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Abstract

In this paper, we propose a deep learning-based visual analytics pipeline for next-generation environmental monitoring with multispectral
and temporal remote sensing data. We used large-scale benchmark images (MODIS, Landsat-8, Sentinel-2 to record a wide range of the
land-use/land-cover, vegetation cover, atmospheric and water-body features. The pre-processing pipeline consisted of noise filtering,
normalization and dimensionality reduction through PCA to improve the quality of data and model parsimony. The key hyperparameters
like learning rate, batch size and layers depth- of system were optimized with hybrid PSO optimization technique which enhanced the
convergence behaviour and classification ability of model.Deep learning models, such as convolutional neural networks (CNNs) like
VGG16, GoogleNet, and ResNet50, and transformer-based ones, have been used to extract spatial-temporal information out of the satellite
images. The three different types of networks provided more generalization based on transfer learning to utilize the already trained
ImageNet weights and then fine-tune them in the domain. The models proposed were tested in various environmental surveillance
problems such as land-cover classification, vegetation health monitoring and detection of water-quality anomalies, which proved to be
robust and adjustable to a variety of remote sensing problems.Experiments illustrate that ResNet50 can outperform other architectures
in all datasets, i.e., it attains highest accuracy 95.2%, 94.6% and 90.8% for Sentinel-2, Landsat-8 and MODIS data sources, respectively
with corresponding F1-score greater than 94% and AUC >0:96. These results demonstrate the successful application of optimized deep-
learning models, which can ensure real-time and scalable deployed monitoring with high precision for remote-sensing images.

Keywords: Deep Learning, Remote Sensing, Environmental Monitoring, Convolutional Neural Networks (CNNs), Transfer
Learning, Hyperparameter Optimization, Multispectral Imagery.

Received: October 04", 2025 / Revised: December 18", 2025/ Accepted: December 29™, 2025 / Online: December 31%, 2025
forestry, city planning, water quality, and environmental
protection [2] [3].Manual field measurements and low spatial
resolution remote sensing products have reduced the

I.  INTRODUCTION
With a long duration of extreme weather, rapid development,

expanding urban sprawl, and environmental degradation the
significance of surveillance is broader now.The accuracy and
immediacy of information on land cover and the health Is of
primordial importance in many fields, such as agriculture,

geographical area of data substantially, broken the frequency of
temporal cycles and output inputs Anthropogenic to this data has
generally stagnated in contrast to traditional methods of
monitoring. Future global-scale monitoring of environmental
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change has been made possible thanks to advanced patterns
involving high-resolution optoelectronic imaging Technology
and whole clear ultra-thin substrates.The availability of
extensive multispectral and time series data from recent satellite
data sources such as MODIS, Landsat-8, and Sentinel-2 has
greatly improved the extraction of critical environmental
indicators on a continental scale [6]. Thanks to these devices and
new analytical approaches, the field of environmental
monitoring has gone from a descriptive science to a predictive
one.

Deep learning, a part of artificial intelligence, has been
considered as an effective method for analyzing complicated
data with many dimensions. Convolutional Neural Networks
(CNNs) have shown strong capabilities in learning hierarchical
features representations for image recognition and classification
[7]. Deep learning methods should be capable of modelling
complex spatial patterns and temporal processes in multispectral
satellite images for environmental monitoring applications [8].
Nevertheless, successful application of these models depends on
solving some challenges such as data preprocessing, feature
extraction and hyperparameters tuning.

A proper preprocessing step should enable the model to
extract meaningful features quickly and cost-effectively
machine learning. To enhance performance, the critical part of
training a deep neural network is hyperparameter tuning.
Traditional manual tuning is difficult and might not lead to the
best results Hyperparameter.. We use a hybrid optimization
technique such as Particle Swarm Optimization (PSO) to solve
this problem. In this paper, we apply the algorithm of hybrid
particle swarm optimization (HPSO) to effectively auto-find
optimal hyper-parameters including learning rate, batch size and
network depth. They aim to provide a well-organized
performance structure end-of-life operation, and swarm
intelligence rules enable localized refinement to be used, thus
this combination includes global search as their major thrust or
approach. Compared to other research approaches, this one
ensures that deep learning models can reliably generalize from
unseen data and attain high performance. Improvements to the
environmental monitoring system and cleanup.

