset it gathered
to study it. They estimate the memory and execution time
demands of each of the 14 iterations of the ML models, both
with the complete feature set and with the subset of the features
that have survived the data preprocessing stage. They applied
the Extra Tree classifier (ETC) to detect the top ten important
characteristics by Gini impurity scores to achieve more accuracy
and reduce the time needed to arrive at the results. Thereafter,
they analyzed the experimental findings and discovered that the
RF classification model, when applied to the set of reduced
features, achieved ROC-AUC scores of 0.99 and an accuracy for
prediction of 99.39%. Results that are consistent with the ETC
model prediction prove that the proposed model can work. A
very modest standard deviation indicates that the suggested
model is robust. In addition to being very responsive, it has a
low memory usage and execution time [18].

Juan A. Herrera-Silva et al. (2023) have developed a method
that can identify both existing and future forms of this hazard.
Listed below are the goals of this study:(1) Use a sandbox to test
out variations of encryptor and locker ransomware with
goodware, to create JSON files that include dynamic settings.
(2) Determine which dynamic features are most useful for
distinguishing encryptor and locker ransomware from legitimate
software, and then pick the least redundant ones. Using these
chosen parameters for examples of various artefacts, develop
and make public a dynamic attributes dataset. Utilize the
dynamic feature dataset alongside machine learning methods to
create models. Over the course of the evaluation, 20 types of
ransomware and 20 types of goodware were examined across
five different platforms. Every one of the 2000 entries in the
final feature collection has 50 attributes. This dataset enables an
ML detection using a 10-fold cross-validation, with neural
networks, random forests, and XG Boost boosted regression
trees all achieving average accuracy superior to 0.99 [19].

Amjad Alraizza et al. (2023) proposed research to examine
the present state of automated ransomware detection and to
speculate on its possible future debates. This document offers a
detailed description of ransomware, a chronology of attacks, and
background information. Moreover, it provides in-depth
research on the existing strategies of ransomware mitigation,
prevention, and recovery. This research has additional benefits,
such as an analysis of studies conducted between 2017 and 2022.
Here, readers can obtain the latest information about
ransomware detection methods and how they have evolved to
fight these assaults. This study concludes that there are still
many questions about ransomware detection and several
possible obstacles to further research in this area [20]. Robert
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Bold et al. (2022) present a comprehensive literature review on
ransomware detection with advanced ML models. The
outcomes, however, indicated that previous attempts often
emphasized accuracy while neglecting the importance of other
values in the confusion matrix, such as false negatives. Hence,
they have utilized a dataset containing 730 malicious and 735
benign samples to assess the efficacy of ML models in
mitigating ransomware at various points in a detection system’s
design, as well as the associated costs. The results demonstrate
that an ANN model is optimal due to its 98.65% accuracy, 0.94
Youden’s index, and 76.27% net benefit; however, the RF
model, with a minimum accuracy of 92.73%, offered the
advantage of a 0.00% false-negative rate. The predictable cost
of resources required to filter false-positives contrasts with the
risk of a false-negative in this system, which resembles the
unpredictable but frequently significant cost associated with
ransomware infection [21].

Mohammad Masum et al. (2022) proposed an approach for
ransomware identification and mitigation that relies on feature
selection and uses several ML techniques, including neural
network-based designs, to classify security levels. To classify
ransomware, they used a variety of ML methods, including DT,
RF, NB, LR, and classifiers based on Neural Networks (NN). In
order to test their methodology, they have only used one
ransomware dataset. In comparison to other approaches, RF
classifiers achieve higher accuracy, F-beta, and precision scores,
as shown in the experimental findings [22]. DARYLE SMITH
et al. (2022) have discussed a ransomware detection approach
and the ML methods that are commonly used to identify and
understand these malicious programs and their dynamic traits. A
comprehensive evaluation of those frameworks is also
something those involved in cybersecurity will get from this
research. Further details, such as the datasets used and the
difficulties each framework may encounter when accurately
recognizing different types of ransomware, will be added to this.
Overall, this report provides a comparative analysis that can
serve as a reference point for other colleagues in detecting
ransomware [23].

B. Key Considerations

The most significant feature would be associated with the
evaluation of the comparison of a set of ransomware detection
techniques, emphasis on the features they implement, the
algorithms they use, data sets, how they preprocess data, and
what are their main contributions. It outlines the various
approaches that consist of deep learning models (CNN, ResNet-
50) and machine learning based classification (RF, SVM,
XGBoost). This comparison shows the pros and cons of current
approaches, resulting in Table I's ransomware detection trends
for Cyber-Physical Systems (CPS).

