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Abstract

Managing diabetic health crises in smart urban environments is challenging due to rapidly changing patient conditions and the need for
timely interventions. This study introduces a novel Al-driven sentiment analysis system that integrates social media, 10T sensor data, and
electronic health records to detect early signs of distress and health deterioration. By leveraging an Adaptive Median Filtering Technique
(AMFT) for preprocessing and Recurrent Neural Networks (RNN) for modelling, the system provides actionable insights from large-
scale, heterogeneous data. Experimental results demonstrate that the proposed RNN-AMFT model significantly outperforms baseline
methods, achieving 0.92 accuracy, 0.90 precision, 0.93 recall, and a 0.915 F1-score, compared to a baseline CNN (accuracy 0.86, F1-score
0.845). Analysis of 10,000 posts revealed 47% positive, 31% neutral, and 22% negative sentiments, highlighting the system’s capability to
capture meaningful health patterns. These findings illustrate the potential for real-time monitoring, proactive intervention, and improved
diabetic care outcomes. The study establishes a foundation for integrating Al-driven sentiment analysis into clinical workflows, enabling
personalized healthcare and scalable health crisis management.
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. INTRODUCTION

Diabetics is a chronic metabolic disorder affecting millions
of people worldwide, representing a major public health
challenge that requires continuous monitoring and timely
interventions to prevent severe complications such as
cardiovascular diseases, neuropathy, and kidney failure [1-2].
Effective management of diabetics involves not only tracking
physiological parameters like blood glucose levels but also
understanding patients’ behavioural and emotional states, which
can significantly influence disease progression and treatment
adherence [3-5]. In smart urban environments, the management
of diabetic health crises becomes particularly complex due to
high population density, environmental stressors, lifestyle
dynamics, and limited immediate access to healthcare facilities
[6-7]. Urban dwellers often face irregular schedules, dietary
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inconsistencies, and heightened stress levels, all of which can
exacerbate glycemic fluctuations and increase the risk of sudden
health crises. Traditional healthcare systems, which primarily
rely on periodic clinic visits, self-reported logs, and manual
assessments, are inadequate for capturing real-time
physiological and psychological signals [8]. Investigating the
impact of healthcare access barriers such as affordability, social
determinants of health, and cultural competence, on the
management of diabetics in urban environments, and how Al-
driven sentiment analysis can be leveraged to support early crisis
detection and intervention [9]. These conventional approaches
often fail to provide early warning mechanisms, leaving critical
gaps in proactive intervention and preventive care [10].
Furthermore, patients” emotional states, social behaviours, and
sentiment-related cues, which can indicate early signs of distress
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or health deterioration, are largely overlooked in routine
monitoring frameworks [11].

To address these challenges, this study introduces a novel
Artificial Intelligence (Al)-driven sentiment analysis system
designed to monitor and predict health crises in diabetic patients
within smart urban settings [12-13]. The proposed system
integrates heterogeneous, multisource data from social media
platforms, loT-enabled wearable sensors, and Electronic Health
Records (EHRS), providing a comprehensive and real-time view
of patients’ physical and emotional well-being [14-15]. The
system utilizes an Adaptive Median Filtering Technique
(AMFT) to preprocess textual data, effectively reducing noise
such as irrelevant information, spam, or inconsistent entries,
thereby improving the quality of inputs for sentiment analysis
[16-17]. Temporal dependencies and sequential patterns in
patient-related data are captured using Recurrent Neural
Networks (RNNs), enabling the model to detect subtle shifts in
sentiment or physiological signals over time [18-20]. Al-driven
hyperparameter optimization (AIDO) is employed to
automatically fine-tune model parameters, ensuring robust
performance, generalization across diverse datasets, and
scalability for larger deployments [21-22].

The novelty of this study lies in its holistic approach,
combining multisource real-time monitoring, advanced
preprocessing, and temporal modelling to deliver predictive,
actionable insights [23-24]. By linking emotional and
behavioural signals with clinical and sensor data, the system
enhances early detection of health deterioration, allowing for
proactive interventions that are both timely and personalized
[25]. Unlike conventional methods that treat physiological and
emotional signals separately, this approach integrates multiple
data streams to generate a more accurate and context-aware
understanding of patient health [26-27].

The primary objectives of this research are to develop a real-
time sentiment analysis framework capable of handling
heterogeneous data sources, evaluate its effectiveness in
identifying early signs of distress, and demonstrate its potential
to improve patient outcomes [28]. Ultimately, the study aims to
establish a foundation for scalable, Al-driven health monitoring
solutions in urban environments, enabling healthcare providers
to deliver timely support, optimize interventions, and empower
diabetic patients to better manage their condition within the
context of their daily lives. The order of the remaining sections
is as follows: Section 2 includes the literature review, Section 3
presents the proposed technique, Sections 4 and 5 examine the
results with discussion, and Section 5 describes the paper's
conclusion.

Il.  LITERATURE SURVEY

The literature survey for sentiment analysis utilizing
artificial intelligence in effective health crisis management for
diabetics within smart urban environments explores the
intersection of advanced Al techniques and healthcare analytics.
Naveed et al [29] investigate the possible effect of diabetics on
the emotional sentiment of patients through sentiment analysis
of online forum posts. Analysis of 215 forum posts suggests that
diabetics may influence patients' emotional states, as reflected in
their shared experiences, issues, and suggestions. Further

detailed research is needed to clarify the nature and extent of this
relationship.

Ghosh et al [30] developed a system for sentiment analysis,
which uses facial expressions in an intelligent healthcare system
to identify discomfort, integrating cutting-edge techniques. The
proposed system employs a four-component approach involving
face detection, feature extraction, pain intensity prediction, and
score fusion. Benchmark database experimentation shows better
performance than current facial pain expression analysis
techniques. Madan et al [31] used machine learning to analyse
patient emotions regarding healthcare facilities, concentrating
on polarity extraction from patient evaluations to evaluate
factors like cleanliness, doctor availability, and doctor-patient
interaction. The study successfully implements Python-based
sentiment analysis to derive polarity scores from patient
feedback, facilitating the calculation of goodness scores for
healthcare facilities. This approach aids patients in making
informed choices based on aggregated experiences.