The effectiveness and efficiency of environmental
monitoring systems are enhanced when an increasing number of
firms are involved. Environmental monitoring systems may be
made more efficient and successful via the use of transfer
learning. We may use learnt representations of features that
correlate to environmental information by pretraining models on
large-scale datasets like ImageNet and then re-training them
using domain-specific satellite photos. In addition to improving
classification accuracy, it reduces training costs and time [9, 10].
The three deep learning models used in this work are ResNet50,
GoogleNet, and VGG16. They were advised to exploit their
hierarchical feature extraction skills for the synthesis of
complicated bouncing point data, namely depth. Full
comprehension of environmental situations is achieved by
seamlessly integrating models for presenting the pattern using
CNN with models for analyzing spatio-temporal patterns, which
are akin to transformer-like networks.

At all times, a standard definition of measurement is
adequate; preferably, it should be expressed in terms of the
highest feasible recording accuracy for categorization purposes.
Traditional measures of performance including F1-score, Area,
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Accuracy, and Precision Over all measurements, area under the
ROC curve (AUC) In environmental anomaly detection, these
statistics provide an important assessment criteria that is also
appropriate when attempting to optimize among models without
skewing toward false positives or false negatives. These models
have shown to be very effective in a variety of environmental
monitoring applications, including land cover mapping,
vegetation health assessment, water quality anomaly
identification, and other tasks.

The importance of these characteristics for ecologists,
resource managers, and policymakers lies in the fact that they
allow for the effective application of rapid solutions. In this
research, we provide a system for real-time environmental
monitoring that can be scaled up using a combination of deep
learning models and data from large-scale remote sensing
images. To address the issue of insufficient processing capacity
on individual nodes, the framework is built as a feed-forward
network that uses cascaded data parallelism. Additionally, it
draws from a multi-task learning network to learn the associated
functions for each task and to build new tasks based on the user's
needs. This approach could function with inputs from satellites
with vastly diverse spectral characteristics and geographic
resolutions, such MODIS, Landsat-8, and Sentinel-2 products
that make up the dataset. Sentinel-2, Landsat-8, and MODIS
provide optical images with high resolution and comprehensive
multispectral observations. They also have a high return
frequency, allowing researchers to repeatedly examine the
environment as it changes. By incorporating data into deep
learning visual analytics, the framework is able to overcome the
shortcomings of conventional monitoring systems and provide a
quick, accurate, and efficient automated monitoring solution.

Finally, we provide a versatile framework for environmental
monitoring that makes use of state-of-the-art deep learning
models, high-resolution remote sensing data, hyperparameter
tweaking, and transfer learning, all with the support of cloud
resources. The real-time monitoring, decision-making
assistance, and sustainable management of natural resources
have all been greatly enhanced by the framework's high
accuracy and effective feature extraction across several distinct
environmental domains. The next generation of environmental
monitoring can easily adapt the extensible workflow,
preprocessing, and deep learning models based on hybrid
optimization to new dataset applications.

The given framework could be further framed in terms of
answering such crucial environmental concerns as deforestation,
water pollution, urban sprawl, and climate variability that are
crucial issues in sustainability of ecosystem management.
Multispectral and temporal remote sensing data will allow
monitoring the loss of vegetation, monitor the alterations in
land-use pattern, and identify pollutants in surface water bodies
with a high level of spatial accuracy. The temporal analysis also
assists in evaluating of the seasonal changes and the long term
climatic effects on the natural resources. With these capabilities,
the proposed framework will improve the early warning systems
and evidence-based decision-making in relation to
environmental policy and planning.

Environmental observation is an essential characteristic for
sustainable management that attempts to confront the natural
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resources in an optimum manner and limit the harmful effects
on ecosystems due to human intervention. In the very latest
years, they started thinking how to include Al, ML and DL in
order monitor environment which pave new ways for data-
driven-decision making. Here, we weigh as we would the
relative, precision, scalability and predictive value of these
techniques over conventional environmental diagnostics.

