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Abstract 

Managing diabetic health crises in smart urban environments is challenging due to rapidly changing patient conditions and the need for 

timely interventions. This study introduces a novel AI-driven sentiment analysis system that integrates social media, IoT sensor data, and 

electronic health records to detect early signs of distress and health deterioration. By leveraging an Adaptive Median Filtering Technique 

(AMFT) for preprocessing and Recurrent Neural Networks (RNN) for modelling, the system provides actionable insights from large-

scale, heterogeneous data. Experimental results demonstrate that the proposed RNN-AMFT model significantly outperforms baseline 

methods, achieving 0.92 accuracy, 0.90 precision, 0.93 recall, and a 0.915 F1-score, compared to a baseline CNN (accuracy 0.86, F1-score 

0.845). Analysis of 10,000 posts revealed 47% positive, 31% neutral, and 22% negative sentiments, highlighting the system’s capability to 

capture meaningful health patterns. These findings illustrate the potential for real-time monitoring, proactive intervention, and improved 

diabetic care outcomes. The study establishes a foundation for integrating AI-driven sentiment analysis into clinical workflows, enabling 

personalized healthcare and scalable health crisis management. 
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I. INTRODUCTION  

Diabetics is a chronic metabolic disorder affecting millions 
of people worldwide, representing a major public health 
challenge that requires continuous monitoring and timely 
interventions to prevent severe complications such as 
cardiovascular diseases, neuropathy, and kidney failure [1-2]. 
Effective management of diabetics involves not only tracking 
physiological parameters like blood glucose levels but also 
understanding patients’ behavioural and emotional states, which 
can significantly influence disease progression and treatment 
adherence [3-5]. In smart urban environments, the management 
of diabetic health crises becomes particularly complex due to 
high population density, environmental stressors, lifestyle 
dynamics, and limited immediate access to healthcare facilities 
[6-7]. Urban dwellers often face irregular schedules, dietary 

inconsistencies, and heightened stress levels, all of which can 
exacerbate glycemic fluctuations and increase the risk of sudden 
health crises. Traditional healthcare systems, which primarily 
rely on periodic clinic visits, self-reported logs, and manual 
assessments, are inadequate for capturing real-time 
physiological and psychological signals [8]. Investigating the 
impact of healthcare access barriers such as affordability, social 
determinants of health, and cultural competence, on the 
management of diabetics in urban environments, and how AI-
driven sentiment analysis can be leveraged to support early crisis 
detection and intervention [9]. These conventional approaches 
often fail to provide early warning mechanisms, leaving critical 
gaps in proactive intervention and preventive care [10]. 
Furthermore, patients’ emotional states, social behaviours, and 
sentiment-related cues, which can indicate early signs of distress 
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or health deterioration, are largely overlooked in routine 
monitoring frameworks [11]. 

To address these challenges, this study introduces a novel 
Artificial Intelligence (AI)-driven sentiment analysis system 
designed to monitor and predict health crises in diabetic patients 
within smart urban settings [12-13]. The proposed system 
integrates heterogeneous, multisource data from social media 
platforms, IoT-enabled wearable sensors, and Electronic Health 
Records (EHRs), providing a comprehensive and real-time view 
of patients’ physical and emotional well-being [14-15]. The 
system utilizes an Adaptive Median Filtering Technique 
(AMFT) to preprocess textual data, effectively reducing noise 
such as irrelevant information, spam, or inconsistent entries, 
thereby improving the quality of inputs for sentiment analysis 
[16-17]. Temporal dependencies and sequential patterns in 
patient-related data are captured using Recurrent Neural 
Networks (RNNs), enabling the model to detect subtle shifts in 
sentiment or physiological signals over time [18-20]. AI-driven 
hyperparameter optimization (AIDO) is employed to 
automatically fine-tune model parameters, ensuring robust 
performance, generalization across diverse datasets, and 
scalability for larger deployments [21-22].  

The novelty of this study lies in its holistic approach, 
combining multisource real-time monitoring, advanced 
preprocessing, and temporal modelling to deliver predictive, 
actionable insights [23-24]. By linking emotional and 
behavioural signals with clinical and sensor data, the system 
enhances early detection of health deterioration, allowing for 
proactive interventions that are both timely and personalized 
[25]. Unlike conventional methods that treat physiological and 
emotional signals separately, this approach integrates multiple 
data streams to generate a more accurate and context-aware 
understanding of patient health [26-27].  

The primary objectives of this research are to develop a real-
time sentiment analysis framework capable of handling 
heterogeneous data sources, evaluate its effectiveness in 
identifying early signs of distress, and demonstrate its potential 
to improve patient outcomes [28]. Ultimately, the study aims to 
establish a foundation for scalable, AI-driven health monitoring 
solutions in urban environments, enabling healthcare providers 
to deliver timely support, optimize interventions, and empower 
diabetic patients to better manage their condition within the 
context of their daily lives. The order of the remaining sections 
is as follows: Section 2 includes the literature review, Section 3 
presents the proposed technique, Sections 4 and 5 examine the 
results with discussion, and Section 5 describes the paper's 
conclusion. 

II. LITERATURE SURVEY 

The literature survey for sentiment analysis utilizing 
artificial intelligence in effective health crisis management for 
diabetics within smart urban environments explores the 
intersection of advanced AI techniques and healthcare analytics. 
Naveed et al [29] investigate the possible effect of diabetics on 
the emotional sentiment of patients through sentiment analysis 
of online forum posts. Analysis of 215 forum posts suggests that 
diabetics may influence patients' emotional states, as reflected in 
their shared experiences, issues, and suggestions. Further 

detailed research is needed to clarify the nature and extent of this 
relationship.  

Ghosh et al [30] developed a system for sentiment analysis, 
which uses facial expressions in an intelligent healthcare system 
to identify discomfort, integrating cutting-edge techniques. The 
proposed system employs a four-component approach involving 
face detection, feature extraction, pain intensity prediction, and 
score fusion. Benchmark database experimentation shows better 
performance than current facial pain expression analysis 
techniques. Madan et al [31] used machine learning to analyse 
patient emotions regarding healthcare facilities, concentrating 
on polarity extraction from patient evaluations to evaluate 
factors like cleanliness, doctor availability, and doctor-patient 
interaction. The study successfully implements Python-based 
sentiment analysis to derive polarity scores from patient 
feedback, facilitating the calculation of goodness scores for 
healthcare facilities. This approach aids patients in making 
informed choices based on aggregated experiences.  

