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Abstract 

In this paper, we propose a deep learning-based visual analytics pipeline for next-generation environmental monitoring with multispectral 

and temporal remote sensing data. We used large-scale benchmark images (MODIS, Landsat-8, Sentinel-2 to record a wide range of the 

land-use/land-cover, vegetation cover, atmospheric and water-body features. The pre-processing pipeline consisted of noise filtering, 

normalization and dimensionality reduction through PCA to improve the quality of data and model parsimony. The key hyperparameters 

like learning rate, batch size and layers depth- of system were optimized with hybrid PSO optimization technique which enhanced the 

convergence behaviour and classification ability of model.Deep learning models, such as convolutional neural networks (CNNs) like 

VGG16, GoogleNet, and ResNet50, and transformer-based ones, have been used to extract spatial-temporal information out of the satellite 

images. The three different types of networks provided more generalization based on transfer learning to utilize the already trained 

ImageNet weights and then fine-tune them in the domain. The models proposed were tested in various environmental surveillance 

problems such as land-cover classification, vegetation health monitoring and detection of water-quality anomalies, which proved to be 

robust and adjustable to a variety of remote sensing problems.Experiments illustrate that ResNet50 can outperform other architectures 

in all datasets, i.e., it attains highest accuracy 95.2%, 94.6% and 90.8% for Sentinel-2, Landsat-8 and MODIS data sources, respectively 

with corresponding F1-score greater than 94% and AUC >0:96. These results demonstrate the successful application of optimized deep-

learning models, which can ensure real-time and scalable deployed monitoring with high precision for remote-sensing images. 
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I. INTRODUCTION  

With a long duration of extreme weather, rapid development, 
expanding urban sprawl, and environmental degradation the 
significance of surveillance is broader now.The accuracy and 
immediacy of information on land cover and the health Is of 
primordial importance in many fields, such as agriculture, 

forestry, city planning, water quality, and environmental 
protection [2] [3].Manual field measurements and low spatial 
resolution remote sensing products have reduced the 
geographical area of data substantially, broken the frequency of 
temporal cycles and output inputs Anthropogenic to this data has 
generally stagnated in contrast to traditional methods of 
monitoring. Future global-scale monitoring of environmental 
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change has been made possible thanks to advanced patterns 
involving high-resolution optoelectronic imaging Technology 
and whole clear ultra-thin substrates.The availability of 
extensive multispectral and time series data from recent satellite 
data sources such as MODIS, Landsat-8, and Sentinel-2 has 
greatly improved the extraction of critical environmental 
indicators on a continental scale [6]. Thanks to these devices and 
new analytical approaches, the field of environmental 
monitoring has gone from a descriptive science to a predictive 
one. 

Deep learning, a part of artificial intelligence, has been 
considered as an effective method for analyzing complicated 
data with many dimensions. Convolutional Neural Networks 
(CNNs) have shown strong capabilities in learning hierarchical 
features representations for image recognition and classification 
[7]. Deep learning methods should be capable of modelling 
complex spatial patterns and temporal processes in multispectral 
satellite images for environmental monitoring applications [8]. 
Nevertheless, successful application of these models depends on 
solving some challenges such as data preprocessing, feature 
extraction and hyperparameters tuning.  

A proper preprocessing step should enable the model to 
extract meaningful features quickly and cost-effectively 
machine learning. To enhance performance, the critical part of 
training a deep neural network is hyperparameter tuning. 
Traditional manual tuning is difficult and might not lead to the 
best results Hyperparameter.. We use a hybrid optimization 
technique such as Particle Swarm Optimization (PSO) to solve 
this problem. In this paper, we apply the algorithm of hybrid 
particle swarm optimization (HPSO) to effectively auto-find 
optimal hyper-parameters including learning rate, batch size and 
network depth. They aim to provide a well-organized 
performance structure end-of-life operation, and swarm 
intelligence rules enable localized refinement to be used, thus 
this combination includes global search as their major thrust or 
approach. Compared to other research approaches, this one 
ensures that deep learning models can reliably generalize from 
unseen data and attain high performance. Improvements to the 
environmental monitoring system and cleanup.  

The effectiveness and efficiency of environmental 
monitoring systems are enhanced when an increasing number of 
firms are involved. Environmental monitoring systems may be 
made more efficient and successful via the use of transfer 
learning. We may use learnt representations of features that 
correlate to environmental information by pretraining models on 
large-scale datasets like ImageNet and then re-training them 
using domain-specific satellite photos. In addition to improving 
classification accuracy, it reduces training costs and time [9, 10]. 
The three deep learning models used in this work are ResNet50, 
GoogleNet, and VGG16. They were advised to exploit their 
hierarchical feature extraction skills for the synthesis of 
complicated bouncing point data, namely depth. Full 
comprehension of environmental situations is achieved by 
seamlessly integrating models for presenting the pattern using 
CNN with models for analyzing spatio-temporal patterns, which 
are akin to transformer-like networks.  