Satellite-based remote sensing has now become an
indispensable tool for monitoring of environment. Platform
developments such as Google Earth Engine have made it
increasingly easier to analyse multi-spectral and time-series data
at regional scales. Nigar et al. [11] compared a variety of ML
and DL algorithms models to land classification on Google
Earth Engine in Python, they observed that deep learning
techniques actually produces better results compared to these
machine methods such as it has capability to handle
heterogeneous landscapes. Similarly, Satti et al. [12] employed
MODIS satellite data to study climate change impact on
vegetation and snow in Gilgit-Baltistan and showed how remote
sensing with Al methods can detect subtle environmental
changes over time. These results demonstrate the capability of
DL-enabled visual analytics for large spatiotemporal data
analysis specifically in environmental applications.

Al has also been used in toxicology to predict and track
environmental pollutants. Singh et al. [13] presented a case
study on using Al techniques for groundwater contamination
prediction and demonstrated the ability of NN models together
with ensemble learning algorithms to capture the complexity of
the hydrological phenomena. Such early warning predictive
models assist in proactive water management practices and
minimize public health risks due to pollutants. Motivated by this
method, Panigrahi et al. [22] introduced a machine learning
based drinkability prediction by utilizing the parameters of
quality for groundwater; they further used combination models
to improve the reliability of predictions. These systems are a
neat example of how Al could work as an early warning for
environmental threats.

Deep learning techniques have been more and more widely
used in high-resolution image processing for realtime
environmental monitoring. Joshi et al. [14] introduced a multi-
model deep learning system to detect early pile fire in aerial
images, and showed real-time discovery of potential risks with
few false alarms. CNNs and ensemble learning were applied in
the study which indicated that visual analytics has the ability to
identify those environment abnormities not easily captured by
naked-eye observation. Similarly, Lou et al. [15] proposed DC-
YOLOv8 model, a lightweight object detection framework
suitable for camera types of sensors which allows monitoring
small objects in environment. Miao et al. [16] enhanced the
lightweight RetinaNet model and the one-stage detectors for
ship detection in SAR images, demonstrating that deep learning
models are of promise for automatic surveillance and
monitoring environmental phenomena.

Al has also been used in water quality monitoring. Zhang et
al. [17] used UV-Vis spectrometry with artificial neural
networks for online monitoring of water quality in river
confluences. This combined model also facilitates the real-time
estimation of WQI parameters and responses on a constant basis
which may help in early warning. Rane et al. [20].The time for
the extension of this vision included enhanced generative Al
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models for water and air pollution monitoring. Here As
explained in Section Il, However, these models now encompass
large-scale  dynamic  environmental management by
dynamically interpreting and responding to data from near real-
time environmental change processes.

The Al Models’ predictions drove pollution control, and
adopted strategies for adapting to climate changes in future. Ye
et al. [18]. They offered a comprehensive specification of Al’s
application to solving environmental problems, concentrating
on pollution forecasting, emission control with machine learning
and deep learning technologies. Ma et al. [24] ANNs predict
pollutant emissions from waste-to-energy plants in China quite
well, and are worthy of consideration with such accuracy for
emissions forecasting. This is of interest to manufacturers who
need to take measures to comply with environmental protection
laws, and who release particulate matter into the air during their
manufacturing processes, for example.

For Al in environmental monitoring beyond a single data set,
these works include data fusion and ensemble learning. Nguyen
et al. [25] They used a combination of neural networks and the
Boosting ensemble method for representing groundwater
potential in Vietnam, which should be able to tackle the many
nonlinear relationships among bio-environmental variables. In
the same way, Majhi et al. [23] Al combined with MO were used
for predicting earthquake magnitude. This again goes back to the
great application case of Al and metaheuristic optimization in
environmental hazard prediction. ‘“Marhain et al. [26] ”
Additionally, they demonstrated the usefulness of the predictive
model by integrating Al into earthquake prediction in
Terengganu; hence, this field may be of use to those in charge
of managing natural disasters.

Al-enabled environmental monitoring no longer has to
worry about issues of scalability and adaptability thanks to
cloud-based visual analytics tools. There are uses for this;
environmental monitoring was one area where Shalu et al. [21]
highlighted its potential (both theoretically and practically). On
the other hand, academics and policymakers may use these kinds
of tools to understand the intricacies of systems in a dynamic
context based on data. In order to conduct long-term continuous
observation, the programming is designed to facilitate the
effective  exploitation of high-dimensional real-world
environmental data sensor measurements, including satellite
photos and historical information.