Young et al [32] introduced Entity Relationship Sentiment 
Analysis (ERSA) for understanding the sentiment of entity pairs 
in biomedical texts, particularly focusing on relationships 
between biomedical and food concepts. To improve ERSA 
performance without a substantial quantity of tagged data, 
CERM, a semi-supervised architecture, is proposed. CERM 
effectively addresses the ERSA task by leveraging both labelled 
and unlabeled data, showcasing robust performance in capturing 
sentiment nuances within biomedical and food-related entity 
relationships. The approach demonstrates versatility across 
varied learning scenarios, highlighting its potential for 
enhancing food-health relationship studies using biomedical text 
analysis. Kaveripakam et al [33] examined different machine 
learning algorithms (MLAs) for identifying diabetic diseases by 
utilizing the PIMA Indian diabetic dataset. Cross-validation 
using ACR, PCN, RCL, FSC, ROC and K-fold are around 
metrics used to measure the efficiency of algorithms like SVM, 
DT, LGR, GDBM, KNN, XGBM, and RF in early diabetics 
prediction. Among the MLAs tested, Random Forest (RF) 
demonstrated superior performance in diabetic identification, as 
evidenced by higher scores across key metrics in test case 4 
(70%-30% split). RF outperformed other algorithms, 
showcasing its potential for effective disease prediction in 
clinical applications.  

Huang et al [34] identified an uncommon instance of 
concurrent diabetics mellitus with hyperthyroidism and diabetic 
ketoacidosis (DKA/TS) in a young child, highlighting the 
necessity of prompt, team-based treatment options and 
diagnostic and management problems. The case highlights the 
essential of increased clinical awareness and interdisciplinary 
teamwork in the efficient management of such complicated 
endocrine-metabolic illnesses, in addition to the intricacy and 
diagnostic hurdles presented by the simultaneous incidence of 
DKA and TS. 

Lahsen et al [35] carried out an educational diagnosis in 
children and teenagers with Type 1 Diabetics Mellitus (T1DM) 
to determine their educational needs for effective Therapeutic 
Patient Education (TPE) from diagnosis onwards. Thematic 
analysis of qualitative interviews identified five key educational 
themes: understanding the risks connected to type 1 diabetics, 
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keeping an eye on the condition and managing treatments, 
handling crises, managing food and exercise, and adjusting daily 
activities to treatment limitations. Integration of TPE is crucial 
in enhancing skills and managing T1DM effectively among 
young patients.  

Lee et al [36] explored Poland's primary response to a 
Ukrainian refugee crisis, assessing the humanitarian challenges 
and evolving priorities, from basic needs to mental health and 
disease management, emphasizing a collaborative, multi-
sectoral approach. The crisis highlighted the necessity for 
comprehensive needs assessments, robust health surveillance, 
and culturally sensitive, coordinated efforts across sectors to 
effectively support and integrate Ukrainian refugees in Poland. 
Bountouvis et al [37] assessed the status of diabetics 
management among refugee populations in Lesvos, Greece, 
including hyperglycaemia levels, cardiovascular comorbidities, 
treatment availability, and follow-up challenges, aiming to 
highlight barriers to healthcare access and proposed enhanced 
management strategies. Among refugee patients with diabetics 
(81% type 2), findings revealed inadequate treatment continuity, 
suboptimal glycaemic control (median HbA1c 8.7%), 
underutilization of insulin (21%), and low adherence to 
hypertension and lipid-lowering medications. A considerable 
proportion of patients (42%) were not followed up, underscoring 
critical gaps in healthcare delivery and the necessity of 
enhancing global cooperation and support.  

Park et al [38] explored barriers to managing diabetics 
among older Hmong Americans with minimal English 
proficiency, using qualitative interviews with case managers, 
family caregivers, and clinicians. Themes include cultural 
adherence, health inequities, and challenges in navigating 
Western healthcare systems, highlighting the need for culturally 
sensitive interventions. Directed content analysis identified 
cultural adherence, health inequities, and difficulties in 
managing diabetics as major themes. Subthemes included using 
shamans and herbs from the Hmong people, mistrust of Western 
medicine, language barriers, and low health literacy. Addressing 
these barriers is vital for enhancing diabetics management and 
healthcare outcomes among older Hmong patients. 

 

III. RESEARCH PROPOSED METHODOLOGY 

The sentimentality analysis system is driven by artificial 
intelligence for handling health emergencies in diabetic patients 
in smooth city settings. This organization will monitor and 
forecast health issues and provide suitable involvement by 
leveraging real-time information from wearables, social media, 
fitness forums and Electronic Health Records (EHR). The 
methodology entails gathering information from these sources 
and making it while taking ethical problems like informed 
consent and data protection into account. To ensure balanced 
sentiment class representation, the model will be skilled in using 
labelled datasets. A seamless combination of Internet of Things 
devices with EHR systems and aware systems for healthcare 
practitioners will enable real-time information handling in smart 
urban environments. Stages for assembly and preparing data, 
model creation, system incorporation, pilot study deployment, 
analysis, and reporting are all included in the implementation 
strategy. This strategy makes use of Sentiment examination and 

artificial intelligence to improve diabetic health crisis 
management. By making timely interventions, it may also 
improve patient outcomes and the quality of life. 
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Fig. 1. Block Diagram of the Proposed Work 

Figure 1 illustrates a multi-step approach to diabetic health 
crisis management, combining clinical records, social media, 
and IoT sensor data with AI-driven sentiment analysis and 
optimization techniques like RNN and AIDO. This integration 
enhances prediction accuracy and intervention effectiveness by 
ensuring the data is accurate and relevant for analysis. RNNs are 
particularly effective in interpreting sequential data, identifying 
temporal relationships, and enabling precise monitoring of 
health issues. The use of AI-driven sentiment analysis with IoT 
data, such as from wearable devices or continuous glucose 
monitors (CGMs), facilitates real-time health monitoring. This 
proactive, data-driven system allows healthcare professionals to 
detect and intervene in potential diabetic crises, such as 
hypoglycemia or hyperglycemia, before they escalate, thus 
improving overall crisis management. 

A. Data Collection 

Initially, the Nationwide Organization of Diabetics Mellitus 
and Intestinal and Kidney Infections produced a noteworthy, 
high-quality data collection, which made up the diabetics 
mellitus dataset this study employed, which was obtained from 
Kaggle. Predicting if a human has diabetics using diagnostic 
parameters is the main goal of consuming this dataset collection. 
Cases were selected according to strict criteria from a broader 
database, guaranteeing that all patients were Pima Indian women 
who had reached the age of 21. Pregnancies, plasma pressure, 
skin depth, glucose stages, and insulin stages are some of the key 
elements in this dataset. Sentiment analysis utilizing artificial 
intelligence for effective health crisis management in diabetics 
within smart urban environments hinges on the meticulous 
process of data collection. By gathering comprehensive data on 
patient sentiments and behaviours, Sentiment analysis powered 
by AI can provide crucial details about the mental and emotional 
conditions of diabetic patients. This data, obtained from 
resources like social media, patient forums, and health apps, 
enables the identification of early signs of distress and potential 
health crises. Consequently, real-time monitoring and predictive 
analytics can facilitate timely interventions, personalized health 
advice, and enhanced support systems, ultimately improving the 
overall management of diabetics in smart urban settings. Robust 
data collection is thus crucial for harnessing AI to optimize 
health outcomes and crisis management for diabetic patients. 
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TABLE I.  DATA SOURCES FOR DIABETIC HEALTH CRISIS 

MANAGEMENT 

Dataset Size Data Types 
Collection 

Period 
Labeling 

Pima 

Indian 

Diabetics 

768 

samples 

Numeric values 

(plasma glucose, 
insulin, etc.) 