At all times, a standard definition of measurement is 
adequate; preferably, it should be expressed in terms of the 
highest feasible recording accuracy for categorization purposes. 
Traditional measures of performance including F1-score, Area, 

Accuracy, and Precision Over all measurements, area under the 
ROC curve (AUC) In environmental anomaly detection, these 
statistics provide an important assessment criteria that is also 
appropriate when attempting to optimize among models without 
skewing toward false positives or false negatives. These models 
have shown to be very effective in a variety of environmental 
monitoring applications, including land cover mapping, 
vegetation health assessment, water quality anomaly 
identification, and other tasks.  

The importance of these characteristics for ecologists, 
resource managers, and policymakers lies in the fact that they 
allow for the effective application of rapid solutions. In this 
research, we provide a system for real-time environmental 
monitoring that can be scaled up using a combination of deep 
learning models and data from large-scale remote sensing 
images. To address the issue of insufficient processing capacity 
on individual nodes, the framework is built as a feed-forward 
network that uses cascaded data parallelism. Additionally, it 
draws from a multi-task learning network to learn the associated 
functions for each task and to build new tasks based on the user's 
needs. This approach could function with inputs from satellites 
with vastly diverse spectral characteristics and geographic 
resolutions, such MODIS, Landsat-8, and Sentinel-2 products 
that make up the dataset. Sentinel-2, Landsat-8, and MODIS 
provide optical images with high resolution and comprehensive 
multispectral observations. They also have a high return 
frequency, allowing researchers to repeatedly examine the 
environment as it changes. By incorporating data into deep 
learning visual analytics, the framework is able to overcome the 
shortcomings of conventional monitoring systems and provide a 
quick, accurate, and efficient automated monitoring solution. 

Finally, we provide a versatile framework for environmental 
monitoring that makes use of state-of-the-art deep learning 
models, high-resolution remote sensing data, hyperparameter 
tweaking, and transfer learning, all with the support of cloud 
resources. The real-time monitoring, decision-making 
assistance, and sustainable management of natural resources 
have all been greatly enhanced by the framework's high 
accuracy and effective feature extraction across several distinct 
environmental domains. The next generation of environmental 
monitoring can easily adapt the extensible workflow, 
preprocessing, and deep learning models based on hybrid 
optimization to new dataset applications. 

The given framework could be further framed in terms of 
answering such crucial environmental concerns as deforestation, 
water pollution, urban sprawl, and climate variability that are 
crucial issues in sustainability of ecosystem management. 
Multispectral and temporal remote sensing data will allow 
monitoring the loss of vegetation, monitor the alterations in 
land-use pattern, and identify pollutants in surface water bodies 
with a high level of spatial accuracy. The temporal analysis also 
assists in evaluating of the seasonal changes and the long term 
climatic effects on the natural resources. With these capabilities, 
the proposed framework will improve the early warning systems 
and evidence-based decision-making in relation to 
environmental policy and planning. 

II. LITERATURE REVIEW 

Environmental observation is an essential characteristic for 
sustainable management that attempts to confront the natural 
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resources in an optimum manner and limit the harmful effects 
on ecosystems due to human intervention. In the very latest 
years, they started thinking how to include AI, ML and DL in 
order monitor environment which pave new ways for data-
driven-decision making. Here, we weigh as we would the 
relative, precision, scalability and predictive value of these 
techniques over conventional environmental diagnostics. 

Satellite-based remote sensing has now become an 
indispensable tool for monitoring of environment. Platform 
developments such as Google Earth Engine have made it 
increasingly easier to analyse multi-spectral and time-series data 
at regional scales. Nigar et al. [11] compared a variety of ML 
and DL algorithms models to land classification on Google 
Earth Engine in Python, they observed that deep learning 
techniques actually produces better results compared to these 
machine methods such as it has capability to handle 
heterogeneous landscapes. Similarly, Satti et al. [12] employed 
MODIS satellite data to study climate change impact on 
vegetation and snow in Gilgit-Baltistan and showed how remote 
sensing with AI methods can detect subtle environmental 
changes over time. These results demonstrate the capability of 
DL-enabled visual analytics for large spatiotemporal data 
analysis specifically in environmental applications. 