A key issue in environmental monitoring is the trade-off
between computing efficiency and model complexity. The
enhanced RetinaNet [16] and DC-YOLOv8 [15] are two
examples of lightweight neural network topologies that may
construct real-time surveillance systems in low-resource
contexts. This is particularly true given the current need for
computationally efficient systems that nevertheless possess
predictive capability in several real-world applications, such as
aerial surveillance and tiny item target identification and
response.

The use of ensemble (and hybrid) models for environmental
prediction often results in higher quality assessment ratings as
well. By further assembling, Joshi et al. [14] found that the
frequency of false positives may decrease and the model's
resilience could increase, leading them to propose a Deep
Learning model Ensemble for improved early heap fire
detection. Pantigrahi and colleagues [22] Hybrids are able to
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handle many types of environmental data volatility, leading to
more reliable outcomes statistically.

As of late, researchers have been looking at explainable Al
and generative Al as possible ways to make environmental
monitoring data more interpretable. The study conducted by
Rane et al. [20] identified generative models as one of the top
eight methods for enhancing context-aware systems with
advanced models. These models are particularly valuable when
it comes to reporting on industrial CPS, which is the opposite of
development automation. The ability of Al to not only decipher
model projections but also to provide practical suggestions is
gaining prominence in environmental decision-making. The
need for openness and responsibility in Western political
systems is driving this trend. Our own policymaking in the
future will be significantly impacted by these demands.
Also has potential use in environmental monitoring to aid in
disaster preparedness and climate change adaption. When it
comes to understanding and predicting climate-influenced
environmental change, Satti et al. [12] showed that Al has an
impact on snow and plants. Ye et al. [18] made similar claims,
stating that Al-supported visual analytics would ultimately
promote sustainable development methods, in addition to its use
in pollution governance and resource utilization (Table I).

The literature overwhelmingly points to the fact that
environmental monitoring is undergoing a sea change due to the
deep learning visual analytics architecture. Optical sensors
integrated into a remote sensing network provide large-scale,
real-time monitoring of: landscapes (including land use, water
quality, acute pollution levels, biohazards, and catastrophe risk
assessment), with the ability to provide both real-time alarms
and post-event forensics.

TABLE I. COMPARATIVE SUMMARY OF RECENT Al/DL STUDIES FOR
ENVIRONMENTAL MONITORING
Study Technique / Key Findings / Outcomes
(Author & Model Used
Year)

Nigar et ML & DL models Deep learning outperformed

al. [11] (CNN, RF, SVM) traditional ML methods in handling
heterogeneous landscapes, achieving
higher accuracy and generalization.

Sattietal. | Al-based Detected subtle vegetation and

[12] spatiotemporal snow-cover variations due to climate

modeling change, validating DL’s capability

in long-term environmental
monitoring.

Singh et Neural Networks & | Achieved high predictive accuracy

al. [13] Ensemble Learning | for groundwater contamination,
enabling early warning and
improved water management
strategies.

Joshietal. | CNN + Ensemble Provided real-time fire detection

[14] Deep Learning with reduced false alarms,
highlighting DL’s strength in
anomaly identification and visual
analytics.

Lou etal. DC-YOLOv8 Demonstrated efficient small-object

[15] (lightweight object | detection in real time, suitable for

detection) scalable and low-resource

environmental monitoring systems.

Concurrently, detailed reports our models not only achieve
unprecedented efficiency and accuracy in predicting, but they
are also easily interpretable, providing entrepreneurs,
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developers, and government policymakers with practical inputs.
With these innovations, we are moving away from antiquated
methods of environmental monitoring and toward data-driven,
Al-powered solutions that can handle the challenges of modern
environmental management. HSD plus other broad
assumptions: Use and adaption of huge data sources should be
part of future development. We also need a better model and
simpler deployment on scalable cloud platforms that can handle
real-time environmental monitoring and sophisticated analytics.

I1l.  METHODOLOGY

The research process (Figure 1) begins with the selection of
large-scale benchmark remote-sensing datasets such as MODIS,
Landsat-8, and Sentinel-2, which provide multispectral and
temporal data essential for environmental monitoring. These
datasets capture diverse land-use, vegetation, atmospheric, and
water-body features across varying resolutions. The initial stage
involves data preprocessing, including noise filtering to remove
sensor-specific and atmospheric distortions, normalization to
scale spectral features across bands, and dimensionality
reduction techniques such as Principal Component Analysis
(PCA). To optimize the models’ efficiency we employed the
Parameter Optimization through Hybrid Particle Swarm
Optimization (HPSO). HPSO jointly optimizes
hyperparameters, such as, learning rate, batch size, and layers to
train the model and improves classification accuracy. Then the
fine tuning of optimized parameters for Classification Model
Building is performed using efficacious deep learning models
such as VGG16, GoogleNet and ResNet50 for feature extraction
and classification.