2010-2011 Labelled as positive 

(diabetics) or 
negative (no 

diabetics) 

Social 

Media 

Posts 

450,000 

posts 

Text (social 

media posts, 
forum messages, 

etc.) 

Jan 2022 - 

Dec 2022 

5,000 posts manually 

annotated (Positive, 
Negative, Neutral) 

IoT Sensor 

Logs 

50,000 
records 

Time-series data 
(glucose levels, 

heart rate, etc.) 

Jan 2023 - 
Jun 2023 

Real-time 
monitoring, no 

manual labelling 

 

Table I provides an overview of the three primary datasets 
used in the study to analyze diabetic health crises: the Pima 
Indian Diabetics dataset, social media posts, and IoT sensor 
logs. The Pima dataset offers clinical metrics like glucose levels 
and insulin, while social media data is used to analyze sentiment 
regarding diabetics-related issues. IoT sensor logs track real-
time health metrics such as blood glucose levels and heart rate, 
contributing to timely crisis detection. The combination of these 
datasets offers a holistic approach to understanding and 
managing diabetics health crises in smart urban environments. 
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Fig. 2. Impact of Uncontrolled Diabetics 

Figure 2 demonstrates the extensive complications arising 
from uncontrolled diabetics, depicting the detrimental effects on 
various organs throughout the human body. Persistently 
elevated plasma sugar levels can cause serious harm in 
important areas, including the heart, kidneys, nerves, eyes, and 
teeth. For instance, prolonged hyperglycaemia can result in 
cardiovascular issues, renal failure, neuropathy, retinopathy, and 
periodontal disease. This visual representation underscores the 
systemic nature of diabetics-related complications, highlighting 
that the repercussions of unmanaged diabetics extend beyond a 
single organ system. It emphasizes the critical need for effective 
blood sugar management to lessen these dangers and prevent 
long-term health issues. By maintaining controlled blood 
glucose levels, individuals can lower their risk of experiencing 
these serious consequences, thereby improving their general 
well-being and standard of living. The figure serves as a 
reminder of the significance of consistent diabetics management 
to safeguard against widespread organ damage.  

 

 

1) Multisource Data Integration Pipeline 

The sentiment analysis system utilizes a multisource dataset 
composed of clinical records, social media posts, and IoT sensor 
data. A structured integration pipeline was implemented to 
merge these heterogeneous datasets into a unified analytical 
framework. 

TABLE II.  DATA SOURCE VOLUMES AND PROPORTIONS 

Data Source Volume 
Percentage 

Used 

Pima Indian Diabetics Dataset 768 samples 10% 

Social Media Posts (Twitter/X, 

Reddit) 

450,000 

posts 

75% 

IoT Sensor Logs (CGM & wearable 
devices) 

50,000 
records 

15% 

 

Table II details data sources used in the study, showing the 
volume and percentage utilized: 768 samples from the Pima 
Indian Diabetics Dataset (10%), 450,000 social media posts 
(75%), and 50,000 IoT sensor records (15%) for model training 
and validation. Social media data forms the majority of the 
dataset because sentiment analysis relies heavily on user-
generated textual content, whereas IoT data and clinical EHR 
provide physiological context that supports crisis prediction. 

2) Sentiment Annotation and Inter-Rater Reliability 

A structured manual annotation process was implemented to 
generate reliable sentiment labels for supervised learning. A 
total of 5,000 social media posts were sampled from the broader 
collection of 450,000 posts and independently annotated by 
three trained annotators with backgrounds in public health and 
linguistics. Each post was assigned one of three sentiment 
categories: Positive, Negative, or Neutral, following a 
predefined annotation guideline designed to reduce subjective 
variation.  

 Positive: expressions of stability, improvement, or 
satisfaction 

 Negative: indications of distress, worsening symptoms, or 
fear 

 Neutral: informational, uncertain, or ambiguous expressions 
To assess the consistency of the labelling process, Cohen’s 

Kappa was computed for each annotator pair. The results, 
presented in Table III, show high agreement across annotators, 
with all scores exceeding 0.80, indicating strong reliability. 

Table III presents Cohen’s Kappa scores measuring inter-
rater reliability between annotator pairs. The scores, 0.84 (A–B), 
0.81 (B–C), and 0.87 (A–C), indicate strong agreement, 
demonstrating consistent and reliable annotations across all 
pairs. To illustrate the annotation scheme, a subset of manually 
labelled examples is provided in Table III. 

TABLE III.  INTER-RATER RELIABILITY (COHEN’S KAPPA) 

Annotator Pair Kappa Score 

A–B 0.84 

B–C 0.81 

A–C 0.87 
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Table IV showcases example social media posts labelled for 
sentiment or condition related to diabetics management. The text 
reflects different experiences: a negative post about sugar spikes 
despite medication, a positive post indicating stability and 
sensor accuracy, and a neutral post expressing uncertainty about 
glucose readings. These examples reflect how sentiment 
categories were operationalized and applied across the dataset. 

TABLE IV.  SAMPLE LABELLED POSTS 

Text Label 

“My sugar level spiked again despite medication…” Negative 

“Feeling stable today, sensors seem accurate!” Positive 

“Need to adjust my readings; not sure what’s going on.” Neutral 
 

3) Ethical Compliance and Data Anonymization 
Procedures 

This study strictly adheres to ethical research principles and 
data protection regulations. All procedures were conducted in 
compliance with institutional and international guidelines for 
research involving human-related data, including IRB standards, 
GDPR, and best practices for data privacy. No identifiable 
patient information was accessed during the research. Data were 
collected from multiple sources while ensuring informed 
consent and privacy. Electronic Health Record (EHR) and IoT 
data were provided by a partnering medical centre, with prior 
consent obtained from all participants. These datasets were fully 
anonymized before being used in the study. For social media 
data, only publicly available posts from platforms such as 
Twitter/X and Reddit were collected. No private messages or 
restricted content were used, in accordance with the platform 
Terms of Service. 