AI has also been used in toxicology to predict and track 
environmental pollutants. Singh et al. [13] presented a case 
study on using AI techniques for groundwater contamination 
prediction and demonstrated the ability of NN models together 
with ensemble learning algorithms to capture the complexity of 
the hydrological phenomena. Such early warning predictive 
models assist in proactive water management practices and 
minimize public health risks due to pollutants. Motivated by this 
method, Panigrahi et al. [22] introduced a machine learning 
based drinkability prediction by utilizing the parameters of 
quality for groundwater; they further used combination models 
to improve the reliability of predictions. These systems are a 
neat example of how AI could work as an early warning for 
environmental threats. 

Deep learning techniques have been more and more widely 
used in high-resolution image processing for realtime 
environmental monitoring. Joshi et al. [14] introduced a multi-
model deep learning system to detect early pile fire in aerial 
images, and showed real-time discovery of potential risks with 
few false alarms. CNNs and ensemble learning were applied in 
the study which indicated that visual analytics has the ability to 
identify those environment abnormities not easily captured by 
naked-eye observation. Similarly, Lou et al. [15] proposed DC-
YOLOv8 model, a lightweight object detection framework 
suitable for camera types of sensors which allows monitoring 
small objects in environment. Miao et al. [16] enhanced the 
lightweight RetinaNet model and the one-stage detectors for 
ship detection in SAR images, demonstrating that deep learning 
models are of promise for automatic surveillance and 
monitoring environmental phenomena. 

AI has also been used in water quality monitoring. Zhang et 
al. [17] used UV–Vis spectrometry with artificial neural 
networks for online monitoring of water quality in river 
confluences. This combined model also facilitates the real-time 
estimation of WQI parameters and responses on a constant basis 
which may help in early warning. Rane et al. [20].The time for 
the extension of this vision included enhanced generative AI 

models for water and air pollution monitoring. Here As 
explained in Section II, However, these models now encompass 
large-scale dynamic environmental management by 
dynamically interpreting and responding to data from near real-
time environmental change processes. 

The AI Models’ predictions drove pollution control, and 
adopted strategies for adapting to climate changes in future. Ye 
et al. [18]. They offered a comprehensive specification of AI’s 
application to solving environmental problems, concentrating 
on pollution forecasting, emission control with machine learning 
and deep learning technologies. Ma et al. [24] ANNs predict 
pollutant emissions from waste-to-energy plants in China quite 
well, and are worthy of consideration with such accuracy for 
emissions forecasting. This is of interest to manufacturers who 
need to take measures to comply with environmental protection 
laws, and who release particulate matter into the air during their 
manufacturing processes, for example. 

For AI in environmental monitoring beyond a single data set, 
these works include data fusion and ensemble learning. Nguyen 
et al. [25] They used a combination of neural networks and the 
Boosting ensemble method for representing groundwater 
potential in Vietnam, which should be able to tackle the many 
nonlinear relationships among bio-environmental variables. In 
the same way, Majhi et al. [23] AI combined with MO were used 
for predicting earthquake magnitude. This again goes back to the 
great application case of AI and metaheuristic optimization in 
environmental hazard prediction. “Marhain et al. [26] ” 
Additionally, they demonstrated the usefulness of the predictive 
model by integrating AI into earthquake prediction in 
Terengganu; hence, this field may be of use to those in charge 
of managing natural disasters.  

AI-enabled environmental monitoring no longer has to 
worry about issues of scalability and adaptability thanks to 
cloud-based visual analytics tools. There are uses for this; 
environmental monitoring was one area where Shalu et al. [21] 
highlighted its potential (both theoretically and practically). On 
the other hand, academics and policymakers may use these kinds 
of tools to understand the intricacies of systems in a dynamic 
context based on data. In order to conduct long-term continuous 
observation, the programming is designed to facilitate the 
effective exploitation of high-dimensional real-world 
environmental data sensor measurements, including satellite 
photos and historical information.  

A key issue in environmental monitoring is the trade-off 
between computing efficiency and model complexity. The 
enhanced RetinaNet [16] and DC-YOLOv8 [15] are two 
examples of lightweight neural network topologies that may 
construct real-time surveillance systems in low-resource 
contexts. This is particularly true given the current need for 
computationally efficient systems that nevertheless possess 
predictive capability in several real-world applications, such as 
aerial surveillance and tiny item target identification and 
response.  