After data cleaning and reorganizing, the processed data
flows into deep learning models, which include CNN-based
model (VGG16, GoogleNet and ResNet50) for feature
extraction in spatial way and transformer-based model in
spatiotemporal space. Transfer learning is used by initiating with
pretrained weights from ImageNet and fine-tuning on satellite
images, contributing to better generalization. Hyperparameter is
explored via and adaptive search of the best learning rate, batch
size, and layer depth for all models.

We benchmark the trained models in a number of
environmental monitoring applications such as land-cover
mapping, vegetation health estimation and water quality
anomaly detection. Performance evaluation metrics include
Accuracy, Precision, Recall, Fl-score, and AUC, ensuring
robust validation across both training and unseen test datasets.
This structured methodology provides a scalable framework for
real-time environmental monitoring through deep learning-
driven visual analytics.

A. Data Preprocessing

1) Data Preprocessing — Noise Filtering

The noise reduction processing is an important pre-
processing method in the field of remote sensing and it can
improve quality reliability of the satellite image. Raw sensor-
derived data such as MODIS, Landsat-8 and Sentinel-2 are
primarily affected by atmospheric perturbations, geometric
distortions of sensors, randomness in noise as well as the noise
induced by cloud masking which degrades the accuracy of
classification. Random fluctuations are suppressed, while
important spectral and spatial content of the spectra is preserved
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by applying a filtering technique (i.e., median filter, Gaussian
smoothing and wavelet denoising). This process improves the
signal to noise ratio, decreases artifacts and allows the feature
extraction from further processing and deep learning models to
perform on clean, well represented data which ultimately results
in robust environmental monitoring outcomes.
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Fig. 1. Deep Learning-Driven Visual Analytics Framework for Environmental
Monitoring Using Remote-Sensed Datasets

2) Normalization

In urban remote sensing, the features of urban remote
sensing data are with different scales and units, thus
normalization is necessary to compare them. It scales pixel
values (independently for each channel) to the 0-1 range and/or
standardizes input data to have mean of 0 and variance of 1. This
suppresses large ranges of numbers which make your model
numerically unstable and training not possible. For satellite
images such as Landsat-8, MODIS and Sentinel-2,
normalization will enhance the comparability of features cross
different bands to capture more consistent global information,
their gradient based learning stability and have better
performance in environmental monitoring applications where
land cover changes are needed to be analyzed.

¢ Min-Max normalization:

X — Xmin

Xmax — Xmin

!
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scales values to a range [0, 1].

e Z-score normalization:

centers data around zero mean with unit variance.
These transformations ensure consistency in the spectral
response functions of Landsat-8, MODIS, and Sentinel-2 bands,
which increase the accuracy of land cover classification for
environment monitoring purposes.

B. Dimensionality Reduction — PCA Algorithm

The work of dimensionality reduction has been an age-old
subject especially in remote sensing, where we have
multispectral or hyperspectral imagery having hundreds of
correlated channels. The PCA algorithm is one of the most
popular method used in reducing data redundancy while
preserving maximum variance. PCA converts the original bands
of the spectral into a new set of uncorrelated variables called
principal components (PC’s) with decreasing explanation of
variance. For such significance, in satellite imagery like
MODIS, Landsat-8 and Sentinel-2, PCA can decrease
computational load, reduce noise and increase informative
spectral patterns for environmental monitoring applications. For
instance, the first several principal component (PCs) reflect the
major land cover and vegetation features, while later PCs reflect
subtle or noisy ones. To fully leverage the powerful of deep
learning, PCA can be used to select informative PCs, such that
the output from deep models can efficiently training and have
no overfitting and more accuracy for land classification,
vegetation health monitoring as well as anomaly detection tasks.