The review shows that most current efforts use standard or
single-layer ensemble techniques, which may be insufficient for
CPS-specific challenges and scalability. The research proposes
an efficient, diverse dual-layer hybrid ensemble for real-time
heterogeneous CPS to cover these shortcomings.
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TABLE I. COMPARISON OF RANSOMWARE DETECTION APPROACHES
Authors Features Algorithm Dataset Preprocessing Key Contribution Limitations
: Real-world .
;‘I E('Zgzlu)a HPC. MCC Ecls&mble, datasets (20 Normalization Data Optimizing hardware Is‘;gét:]d samples,
[24] KNN. NN benign, 15 Cleaning, performance counters dependencies
Ransomware)
B. File access patterns, Hiaher EP rates
Keyogeg et  Process creation RE SVMs Lo datasets Feature Extraction, Simulated Active Directory Lir?]i ted ransomWare
al. (2024) anomalies, N/W traffic ' 9 Normalization environment samples
[25] behaviors P
D. Gihavo File access patterns, . Synthetic dataset .
etal. Temporal modification RF, SVMs, Synthetic Log data recorang, generation for realistic High FP rates,
NN Feature extraction . . Feature Noise
(2024) [26]  patterns simulation
. Custom
zJe.t l;lrkland E/In;;?zz;?;ﬂes’ RE. SVM dataset (Virus  Entropy Calculation,  High performance across Limited dataset,
' . ' Share, Hybrid  Feature Extraction file types False negatives
(2024) [27]  timestamps, Analysis)
. . . Overfitting
;.acl:. Wu Elrllféracfiiegz, zﬁ:ﬁg calls, RE (Blj':]'f;) Files Normalization, Hyperparameter tuning, Unknown
' ypu ' ! PCA, Imputation Class balance handling ransomware
(2024) [28]  Anomalies Ransomware detection issues
R.Boldet  API Call Frequency SVM - -
! ! Crypto SMOTE for class Overfitting, Limited
al. (2022) Process ID, Function KNN, DT, StandardScaler h o
[21] Count RF. LR Ransom balancing, RF for accuracy ~ ransomware families
TABLE II. COMPARISON OF RANSOMWARE DETECTION APPROACHES
Re Low
Authors/Year A ,Ibi\g)dproach al- False Accuracy (%) Sc Orlél' Deployment Ready?
pp Time Positives?
J. E. Hill et al. (2024) Ye o
[24] ML s Yes 95% — No
B. Keyogeg et al o 0.88
(2024) [25] ML No No 94.2% 4 No
261 D. Gihavo et al. (2024) ML (RL) ;T Yes 93.0.6% 0.94 Yes
J. Kirkland et al. (2024) ML No Yes 95.6% 0.95 No
[27] 1
[28]Y. C. Wu et al. (2024) ML No Yes 94% 0.94 No
0.96
R. Bold et al. 2022 [21] ML No Yes 95.9% 2 Yes

I1l. HYBRID ENSEMBLE LEARNING BASED CYBER-PHYSICAL
DEFENCE SYSTEMS

In this section, we propose a hybrid ensemble learning model
to enhance the accuracy of ransomware detection. This model
makes use of weighted voting to combine RF and SVM
classifiers, as well as another technique called stacking that uses
SVM with XGBoost as base classifiers and logistic regression
as a meta-classifier. This section consists of a proposed system
overview and the flow of the proposed method.

A. Proposed System Overview

The proposed framework in fig. 1 presents a cybersecurity
design for Cyber-Physical Systems (CPS) that targets servers in
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the cloud, 10T devices, & enterprise networks, effectively
addressing significant cyber threats such as phishing, malware,
threat actors, and zero-day exploits. The system also
incorporates an extensive system threat monitoring and a
reporting system that inspects system event logs of such
platforms as Linux, Windows, and other operating systems and
industrial control systems (ICS), network logs, and file
operations. Data obtained is processed by feature extraction and
preprocessing, detection of anomalies, feature selection, and
normalization to enhance a better representation of threats. The
ransomware attacks are classified using a hybrid model of
classification depending on machine learning that incorporates
the RF, SVM, & XGBoost and assessing the system
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performance with the measures of precision, accuracy, and log-
loss. This methodology aims to enhance the cybersecurity
resilience of CPS setups and improve their threat detection
efficacy.

Implementation Environment and details: The whole
framework was built in Python 3.10, and the scikit-learn and
TensorFlow libraries were used to build, train, and test the
models. 100 estimators for random forest with max_depth = 10
and a linear kernel function for SVM were used. The stacking
meta-classifier used logistic regression with a penalty of "I2"
and a C value of 0.1. As shown in Figure 2, weighted voting and
stacking can be combined by first aggregating base classifiers
(RF, SVM) before their values are input into the meta-classifier.
Every block and arrow in the diagram corresponds to a single
transformation step of the data, as stated in Section 3. We used
an Intel Xeon E5-2680 v4 (2.4 GHz, 16 cores) system having
128 GB of RAM and 1 NVIDIA RTX 3090 GPU to run
experiments. The average time to train a model was about 90
minutes for each cross-validation fold.

B. Method Flow of Hybrid models

1) Hybrid Model using a weighted voting mechanism:

Given a classification problem with a dataset of n samples
with associated labels. We aim to combine the predictions of two
base classifiers, SVM and Random Forest, to produce a more
accurate final prediction. This is done using a weighted voting
mechanism.