The use of ensemble (and hybrid) models for environmental 
prediction often results in higher quality assessment ratings as 
well. By further assembling, Joshi et al. [14] found that the 
frequency of false positives may decrease and the model's 
resilience could increase, leading them to propose a Deep 
Learning model Ensemble for improved early heap fire 
detection. Pantigrahi and colleagues [22] Hybrids are able to 
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handle many types of environmental data volatility, leading to 
more reliable outcomes statistically.  

As of late, researchers have been looking at explainable AI 
and generative AI as possible ways to make environmental 
monitoring data more interpretable. The study conducted by 
Rane et al. [20] identified generative models as one of the top 
eight methods for enhancing context-aware systems with 
advanced models. These models are particularly valuable when 
it comes to reporting on industrial CPS, which is the opposite of 
development automation. The ability of AI to not only decipher 
model projections but also to provide practical suggestions is 
gaining prominence in environmental decision-making. The 
need for openness and responsibility in Western political 
systems is driving this trend. Our own policymaking in the 
future will be significantly impacted by these demands.  
Also has potential use in environmental monitoring to aid in 
disaster preparedness and climate change adaption. When it 
comes to understanding and predicting climate-influenced 
environmental change, Satti et al. [12] showed that AI has an 
impact on snow and plants. Ye et al. [18] made similar claims, 
stating that AI-supported visual analytics would ultimately 
promote sustainable development methods, in addition to its use 
in pollution governance and resource utilization (Table I).  

The literature overwhelmingly points to the fact that 
environmental monitoring is undergoing a sea change due to the 
deep learning visual analytics architecture. Optical sensors 
integrated into a remote sensing network provide large-scale, 
real-time monitoring of: landscapes (including land use, water 
quality, acute pollution levels, biohazards, and catastrophe risk 
assessment), with the ability to provide both real-time alarms 
and post-event forensics.  

TABLE I.   COMPARATIVE SUMMARY OF RECENT AI/DL STUDIES FOR 

ENVIRONMENTAL MONITORING 

Study 

(Author & 

Year) 

Technique / 

Model Used 

Key Findings / Outcomes 

Nigar et 

al. [11] 

ML & DL models 

(CNN, RF, SVM) 

Deep learning outperformed 

traditional ML methods in handling 
heterogeneous landscapes, achieving 

higher accuracy and generalization. 

Satti et al. 

[12] 

AI-based 
spatiotemporal 

modeling 

Detected subtle vegetation and 
snow-cover variations due to climate 

change, validating DL’s capability 

in long-term environmental 
monitoring. 

Singh et 

al. [13] 

Neural Networks & 

Ensemble Learning 

Achieved high predictive accuracy 

for groundwater contamination, 
enabling early warning and 

improved water management 

strategies. 

Joshi et al. 

[14] 

CNN + Ensemble 
Deep Learning 

Provided real-time fire detection 
with reduced false alarms, 

highlighting DL’s strength in 

anomaly identification and visual 
analytics. 

Lou et al. 

[15] 

DC-YOLOv8 

(lightweight object 
detection) 

Demonstrated efficient small-object 

detection in real time, suitable for 
scalable and low-resource 

environmental monitoring systems. 

 
Concurrently, detailed reports our models not only achieve 

unprecedented efficiency and accuracy in predicting, but they 
are also easily interpretable, providing entrepreneurs, 

developers, and government policymakers with practical inputs. 
With these innovations, we are moving away from antiquated 
methods of environmental monitoring and toward data-driven, 
AI-powered solutions that can handle the challenges of modern 
environmental management. HSD plus other broad 
assumptions: Use and adaption of huge data sources should be 
part of future development. We also need a better model and 
simpler deployment on scalable cloud platforms that can handle 
real-time environmental monitoring and sophisticated analytics. 

III. METHODOLOGY 

The research process (Figure 1) begins with the selection of 
large-scale benchmark remote-sensing datasets such as MODIS, 
Landsat-8, and Sentinel-2, which provide multispectral and 
temporal data essential for environmental monitoring. These 
datasets capture diverse land-use, vegetation, atmospheric, and 
water-body features across varying resolutions. The initial stage 
involves data preprocessing, including noise filtering to remove 
sensor-specific and atmospheric distortions, normalization to 
scale spectral features across bands, and dimensionality 
reduction techniques such as Principal Component Analysis 
(PCA). To optimize the models’ efficiency we employed the 
Parameter Optimization through Hybrid Particle Swarm 
Optimization (HPSO). HPSO jointly optimizes 
hyperparameters, such as, learning rate, batch size, and layers to 
train the model and improves classification accuracy. Then the 
fine tuning of optimized parameters for Classification Model 
Building is performed using efficacious deep learning models 
such as VGG16, GoogleNet and ResNet50 for feature extraction 
and classification. 