Young et al [32] introduced Entity Relationship Sentiment
Analysis (ERSA) for understanding the sentiment of entity pairs
in biomedical texts, particularly focusing on relationships
between biomedical and food concepts. To improve ERSA
performance without a substantial quantity of tagged data,
CERM, a semi-supervised architecture, is proposed. CERM
effectively addresses the ERSA task by leveraging both labelled
and unlabeled data, showcasing robust performance in capturing
sentiment nuances within biomedical and food-related entity
relationships. The approach demonstrates versatility across
varied learning scenarios, highlighting its potential for
enhancing food-health relationship studies using biomedical text
analysis. Kaveripakam et al [33] examined different machine
learning algorithms (MLASs) for identifying diabetic diseases by
utilizing the PIMA Indian diabetic dataset. Cross-validation
using ACR, PCN, RCL, FSC, ROC and K-fold are around
metrics used to measure the efficiency of algorithms like SVM,
DT, LGR, GDBM, KNN, XGBM, and RF in early diabetics
prediction. Among the MLAs tested, Random Forest (RF)
demonstrated superior performance in diabetic identification, as
evidenced by higher scores across key metrics in test case 4
(70%-30% split). RF outperformed other algorithms,
showcasing its potential for effective disease prediction in
clinical applications.

Huang et al [34] identified an uncommon instance of
concurrent diabetics mellitus with hyperthyroidism and diabetic
ketoacidosis (DKA/TS) in a young child, highlighting the
necessity of prompt, team-based treatment options and
diagnostic and management problems. The case highlights the
essential of increased clinical awareness and interdisciplinary
teamwork in the efficient management of such complicated
endocrine-metabolic illnesses, in addition to the intricacy and
diagnostic hurdles presented by the simultaneous incidence of
DKA and TS.

Lahsen et al [35] carried out an educational diagnosis in
children and teenagers with Type 1 Diabetics Mellitus (TLDM)
to determine their educational needs for effective Therapeutic
Patient Education (TPE) from diagnosis onwards. Thematic
analysis of qualitative interviews identified five key educational
themes: understanding the risks connected to type 1 diabetics,
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keeping an eye on the condition and managing treatments,
handling crises, managing food and exercise, and adjusting daily
activities to treatment limitations. Integration of TPE is crucial
in enhancing skills and managing T1DM effectively among
young patients.

Lee et al [36] explored Poland's primary response to a
Ukrainian refugee crisis, assessing the humanitarian challenges
and evolving priorities, from basic needs to mental health and
disease management, emphasizing a collaborative, multi-
sectoral approach. The crisis highlighted the necessity for
comprehensive needs assessments, robust health surveillance,
and culturally sensitive, coordinated efforts across sectors to
effectively support and integrate Ukrainian refugees in Poland.
Bountouvis et al [37] assessed the status of diabetics
management among refugee populations in Lesvos, Greece,
including hyperglycaemia levels, cardiovascular comorbidities,
treatment availability, and follow-up challenges, aiming to
highlight barriers to healthcare access and proposed enhanced
management strategies. Among refugee patients with diabetics
(81% type 2), findings revealed inadequate treatment continuity,
suboptimal glycaemic control (median HbAlc 8.7%),
underutilization of insulin (21%), and low adherence to
hypertension and lipid-lowering medications. A considerable
proportion of patients (42%) were not followed up, underscoring
critical gaps in healthcare delivery and the necessity of
enhancing global cooperation and support.

Park et al [38] explored barriers to managing diabetics
among older Hmong Americans with minimal English
proficiency, using qualitative interviews with case managers,
family caregivers, and clinicians. Themes include cultural
adherence, health inequities, and challenges in navigating
Western healthcare systems, highlighting the need for culturally
sensitive interventions. Directed content analysis identified
cultural adherence, health inequities, and difficulties in
managing diabetics as major themes. Subthemes included using
shamans and herbs from the Hmong people, mistrust of Western
medicine, language barriers, and low health literacy. Addressing
these barriers is vital for enhancing diabetics management and
healthcare outcomes among older Hmong patients.

I1l.  RESEARCH PROPOSED METHODOLOGY

The sentimentality analysis system is driven by artificial
intelligence for handling health emergencies in diabetic patients
in smooth city settings. This organization will monitor and
forecast health issues and provide suitable involvement by
leveraging real-time information from wearables, social media,
fitness forums and Electronic Health Records (EHR). The
methodology entails gathering information from these sources
and making it while taking ethical problems like informed
consent and data protection into account. To ensure balanced
sentiment class representation, the model will be skilled in using
labelled datasets. A seamless combination of Internet of Things
devices with EHR systems and aware systems for healthcare
practitioners will enable real-time information handling in smart
urban environments. Stages for assembly and preparing data,
model creation, system incorporation, pilot study deployment,
analysis, and reporting are all included in the implementation
strategy. This strategy makes use of Sentiment examination and

artificial intelligence to improve diabetic health crisis
management. By making timely interventions, it may also
improve patient outcomes and the quality of life.
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Fig. 1. Block Diagram of the Proposed Work

Figure 1 illustrates a multi-step approach to diabetic health
crisis management, combining clinical records, social media,
and loT sensor data with Al-driven sentiment analysis and
optimization techniques like RNN and AIDO. This integration
enhances prediction accuracy and intervention effectiveness by
ensuring the data is accurate and relevant for analysis. RNNs are
particularly effective in interpreting sequential data, identifying
temporal relationships, and enabling precise monitoring of
health issues. The use of Al-driven sentiment analysis with loT
data, such as from wearable devices or continuous glucose
monitors (CGMs), facilitates real-time health monitoring. This
proactive, data-driven system allows healthcare professionals to
detect and intervene in potential diabetic crises, such as
hypoglycemia or hyperglycemia, before they escalate, thus
improving overall crisis management.

A. Data Collection

Initially, the Nationwide Organization of Diabetics Mellitus
and Intestinal and Kidney Infections produced a noteworthy,
high-quality data collection, which made up the diabetics
mellitus dataset this study employed, which was obtained from
Kaggle. Predicting if a human has diabetics using diagnostic
parameters is the main goal of consuming this dataset collection.
Cases were selected according to strict criteria from a broader
database, guaranteeing that all patients were Pima Indian women
who had reached the age of 21. Pregnancies, plasma pressure,
skin depth, glucose stages, and insulin stages are some of the key
elements in this dataset. Sentiment analysis utilizing artificial
intelligence for effective health crisis management in diabetics
within smart urban environments hinges on the meticulous
process of data collection. By gathering comprehensive data on
patient sentiments and behaviours, Sentiment analysis powered
by Al can provide crucial details about the mental and emotional
conditions of diabetic patients. This data, obtained from
resources like social media, patient forums, and health apps,
enables the identification of early signs of distress and potential
health crises. Consequently, real-time monitoring and predictive
analytics can facilitate timely interventions, personalized health
advice, and enhanced support systems, ultimately improving the
overall management of diabetics in smart urban settings. Robust
data collection is thus crucial for harnessing Al to optimize
health outcomes and crisis management for diabetic patients.
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TABLE I. DATA SOURCES FOR DIABETIC HEALTH CRISIS
MANAGEMENT
. Collection .
Dataset Size Data Types Period Labeling
Pima 768 Numeric values | 2010-2011 | Labelled as positive
Indian | samples | (plasma glucose, (diabetics) or