Methods Used as Foundational Models: SVM and RF

1. Support Vector Machine (SVM):

One supervised learning technique that seeks to optimize the
gap between two classes is SVM. The model is defined by the
optimization problem using equation (1):

min% [Iw||* + CXiq(e) s.t. yi(w,x; +b) =1,
w

Vi=1,2,...n @

where,

w is the weight vector normal to the decision boundary.

e bis the bias term.

e Cisaregularization parameter >0

e ¢; isaslack variable for misclassification

e x; isthe feature vector for the i-th sample.

e y; isthe true label for the i-th sample, where y;e {—1,1}.

SVM produces a decision boundary, and for a given test
point x;, it assigns a label §5" based on the decision function
as mentioned in equation (2):

}“IfVM = sign(w X x; + b) (2)

Moreover, SVM can also provide probabilistic outputs
(using Platt scaling) for each class, which are the probabilities
mentioned in equation (3):

PSVM(}’J' = 1]x;), for class 1, and
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p*"™M(y; = 0lx)) = 1 — pS"™M(y; = 1|x))
2. Random Forest (RF):

As a kind of ensemble learning, Random Forest employs a
number of decision trees to carry out categorization tasks. In
order to make a final prediction, all of the trees are trained using
a different selection of features and samples. According to
equation (4), let the predictions of the k-th tree for the test sample.

x; be symbolized by §7"*. The predicted label for Random
Forest is the majority vote from all trees:

®)

A ~RF(1) ARF(2
Y§F = mOde(y]' ( );y]' ¢ );

Where T is the total number of trees in the forest.

~RF(T
77",

(4)

Random Forest can also provide probabilities for each class
by averaging the probabilities of all trees using equation (5).
where,

1
pRF (y; = 1lx)) = ;Z£=1 pRFE (y; = 1]x))
and similarly for class 0.

®)

Weighted Voting Mechanism: The weighted voting process
assigns a weight to each model's predictions according to their
correctness on the validation data set. These weights reflect the
relative confidence of each classifier in its predictions.

Weights Calculation: The weight assigned to each classifier is
proportional to its accuracy on the test set. Let the accuracy of
SVM and RF on the test set be denoted by equations (6) and (7):

1 A
Accuracysyy = ;Z?:l H(Y}?VM =) (6)
1 A
Accuracygr = - ¥isq 195 = y;) (7

Where IQ® is the indicator function.

The weight for SVM (wgyy) and RF (wgp) Are calculated
using equations (8) and (9) as follows:

Accuracysypm
Wsyy = 8
SVM Accuracysypy+Accuracyrr ( )
_ Accuracyrr
Wrre 9)

Accuracysypyt+Accuracyrr

These weights ensure that the classifier with better
performance on the test set contributes more to the final
prediction.

Weighted Probability Combination: The final prediction for
each test sample x; It is computed by combining the
probabilistic outputs of both models using their respective
weights. By using Equation (3) and Equation (5), the weighted
probabilities are calculated using Equation (10):

weighted Probs; = Weyy .p5"M (y; = 1]x)) +

Wrr -PRF(yj = 1|xj) (10)
where,

> p*"M(y; = 1|x;) is the probability that SVM assigns to
class 1 for x;.
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> pRF(yj. = 1.|xj), the p.robability.that RF assigns to class weighted Probs}o) = Wy - (1 — (pSVM(yj = %) +
(x;). Likewise, the revised equation (10) of class 0 can be W 1 RF(y — 1 1
expressed as equation (11): re - (1= (P (yj = 11%)) (11)
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Fig. 2. Overview of Cyber Physical System (CPS) Environment.

index Unnamed: 0 Machine DebugSize DebugRVA MajorimageVersion MajorOSVersion ExportRVA ExportSize latVRA

0 1 4 1 121728 10 10 126576 4930 0

1 3 4 " 19904 10 10 21312 252 18160

2 4 4 1" 97728 10 10 105792 1852 70592

3 5 4 1 319776 10 10 374944 9208 312608

4 ¢/ 4 1 197888 10 10 229024 112 187208
Fig. 3. Ransomware detection dataset with 8 features.

MajorLinkerVersion MinorLinkerVersion NumberOfSections SizeOfStackReserve DlICharacteristics ResourceSize BitcoinAddresses Benign

14 10 [ 9 16864 1024 0 1
14 10 5 9 16736 1040 0 1
14 10 6 9 16736 1096 0 1
14 10 6 9 16736 2072 0 1
14 10 6 9 16736 1328 0 1

Fig. 4. Ransomware detection dataset with another 8 features.

) ] o 97" = arg max(Weighted Probs;, Weighted Probs'™)
Equation (12) shows the final prediction for the test sample. / 112
x;. is made by selecting the class with the highest weighted (12)

probability using equations (10) and (11) as follows: LR-based Hybrid Model with Stacking Classifier: This is
a hybrid model that works well in combining several classifiers
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to enhance predictive accuracy and strong classification. With
the help of both ensemble and linear classifiers, it proves to be a
complicated method of solving complex machine learning
issues, which is why it can be applied in different circumstances,
such as in cybersecurity and ransomware detection, as implied
by the circumstances of the dataset employed.