After data cleaning and reorganizing, the processed data 
flows into deep learning models, which include CNN-based 
model (VGG16, GoogleNet and ResNet50) for feature 
extraction in spatial way and transformer-based model in 
spatiotemporal space. Transfer learning is used by initiating with 
pretrained weights from ImageNet and fine-tuning on satellite 
images, contributing to better generalization. Hyperparameter is 
explored via and adaptive search of the best learning rate, batch 
size, and layer depth for all models. 

We benchmark the trained models in a number of 
environmental monitoring applications such as land-cover 
mapping, vegetation health estimation and water quality 
anomaly detection. Performance evaluation metrics include 
Accuracy, Precision, Recall, F1-score, and AUC, ensuring 
robust validation across both training and unseen test datasets. 
This structured methodology provides a scalable framework for 
real-time environmental monitoring through deep learning-
driven visual analytics. 

A. Data Preprocessing 

1) Data Preprocessing – Noise Filtering 
The noise reduction processing is an important pre-

processing method in the field of remote sensing and it can 
improve quality reliability of the satellite image. Raw sensor-
derived data such as MODIS, Landsat-8 and Sentinel-2 are 
primarily affected by atmospheric perturbations, geometric 
distortions of sensors, randomness in noise as well as the noise 
induced by cloud masking which degrades the accuracy of 
classification. Random fluctuations are suppressed, while 
important spectral and spatial content of the spectra is preserved 
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by applying a filtering technique (i.e., median filter, Gaussian 
smoothing and wavelet denoising). This process improves the 
signal to noise ratio, decreases artifacts and allows the feature 
extraction from further processing and deep learning models to 
perform on clean, well represented data which ultimately results 
in robust environmental monitoring outcomes. 

 
Fig. 1. Deep Learning-Driven Visual Analytics Framework for Environmental 

Monitoring Using Remote-Sensed Datasets 

2) Normalization 
In urban remote sensing, the features of urban remote 

sensing data are with different scales and units, thus 
normalization is necessary to compare them. It scales pixel 
values (independently for each channel) to the 0-1 range and/or 
standardizes input data to have mean of 0 and variance of 1. This 
suppresses large ranges of numbers which make your model 
numerically unstable and training not possible. For satellite 
images such as Landsat-8, MODIS and Sentinel-2, 
normalization will enhance the comparability of features cross 
different bands to capture more consistent global information, 
their gradient based learning stability and have better 
performance in environmental monitoring applications where 
land cover changes are needed to be analyzed. 

 Min–Max normalization: 

x′ =
X − Xmin

Xmax − Xmin
 

scales values to a range [0, 1]. 

 Z-score normalization: 

x′ =
x − μ

σ
 

centers data around zero mean with unit variance. 
These transformations ensure consistency in the spectral 
response functions of Landsat-8, MODIS, and Sentinel-2 bands, 
which increase the accuracy of land cover classification for 
environment monitoring purposes. 

B. Dimensionality Reduction – PCA Algorithm 

The work of dimensionality reduction has been an age-old 
subject especially in remote sensing, where we have 
multispectral or hyperspectral imagery having hundreds of 
correlated channels. The PCA algorithm is one of the most 
popular method used in reducing data redundancy while 
preserving maximum variance. PCA converts the original bands 
of the spectral into a new set of uncorrelated variables called 
principal components (PC’s) with decreasing explanation of 
variance. For such significance, in satellite imagery like 
MODIS, Landsat-8 and Sentinel-2, PCA can decrease 
computational load, reduce noise and increase informative 
spectral patterns for environmental monitoring applications. For 
instance, the first several principal component (PCs) reflect the 
major land cover and vegetation features, while later PCs reflect 
subtle or noisy ones. To fully leverage the powerful of deep 
learning, PCA can be used to select informative PCs, such that 
the output from deep models can efficiently training and have 
no overfitting and more accuracy for land classification, 
vegetation health monitoring as well as anomaly detection tasks. 

C. Parameter Optimization using HPSO 

For the deep CNN-based intrusion detection models, 
(VGG16, GoogleNetand ResNet50), the hyper-parameters must 
be painstakingly adjusted to balance the training cost with 
classification accuracy. Crucial to our method is that this choice 
of design parameters is automatized with respect to the network 
depth and complexity, realized by our Hybrid Particle Swarm 
Optimization (HPSO) optimizer, which retrieves (for any given 
network) themost promising architectures. 