1) Multisource Data Integration Pipeline

The sentiment analysis system utilizes a multisource dataset
composed of clinical records, social media posts, and IoT sensor
data. A structured integration pipeline was implemented to
merge these heterogeneous datasets into a unified analytical

Table | provides an overview of the three primary datasets
used in the study to analyze diabetic health crises: the Pima
Indian Diabetics dataset, social media posts, and 10T sensor
logs. The Pima dataset offers clinical metrics like glucose levels
and insulin, while social media data is used to analyze sentiment
regarding diabetics-related issues. 10T sensor logs track real-
time health metrics such as blood glucose levels and heart rate,
contributing to timely crisis detection. The combination of these
datasets offers a holistic approach to understanding and
managing diabetics health crises in smart urban environments.
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Fig. 2. Impact of Uncontrolled Diabetics

Figure 2 demonstrates the extensive complications arising
from uncontrolled diabetics, depicting the detrimental effects on
various organs throughout the human body. Persistently
elevated plasma sugar levels can cause serious harm in
important areas, including the heart, kidneys, nerves, eyes, and
teeth. For instance, prolonged hyperglycaemia can result in
cardiovascular issues, renal failure, neuropathy, retinopathy, and
periodontal disease. This visual representation underscores the
systemic nature of diabetics-related complications, highlighting
that the repercussions of unmanaged diabetics extend beyond a
single organ system. It emphasizes the critical need for effective
blood sugar management to lessen these dangers and prevent
long-term health issues. By maintaining controlled blood
glucose levels, individuals can lower their risk of experiencing
these serious consequences, thereby improving their general
well-being and standard of living. The figure serves as a
reminder of the significance of consistent diabetics management
to safeguard against widespread organ damage.

Diabetics insulin, etc.) negative (no framework.
diabetics)
Social 450,000 | Text (social Jan 2022 - |5,000 posts manually TABLE 1. DATA SOURCE VOLUMES AND PROPORTIONS
Media posts media posts, Dec 2022 | annotated (Positive,
Posts forum messages, Negative, Neutral) Data Source Volume Percentage
etc.) Used
10T Sensor | 50,000 | Time-series data | Jan 2023 - Real-time Pima Indian Diabetics Dataset 768 samples 10%
Logs records | (glucose levels, | Jun 2023 monitoring, no Social Media Posts (Twitter/X, 450,000 75%
heart rate, etc.) manual labelling Reddit) posts
10T Sensor Logs (CGM & wearable 50,000 15%
devices) records

Table 11 details data sources used in the study, showing the
volume and percentage utilized: 768 samples from the Pima
Indian Diabetics Dataset (10%), 450,000 social media posts
(75%), and 50,000 IoT sensor records (15%) for model training
and validation. Social media data forms the majority of the
dataset because sentiment analysis relies heavily on user-
generated textual content, whereas loT data and clinical EHR
provide physiological context that supports crisis prediction.

2) Sentiment Annotation and Inter-Rater Reliability

A structured manual annotation process was implemented to
generate reliable sentiment labels for supervised learning. A
total of 5,000 social media posts were sampled from the broader
collection of 450,000 posts and independently annotated by
three trained annotators with backgrounds in public health and
linguistics. Each post was assigned one of three sentiment
categories: Positive, Negative, or Neutral, following a
predefined annotation guideline designed to reduce subjective
variation.

o Positive:
satisfaction

o Negative: indications of distress, worsening symptoms, or
fear

¢ Neutral: informational, uncertain, or ambiguous expressions
To assess the consistency of the labelling process, Cohen’s

Kappa was computed for each annotator pair. The results,

presented in Table 111, show high agreement across annotators,

with all scores exceeding 0.80, indicating strong reliability.

expressions of stability, improvement, or

Table Il presents Cohen’s Kappa scores measuring inter-
rater reliability between annotator pairs. The scores, 0.84 (A-B),
0.81 (B-C), and 0.87 (A-C), indicate strong agreement,
demonstrating consistent and reliable annotations across all
pairs. To illustrate the annotation scheme, a subset of manually
labelled examples is provided in Table IIl.

TABLE IlI. INTER-RATER RELIABILITY (COHEN’S KAPPA)
Annotator Pair Kappa Score
A-B 0.84
B-C 0.81
A-C 0.87
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Table 1V showcases example social media posts labelled for
sentiment or condition related to diabetics management. The text
reflects different experiences: a negative post about sugar spikes
despite medication, a positive post indicating stability and
sensor accuracy, and a neutral post expressing uncertainty about
glucose readings. These examples reflect how sentiment
categories were operationalized and applied across the dataset.

TABLE IV. SAMPLE LABELLED POSTS
Text Label
“My sugar level spiked again despite medication...” Negative
“Feeling stable today, sensors seem accurate!” Positive
“Need to adjust my readings; not sure what’s going on.” | Neutral

3) Ethical
Procedures

Compliance and Data Anonymization

This study strictly adheres to ethical research principles and
data protection regulations. All procedures were conducted in
compliance with institutional and international guidelines for
research involving human-related data, including IRB standards,
GDPR, and best practices for data privacy. No identifiable
patient information was accessed during the research. Data were
collected from multiple sources while ensuring informed
consent and privacy. Electronic Health Record (EHR) and loT
data were provided by a partnering medical centre, with prior
consent obtained from all participants. These datasets were fully
anonymized before being used in the study. For social media
data, only publicly available posts from platforms such as
Twitter/X and Reddit were collected. No private messages or
restricted content were used, in accordance with the platform
Terms of Service.

To protect participant privacy, a structured de-identification
and anonymization protocol was applied. Personal identifiers
such as names, emails, phone numbers, GPS coordinates, and
profile links were removed. User IDs were replaced with SHA-
256 hashed values to prevent re-identification. Timestamps were
generalized into weekly bins to avoid exact temporal tracing,
and any phrases containing personal references were
automatically flagged and redacted. All data were securely
stored on encrypted drives, accessible only to authorized
research personnel. No identifiable personal information was
retained at any stage, ensuring full compliance with ethical
standards and privacy regulations.