Base Classifiers:

1) XGBoost Classifier: XGBoost (Extreme Gradient
Boosting) is a strong ensemble approach to learning that
employs the gradient boosting techniques. It is specifically
efficient with structured data and is efficient when dealing with
a high-dimensional data set.

2) SVM_Classifier: This is an extension of the SVM
algorithm [29], which does the same but in the feature space,
i.e., in the space of features. A linear kernel is employed in this
case, and it applies to linearly separable data.

Meta-Classifier:

1) LR: Logistic regression is the last estimator, where the
predictions of the base classifier are used to arrive at the final
prediction. It is an effortless but efficient technique of binary
classification.

Stacking Mechanism:

The Stacking Classifier is a combination of the XGBoost and
SVM predictions. During training, it learns how to put these
predictions together in the best way possible to get the most
accurate results. We use cross-validation (CV=5) to ensure that
the predictive algorithm can be generalized well by testing how
well it works with other, different parts of the training data.
Stacking classifiers proficiently aims to improve accuracy by
using a wide range of base models, optimizing predictions
through meta-learning, and employing cross-validation. This
method is stronger and less prone to overfitting because it uses
the learning of several classifiers. This kind of ensemble strategy
is very helpful for complex classification problems where one
model can't handle all the details of the data.

A StackingClassifier that uses both XGBClassifier and
SVM_Classifier has a number of advantages that make the
model work better. The blended approach utilizes the best of
both algorithms. XGBClassifier is good at finding intricate
patterns and interactions in data because of its gradient boosting
structure, which makes it resistant to overfitting.
SVM_Classifier is good at setting up robust classification
constraints in highly dimensional environments, especially
when the data can be separated linearly. Such heterogeneity
gives the stacking model the advantage of the various learning
strategies, enhancing the generalization to unknown data. Also,
the meta-classifier may be trained to correct the mistakes of the
base classifiers, which again increases the accuracy by repairing
the mistakes. Cross-validation is used in the training so that the
model is tuned and the likelihood of overfitting is reduced,
thereby resulting in a more reliable and accurate predictive
model in general.

Mathematical Model for Stacking Classifier Using XGBoost,
SVM, and Logistic Regression: Suppose a set of data labelled
by equation (13):

D = (x4, ¥)i=1 (13)
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where each x;eR¢ represents a feature vector and y; € {0,
1} denotes the binary class label. Our target is to build a
classification model f(x) that guesses the label. § for a new,
unseen sample x by merging the predictions of multiple base
models via a meta-classifier.

In the first step, we create a base model using XGBoost and
SVM. XGBoost is a tree-based boosting technique that builds a
sequence of DTs, where each tree adjusts errors made by the
previous trees. For a given feature vector x;, the output of the
XGBoost model is the probability of the positive class
mentioned in equation (14):

p*B(y = 1|x)) = 0 (k=1 fie(x)
where f; (x;) is the output of the k-th DTree.

(14)

T is the total quantity of trees and o () is defined as: 6(z) =
1

1+e~Z’
~XGB __ 1'
Vi = {

0,

p*E(y = 1|x;) > 0.5,
otherwise

SVM identifies a hyperplane in the space of features that
optimizes the margin between the two categories. For a linear
kernel, using Equation (2), the decision function is:

hSVM(xl-) =W - X +b

where w is the weight vector, and b is the bias term. The
probabilistic output of the SVM model is computed using Platt
scaling as mentioned in equation (15):

1

P> "My =11x%) = — v (15)
1+e i

The predicted label for SVM is mentioned using equation (16):

1, hSVM(x;) > 0,
0, otherwise

In the second step, stacking combines the predictions from
base models using a meta-classifier. In our case, we use logistic
regression as the meta-classifier. The base models (XGBoost
and SVM) are first trained on the training data. (X;rqin, Yerain)-
For each sample x; in the dataset, using Equations (14) and (15),
the base models generate predictions in the form of probabilities
as per Equation (17):

(16)

HORS

p*B(y = 1|x;)
"My = 1|x;)

Thus, by using equation (18), the transformed dataset for the
meta-classifier is:

Z = {(Ppgse (xi)ryi)}évzl (18)

In the third step, the meta-classifier takes the output
probabilities Pp,s.(x;) as input features and learns to predict
the final class label y; LR models the probability of the positive
class mentioned in equation (19) as:

Ppase(Xi) = (17)
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pMeta(y = 1|Pbase(xi)) = U(Wmeta-Pbase(xi) +
bmeta)

(19)
The final predicted label is calculated using Equation (20) as:

pMeta(y = 1|Pbase(xi)) > 0.5,
otherwise
(20)

IV. PERFORMANCE & EVALUATION

This section consists of an overview of the dataset, and
standard assessment criteria such as accuracy, precision, recall,
and the F1 score help to evaluate the integrated model. The next
section consists of the mathematical analysis of both hybrid
models. The weighted voting system guarantees that more
accurate classifiers help provide the final forecast. The
efficiency of the fusion technique is validated by a comparison
of individual model performance (SVM and RF) to the weighted
model. To guarantee objective performance measurement, the
evaluation is carried out on another test set.