The initial hyperparameter tuning method is called the 
hybrid PSO optimization technique and is based on the global 
search capabilities of Particle Swarm Optimization (PSO) in 
addition to local optimization strategies, usually based on 
gradient-based or heuristic search methods, to find the correct 
solution more quickly and precisely. The hybrid variant balances 
exploration and exploitation unlike conventional PSO that can 
get stuck in local minima. It is more efficient at dealing with 
high-dimensional non-convex search spaces than Bayesian 
optimization, but requires explicit reasons why it is novel and 
how it works. 

The synergy between hybridization procedure and PSO that 
unify opposing strategies. The update of PSO core is responsible 
for modifying particles positions and velocities to regulate the 
search. An additional genetic term applies crossover and 
mutation every five generations for more exploration in order to 
prevent premature convergence. A local search additionally 

MODIS, LANDSAT-8 and SENTINEL-2  data 
Set

Data Preprocessing- Noise Filtering

Dimension Reduction- PCA 
Algorithm

Parameter Optimization using 
HPSO

Classifiation Model Building- VGG16, GoogleNet, 
ResNet50

Training and Testing of classification Model

Environment Monitoring- Land Cover classification,, 
water quality assessment etc

Performance Comparison- Accuracy, 
Precision,Recall



Sammy F. et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 114 –122(2025) 

 

119 

utilizes the global best solution using Gaussian perturbations 
every three iteration. Finally, the adaptive inertia ranges between 
0.4 and 0.9 which will drive more exploration in early stages and 
exploitation at later then ulterior stages that are effective for 
hyperparameter optimization. 

Each particle (hyperparameter vector) is evaluated by 
training the model for 10–15 early-stop epochs on a validation 
split of the dataset. The fitness score is defined as: 

J(x)=0.5×F1+0.3×Recall+0.2×Precision−0.1×Training Time 

This ensures balanced optimization between detection 

capability and computational cost. 

HPSO Algorithm: 

1. Initialization: 
o Generate a swarm of particles with random 

hyperparameters within model-specific 

ranges. 

2. Model-Specific Training: 
o For each particle: 

 Train VGG16, GoogleNet, or 

ResNet50 with encoded 

hyperparameters. 

 Record validation metrics. 

3. Update Step (PSO): 
o Update velocity/position based on pbest and 

gbest. 

4. Hybrid Enhancement: 
o Apply crossover/mutation every 5 iterations. 

o Run local search on gbest every 3 iterations. 

5. Convergence Check: 
o Stop if no improvement for 10 iterations or 

after max iterations (e.g., 50). 

6. Final Training: 
o Retrain the best model with selected 

hyperparameters on the full training set. 

o Evaluate on test set for final IDS 

performance. 

D. Classification Model- VGG16, GoogleNet, ResNet50 

The Visual Geometric Group, affiliated with Oxford 
University, proposed the 16-layer VGG-16 network. The 
trainable parameters are included inside these sixteen 
convolutional layers. The Max pool layer and subsequent layers 
lack trainable parameters. Simonyan and Zisserman's concept 
secured first place in the 2014 Visual Recognition Challenge 
(ILSVRC-2014). The VGG16 model, when trained on a large-
scale ImageNet dataset, achieved a top-1 error rate of 28.1% and 
a top-5 error rate of 9.3%. A notable characteristic of VGG16 is 
its capacity to learn hierarchical features across several levels of 
abstraction by employing a series of small 3x3 convolutional 
filters. The architecture has sixteen layers, consisting of thirteen 
convolutional layers and three fully connected layers. The layers 
are organized into blocks, and the network architecture can be 
summarized as follows:  

 Input Layer: The network takes an input image with a fixed 
size (e.g., 224x224 pixels). 

Convolutional Blocks: The network consists of five sets of 
convolutional layers, each followed by a max pooling layer. 
Each convolutional layer applies a 3x3 filter and stride of 1 to 
the input feature maps, followed by a ReLU activation function 
to introduce non-linearity. The number of filters in each 
convolutional layer increases as we go deeper into the network.   

Max Pooling Layers: After each set of convolutional layers, 
a max pooling layer with a 2x2 window and a stride of 2 is 
applied to reduce the spatial dimensions of the feature maps and 
help in capturing more robust features.   

Fully Connected (FC) Layers: After the last max pooling 
layer, the network has three fully connected layers. The fully 
connected layers act as a classifier, taking the high-level features 
learned by the convolutional layers and transforming them into 
class probabilities. The last fully connected layer has units equal 
to the number of classes which are 1000 in ImageNet dataset and 
uses the softmax activation function to produce class 
probabilities. 