B. Data Pre-Processing

Data pre-processing for sentiment analysis utilizing an Al
model, ineffective health crisis management for diabetics, is
essential to guarantee that the input data is clean, standardized,
and appropriate for training the model effectively. Identifying
and heavy in disappeared data points using methods like mean
imputation, median imputation, or predictive algorithms to
estimate missing values constitutes the initial step in data
cleaning. This ensures a complete dataset for training.
Additionally, removing outliers is essential to detect and
eliminate data points that could skew the model's training
process and affect prediction accuracy. One advanced technique
used in pre-processing is the AMFT, which is particularly
effective for noise reduction in sentiment analysis. Textual data
from sources like social media, patient forums, and health apps

often contain noise, such as irrelevant information, spam, and
outliers. AMFT helps filter out this noise to ensure that only
relevant and clean data is analysed. This could entail eliminating
particularly favourable or unfavourable opinions that do not
represent the general trend and could distort the analysis. The
sentiment analysis model's overall accuracy and resilience can
be increased by eliminating noisy and outlier data so that it can
be trained on cleaner, more accurate data. This results in more
trustworthy perceptions of the feelings of patients and
behaviours, ultimately enhancing health crisis management for
diabetics within smart urban environments.

Normal blood
glucose

High blood
glucose

glucose
glucose

blood

Fig. 3. High Blood Glucose on Vascular Health

Figure 3 compares a hormal blood vessel with one affected
by high blood glucose levels. The "normal blood glucose™ vessel
shows smooth red blood cell flow, indicating healthy
circulation. In contrast, the "high blood glucose" vessel is
depicted as congested, highlighting the harmful effects of
excessive blood sugar. High blood glucose leads to vascular
issues, including thickened vessel walls, reduced elasticity, and
an increased risk of blockages. These changes can result in
severe conditions like hypertension, heart disease, and stroke.
This figure emphasizes the critical need for diabetics to manage
blood glucose levels effectively, as uncontrolled blood sugar can
lead to significant long-term vascular damage and other health
complications. Regular monitoring is essential to prevent these
adverse outcomes.

TABLE V. ADAPTIVE MEDIAN FILTERING FOR SENTIMENT ANALYSIS

ALGORITHM

Algorithm 1: Pseudocode for Adaptive Median Filtering for Sentiment
Analysis

for each text in the dataset:
tokens = tokenize(text)
window_size =5
threshold = 0.2
for i in range(len(tokens) - window_size + 1):
window = tokens [i:i + window_size]
sentiment_scores = [calculate_sentiment_score(token) for token in
window]
median_score = median(sentiment_scores)
for j in range(len(window)):
deviation = abs(sentiment_scores[j] - median_score)
if deviation > threshold:
window[j] = replace_with_median(median_score)
cleaned_text = reconstruct_text(tokens)
store(cleaned_text)
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Table V demonstrates how the AMFT-SA algorithm
enhances sentiment analysis by filtering noisy data using a
sliding window approach. Each text is tokenized, and sentiment
scores are calculated for each token. A fixed-size sliding
window (e.g., 5 tokens) is applied, and the median sentiment
score for the window is computed. Tokens with sentiment scores
deviating significantly from the median are considered noisy
and replaced with the median value. This improves data quality,
removing irrelevant tokens and producing cleaner text for
analysis. Feature importance analysis identified key factors
influencing model decisions, such as sentiment-related
keywords (“'sugar,” "insulin," "crisis") and temporal features
(e.g., recurring emotional distress phrases). Contextual
information, like “post-meal blood sugar,” also contributed to
accurate predictions. Visualizations like bar charts and word
clouds highlighted these significant features.

1) Adaptive Median Filtering Technique (AMFT)

The Adaptive Median Filtering Technique (AMFT),
originally for image processing, is adapted for sentiment
analysis in diabetic health crisis management to filter out noisy
tokens (e.g., irrelevant words, emojis, or URLS) while retaining
meaningful sentiment information. A sliding window approach
processes token sequences, with each token assigned a sentiment
score using a pre-trained model (e.g., VADER or BERT).
Tokens deviating significantly from the median sentiment score
are considered noise and replaced. The window size is
dynamically adjusted to better capture sentiment trends. This
adaptation helps clean social media text and enhances sentiment
analysis by reducing outlier influence.

TABLE VI. HYPERPARAMETER OPTIMIZATION PARAMETERS (AIDO)
Selected

Parameter Range Tested Value

Learning Rate 0.0001 - 0.01 0.001
Batch Size 16 -128 64
Dropout Rate 0.1-05 0.3
RNN Hidden Units 32 — 256 128
Epochs 10 - 100 50

Optimizer SGD / Adam / RMSProp Adam

Table VI provides the selected values for various

hyperparameters optimized through Al-Driven Optimization
(AIDO). These parameters include the learning rate, batch size,
dropout rate, RNN hidden units, epochs, and the optimizer used.
The selected values (e.g., learning rate of 0.001, batch size of 64,
and Adam optimizer) are those that achieved the best
performance in model training. This optimization ensures the
model achieves the highest accuracy, precision, recall, and F1-
score, improving its ability to manage diabetic health crises
effectively. A model for sentiment analysis that has been trained
beforehand is applicable to obtain sentiment scores. Allow S i
to stand for the sentiment score of the word i in the window. The
sentiment score M, or median, is determined by

M = median(S;, S, ----, Sy) 1)

Based on the variation in sentiment scores within the
window, dynamically change the size of the window. A bigger
window could be required to accurately capture the overall
sentiment if there is a considerable variation in the sentiment

scores. The terms or tokens that show a large deviation from the
sentiment score median. These are regarded as sounds.

Compare the median M to each word i with a sentiment score
of S_iexceeds a certain threshold t, consider S i as noise.

AS; = |S; — M| 2

The median sentiment score M or a comparable
representative figure ought to be utilized instead of garbled
sentiment evaluations.

S =1[8,5; ', Sy] (©)]

Represent a series of n-word sentiment scores. Establish a
window size, W, and a threshold, 1. For each window W _j.

M; = median(W;) 4)

Being flexible is adapting the window size dynamically
according to the variation in sentiment scores. The description
of edge conservation is maintaining notable changes in
sentiment, similar to how edges are preserved in picture
processing. Healthcare professionals and smart urban
environments can better handle diabetic health problems by
precisely recognizing and responding to patient and public
moods by implementing AMFT for sentiment analysis.

Figure 4 illustrates how the procedure for sentiment analysis
starts with the start phase, where the overall procedure is
initiated. Compiling raw data from different sources, including
reviews, surveys and social media, is necessary for gathering
textual data. At the stage of data pre-processing, the data is
prepared for filtering to improve its quality. The Adaptive
Median Filtering (AMFT) algorithm is then used to minimize
noise while keeping critical details.

‘ Collect Textual Data ’
1 Data Pre-processing }

+

Apply Adaptive Median ’

Filtering (AMFT)

b 2
1 Filter Out Spam ]
¥
‘ Identify and Remove J
Outliers
b 2

\ Sentiment Analysis |

i

[ Sentiment Analysis J

J
( End j

Fig. 4. Flow Diagram of Adaptive Median Filtering
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Next, removing irrelevant information filters out superfluous
or irrelevant stuff, and spam filtering eliminates undesired spam
data. Identifying and removing outliers discovers and eliminates
any anomalies that may bias results. These stages provide
learning data, which is now available for analysis. The sentiment
analysis phase comprises applying algorithms on cleansed data
to analyze sentiments, followed by the end phase. This
organized technique guarantees accurate and efficient sentiment
analysis.