A. Dataset Used

The Kaggle ransomware detection dataset
(https://www.kaggle.com/datasets/amdj3dax/ransomware-
detection-data-set) records process actions, file modifications,
and network activity. Labelled examples of natural and
ransomware-infected behavior make it suitable for training
classification models. The dataset may contain numerical and
categorical system status and event information, which has been
mentioned in Figures 3 and 4. Machine learning can detect
ransomware patterns due to these qualities. It aids supervised
learning tasks, including identifying anomalies, real-time risk
tracking, and binary classification.

~final _ 1,
i "{ 0,

The .csv file contains 62,485 files in various formats. The
dataset is licensed under CCO/Public Domain. Version used: v1,
accessed March 2025. This dataset has 18 features and values
for ransomware-infected and uninfected files. Median filling
was used to fill in missing values, one-hot encoding was used
for categorical variables, and MinMax normalization was used
for all features. The dataset was split into two parts, with 70%
for training and 30% for testing. To keep the class balance,
stratified sampling was used.

The performance of the hybrid model is evaluated using
accuracy, the confusion matrix, the classification report, and
cross-validation. Accuracy is calculated by using equation (21)
as:

TP+TN

Accuracy = ———
Y = TP+TN+FP+FN

(21)

The confusion matrix delivers a thorough breakdown of
classification errors. The classification report comprises
precision, recall, and Fl-score for each class. Equation (22)
shows that the CV is used to assess the generalization
performance of the hybrid model:

CV Score = % Yk, Accuracy; (22)

where k is the number of folds in cross-validation.
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The suggested methodology is a mixture of the opinions of
two underlying classifiers, that is, the SVM and the RF, with the
help of a weighted voting system to improve the classification
accuracy.

SVM builds a hyperplane to maximize the distance between
the classes, which gives probabilistic results through Platt
scaling, whereas RF combines the outcomes of multiple DTs
and adds up the probability of each decision tree class. Each of
the two classifiers, Wsvm and Wk, is weighted according to its
accuracy on the validation set so that the classifier that is more
accurate will have a greater contribution to the final prediction.
The probabilities of each class are calculated using the weighted
average of the probabilistic outputs by SVM and RF using their
respective weights as in Equations (10) and (11). The overall
prediction of individual test samples is obtained by choosing the
class having the highest weighted probability, as given in
Equation (12). The performance of the hybrid model is
estimated using accuracy, confusion matrix, classification
report, and cross-validation; accuracy is calculated using
Equation (21), and the cross-validation score is derived from
Equation (22). This method uses the best parts of both classifiers
to make them more robust and better at making predictions.

B. Statistical Analysis

The suggested hybrid weighted voting model, which uses the
SVM and RF classifiers, can classify the test data with an
accuracy of 89.1 percent. This demonstrates how machine
learning algorithms, when paired and thus complementing each
other, can be used to achieve greater reliability in prediction and
to minimize classification errors vis-a-vis an individual model.

The various classifiers were combined using the weighted
voting approach in which the weights assigned were
proportional to the accuracies attained by each base classifier on
a validation dataset. More specifically, the weight assigned to
SVM was 0.477, whereas that assigned to RF was 0.523. The
slight advantage that RF held in validation justifies such a
weighting scheme that gave precedence to the model that was
more predictive individually when making the final decision.

The outcome shown in Figure 5 confusion matrix, provides
further classification behavior of the models. From all test
instances, the hybrid model was able to correctly label 919 cases
belonging to class 0 and 863 cases belonging to class 1. Some
misclassifications were encountered: 113 false positives
(instances wrongly associated with class 1) and 105 false
negatives (instances wrongly associated with class 0). Despite
these errors, given that there were roughly equal
misclassification cases from each class, one could infer that the
model still retained good discrimination power, without leaning
bias toward either of the classes. Such results highlight that
while the decision boundaries of an SVM and the robustness of
a random forest are somewhat complementary, weighing their
votes appropriately actually improves generalization and thus
presents an attractive option for the classification of data sets
with similar attributes.

The prediction shows that the model does a good job of
classifying both classes, which means it is equally good at
recognizing class 0 and class 1. The classification report backs
up this idea by showing that both classes have an average
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precision, recall, and F1 score of about 0.89. If all of these
measures are the same, it means that the model is just as accurate
as it can be and that there is the best balance between precision
(which mostly reduces false positives) and recall (which mostly
reduces false negatives).

Along with this, both the macro average and weighted mean
of the precision, recall, and F1-score overlap at 0.89. Using the
macro average, the calculations are done for all the classes,
although one might be underrepresented. This makes us believe
that the performance of this algorithm is actually balanced
across all the classes.

Confusion Matrix
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Fig. 5. Confusion Matrix for the Weighted VVoting Model.