To protect participant privacy, a structured de-identification 
and anonymization protocol was applied. Personal identifiers 
such as names, emails, phone numbers, GPS coordinates, and 
profile links were removed. User IDs were replaced with SHA-
256 hashed values to prevent re-identification. Timestamps were 
generalized into weekly bins to avoid exact temporal tracing, 
and any phrases containing personal references were 
automatically flagged and redacted. All data were securely 
stored on encrypted drives, accessible only to authorized 
research personnel. No identifiable personal information was 
retained at any stage, ensuring full compliance with ethical 
standards and privacy regulations. 

B. Data Pre-Processing 

Data pre-processing for sentiment analysis utilizing an AI 
model, ineffective health crisis management for diabetics, is 
essential to guarantee that the input data is clean, standardized, 
and appropriate for training the model effectively. Identifying 
and heavy in disappeared data points using methods like mean 
imputation, median imputation, or predictive algorithms to 
estimate missing values constitutes the initial step in data 
cleaning. This ensures a complete dataset for training. 
Additionally, removing outliers is essential to detect and 
eliminate data points that could skew the model's training 
process and affect prediction accuracy. One advanced technique 
used in pre-processing is the AMFT, which is particularly 
effective for noise reduction in sentiment analysis. Textual data 
from sources like social media, patient forums, and health apps 

often contain noise, such as irrelevant information, spam, and 
outliers. AMFT helps filter out this noise to ensure that only 
relevant and clean data is analysed. This could entail eliminating 
particularly favourable or unfavourable opinions that do not 
represent the general trend and could distort the analysis. The 
sentiment analysis model's overall accuracy and resilience can 
be increased by eliminating noisy and outlier data so that it can 
be trained on cleaner, more accurate data. This results in more 
trustworthy perceptions of the feelings of patients and 
behaviours, ultimately enhancing health crisis management for 
diabetics within smart urban environments. 

 

Fig. 3. High Blood Glucose on Vascular Health 

Figure 3 compares a normal blood vessel with one affected 
by high blood glucose levels. The "normal blood glucose" vessel 
shows smooth red blood cell flow, indicating healthy 
circulation. In contrast, the "high blood glucose" vessel is 
depicted as congested, highlighting the harmful effects of 
excessive blood sugar. High blood glucose leads to vascular 
issues, including thickened vessel walls, reduced elasticity, and 
an increased risk of blockages. These changes can result in 
severe conditions like hypertension, heart disease, and stroke. 
This figure emphasizes the critical need for diabetics to manage 
blood glucose levels effectively, as uncontrolled blood sugar can 
lead to significant long-term vascular damage and other health 
complications. Regular monitoring is essential to prevent these 
adverse outcomes. 

TABLE V.  ADAPTIVE MEDIAN FILTERING FOR SENTIMENT ANALYSIS 

ALGORITHM 

Algorithm 1: Pseudocode for Adaptive Median Filtering for Sentiment 

Analysis 

for each text in the dataset: 

    tokens = tokenize(text) 

    window_size = 5   
    threshold = 0.2   

    for i in range(len(tokens) - window_size + 1): 

        window = tokens [i:i + window_size] 

        sentiment_scores = [calculate_sentiment_score(token) for token in 
window] 

        median_score = median(sentiment_scores) 
        for j in range(len(window)): 

            deviation = abs(sentiment_scores[j] - median_score) 
            if deviation > threshold: 

                window[j] = replace_with_median(median_score) 

        cleaned_text = reconstruct_text(tokens) 

    store(cleaned_text) 
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Table V demonstrates how the AMFT-SA algorithm 
enhances sentiment analysis by filtering noisy data using a 
sliding window approach. Each text is tokenized, and sentiment 
scores are calculated for each token. A fixed-size sliding 
window (e.g., 5 tokens) is applied, and the median sentiment 
score for the window is computed. Tokens with sentiment scores 
deviating significantly from the median are considered noisy 
and replaced with the median value. This improves data quality, 
removing irrelevant tokens and producing cleaner text for 
analysis. Feature importance analysis identified key factors 
influencing model decisions, such as sentiment-related 
keywords ("sugar," "insulin," "crisis") and temporal features 
(e.g., recurring emotional distress phrases). Contextual 
information, like “post-meal blood sugar,” also contributed to 
accurate predictions. Visualizations like bar charts and word 
clouds highlighted these significant features. 

1) Adaptive Median Filtering Technique (AMFT) 

The Adaptive Median Filtering Technique (AMFT), 
originally for image processing, is adapted for sentiment 
analysis in diabetic health crisis management to filter out noisy 
tokens (e.g., irrelevant words, emojis, or URLs) while retaining 
meaningful sentiment information. A sliding window approach 
processes token sequences, with each token assigned a sentiment 
score using a pre-trained model (e.g., VADER or BERT). 
Tokens deviating significantly from the median sentiment score 
are considered noise and replaced. The window size is 
dynamically adjusted to better capture sentiment trends. This 
adaptation helps clean social media text and enhances sentiment 
analysis by reducing outlier influence. 

TABLE VI.  HYPERPARAMETER OPTIMIZATION PARAMETERS (AIDO) 

Parameter Range Tested 
Selected 

Value 

Learning Rate 0.0001 – 0.01 0.001 

Batch Size 16 – 128 64 

Dropout Rate 0.1 – 0.5 0.3 

RNN Hidden Units 32 – 256 128 

Epochs 10 – 100 50 

Optimizer SGD / Adam / RMSProp Adam 

 

Table VI provides the selected values for various 
hyperparameters optimized through AI-Driven Optimization 
(AIDO). These parameters include the learning rate, batch size, 
dropout rate, RNN hidden units, epochs, and the optimizer used. 
The selected values (e.g., learning rate of 0.001, batch size of 64, 
and Adam optimizer) are those that achieved the best 
performance in model training. This optimization ensures the 
model achieves the highest accuracy, precision, recall, and F1-
score, improving its ability to manage diabetic health crises 
effectively. A model for sentiment analysis that has been trained 
beforehand is applicable to obtain sentiment scores. Allow S_i 
to stand for the sentiment score of the word i in the window. The 
sentiment score M, or median, is determined by 

𝑀 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆1, 𝑆2, … . , 𝑆𝑤)   (1) 

Based on the variation in sentiment scores within the 
window, dynamically change the size of the window. A bigger 
window could be required to accurately capture the overall 
sentiment if there is a considerable variation in the sentiment 

scores. The terms or tokens that show a large deviation from the 
sentiment score median. These are regarded as sounds. 

Compare the median M to each word i with a sentiment score 
of S_i exceeds a certain threshold τ, consider S_i as noise. 

Δ𝑆𝑖 = |𝑆𝑖 − 𝑀|     (2) 

The median sentiment score M or a comparable 
representative figure ought to be utilized instead of garbled 
sentiment evaluations. 

𝑆 = [𝑆1, 𝑆2, … . , 𝑆𝑛]    (3) 

Represent a series of n-word sentiment scores. Establish a 
window size, W, and a threshold, τ. For each window W_j. 