C. Sentiment Analysis with an Al Model for Effective Health
Crisis Handling

To detect effective health crisis management, a system can
implement and classify effective health crisis management. In
the domain of improving the efficient handling of health crises,
making use of their capacity to automatically extract
discriminative characteristics from vast quantities of data. RNN
models are highly effective for sentiment analysis, especially in
the health crisis management of diabetics within smart urban
environments, because of their capacity to hold progressive
information and capture temporal dependencies. Al-driven
optimization (AIDO) may automatically tweak hyperparameters
to improve the performance of sentiment analysis models in
RNNs, ensuring accuracy and efficiency. Real-time sentiment
analysis systems can employ RNNSs to continually process and
analyse data from social media, news, and public forums. AIDO
can discover and select the most pertinent attributes from textual
material, improving the standard of the information provided to
sentiment analysis models. AIDO can optimize processing
pipelines to handle massive amounts of data in real time,
guaranteeing that the system can grow to monitor sentiment
throughout a smart urban environment.

1) Recurrent Neural Networks (RNN)

RNNSs excel in sentiment analysis for managing diabetic
health crises in smart urban environments by processing
sequential data and capturing temporal dependencies. They
identify patterns and trends in patient feedback, enabling timely
interventions. Their ability to analyze time series data and apply
Natural Language Processing (NLP) enhances crisis
management efficiency, making them ideal for dynamic health
monitoring and prediction. RNN Cell Computation: An RNN's
fundamental unit processes the input x_tat timet step, as well as
the undiscovered condition from the time step beforeh_(t-1).
The new hidden state, h_t, is calculated as follows:

he = 0(Wy. he_y + Wy X, + b) (5)

For where o is a function of activation, the weight matriX
W_(h) corresponds to the hidden state. W_x is the input weight
matrix, and the biased term is b. Below is a computation of the
output:

ye = softmax(W,. h, + b,,) (6)

Where b_y is the output bias term, and a weight matrix for a
result is W_(y ). Using Al technology in smart urban
environments, health crisis management for diabetics entails
tracking, anticipating, and reacting to health emergencies.

Because of continuous glucose monitoring (CGM), blood
glucose level data are available in real time.

True
True

if §err < Hypoglycemia Threshold
if §iir < Hypoglycemia Threshold
False Otherwise

Crisis =

O

The system can initiate interventions like notifications to the
patient, caregivers, or healthcare providers whenever it detects a
possible crisis. Based on past data, machine learning algorithms
can optimize intervention tactics. By combining RNNs for
sentiment analysis with Al-powered health crisis management
solutions, develop a holistic strategy for controlling diabetics in
intelligent urban settings.

Fig. 5. Layered Architecture Diagram of RNN Model

Figure 5 illustrates the layered architecture of an RNN
model. Convolution, the process of combining two datasets, is
used in convolutional layers to generate output from input data.
The convolution operation reduces pixel values in the receptive
field to one and applies a ReLU activation function, setting
negative values to zero, introducing non-linearity. Following the
convolution layer, a pooling layer (Max Pooling in this case) is
used to reduce the input matrix size for processing by
subsequent layers. The data is flattened into a one-dimensional
array, allowing it to be sent to fully connected layers. Neural
networks consist of nonlinear, interdependent neurons, which
use weight matrices to relate input vectors to output. The
softmax function converts outputs into probabilities, allowing
for effective sentiment analysis. RNNs, known for handling
sequential data, are particularly effective in recognizing
temporal relationships, enabling faster, more accurate insights.
These capabilities improve healthcare systems' response and
efficiency in managing diabetics-related health issues.

2) Hyperparameter Selection and Optimization

Hyperparameter tuning for the sentiment analysis system
was conducted using an Al-driven Optimization (AIDO)
approach. The search space for each parameter was established
based on standard ranges commonly referenced in prior
sentiment analysis and RNN literature. Bayesian optimization
was then applied to efficiently explore these ranges and identify
configurations that delivered optimal model performance. The
final optimized hyperparameters used in the RNN-AMFT model
are shown in Table VII.
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TABLE VII.  HYPERPARAMETER SEARCH SPACE AND FINAL SELECTED
VALUES
Parameter Search Space Final
Value
AMFT window size 3-7 5

AMFT token frequency threshold 0.01-0.05 0.02
RNN hidden units 64-256 128
Dropout 0.1-0.6 0.4

Learning rate le-5-1e-2 le-3

Table VII summarizes the hyperparameter tuning for the
model. It lists search ranges for AMFT window size, token
frequency threshold, RNN hidden units, dropout, and learning
rate, alongside their optimal final values chosen to maximize
model performance. These values were selected because they
consistently yielded higher accuracy and lower training loss
across multiple validation folds. The final configuration also
demonstrated strong generalization performance without
overfitting.

3) Al-driven Optimization (AIDO)

Al-driven optimization (AIDO) can considerably improve
the way sentiment analysis models function in RNNs by
automatically tuning hyperparameters. This automated
procedure ensures that the models are optimized for efficiency
and accuracy by systematically adjusting parameters such as
network topologies, batch sizes, and learning rates. By fine-
tuning these hyperparameters, AIDO improves the model's
capacity to reliably analyse sentiment data and overall
prediction performance, resulting in more effective and efficient
sentiment analysis in a variety of applications. Al-driven
optimization (AIDO) uses device learning and synthetic
intelligence approaches to improve the efficacy and efficiency
of sentiment analysis. This strategy involves gathering,
handling, and information investigation in light of the diabetic
health crisis management in smart urban environments to track
and develop patient consequences. Data collection and
processing.

D =1{dy,dy, ..., d,} (8)

In this D is the set of all collected data points, each d_i
signifies a single data point, such as health metrics like blood
glucose levels.

S; = Sentiment Analysis(d;) 9)

The S_iis the sentiment score derived from the data point,
d_i NLP sentiment analysis methods are employed to quantify
sentiment as positive, neutral, or negative.

1
1+e—(Bo+B1x1+Pf2x2++Bmxm)

P(Y = 1]X) =

(10)

The P(Y=1 | X) is the possibility of a health emergency or
a diabetic emergency occurring. B _0,8 _1,.-=-, B _m are the
logistic regression model's coefficients, x_1,x_2,.-* x_mare the
feature values. Granting people access to cutting-edge medical
treatments via telemedicine, mobile health apps, and smart
clinics. By utilizing intelligent platforms to join patients with
neighbouring resources and support groups, enhance
community-based support networks. Individualized and
efficient diabetic health crisis management solution that blends

Al-driven optimization and sentiment analysis in settings of
smart cities. In addition to enhancing medical treatment, this
technique enhances the overall level of living for diabetics in
smart cities. This automated method enhances sentiment
analysis's overall efficacy while streamlining the model-training
procedure, resulting in more reliable insights and improved
judgment in a range of contexts. As a result, AIDO plays an
important role in expanding RNN capabilities, making them
more robust and adaptable to complex sentiment analysis tasks.