GoogleNet, developed by scholars at Oxford University, was 
introduced in 2014 as a Convolutional Neural Network (CNN). 
This 22-layer deep neural network has surpassed all prior 
accuracy benchmarks on the ImageNet Dataset. The Inception 
architecture employs a mix of 1x1, 3x3, and 5x5 convolutions to 
minimise the amount of parameters in the network. It is an 
altered iteration of the traditional convolutional neural network. 
To further reduce the error rate, the GoogLeNet architecture 
employs an auxiliary classifier. This classifier aims to reduce the 
error rate by providing the network with enhanced supervision; 
it is integrated with the network at various stages.  

ResNet50 is a quintessential member of the ResNet family 
of deep learning architectures. The 2015 ImageNet Large-Scale 
Visual Recognition Challenge (ILSVRC) was won by 
ResNet50, a 50-layer deep convolutional neural network created 
by Microsoft Research. ResNet50 is trained using the ImageNet 
Dataset, which has millions of images over 1000 categories. 
Each of ResNet50's fifty convolutional layers is succeeded by a 
batch normalisation layer, an activation layer utilising rectified 
linear units (ReLUs), and a maximum pooling layer. The 
convolutional layers grouped into five separate phases. Each 
stage comprises 10 levels and is interconnected to the 
subsequent level by shortcut links. To enhance the network's 
information quality, these shortcuts create a direct link between 
two non-adjacent layers.  

To reduce the network's depth and enhance accuracy, 
ResNet50 employs ResNet blocks, which are assemblies of 
convolutional layers using identity mapping. This model is 
favoured by several deep learning practitioners because to its 
exceptional performance across various workloads. Due to its 
prior training on a large and diverse dataset, ResNet50 is well-
suited for transfer learning. It acquires new duties effortlessly 
and implements minor modifications. The shallow construction 
facilitates the adjustment of weights. ResNet50 is an outstanding 
choice for transfer learning. A proficient approach for 
seamlessly achieving optimal performance on a new task is 
transfer learning utilising ResNet50. 
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IV. RESULT ANALYSIS AND DISCUSSION 

Deep learning models were benchmarked on satellite data 
sets and their performance evaluated. With MODIS coarse 
spatial resolution but high temporal frequency data, and with 
Landsat-8 and Sentinel-2 medium to high spatial resolution 
multispectral imagery. The datasets were preprocessed and 
dimensionality was reduced before being used to train the 
VGG16, GoogleNet and ResNet50 models. 

Comparative results are reported in Table II, Fig.2, Fig.3, 
Fig.4, Fig.5 and Fig.6. For Sentinel-2 image, VGG16 reported 
an accuracy of 92.1% with F1-score 91.4% and GoogLeNet 
outperformed with the accuracy and F1 score i.e., 93.7%, 92.9%. 
The highest performance was achieved by ResNet50 with 95.2% 
accuracy, 94.5% precision, 94.1% recall and a balanced F1-
score of 94.3%. Similar results can be seen for the Landsat-8 
dataset, where ResNet50 is again superior to all models based 
on its residual connections which enhance feature flow. 

On MODIS data, the accuracies were somewhat lower 
(88%−91%) because of its coarse spatial resolution, but again 
the models proved capable of capturing temporal patterns, 
especially in vegetation dynamics. Once again, it was the 
ResNet50 that outperformed model with an accuracy and F1 
score of 90.8% and 90.1%, respectively. 

TABLE II.  PERFORMANCE COMPARISON OF DEEP LEARNING MODELS 

ON ENVIRONMENTAL MONITORING 

Dataset Model Accur

acy 

(%) 

Precisio

n (%) 

Recal

l (%) 

F1-

scor

e 

(%) 

AU

C 

Sentinel

-2 

VGG16 92.1 91.0 91.8 91.4 0.94 

GoogleNet 93.7 92.6 93.1 92.9 0.96 

ResNet50 95.2 94.5 94.1 94.3 0.97 

Landsat
-8 

VGG16 91.3 90.7 90.2 90.4 0.93 

GoogleNet 92.5 91.8 91.4 91.6 0.95 

ResNet50 94.6 93.5 92.8 93.1 0.96 

MODIS VGG16 88.2 87.1 86.8 86.9 0.91 

GoogleNet 89.7 88.5 88.0 88.2 0.92 

ResNet50 90.8 90.2 89.9 90.1 0.94 

 

Fig. 2. Accuracy Comparison across models and data sets for environmental 

monitoring 

 

 

Fig. 3. Precision Comparison across models and data sets for environmental 

monitoring 

 

Fig. 4. Recall Comparison across models and data sets for environmental 

monitoring 

 
Fig. 5. F1 score Comparison across models and data sets for environmental 

monitoring 
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Fig. 6. AUC Comparison across models and data sets for environmental 

monitoring 

We compare the performances of Deep Learning models 
VGG16, GoogleNet and ResNet50 on three benchmarking 
remote sensing datasets namely Sentinel-2, Landsat-8 and 
MODIS concentrating on crucial metrics such as Accuracy, 
Precision, Recall, F1-score and AUC. 