C. Parameter Optimization using HPSO

For the deep CNN-based intrusion detection models,
(VGG16, GoogleNetand ResNet50), the hyper-parameters must
be painstakingly adjusted to balance the training cost with
classification accuracy. Crucial to our method is that this choice
of design parameters is automatized with respect to the network
depth and complexity, realized by our Hybrid Particle Swarm
Optimization (HPSO) optimizer, which retrieves (for any given
network) themost promising architectures.

The initial hyperparameter tuning method is called the
hybrid PSO optimization technique and is based on the global
search capabilities of Particle Swarm Optimization (PSO) in
addition to local optimization strategies, usually based on
gradient-based or heuristic search methods, to find the correct
solution more quickly and precisely. The hybrid variant balances
exploration and exploitation unlike conventional PSO that can
get stuck in local minima. It is more efficient at dealing with
high-dimensional non-convex search spaces than Bayesian
optimization, but requires explicit reasons why it is novel and
how it works.

The synergy between hybridization procedure and PSO that
unify opposing strategies. The update of PSO core is responsible
for modifying particles positions and velocities to regulate the
search. An additional genetic term applies crossover and
mutation every five generations for more exploration in order to
prevent premature convergence. A local search additionally
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utilizes the global best solution using Gaussian perturbations
every three iteration. Finally, the adaptive inertia ranges between
0.4 and 0.9 which will drive more exploration in early stages and
exploitation at later then ulterior stages that are effective for
hyperparameter optimization.

Each particle (hyperparameter vector) is evaluated by
training the model for 10-15 early-stop epochs on a validation
split of the dataset. The fitness score is defined as:

J(x)=0.5xF1+0.3xRecall+0.2xPrecision—0.1xTraining Time

This ensures balanced optimization between detection
capability and computational cost.

HPSO Algorithm:
1. Initialization:

o Generate a swarm of particles with random
hyperparameters ~ within ~ model-specific
ranges.

2. Model-Specific Training:
o For each particle:
= Train VGG16, GoogleNet, or
ResNet50 with encoded
hyperparameters.
= Record validation metrics.
3. Update Step (PSO):
o Update velocity/position based on pbest and
gbest.
4. Hybrid Enhancement:
o  Apply crossover/mutation every 5 iterations.
o Run local search on gbest every 3 iterations.
5. Convergence Check:

o Stop if no improvement for 10 iterations or

after max iterations (e.g., 50).
6. Final Training:

o Retrain the best model with selected
hyperparameters on the full training set.

o Evaluate on test set for final IDS
performance.

D. Classification Model- VGG16, GoogleNet, ResNet50

The Visual Geometric Group, affiliated with Oxford
University, proposed the 16-layer VGG-16 network. The
trainable parameters are included inside these sixteen
convolutional layers. The Max pool layer and subsequent layers
lack trainable parameters. Simonyan and Zisserman's concept
secured first place in the 2014 Visual Recognition Challenge
(ILSVRC-2014). The VGG16 model, when trained on a large-
scale ImageNet dataset, achieved a top-1 error rate of 28.1% and
a top-5 error rate of 9.3%. A notable characteristic of VGG16 is
its capacity to learn hierarchical features across several levels of
abstraction by employing a series of small 3x3 convolutional
filters. The architecture has sixteen layers, consisting of thirteen
convolutional layers and three fully connected layers. The layers
are organized into blocks, and the network architecture can be
summarized as follows:

119

Input Layer: The network takes an input image with a fixed
size (e.g., 224x224 pixels).

Convolutional Blocks: The network consists of five sets of
convolutional layers, each followed by a max pooling layer.
Each convolutional layer applies a 3x3 filter and stride of 1 to
the input feature maps, followed by a ReL.U activation function
to introduce non-linearity. The number of filters in each
convolutional layer increases as we go deeper into the network.

Max Pooling Layers: After each set of convolutional layers,
a max pooling layer with a 2x2 window and a stride of 2 is
applied to reduce the spatial dimensions of the feature maps and
help in capturing more robust features.

Fully Connected (FC) Layers: After the last max pooling
layer, the network has three fully connected layers. The fully
connected layers act as a classifier, taking the high-level features
learned by the convolutional layers and transforming them into
class probabilities. The last fully connected layer has units equal
to the number of classes which are 1000 in ImageNet dataset and
uses the softmax activation function to produce class
probabilities.