D. Optimizing Diabetic Health Crisis Management in Smart

Cities

The idea behind maximizing diabetic health crisis
management in smart cities is to enhance the preventive,
intervention, and overall management of diabetics-related health
issues by utilizing cutting-edge technologies and data-driven
methodologies. Here's the comprehensive description of each
aspect:

Prevention and Early Detection: Data-driven risk
assessment in smart cities utilizes smart wearables and sensors,
such as smartwatches and continuous glucose monitors, to
gather real-time health data, including blood sugar levels and
mental movement. When this data is integrated with EHR, it
provides a holistic view of an individual's health status. Al
systems then examine this extensive dataset to identify patterns
and predict potential diabetics episodes. For example, the
algorithms can detect trends indicating dangerously high or low
blood sugar levels, alerting medical professionals and patients
about potential problems before they worsen. This proactive
strategy allows for timely interventions and individualized
diabetics treatment, which greatly improves patient outcomes
and reduces the possibility of grave consequences. Smart cities
can significantly improve diabetics care and preventive
techniques by making use of real-time data and advanced
analytics.

[ Type of Diabetes ]

4 N

Type1 Type 2

Body does not produce
enough insulin

Body produce insulin
butcan'tuse it well

Fig. 6. Types of Diabetics and Their Management

Figure 6 shows that diabetics is categorized into two main
types, Diabetics type 1 is brought on by insufficient insulin
production by the pancreas, a hormone that is vital for
controlling blood sugar levels. For this autoimmune condition,
which is frequently identified in children and young people,
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lifelong insulin therapy is necessary to maintain blood glucose
control. Insulin resistance, or diabetics type two is the
consequence of a body producing insulin but not existence
capable of using it effectively. This kind of diabetics is more
prevalent in adults and is closely linked to genetic risk, weight,
and physical inactivity. Treatment for type 2 diabetics often
involves lifestyle changes, such as food and exercise, as well as
oral drugs to increase insulin sensitivity. In some circumstances,
insulin treatment might be required. Early detection and
management of both kinds are essential for preventing issues
and maintaining general health.

Crisis Intervention and Care: Remote patient monitoring
enhances diabetic care through continuous glucose monitors and
telemedicine platforms. Continuous glucose monitors provide
blood sugar monitoring in real-time, transmitting data directly to
healthcare providers. This continuous flow of data enables the
rapid detection of harmful variations in blood sugar levels,
allowing for quick interventions and individualized adjustments
to treatment programs. Simultaneously, telemedicine platforms
provide virtual consultations, reducing the necessity for in-
person clinic visits. Patients can receive medical advice, discuss
their glucose readings, and modify their treatment programs as
needed from the convenience of their homes. This mix of
ongoing observation and virtual care not only improves
diabetics management but also provides patients with rapid
access to medical support, resulting in more effective and
responsive care.

By addressing these elements, smart cities can considerably
improve the control of diabetics, making the system more
proactive, responsive, and supportive of patient needs. An all-
encompassing strategy aims to enhance general health and the
worth of lifetime results for diabetics.

1) Diabetics Distress and Its Impact on Quality of Life

Diabetics-related discomfort is the mental and psychological
difficulties that people with diabetics face. It includes all of the
emotions associated with the difficult aspect of diabetic self-
care, such as concern, frustration, and burnout. Unlike clinical
depression, diabetics distress is specifically tied to the burdens
of managing a chronic illness, including frequent blood sugar
monitoring, dietary restrictions, and the fear of complications.
People with diabetics suffer from a reduced sense of general
well-being and life satisfaction due to this substantial condition
that affects their quality of life. Diabetics discomfort has a
wonderful result on one's quality of life. It may result in a lack
of compliance with action ideas, important to inadequate
glycaemic management and a higher chance of consequences,
including neuropathy, cardiovascular disease and retinopathy.
Furthermore, chronic stress and worry can intensify outlooks of
isolation and social disengagement, worsening mental health.
People may also experience a loss of motivation and
despondency, which can impede efficient self-management and
worsen diabetic symptoms. Addressing diabetic discomfort
requires a multimodal strategy that includes psychological
support, diabetics education, and the acquisition of coping
mechanisms. Interventions like as cognitive-behavioural
therapy, peer support groups, and stress management
approaches can help people regulate their emotional responses,

enhancing their general standard of living and diabetic
outcomes.

Figure 7 illustrates the concept of diabetics distress,
highlighting the emotional and psychological burdens faced by
individuals managing diabetics. The diagram identifies key
sources of distress, including feeling overwhelmed, emotional
and physical exhaustion, anger, lack of support, and isolation.
These factors contribute to a complex emotional load, negatively
affecting an individual's quality of life. Daily diabetics
management, including frequent blood glucose monitoring and
dietary restrictions, can lead to stress and frustration. Emotional
exhaustion further intensifies these feelings, and the absence of
support from healthcare providers, family, or peers can worsen
the sense of isolation. The figure emphasizes the importance of
addressing these emotional challenges through targeted
interventions, such as psychological support and stress
management, to improve health outcomes for diabetics.

Physical and
Emotional
Exhaustion Due to
the Demands of

Feeling of DM Managing DM
Controlled Life and Feeling a Lack of
Anger of Living the Support from
Entire Life with Healthcare
DM Providers

Diabetes Distress

Feeling
Overwhelmed and
Scared by Living

Social Isolation or
Perceiving a Lack

with a Chronic of Social Support
Tliness
Life Quality
Related Other
Issues

Fig. 7. Conceptual Framework of Diabetics Distress

E. Assessing the Model's Effectiveness and Interpretation

To ensure the efficacy of an RNN model for managing health
crises in diabetics, it is necessary to evaluate and analyse both
technical and efficient methods. This entails evaluating the
model's overall performance using important measures,
including accuracy, precision, F1-Score and recall.
Additionally, comparing the Al-driven sentiment analysis
model with existing methods provides insights into its relative
effectiveness. Techniques like feature importance analysis and
attention mechanisms play a vital part in identifying which
features and data components most influence the model's
performance. By thoroughly evaluating and interpreting these
metrics, researchers can understand the model's strengths and
limitations. This comprehensive analysis leads to targeted
improvements and refinements, enhancing the model's
capability in real-world health crisis management scenarios.
Ultimately, this approach guarantees that the artificial
intelligence model is not just efficient but also optimized for
practical application in managing diabetic health issues.
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IV.  EXPERIMENTATION AND RESULT DISCUSSION

The sentiment analysis utilizing artificial intelligence in
handling health crises among diabetics within smart urban
environments reveals promising insights. The Al-driven
sentiment analysis system effectively processes vast amounts of
health-related data, registering complex emotions and patterns
that are essential for prompt actions. By analysing social media
posts, patient feedback, and health records, the Al system
detects potential difficulties and delivers actionable advice for
crisis management. The findings reveal a considerable increase
in anticipating and responding to health emergencies compared
to traditional techniques, proving Al's ability to improve diabetic
care in urban settings. The system's excellent memory, accuracy,
precision, and F1-Score show that it can provide efficient
decision-making and intervention options in diabetic health
crises.