𝑀𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑊𝑗)                                      (4) 

Being flexible is adapting the window size dynamically 
according to the variation in sentiment scores. The description 
of edge conservation is maintaining notable changes in 
sentiment, similar to how edges are preserved in picture 
processing. Healthcare professionals and smart urban 
environments can better handle diabetic health problems by 
precisely recognizing and responding to patient and public 
moods by implementing AMFT for sentiment analysis. 

Figure 4 illustrates how the procedure for sentiment analysis 
starts with the start phase, where the overall procedure is 
initiated. Compiling raw data from different sources, including 
reviews, surveys and social media, is necessary for gathering 
textual data. At the stage of data pre-processing, the data is 
prepared for filtering to improve its quality. The Adaptive 
Median Filtering (AMFT) algorithm is then used to minimize 
noise while keeping critical details.  

 

Fig. 4. Flow Diagram of Adaptive Median Filtering 
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Next, removing irrelevant information filters out superfluous 
or irrelevant stuff, and spam filtering eliminates undesired spam 
data. Identifying and removing outliers discovers and eliminates 
any anomalies that may bias results. These stages provide 
learning data, which is now available for analysis. The sentiment 
analysis phase comprises applying algorithms on cleansed data 
to analyze sentiments, followed by the end phase. This 
organized technique guarantees accurate and efficient sentiment 
analysis. 

 

C. Sentiment Analysis with an AI Model for Effective Health 
Crisis Handling 

To detect effective health crisis management, a system can 
implement and classify effective health crisis management. In 
the domain of improving the efficient handling of health crises, 
making use of their capacity to automatically extract 
discriminative characteristics from vast quantities of data. RNN 
models are highly effective for sentiment analysis, especially in 
the health crisis management of diabetics within smart urban 
environments, because of their capacity to hold progressive 
information and capture temporal dependencies. AI-driven 
optimization (AIDO) may automatically tweak hyperparameters 
to improve the performance of sentiment analysis models in 
RNNs, ensuring accuracy and efficiency. Real-time sentiment 
analysis systems can employ RNNs to continually process and 
analyse data from social media, news, and public forums. AIDO 
can discover and select the most pertinent attributes from textual 
material, improving the standard of the information provided to 
sentiment analysis models. AIDO can optimize processing 
pipelines to handle massive amounts of data in real time, 
guaranteeing that the system can grow to monitor sentiment 
throughout a smart urban environment.  

1) Recurrent Neural Networks (RNN) 

RNNs excel in sentiment analysis for managing diabetic 
health crises in smart urban environments by processing 
sequential data and capturing temporal dependencies. They 
identify patterns and trends in patient feedback, enabling timely 
interventions. Their ability to analyze time series data and apply 
Natural Language Processing (NLP) enhances crisis 
management efficiency, making them ideal for dynamic health 
monitoring and prediction. RNN Cell Computation: An RNN's 
fundamental unit processes the input x_tat timet step, as well as 
the undiscovered condition from the time step beforeh_(t-1). 
The new hidden state, h_t, is calculated as follows: 

ℎ𝑡 = 𝜎(𝑊𝑡 . ℎ𝑡−1 + 𝑊𝑥 . 𝑥𝑡 + 𝑏)   (5) 

For where σ is a function of activation, the weight matrix 
W_(h ) corresponds to the hidden state. W_x is the input weight 
matrix, and the biased term is b. Below is a computation of the 
output: 

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦 . ℎ𝑡 + 𝑏𝑦)   (6) 

Where b_y is the output bias term, and a weight matrix for a 
result is W_(y ). Using AI technology in smart urban 
environments, health crisis management for diabetics entails 
tracking, anticipating, and reacting to health emergencies. 

Because of continuous glucose monitoring (CGM), blood 
glucose level data are available in real time.  

 𝐶𝑟𝑖𝑠𝑖𝑠 = {
𝑇𝑟𝑢𝑒      𝑖𝑓 𝑔̂𝑡+𝑘 ≤ 𝐻𝑦𝑝𝑜𝑔𝑙𝑦𝑐𝑒𝑚𝑖𝑎 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
True      if  𝑔̂𝑡+𝑘 ≤ 𝐻𝑦𝑝𝑜𝑔𝑙𝑦𝑐𝑒𝑚𝑖𝑎 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐹𝑎𝑙𝑠𝑒         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(7) 

The system can initiate interventions like notifications to the 
patient, caregivers, or healthcare providers whenever it detects a 
possible crisis. Based on past data, machine learning algorithms 
can optimize intervention tactics. By combining RNNs for 
sentiment analysis with AI-powered health crisis management 
solutions, develop a holistic strategy for controlling diabetics in 
intelligent urban settings.  

 

Fig. 5. Layered Architecture Diagram of RNN Model 

Figure 5 illustrates the layered architecture of an RNN 
model. Convolution, the process of combining two datasets, is 
used in convolutional layers to generate output from input data. 
The convolution operation reduces pixel values in the receptive 
field to one and applies a ReLU activation function, setting 
negative values to zero, introducing non-linearity. Following the 
convolution layer, a pooling layer (Max Pooling in this case) is 
used to reduce the input matrix size for processing by 
subsequent layers. The data is flattened into a one-dimensional 
array, allowing it to be sent to fully connected layers. Neural 
networks consist of nonlinear, interdependent neurons, which 
use weight matrices to relate input vectors to output. The 
softmax function converts outputs into probabilities, allowing 
for effective sentiment analysis. RNNs, known for handling 
sequential data, are particularly effective in recognizing 
temporal relationships, enabling faster, more accurate insights. 
These capabilities improve healthcare systems' response and 
efficiency in managing diabetics-related health issues. 

2) Hyperparameter Selection and Optimization 

Hyperparameter tuning for the sentiment analysis system 
was conducted using an AI-driven Optimization (AIDO) 
approach. The search space for each parameter was established 
based on standard ranges commonly referenced in prior 
sentiment analysis and RNN literature. Bayesian optimization 
was then applied to efficiently explore these ranges and identify 
configurations that delivered optimal model performance. The 
final optimized hyperparameters used in the RNN-AMFT model 
are shown in Table VII. 
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TABLE VII.  HYPERPARAMETER SEARCH SPACE AND FINAL SELECTED 

VALUES 

Parameter Search Space 
Final 

Value 

AMFT window size 3–7 5 

AMFT token frequency threshold 0.01–0.05 0.02 

RNN hidden units 64–256 128 

Dropout 0.1–0.6 0.4 

Learning rate 1e-5 – 1e-2 1e-3 

 

Table VII summarizes the hyperparameter tuning for the 
model. It lists search ranges for AMFT window size, token 
frequency threshold, RNN hidden units, dropout, and learning 
rate, alongside their optimal final values chosen to maximize 
model performance. These values were selected because they 
consistently yielded higher accuracy and lower training loss 
across multiple validation folds. The final configuration also 
demonstrated strong generalization performance without 
overfitting. 