It is only after considering weighted averages, which correct
the percentage of each class in a set, that further confirms the
validity of this assumption that this attribute is the actual benefit
of the algorithm and not because all of the classes are on equal
footing as far as size is concerned.

Results of research taken into account in this study,
therefore, highlight the internal consistency and robustness of
the model, besides its ability to survive changes in the
distribution due to imbalance of classes, so that it is able to
predict results with reliability across different ranges of data
distributions. The hybrid model is a mixture of more than two
base learners on a stacked classifier structure and achieves a
testing accuracy of 90.7, thus scoring a satisfactory separation
of the two classes. It demonstrates that the hybrid framework
may outperform the single base learner models by stacking
different base learners.

The confusion matrix (Fig. 6) is very informative about the
decision-taking behavior of the model. On the total count of test
cases of the model, it correctly identified 1,364 cases of class 0
and 1,356 cases of class 1. The false predictors were 180 false
alarms (false positives: class 1 was predicted when it should
have been class 0) and 100 false negatives (false negatives: class
0 was selected when it should have been class 1). The above
results indicate a nearly equalized classification with a minor
difference favouring recall (0.93 versus 0.88 in class 0);
therefore, the model is somewhat more prone to capturing class
1 cases and thus less prone to falsely dismissing positive cases.
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It is another artificial reinforcement of the classification
report that shows the same picture of the balanced performance
with approximately 0.91 precision, recall, and F1-score
indicators of each classification. Precision states that the model
has a low false-positive rate, whereas recall states that the model
is proficient in identifying true positives most of the time. The
Fl-score, emphasizing the harmonic mean of precision and
recall, suggests that the model is observed to have the most
balanced performance between recall and precision for both
classes.

Confusion Matrix
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Fig. 6. Confusion Matrix for the Stacking Classifier Model.

The mean of the weighted and macro precision, recall, and
the F1-score are also all equal to 0.91. The macro average, where
the two classes receive equal treatment, proves that the
performance is homogeneous between the classes, whereas the
weighted average proves that it is not more effective in a
particular class due to the distribution of classes. This overlap of
value validates the power of the model, the uniformity of the
model, and its stability when applied to datasets of varying or
even potentially uneven distribution of classes. Combined, these
results demonstrate that the stacking-based hybrid strategy
possesses sufficient global accuracy and provides a stable and
fair performance across classes, thereby making it a readily
available tool for classification issues demanding balanced
detection of both classes.

In addition to supplementary metrics, and visualization
methods were used to give a strict evaluation of how well the
first designed hybrid ensemble worked. This ensemble was
made up of a hybrid SVM and RF system that used weights to
get a voting process. The analysis is thorough and shows that the
model is reliable and can make predictions.

The WVC in Figure 7 indicates that all of the recall scores
have the same high precision. This is because the range of values
is so wide that the average precision (AP) is 0.95. It implies that
the model would have a great balance between sensitivity
(recall) and the power to prevent false positives (precision) even
in those situations when the recall is maximized. The high
precision coupled with large recall rates is especially suitable in
the case of ransomware detection in cyber-physical systems,
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where the monetary cost of missing a positive (attack) remote
and that of a false alarm are of equal value.

Precision-Recall Curve
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Fig. 7.

The weighted voting ensemble exhibits an evident pattern of
convergence with the increasing size of the training set, as
shown in Figure 8. Validation performance stays more or less
constant, with a value of about 90 percent, and variance
decreases with the inclusion of more data. Though training
accuracy is more than acceptable (roughly 98 percent), there is
a discrepancy between the training and validation curves that
seems to indicate either a certain complexity to the model or
perhaps even noise in the data itself, although not to a great
degree of overfitting. This finding helps to indicate the integrity
of the ensemble framework, which implies that, in case enough
data is available, the model tends to generalize effectively, as it
is also confirmed by the cross-validation accuracy rates
mentioned in the paper (Table IV).

Learning Curve
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Fig. 8.

In Figure 9, an area under the curve of 0.955 shows good
discriminative power between the ransomware samples and the
benign samples. The curve quickly goes near the upper left
corner, affirming that the model gives high TPRs at extremely
low FPRs. This trait goes especially well in CPS defences,
where it is highly necessary to identify the threat quickly and
with zero errors. The large and regular AUC confirms the
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validity of combining SVM and RF decisions by employing an
ensemble vote.

ROC Curve
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Fig. 9.

XGBoost log probabilistic calibration in training and log loss
(cross-entropy) was plotted on an iteration basis (Figure 10).
First, the training and test log loss converge steeply, meaning
effective learning. As it progresses through iterations, the test set
log loss stabilizes, then rises a little, and training log loss keeps
diminishing, which indicates that the test set log loss is ready to
overfit if it is not in check. Nevertheless, the controlled gap and
the small minimum test loss confirm the fact that the probability
estimates provided by this model are well-calibrated and stable
in terms of decision-making, as is also stressed in the conclusion
of the manuscript.

Validation Curve (XGBoost)
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Fig. 10.  Log loss graph for WVC Model.