TABLE VIII.  SIMULATION SYSTEM CONFIGURATION
Component Specification
Python Jupyter Version 3.8.0
Operating System Ubuntu
Memory Capacity 4GB DDR3
Processor Intel Core i5 @ 3.5GHz

Table VIII displays Python Jupiter (likely referring to
Jupyter Notebook) on an Ubuntu operating system, version 3.8.0
is installed. A 3.5GHz Intel Core i5 processor powers the
machine, which features 4GB of DDR3 memory. These
specifications indicate a reasonably capable system that can do
routine data science jobs, such as statistical analysis, data
manipulation, and training machine learning models on small to
medium-sized datasets. To guarantee optimal performance and
efficiency, extra RAM or a faster CPU could be helpful for
bigger datasets or more complicated calculations.

TABLE IX. COMPARISON OF TEXT-CLEANING PERFORMANCE WITH
AMFT
Model Preprocessing F1-Score
RNN baseline Standard NLP cleaning 0.87
RNN-AMFT AMFT-based token filtering 0.91

Table 1X illustrates the impact of AMFT-based token
filtering on text-cleaning performance by comparing it with
standard NLP cleaning methods. Using an RNN baseline model,
the standard preprocessing yields an F1-score of 0.87. When
AMFT is applied for token filtering, the RNN-AMFT model
improves the Fl-score to 0.91. This demonstrates that AMFT
enhances the model’s ability to accurately clean and represent
text data, leading to better overall performance. The comparison
highlights the effectiveness of AMFT in refining input
preprocessing, which can be critical in tasks like natural
language understanding and classification.

Figure 8 illustrate the performance comparison between
AMFT and RNN-AMFT sentiment analysis models and
technical versus efficient model training methods. The RNN-
AMFT model, with a sentiment score of 94, outperforms the
AMFT model (92) by providing more accurate sentiment
predictions through the integration of RNN's temporal and
contextual analysis. In model training, the technical method
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achieves 0.98 accuracy, surpassing the efficient method (0.96),
which prioritizes computational efficiency over extended
training. The comparison underscores the trade-off between
accuracy and computational efficiency in both sentiment
analysis and model training.
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Fig. 8. Performance Comparison of Sentiment Analysis Models

Figures 9 demonstrate the trade-offs in diagnostic test
performance and the relationship between blood glucose and
sensor readings. Figure 9a shows the inverse correlation
between sensitivity and specificity, emphasizing the trade-offs
in diagnostic accuracy, where higher sensitivity often leads to
lower specificity and vice versa. Figure 9b illustrates the strong
correlation between blood glucose levels and an ADC value,
with a high R-squared value of 0.9813, indicating that as glucose
levels rise, the ADC value also increases. Both figures
emphasize the importance of balancing accuracy and precision
in diagnostic tools.
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Fig. 9. Diagnostic Test and Diabetes Management Tools Analysis
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For the NeRF Deformer model, a computer vision job,
Figure 10 shows the trade-off between True Positive Rate (TPR)
and False Positive Rate (FPR). The fraction of real items that the
model successfully detected is indicated by the red line, which
represents TPR, and the blue line, which indicates FPR,
reflecting the proportion of non-objects incorrectly classified as
objects. Higher values indicate greater model performance. The
x- and y-axes have a collection of 0 to 1. The graph also includes
three data points on the left, which represent TPR and FPR at
various settings of the NeRF Deformer model. Overall, the
graph demonstrates that as FPR increases, indicating more false
positives, TPR also rises, showing improved object detection
performance. This trade-off highlights the balance between
identifying real objects and minimizing misclassifications.
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Fig. 10. True Positive Rate VS. False Positive Rate

Figure 11 shows the presentation of a typical model during
the phases of training and validation, plotting epochs against
loss. The training loss drops to 0.33 as the epochs go by;
however, the validation loss displays a marginally smaller value
of 0.32. This indicates that a model is generalizing well to the
validation data and learning from the training set of data. The
closeness of the loss values for training and validation indicates
that there is little overfitting and that the model performs well
on both datasets. Overall, the graph demonstrates that the model
achieves consistent and low loss values with increased epochs,
reflecting its ability to generalize and perform well on unseen
data.
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0 10
Fig. 11. Analysing Training and Validation Loss.

The age-year density distribution of a population is depicted
in Figure 12, where age in years is displayed along the x-axis
and density is represented on the y-axis. The red bars depict the
average density across age ranges, while the blue bars represent
the median density. This type of graph effectively visualizes the
distribution of individuals within each age bracket, highlighting
variations in population density. Although the bars indicate
density in this case, they could alternatively represent counts or
percentages, offering flexibility in understanding how
individuals are spread through dissimilar ages within the dataset.
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Fig. 12. Visualizing Age Distribution.

Figure 13 compares the performance of three models:
AMFT, RNN-AMFT, and Baseline CNN, with accuracy,
precision, recall, and F1-score metrics. The 95% confidence
intervals (Cls) for each metric show the variability and
reliability of the models’ performance. The RNN-AMFT model
outperforms the others with the highest values across all metrics,
indicating its superior ability to predict diabetic health crises.
The table highlights the statistical significance of RNN-AMFT
over AMFT and CNN, making it the most effective model for
this task.
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Fig. 13. Model Performance Metrics with Confidence Intervals.