GoogleNet, developed by scholars at Oxford University, was
introduced in 2014 as a Convolutional Neural Network (CNN).
This 22-layer deep neural network has surpassed all prior
accuracy benchmarks on the ImageNet Dataset. The Inception
architecture employs a mix of 1x1, 3x3, and 5x5 convolutions to
minimise the amount of parameters in the network. It is an
altered iteration of the traditional convolutional neural network.
To further reduce the error rate, the GooglLeNet architecture
employs an auxiliary classifier. This classifier aims to reduce the
error rate by providing the network with enhanced supervision;
it is integrated with the network at various stages.

ResNet50 is a quintessential member of the ResNet family
of deep learning architectures. The 2015 ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) was won by
ResNet50, a 50-layer deep convolutional neural network created
by Microsoft Research. ResNet50 is trained using the ImageNet
Dataset, which has millions of images over 1000 categories.
Each of ResNet50's fifty convolutional layers is succeeded by a
batch normalisation layer, an activation layer utilising rectified
linear units (ReLUs), and a maximum pooling layer. The
convolutional layers grouped into five separate phases. Each
stage comprises 10 levels and is interconnected to the
subsequent level by shortcut links. To enhance the network's
information quality, these shortcuts create a direct link between
two non-adjacent layers.

To reduce the network's depth and enhance accuracy,
ResNet50 employs ResNet blocks, which are assemblies of
convolutional layers using identity mapping. This model is
favoured by several deep learning practitioners because to its
exceptional performance across various workloads. Due to its
prior training on a large and diverse dataset, ResNet50 is well-
suited for transfer learning. It acquires new duties effortlessly
and implements minor modifications. The shallow construction
facilitates the adjustment of weights. ResNet50 is an outstanding
choice for transfer learning. A proficient approach for
seamlessly achieving optimal performance on a new task is
transfer learning utilising ResNet50.
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IV, RESULT ANALYSIS AND DISCUSSION

Deep learning models were benchmarked on satellite data
sets and their performance evaluated. With MODIS coarse
spatial resolution but high temporal frequency data, and with
Landsat-8 and Sentinel-2 medium to high spatial resolution
multispectral imagery. The datasets were preprocessed and
dimensionality was reduced before being used to train the
VGG16, GoogleNet and ResNet50 models.

Comparative results are reported in Table II, Fig.2, Fig.3,
Fig.4, Fig.5 and Fig.6. For Sentinel-2 image, VGG16 reported
an accuracy of 92.1% with Fl-score 91.4% and GooglLeNet
outperformed with the accuracy and F1 score i.e., 93.7%, 92.9%.
The highest performance was achieved by ResNet50 with 95.2%
accuracy, 94.5% precision, 94.1% recall and a balanced F1-
score of 94.3%. Similar results can be seen for the Landsat-8
dataset, where ResNet50 is again superior to all models based
on its residual connections which enhance feature flow.

On MODIS data, the accuracies were somewhat lower
(88%—91%) because of its coarse spatial resolution, but again
the models proved capable of capturing temporal patterns,
especially in vegetation dynamics. Once again, it was the
ResNet50 that outperformed model with an accuracy and F1
score of 90.8% and 90.1%, respectively.

TABLE II. PERFORMANCE COMPARISON OF DEEP LEARNING MODELS
ON ENVIRONMENTAL MONITORING
Dataset | Model Accur | Precisio Recal | F1- AU
acy n (%) 1(%) | scor | C
(%) e
(%)
Sentinel | VGG16 92.1 91.0 91.8 91.4 | 0.94
-2 GoogleNet 93.7 92.6 93.1 929 | 0.96
ResNet50 95.2 94.5 94.1 94.3 | 0.97
Landsat | VGG16 91.3 90.7 90.2 90.4 | 0.93
-8 GoogleNet 92.5 91.8 91.4 91.6 | 0.95
ResNet50 94.6 93.5 92.8 93.1 | 0.96
MODIS | VGG16 88.2 87.1 86.8 86.9 | 0.91
GoogleNet 89.7 88.5 88.0 88.2 | 0.92
ResNet50 90.8 90.2 89.9 90.1 0.94
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Fig. 2. Accuracy Comparison across models and data sets for environmental
monitoring
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Precision Comparison Across Models and Datasets
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Fig. 3. Precision Comparison across models and data sets for environmental
monitoring
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Fig. 4. Recall Comparison across models and data sets for environmental
monitoring

F1-score Comparison Across Models and Datasets
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Fig. 5. F1 score Comparison across models and data sets for environmental
monitoring
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AUC Comparison Across Models and Datasets
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Fig. 6. AUC Comparison across models and data sets for environmental
monitoring

We compare the performances of Deep Learning models
VGG16, GoogleNet and ResNet50 on three benchmarking
remote sensing datasets namely Sentinel-2, Landsat-8 and
MODIS concentrating on crucial metrics such as Accuracy,
Precision, Recall, F1-score and AUC.