3) AI-driven Optimization (AIDO) 

AI-driven optimization (AIDO) can considerably improve 
the way sentiment analysis models function in RNNs by 
automatically tuning hyperparameters. This automated 
procedure ensures that the models are optimized for efficiency 
and accuracy by systematically adjusting parameters such as 
network topologies, batch sizes, and learning rates. By fine-
tuning these hyperparameters, AIDO improves the model's 
capacity to reliably analyse sentiment data and overall 
prediction performance, resulting in more effective and efficient 
sentiment analysis in a variety of applications. AI-driven 
optimization (AIDO) uses device learning and synthetic 
intelligence approaches to improve the efficacy and efficiency 
of sentiment analysis. This strategy involves gathering, 
handling, and information investigation in light of the diabetic 
health crisis management in smart urban environments to track 
and develop patient consequences. Data collection and 
processing. 

𝐷 = {𝑑1, 𝑑2, … . , 𝑑𝑛}                (8) 

In this D is the set of all collected data points, each d_i 
signifies a single data point, such as health metrics like blood 
glucose levels.  

𝑆𝑖 = 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑑𝑖)   (9) 

The S_iis the sentiment score derived from the data point, 
d_i NLP sentiment analysis methods are employed to quantify 
sentiment as positive, neutral, or negative.  

𝑃(𝑌 = 1|𝑋) =
1

1+𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑚𝑥𝑚)  (10) 

The P(Y=1│X)  is the possibility of a health emergency or 

a diabetic emergency occurring. β_0,β_1,.…,β_m are the 

logistic regression model's coefficients, x_1,x_2,.…,x_m are the 

feature values. Granting people access to cutting-edge medical 
treatments via telemedicine, mobile health apps, and smart 
clinics. By utilizing intelligent platforms to join patients with 
neighbouring resources and support groups, enhance 
community-based support networks. Individualized and 
efficient diabetic health crisis management solution that blends 

AI-driven optimization and sentiment analysis in settings of 
smart cities. In addition to enhancing medical treatment, this 
technique enhances the overall level of living for diabetics in 
smart cities. This automated method enhances sentiment 
analysis's overall efficacy while streamlining the model-training 
procedure, resulting in more reliable insights and improved 
judgment in a range of contexts. As a result, AIDO plays an 
important role in expanding RNN capabilities, making them 
more robust and adaptable to complex sentiment analysis tasks. 

D. Optimizing Diabetic Health Crisis Management in Smart 
Cities 

The idea behind maximizing diabetic health crisis 
management in smart cities is to enhance the preventive, 
intervention, and overall management of diabetics-related health 
issues by utilizing cutting-edge technologies and data-driven 
methodologies. Here's the comprehensive description of each 
aspect: 

Prevention and Early Detection: Data-driven risk 
assessment in smart cities utilizes smart wearables and sensors, 
such as smartwatches and continuous glucose monitors, to 
gather real-time health data, including blood sugar levels and 
mental movement. When this data is integrated with EHR, it 
provides a holistic view of an individual's health status. AI 
systems then examine this extensive dataset to identify patterns 
and predict potential diabetics episodes. For example, the 
algorithms can detect trends indicating dangerously high or low 
blood sugar levels, alerting medical professionals and patients 
about potential problems before they worsen. This proactive 
strategy allows for timely interventions and individualized 
diabetics treatment, which greatly improves patient outcomes 
and reduces the possibility of grave consequences. Smart cities 
can significantly improve diabetics care and preventive 
techniques by making use of real-time data and advanced 
analytics. 

 

Fig. 6. Types of Diabetics and Their Management 

Figure 6 shows that diabetics is categorized into two main 
types, Diabetics type 1 is brought on by insufficient insulin 
production by the pancreas, a hormone that is vital for 
controlling blood sugar levels. For this autoimmune condition, 
which is frequently identified in children and young people, 
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lifelong insulin therapy is necessary to maintain blood glucose 
control. Insulin resistance, or diabetics type two is the 
consequence of a body producing insulin but not existence 
capable of using it effectively. This kind of diabetics is more 
prevalent in adults and is closely linked to genetic risk, weight, 
and physical inactivity. Treatment for type 2 diabetics often 
involves lifestyle changes, such as food and exercise, as well as 
oral drugs to increase insulin sensitivity. In some circumstances, 
insulin treatment might be required. Early detection and 
management of both kinds are essential for preventing issues 
and maintaining general health. 

Crisis Intervention and Care: Remote patient monitoring 
enhances diabetic care through continuous glucose monitors and 
telemedicine platforms. Continuous glucose monitors provide 
blood sugar monitoring in real-time, transmitting data directly to 
healthcare providers. This continuous flow of data enables the 
rapid detection of harmful variations in blood sugar levels, 
allowing for quick interventions and individualized adjustments 
to treatment programs. Simultaneously, telemedicine platforms 
provide virtual consultations, reducing the necessity for in-
person clinic visits. Patients can receive medical advice, discuss 
their glucose readings, and modify their treatment programs as 
needed from the convenience of their homes. This mix of 
ongoing observation and virtual care not only improves 
diabetics management but also provides patients with rapid 
access to medical support, resulting in more effective and 
responsive care. 

By addressing these elements, smart cities can considerably 
improve the control of diabetics, making the system more 
proactive, responsive, and supportive of patient needs. An all-
encompassing strategy aims to enhance general health and the 
worth of lifetime results for diabetics. 

1) Diabetics Distress and Its Impact on Quality of Life 

Diabetics-related discomfort is the mental and psychological 
difficulties that people with diabetics face. It includes all of the 
emotions associated with the difficult aspect of diabetic self-
care, such as concern, frustration, and burnout. Unlike clinical 
depression, diabetics distress is specifically tied to the burdens 
of managing a chronic illness, including frequent blood sugar 
monitoring, dietary restrictions, and the fear of complications. 
People with diabetics suffer from a reduced sense of general 
well-being and life satisfaction due to this substantial condition 
that affects their quality of life. Diabetics discomfort has a 
wonderful result on one's quality of life. It may result in a lack 
of compliance with action ideas, important to inadequate 
glycaemic management and a higher chance of consequences, 
including neuropathy, cardiovascular disease and retinopathy. 
Furthermore, chronic stress and worry can intensify outlooks of 
isolation and social disengagement, worsening mental health. 
People may also experience a loss of motivation and 
despondency, which can impede efficient self-management and 
worsen diabetic symptoms. Addressing diabetic discomfort 
requires a multimodal strategy that includes psychological 
support, diabetics education, and the acquisition of coping 
mechanisms. Interventions like as cognitive-behavioural 
therapy, peer support groups, and stress management 
approaches can help people regulate their emotional responses, 

enhancing their general standard of living and diabetic 
outcomes. 