The validation curve given in Figure 11 explains the perfect
interaction between the density of the estimators in the XGBoost
element and the performance of the models in our first hybrid
ensemble (Weighted Voting Classifier). When the number of
estimators is large, training accuracy approaches 100% almost
immediately, indicating substantial ability to fit the training data,
but the validation accuracy reaches a maximum of about 91%
and does not improve by itself even when the model complexity
is further increased. When you have too many estimators, the
variation between training and validation efficiency can get
bigger. This shows how dangerous overfitting can be. XGBoost
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becomes too responsive to the training sample and not sensitive
enough to the new samples you've never seen before.

This decision estimate is important because it helps us
explain why we chose an ensemble design that uses a moderate
number of estimators (like 100) to find a balance between model
expressiveness and generalization. The high validation accuracy
of XGBoost as a base learner shows that it is stable, and the high
levels of overfitting with more estimators show how important
it is for the individual components of the ensemble to be
different from each other. This also shows how important it is to
carefully choose hyperparameters to get the optimal outcomes
in hybrid performance. Finally, this diagnostic not only justifies
the parameter tuning that we have embraced in this paper in our
weighted voting scheme but also supports the satisfactory
generalization and robustness that is evident in our
recommended ransomware detection system. To define its
discriminative capability, learning behaviour, and generalization
capacity, the stacking hybrid model that uses XGBoost and
SVM as base learners and logistic regression as a meta-classifier
was thoroughly investigated to define its properties of
classification capability.
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The data of the stacking ensemble learning curve presented
in Figure 12 displays that the training and validation accuracy of
the algorithm improved on larger set sizes of training data.
Training accuracy is extremely high, around 100 percent,
irrespective of the size of the training, and it indicates that the
ensemble fits the data. More importantly, the validation
accuracy shows a consistent increase as the training set size
increases, starting at around 90 percent and exceeding 91
percent for larger datasets. This small yet steady matchup of the
training and the validation removes the doubt of the high
generalization capacity of the model, and thus, there is limited
overfitting. The model's insensitivity to the number of samples
indicates the robustness of the specific ensemble and its ability
to leverage the strengths of two different classifiers: XGBoost,
which excels at capturing highly nonlinear intricate patterns, and
SVM, which performs well in high-dimensional feature spaces.
Additionally, these findings align with the cross-validation score
presented in Table IV of the manuscript, which shows a
competitive CV accuracy of 93.00 percent for the stacking
model, consistent with the best individual classifiers used.

Figure 13 presents the ROC curve, which further supports
the performance of the stacking hybrid. The ROC curve is
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steeply rising to the graph’s upper left corner, which indicates
high positive rates of true despite the low positive rates of
false. As the figure is labelled, the AUC is 0.96. The value of
this AUC demonstrates the strong ability provided by the
ensemble to differentiate between ransomware and non-
malicious instances at both ends of the range of classifications.
An AUC of 1 equates to an excellent risk discrimination that
is crucial in the practical application of CPS in the real world,
where detection of missed ransomware (false negative) and
unwarranted alerting (false positive) is of the essence.
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Fig. 13.  ROC Curve Analysis for Stacking Classifier Model.

The evidence that the stacking ensemble provides a better
trade-off of accuracy, discrimination, and generalization is
indicated by the combination of all evidence presented by the
learning and ROC curves. The high validation accuracies and
AUC provide empirical support for this hypothesis, justify the
inclusion of meta-learning in this two-step methodology, and
enable the model to integrate detailed decision boundaries
between the two base methods. The excellence in this empirical
study is also realized in accuracy, recall, and F1-scores since
they all register an excess of 91% using the weighted voting
combination and classifier after being evaluated in Table I1I.

TABLE III. PERFORMANCE METRICS FOR HYBRID MODELS
Model Precision Recall F1-Score
Weighted Voting using 89.15 89.06 89.10
SVM and RF
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Hybrid Model Using 91.04 91.04 91.04

Stacking Classifier

SVM Model 83.50 83.37 83.43
TABLE IV. COMPARISON OF CV-SCORE OF VARIOUS MODELS

Model CV Accuracy (%)

SVM Model 89.95

Random Forest Model 93.15

Weighted Voting (SVM & RF) 87.20

Stacking Classifier Model 93.00

Cross-validation results highlight the robustness of the
individual models and the hybrid approach. SVM achieved
cross-validation scores ranging from 0.8195 to 0.8495, while RF
outperformed with scores between 0.904 and 0.9315. The
weighted voting model achieved a cross-validation score of
0.872, indicating strong generalization capabilities, as shown in
the Figure. 14. Additionally, the log loss metric, which measures
the confidence of probabilistic predictions, further validates the
hybrid model’s superiority. As mentioned in Fig. 15, the log loss
for the weighted voting model (0.277) was lower than both SVM
(0.401) and RF (0.292), suggesting that the combined approach
improves accuracy as well as prediction confidence.