All three models also performed well on the high-resolution
multispectral data from Sentinel-2. A classification accuracy of
92.1%, the F1-score was 91.4%, and AUC equaled 0.94 were
achieved with VGG16, which illustrated a good performance in
classifying breast tumors mechanisms in future researches.
GoogleNet even did better, with 93.7% accuracy and 92.9 F1
score, due to the Inception modules for effective multi-scale
spatial feature extraction. ResNet50 has surpassed both these
models under all the metrics, with an accuracy of 95.2%, F1-
score of 94.3% and AUC score of 0.97; this implies that residual
connections are more capable in surrendering a more complex
spectralspatial patterns for the learning process.

For Landsat-8, a similar behaviour of NDWI1 was reported in
which there is a correlation between the relative estimated forest
cover and NDWI. VGG16 achieved the accuracy of E(91.3%)
and F1-Score(E:90.4%), GoogleNet scored higher with a 92.5%
accuracy, and ResNet50 results in the highest scores (E:94.6%,
Fl-score: E=93.1%) indicating that Resnet50 model is resilient
across datasets of different sizes as those with lower resolution
were validated on smaller images resulting into high score..

Overall performance was reduced slightly on the coarse
resolution MODIS data because of its lower spatial detail. While
achieving other accuracy values (e.g., 88.2% from VGG16,
89.7% GoogleNet et al., and 90.8% ResNet50), F1-scores varied
between 86.9-90.1%, and AUC values of up to 0.94 assured
classification success rates for this task as well. Nevertheless,
the ResNet50 performed systematically better than other models
supporting the idea of its potential to model complex spectral
and temporal information even from coarse-scale imagery.

Altogether, ResNet50 showed better results on all datasets
used in this work compared to VGG16 and GoogleNet that
however gave competitive but slightly smaller results,
emphasizing the crucial role of deep residual learning for such
large-scale environmental monitoring problems.
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V. CONCLUSION AND FUTURE WORK

In this paper, a deep learning-based visual data analytics
framework for near real-time environmental monitoring is
presented using state-of-the-art high-resolution remote-sensing
observations like MODIS, Landsat-8 and Sentinel-2. With data
noise preprocessing and hyper-parameters optimization (such as
filtering data noise, normalization and PCA with hybrid
PSO(HPSO0)), the framework is robust and adaptable to different
environmental monitoring applications. In the present Deep
Learning era, VGG16, GoogleNet and ResNet50 model-based
representation is also obtained to facilitate the transfer learning
and spatiotemporal feature extraction by DL influence in order
to get the accurate classification performance for LC
identification, VH monitoring and WQ anomaly detection [14].
Our framework archive high accuracies over 95%, 94% and
90% for Sentinel-2, Landsat-8 and MODIS, respectively
coupled with a strong Fl-score and AUC to confirm the
applicability of the enabling framework in real-world
environmental monitoring.  Nevertheless, the proposed
framework is very computationally intensive in training and can
have lower performance on the application to heterogeneous or
low-quality data. Furthermore, its reliance on pretrained
ImageNet models can be a constraint on its flexibility to
previously unseen domains of the environment.

Future studies will focus on enhancing the model's flexibility
and expanding its capability to real-time monitoring dynamic
environment events. The utilization of other sensor modalities
(LiDAR, hyperspectral data) also increases feature
representation and anomaly detection on complex ecological
habitats. It is also noted that the proposed lightweight design and
edge computing-based strategy are designed for rapid on-the-fly
environment scanning. The incorporation of explainable Al
techniques may additionally enhance the interpretability of
models, thereby contributing to actionable insights for policy
makers and environmental managers. The proposed approach
provides an automated, scalable and high-accuracy means of
environmental monitoring that has enormous promise for
resource management sustainable development activities
disaster risk reduction and climate resilience building action.
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