All three models also performed well on the high-resolution 
multispectral data from Sentinel-2. A classification accuracy of 
92.1%, the F1-score was 91.4%, and AUC equaled 0.94 were 
achieved with VGG16, which illustrated a good performance in 
classifying breast tumors mechanisms in future researches. 
GoogleNet even did better, with 93.7% accuracy and 92.9 F1 
score, due to the Inception modules for effective multi-scale 
spatial feature extraction. ResNet50 has surpassed both these 
models under all the metrics, with an accuracy of 95.2%, F1-
score of 94.3% and AUC score of 0.97; this implies that residual 
connections are more capable in surrendering a more complex 
spectralspatial patterns for the learning process. 

For Landsat-8, a similar behaviour of NDWI was reported in 
which there is a correlation between the relative estimated forest 
cover and NDWI. VGG16 achieved the accuracy of E(91.3%) 
and F1-Score(E:90.4%), GoogleNet scored higher with a 92.5% 
accuracy, and ResNet50 results in the highest scores (E:94.6%, 
F1-score: E=93.1%) indicating that Resnet50 model is resilient 
across datasets of different sizes as those with lower resolution 
were validated on smaller images resulting into high score.. 

Overall performance was reduced slightly on the coarse 
resolution MODIS data because of its lower spatial detail. While 
achieving other accuracy values (e.g., 88.2% from VGG16, 
89.7% GoogleNet et al., and 90.8% ResNet50), F1-scores varied 
between 86.9–90.1%, and AUC values of up to 0.94 assured 
classification success rates for this task as well. Nevertheless, 
the ResNet50 performed systematically better than other models 
supporting the idea of its potential to model complex spectral 
and temporal information even from coarse-scale imagery. 

Altogether, ResNet50 showed better results on all datasets 
used in this work compared to VGG16 and GoogleNet that 
however gave competitive but slightly smaller results, 
emphasizing the crucial role of deep residual learning for such 
large-scale environmental monitoring problems. 

V. CONCLUSION AND FUTURE WORK 

In this paper, a deep learning-based visual data analytics 
framework for near real-time environmental monitoring is 
presented using state-of-the-art high-resolution remote-sensing 
observations like MODIS, Landsat-8 and Sentinel-2. With data 
noise preprocessing and hyper-parameters optimization (such as 
filtering data noise, normalization and PCA with hybrid 
PSO(HPSO)), the framework is robust and adaptable to different 
environmental monitoring applications. In the present Deep 
Learning era, VGG16, GoogleNet and ResNet50 model-based 
representation is also obtained to facilitate the transfer learning 
and spatiotemporal feature extraction by DL influence in order 
to get the accurate classification performance for LC 
identification, VH monitoring and WQ anomaly detection [14]. 
Our framework archive high accuracies over 95%, 94% and 
90% for Sentinel-2, Landsat-8 and MODIS, respectively 
coupled with a strong F1-score and AUC to confirm the 
applicability of the enabling framework in real-world 
environmental monitoring. Nevertheless, the proposed 
framework is very computationally intensive in training and can 
have lower performance on the application to heterogeneous or 
low-quality data. Furthermore, its reliance on pretrained 
ImageNet models can be a constraint on its flexibility to 
previously unseen domains of the environment. 

Future studies will focus on enhancing the model's flexibility 
and expanding its capability to real-time monitoring dynamic 
environment events. The utilization of other sensor modalities 
(LiDAR, hyperspectral data) also increases feature 
representation and anomaly detection on complex ecological 
habitats. It is also noted that the proposed lightweight design and 
edge computing-based strategy are designed for rapid on-the-fly 
environment scanning. The incorporation of explainable AI 
techniques may additionally enhance the interpretability of 
models, thereby contributing to actionable insights for policy 
makers and environmental managers. The proposed approach 
provides an automated, scalable and high-accuracy means of 
environmental monitoring that has enormous promise for 
resource management sustainable development activities 
disaster risk reduction and climate resilience building action. 
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