Figure 7 illustrates the concept of diabetics distress, 
highlighting the emotional and psychological burdens faced by 
individuals managing diabetics. The diagram identifies key 
sources of distress, including feeling overwhelmed, emotional 
and physical exhaustion, anger, lack of support, and isolation. 
These factors contribute to a complex emotional load, negatively 
affecting an individual's quality of life. Daily diabetics 
management, including frequent blood glucose monitoring and 
dietary restrictions, can lead to stress and frustration. Emotional 
exhaustion further intensifies these feelings, and the absence of 
support from healthcare providers, family, or peers can worsen 
the sense of isolation. The figure emphasizes the importance of 
addressing these emotional challenges through targeted 
interventions, such as psychological support and stress 
management, to improve health outcomes for diabetics. 

 
Fig. 7. Conceptual Framework of Diabetics Distress 

 

E. Assessing the Model's Effectiveness and Interpretation 

To ensure the efficacy of an RNN model for managing health 
crises in diabetics, it is necessary to evaluate and analyse both 
technical and efficient methods. This entails evaluating the 
model's overall performance using important measures, 
including accuracy, precision, F1-Score and recall. 
Additionally, comparing the AI-driven sentiment analysis 
model with existing methods provides insights into its relative 
effectiveness. Techniques like feature importance analysis and 
attention mechanisms play a vital part in identifying which 
features and data components most influence the model's 
performance. By thoroughly evaluating and interpreting these 
metrics, researchers can understand the model's strengths and 
limitations. This comprehensive analysis leads to targeted 
improvements and refinements, enhancing the model's 
capability in real-world health crisis management scenarios. 
Ultimately, this approach guarantees that the artificial 
intelligence model is not just efficient but also optimized for 
practical application in managing diabetic health issues. 
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IV. EXPERIMENTATION AND RESULT DISCUSSION 

The sentiment analysis utilizing artificial intelligence in 
handling health crises among diabetics within smart urban 
environments reveals promising insights. The AI-driven 
sentiment analysis system effectively processes vast amounts of 
health-related data, registering complex emotions and patterns 
that are essential for prompt actions. By analysing social media 
posts, patient feedback, and health records, the AI system 
detects potential difficulties and delivers actionable advice for 
crisis management. The findings reveal a considerable increase 
in anticipating and responding to health emergencies compared 
to traditional techniques, proving AI's ability to improve diabetic 
care in urban settings. The system's excellent memory, accuracy, 
precision, and F1-Score show that it can provide efficient 
decision-making and intervention options in diabetic health 
crises. 

TABLE VIII.  SIMULATION SYSTEM CONFIGURATION 

Component Specification 

Python Jupyter Version 3.8.0 

Operating System Ubuntu 

Memory Capacity 4GB DDR3 

Processor Intel Core i5 @ 3.5GHz 
 

Table VIII displays Python Jupiter (likely referring to 
Jupyter Notebook) on an Ubuntu operating system, version 3.8.0 
is installed. A 3.5GHz Intel Core i5 processor powers the 
machine, which features 4GB of DDR3 memory. These 
specifications indicate a reasonably capable system that can do 
routine data science jobs, such as statistical analysis, data 
manipulation, and training machine learning models on small to 
medium-sized datasets. To guarantee optimal performance and 
efficiency, extra RAM or a faster CPU could be helpful for 
bigger datasets or more complicated calculations. 

TABLE IX.  COMPARISON OF TEXT-CLEANING PERFORMANCE WITH 

AMFT 

Model Preprocessing F1-Score 

RNN baseline Standard NLP cleaning 0.87 

RNN-AMFT AMFT-based token filtering 0.91 

 
Table IX illustrates the impact of AMFT-based token 

filtering on text-cleaning performance by comparing it with 
standard NLP cleaning methods. Using an RNN baseline model, 
the standard preprocessing yields an F1-score of 0.87. When 
AMFT is applied for token filtering, the RNN-AMFT model 
improves the F1-score to 0.91. This demonstrates that AMFT 
enhances the model’s ability to accurately clean and represent 
text data, leading to better overall performance. The comparison 
highlights the effectiveness of AMFT in refining input 
preprocessing, which can be critical in tasks like natural 
language understanding and classification. 

Figure 8 illustrate the performance comparison between 
AMFT and RNN-AMFT sentiment analysis models and 
technical versus efficient model training methods. The RNN-
AMFT model, with a sentiment score of 94, outperforms the 
AMFT model (92) by providing more accurate sentiment 
predictions through the integration of RNN's temporal and 
contextual analysis. In model training, the technical method 

achieves 0.98 accuracy, surpassing the efficient method (0.96), 
which prioritizes computational efficiency over extended 
training. The comparison underscores the trade-off between 
accuracy and computational efficiency in both sentiment 
analysis and model training. 
 

  
(a) (b) 

Fig. 8. Performance Comparison of Sentiment Analysis Models 

 

Figures 9 demonstrate the trade-offs in diagnostic test 
performance and the relationship between blood glucose and 
sensor readings. Figure 9a shows the inverse correlation 
between sensitivity and specificity, emphasizing the trade-offs 
in diagnostic accuracy, where higher sensitivity often leads to 
lower specificity and vice versa. Figure 9b illustrates the strong 
correlation between blood glucose levels and an ADC value, 
with a high R-squared value of 0.9813, indicating that as glucose 
levels rise, the ADC value also increases. Both figures 
emphasize the importance of balancing accuracy and precision 
in diagnostic tools. 

  
(a) (b) 

Fig. 9. Diagnostic Test and Diabetes Management Tools Analysis 

For the NeRF Deformer model, a computer vision job, 
Figure 10 shows the trade-off between True Positive Rate (TPR) 
and False Positive Rate (FPR). The fraction of real items that the 
model successfully detected is indicated by the red line, which 
represents TPR, and the blue line, which indicates FPR, 
reflecting the proportion of non-objects incorrectly classified as 
objects. Higher values indicate greater model performance. The 
x- and y-axes have a collection of 0 to 1. The graph also includes 
three data points on the left, which represent TPR and FPR at 
various settings of the NeRF Deformer model. Overall, the 
graph demonstrates that as FPR increases, indicating more false 
positives, TPR also rises, showing improved object detection 
performance. This trade-off highlights the balance between 
identifying real objects and minimizing misclassifications. 
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Fig. 10. True Positive Rate VS. False Positive Rate  

Figure 11 shows the presentation of a typical model during 
the phases of training and validation, plotting epochs against 
loss. The training loss drops to 0.33 as the epochs go by; 
however, the validation loss displays a marginally smaller value 
of 0.32. This indicates that a model is generalizing well to the 
validation data and learning from the training set of data. The 
closeness of the loss values for training and validation indicates 
that there is little overfitting and that the model performs well 
on both datasets. Overall, the graph demonstrates that the model 
achieves consistent and low loss values with increased epochs, 
reflecting its ability to generalize and perform well on unseen 
data. 