Figure 14 visualizes the performance of the RNN-AMFT
model in terms of its classification of predicted positive and
negative cases against actual positive and negative instances.
The matrix shows that the model correctly identified 4650 true
positives and 4720 true negatives, while misclassifying 350
actual positives as negatives and 280 actual negatives as
positives. These values provide insights into the model’s
accuracy and highlight areas of potential improvement in
minimizing false positives and false negatives.
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Fig. 14. Confusion Matrix for RNN-AMFT Model

Figure 15 displays the relationship between the True Positive
Rate (Sensitivity) and the False Positive Rate (1 — Specificity)
across different thresholds. The curve demonstrates that as the
threshold increases, the sensitivity (true positive rate) decreases,
but the false positive rate also drops. The area under the curve
(AUC) would typically indicate the model's overall ability to
discriminate between positive and negative outcomes, with
higher sensitivity at lower thresholds reflecting better
performance in health crisis detection.
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Fig. 15. ROC Curve for RNN-AMFT Model

Figure 16 illustrates the training and validation loss over
multiple epochs for the model. Both losses decrease over time,
indicating that the model is learning and improving. The training
loss is consistently lower than the validation loss, which is
typical, but both losses converge as the model approaches
optimal performance. The plot suggests that the model is
generalizing well and not overfitting, with losses stabilizing
around epoch 50, showing good consistency between the
training and validation sets.
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Fig. 16. Training vs. Validation Loss Data

Figure 17 presents the results of a t-test comparing the RNN-
AMFT model to both AMFT and CNN models. The t-statistics
and p-values show statistically significant improvements across
all metrics (accuracy, precision, recall, and F1-score) for the
RNN-AMFT model. The p-values are all below the threshold of
0.05, indicating that the differences observed are not due to
chance. This highlights RNN-AMFT’s superior performance,
making it the most effective model in predicting diabetic health
crises in smart urban settings.
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Fig. 17. Statistical Significance Testing Against Baseline

Figure 18 displays the distribution of sentiment posts from
three different sources: social media, health forums, and health
apps, over six months. It shows a total of 10,000 posts, with the
majority being positive (4700), followed by neutral (3100) and
negative (2200). The data highlights how different platforms
contribute to the sentiment data, which plays a critical role in
identifying and managing health crises for diabetics. These posts
are crucial for training the sentiment analysis model to detect
emotional distress and predict potential health emergencies.
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A. Comparative Analysis

Al-driven sentiment analysis outperforms traditional
monitoring systems for managing diabetic health crises in smart
urban settings. By leveraging advanced algorithms, Al provides
enhanced accuracy, precision, and efficiency, dynamically
analyzing real-time data and adapting to emerging patterns.
Unlike static traditional systems, Al improves crisis detection
and response, offering superior performance, flexibility, and
adaptability in managing health crises.
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Fig. 19. Al-Based Sentiment Analysis vs. Traditional Monitoring System

The contrast between Al-powered sentiment analysis and a
traditional monitoring system reveals that the Al-driven
approach significantly outperforms the traditional method
across all key metrics in Figure 19. The Al system achieves an
accuracy of 0.92, compared to the traditional system's 0.78,
indicating a higher overall correctness in sentiment
classification. Precision, which measures the number of true
identifications, is 0.90 for Al versus 0.75 for traditional
methods, highlighting better accuracy in positive sentiment
detection. Similarly, Al's recall of 0.93, versus 0.70,
demonstrates a superior ability to identify relevant sentiment
instances. The Al system has an F1-Score of 0.91, while the
traditional system's is 0.72. This score compares the accuracy
and recall of the two systems, reflecting an extra active and
reliable performance in sentiment analysis. These outcomes
highlight the enhanced capability and robustness of the Al-based
system in accurately analysing sentiment data.

By integrating Al-based sentiment analysis into smart city
infrastructures, this approach has the potential to revolutionize
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diabetics management, making healthcare systems more
responsive, efficient, and personalized. The scalable nature of
this technology means it can be implemented across various
urban environments, providing a framework for more proactive
health crisis management on a citywide scale.

V. DISCUSSION

The Al-driven sentiment analysis system demonstrates clear
advantages over traditional monitoring approaches for
managing diabetic health crises in smart urban environments.
The RNN-AMFT model with AMFT-based token filtering
achieved an F1 score of 0.91, improving over the RNN baseline
(0.87) and outperforming the baseline CNN (0.845) and AMFT-
only model (0.865). Accuracy reached 0.92 [0.90, 0.94],
precision 0.90 [0.88, 0.92], and recall 0.93 [0.91, 0.95], with t-
tests confirming statistically significant improvements (p <
0.01). The confusion matrix shows 4650 true positives and 4720
true negatives, with low false positives (280) and false negatives
(350), while the ROC curve indicates a high true positive rate
(>0.93) across practical thresholds. Training and validation
losses decrease steadily to 0.33 and 0.32, respectively,
demonstrating  minimal  overfitting. = Hyper-parameter
optimization (AIDO) selected optimal learning rates (0.001),
dropout (0.3), and hidden units (128), balancing convergence
and generalization. Analysis of 10,000 user-generated posts
shows 47% positive, 31% neutral, and 22% negative sentiments.
These results highlight the effectiveness of RNN temporal
modelling, AMFT-based noise filtering, and multisource data
integration in accurately detecting early signs of distress,
enabling timely interventions and improved diabetic care
management.

A. Limitations

While the Al-driven sentiment analysis system demonstrates
strong performance, several limitations persist. First, the
reliance on social media data introduces demographic and
behavioural biases, as not all diabetic patients are active online.
Furthermore, data volume disparities between large-scale social
media posts and smaller datasets from loT devices and
electronic health records (EHRs) could affect model training and
generalization. Although ethical protocols, including data
anonymization, were applied, scaling the system to real-world
healthcare environments presents privacy and regulatory
challenges. Additionally, the study focuses on urban settings,
leaving the system's applicability in rural or resource-limited
contexts unexplored. These limitations must be addressed to
improve the system’s broader usability and performance.

B. Future Work

The current study used a female-only dataset, introducing
potential gender bias in sentiment analysis. Future research
should expand the dataset to include male participants and
individuals from diverse gender identities and socio-economic
backgrounds to improve fairness and generalizability.
Additionally, addressing healthcare access barriers in both urban
and rural contexts is vital, as disparities in healthcare resources
could impact the system's effectiveness. Future work should also
focus on integrating the Al-driven sentiment analysis model into
healthcare workflows, such as hospital dashboards and EHR
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systems, to enable real-time monitoring and early interventions,
enhancing diabetic care outcomes across diverse settings.

VI. RESEARCH CONCLUSION

This  research  demonstrates the  significant
enhancement Al-driven sentiment analysis brings to managing
health crises among diabetics in smart urban environments. By
processing diverse data sources like social media and patient
feedback, Al provides crucial insights into emerging health
issues and patient sentiments, enabling proactive crisis detection
and early intervention. The system's ability to optimize resource
allocation and decision-making in urban healthcare further
enhances personalized care. With 0.92 accuracy, 0.90 precision,
and 0.93 recall, the Al system outperforms traditional methods,
offering promising potential for widespread adoption. This
study paves the way for more efficient and adaptive diabetics
management, underscoring Al's transformative impact on urban
healthcare systems and highlighting the need for continued
innovation in health crisis management.
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