Taken collectively, these findings confirm the superiority of
the hybrid weighted voting method for both accurate and
confident prediction. The synergy of solid cross-validation
performance and log loss minimization underscores its
plausibility in real-world applications, where both accuracy and
confidence in predictions are paramount. Similarly, the cross-
validation results also confirm the stability and generalization
ability of the Stacking Classifier model. The scores of the cross-
validation were 0.901 to 0.93 with a mean score of 0.911, which
is not only a high overall performance but also extremely high
stability across the one-fold of the dataset. Such stability is a
clear indication of the dependability of the model, particularly
in the real world, where the level of generalization of the data
that has never been seen before is a very crucial criterion.
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These findings show that the stacking-based hybrid model is
more accurate in classification as compared to other hybrid
classifier models, such as the weighted voting model that
combines SVM and RF. The improved performance of the
stacking classifier is due to the fact that it can exploit meta-
learning; that is, it can aggregate the decision paths of multiple
base learners to describe nonlinear relationships and diverse
interactions of features to make the final prediction even more
accurate.

To benchmark clearly, our comparison centred on
classification accuracy, as this remains one of the most
commonly used and intuitive measures in assessing the
performance of ML models. Even though precision, recall, F1-
score, and log loss offer a nuanced view, accuracy lends itself to
simple use and easy interpretation for benchmark comparisons,
especially when aligning results with previously published
work.

When tested on a typical ICS gateway CPU (Intel Atom
x6413E, 4 cores, 8GB RAM), Random Forest had the lowest
inference latency (2ms median, 4ms p95) and the highest
throughput (450 events/s), using a moderate amount of CPU and
RAM. SVM and Stacking have greater delay rates (p50 up to
10ms for stacking), lesser throughputs, and much higher
resource usage, especially stacking (67% CPU, 950MB RAM).
Voting ensembles strike a balance: they have a bit more latency
and throughput than RF, but their CPU and RAM needs are
moderate. The chart in Figure 16 shows a visual comparison of
these results.
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Fig. 16.  Model performance comparison.

Table V provides the proposed stacking classifier's
classification accuracy, together with that of previous ML-based
predictive models published in the literature. The results clearly
indicate that the stacking method works well compared with
other methods that have been published, which further proves
that it can be used as a cutting-edge solution for similar
predictive modelling problems.

TABLE V. ACCURACY COMPARISON WITH VARIOUS PREDICTIVE
MODELS
RESEARCH TYPES OF MODELS USED ACCURACY
(%)

TARIQ AHAMED AHANGER,XGBOOST, ELASTIC NET IN A90%
ET AL, 2023 [30] HYBRID APPROACH

MRS. SATHYA T, ET AL, 2023XGBO0OOST CLASSIFIER 91.33%

[31]

WEIGHTED VOTING USING SVM87.20%
AND RF

HYBRID MODEL 1

HYBRID MODEL USING STACKING93.00%
CLASSIFIER

HYBRID MODEL 2

The findings support the idea that the proposed dual-layer
hybrid ensemble strategy is more effective than single-model
and simple ensemble strategies for CPS ransomware detection,
delivering high accuracy and lower false-positive rates under
realistic test conditions. Nevertheless, some limitations are also
noted. The framework's computational complexity can be an
obstacle to fast implementation on resource-limited CPS nodes,
and additional testing on more varied datasets will be required
to ensure efficient generalisation. In practice, the model can be
integrated into CPS infrastructure, enabling early response to
threats and securing important operations. However, smooth
interoperability with existing CPS devices may require specific
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middleware. These results highlight the potential and the
limitations that still exist in hybrid ensemble strategies for
promoting CPS cybersecurity.

V. CONCLUSION

The hybrid weighted voting model is a way to use the best
ideas from SVM and RF together. It can make models much
more reliable and better at classifying things. The model makes
sure that each classifier participates equally by giving the best
weights to each classifier's predictions. This is possible because
SVM operates with high-dimensional data, while RF can avoid
overfitting. The synergy that comes from this makes the
classification system more flexible and broad, which lowers the
rates of misclassification across many datasets. Also, the model
has a lower log loss, which signifies that the estimates of
probability are very accurate and can be used to make decisions
in serious situations. The weighted voting method can always be
changed to fit the needs of the datasets, which makes it work
better in many different situations. On the other hand, when used
separately, each of the classifiers may have trouble with certain
data issues, which makes the errors worse. The Stacking
Classifier system also improves prediction accuracy by stacking
several base models with the help of a meta-learner, which is
good for ensemble learning. It has high accuracy, sustained
balanced precision and recall, and strong cross-validation
consistency, which demonstrate its strength. It is also reliable
due to the low FPR and FNRs, particularly when the use is high-
stakes, and the cost of misclassification is high. The high F1-
scores report on the ability of this model to maintain an optimal
stability between precision and recall, and thus it is applicable in
the real world when it is required to make precise predictions.
Future directions will involve streamlining the model efficiency
of resource-constrained CPS nodes, the integration of adaptive
middleware to support the easy deployment of the model, and
unsupervised learning to deal with new ransomware types.
These guidelines will make the framework more practical and
resilient to protect the CPS infrastructure more safely.
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