 

Fig. 11. Analysing Training and Validation Loss. 

The age-year density distribution of a population is depicted 
in Figure 12, where age in years is displayed along the x-axis 
and density is represented on the y-axis. The red bars depict the 
average density across age ranges, while the blue bars represent 
the median density. This type of graph effectively visualizes the 
distribution of individuals within each age bracket, highlighting 
variations in population density. Although the bars indicate 
density in this case, they could alternatively represent counts or 
percentages, offering flexibility in understanding how 
individuals are spread through dissimilar ages within the dataset. 

 

 

Fig. 12. Visualizing Age Distribution. 

Figure 13 compares the performance of three models: 
AMFT, RNN-AMFT, and Baseline CNN, with accuracy, 
precision, recall, and F1-score metrics. The 95% confidence 
intervals (CIs) for each metric show the variability and 
reliability of the models’ performance. The RNN-AMFT model 
outperforms the others with the highest values across all metrics, 
indicating its superior ability to predict diabetic health crises. 
The table highlights the statistical significance of RNN-AMFT 
over AMFT and CNN, making it the most effective model for 
this task. 
 

 

Fig. 13. Model Performance Metrics with Confidence Intervals. 

Figure 14 visualizes the performance of the RNN-AMFT 
model in terms of its classification of predicted positive and 
negative cases against actual positive and negative instances. 
The matrix shows that the model correctly identified 4650 true 
positives and 4720 true negatives, while misclassifying 350 
actual positives as negatives and 280 actual negatives as 
positives. These values provide insights into the model’s 
accuracy and highlight areas of potential improvement in 
minimizing false positives and false negatives. 
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Fig. 14. Confusion Matrix for RNN-AMFT Model 

Figure 15 displays the relationship between the True Positive 
Rate (Sensitivity) and the False Positive Rate (1 – Specificity) 
across different thresholds. The curve demonstrates that as the 
threshold increases, the sensitivity (true positive rate) decreases, 
but the false positive rate also drops. The area under the curve 
(AUC) would typically indicate the model's overall ability to 
discriminate between positive and negative outcomes, with 
higher sensitivity at lower thresholds reflecting better 
performance in health crisis detection.  
 

 

Fig. 15. ROC Curve for RNN-AMFT Model 

Figure 16 illustrates the training and validation loss over 
multiple epochs for the model. Both losses decrease over time, 
indicating that the model is learning and improving. The training 
loss is consistently lower than the validation loss, which is 
typical, but both losses converge as the model approaches 
optimal performance. The plot suggests that the model is 
generalizing well and not overfitting, with losses stabilizing 
around epoch 50, showing good consistency between the 
training and validation sets. 

 

Fig. 16. Training vs. Validation Loss Data 

Figure 17 presents the results of a t-test comparing the RNN-
AMFT model to both AMFT and CNN models. The t-statistics 
and p-values show statistically significant improvements across 
all metrics (accuracy, precision, recall, and F1-score) for the 
RNN-AMFT model. The p-values are all below the threshold of 
0.05, indicating that the differences observed are not due to 
chance. This highlights RNN-AMFT’s superior performance, 
making it the most effective model in predicting diabetic health 
crises in smart urban settings. 
 

 

Fig. 17. Statistical Significance Testing Against Baseline 

Figure 18 displays the distribution of sentiment posts from 
three different sources: social media, health forums, and health 
apps, over six months. It shows a total of 10,000 posts, with the 
majority being positive (4700), followed by neutral (3100) and 
negative (2200). The data highlights how different platforms 
contribute to the sentiment data, which plays a critical role in 
identifying and managing health crises for diabetics. These posts 
are crucial for training the sentiment analysis model to detect 
emotional distress and predict potential health emergencies. 
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Fig. 18. Sentiment Post Distribution (Over 6 Months) 

A. Comparative Analysis 

AI-driven sentiment analysis outperforms traditional 
monitoring systems for managing diabetic health crises in smart 
urban settings. By leveraging advanced algorithms, AI provides 
enhanced accuracy, precision, and efficiency, dynamically 
analyzing real-time data and adapting to emerging patterns. 
Unlike static traditional systems, AI improves crisis detection 
and response, offering superior performance, flexibility, and 
adaptability in managing health crises. 

 

Fig. 19. AI-Based Sentiment Analysis vs. Traditional Monitoring System 

The contrast between AI-powered sentiment analysis and a 
traditional monitoring system reveals that the AI-driven 
approach significantly outperforms the traditional method 
across all key metrics in Figure 19. The AI system achieves an 
accuracy of 0.92, compared to the traditional system's 0.78, 
indicating a higher overall correctness in sentiment 
classification. Precision, which measures the number of true 
identifications, is 0.90 for AI versus 0.75 for traditional 
methods, highlighting better accuracy in positive sentiment 
detection. Similarly, AI's recall of 0.93, versus 0.70, 
demonstrates a superior ability to identify relevant sentiment 
instances. The AI system has an F1-Score of 0.91, while the 
traditional system's is 0.72. This score compares the accuracy 
and recall of the two systems, reflecting an extra active and 
reliable performance in sentiment analysis. These outcomes 
highlight the enhanced capability and robustness of the AI-based 
system in accurately analysing sentiment data. 

By integrating AI-based sentiment analysis into smart city 
infrastructures, this approach has the potential to revolutionize 

diabetics management, making healthcare systems more 
responsive, efficient, and personalized. The scalable nature of 
this technology means it can be implemented across various 
urban environments, providing a framework for more proactive 
health crisis management on a citywide scale. 

V. DISCUSSION 

The AI-driven sentiment analysis system demonstrates clear 
advantages over traditional monitoring approaches for 
managing diabetic health crises in smart urban environments. 
The RNN-AMFT model with AMFT-based token filtering 
achieved an F1 score of 0.91, improving over the RNN baseline 
(0.87) and outperforming the baseline CNN (0.845) and AMFT-
only model (0.865). Accuracy reached 0.92 [0.90, 0.94], 
precision 0.90 [0.88, 0.92], and recall 0.93 [0.91, 0.95], with t-
tests confirming statistically significant improvements (p < 
0.01). The confusion matrix shows 4650 true positives and 4720 
true negatives, with low false positives (280) and false negatives 
(350), while the ROC curve indicates a high true positive rate 
(>0.93) across practical thresholds. Training and validation 
losses decrease steadily to 0.33 and 0.32, respectively, 
demonstrating minimal overfitting. Hyper-parameter 
optimization (AIDO) selected optimal learning rates (0.001), 
dropout (0.3), and hidden units (128), balancing convergence 
and generalization. Analysis of 10,000 user-generated posts 
shows 47% positive, 31% neutral, and 22% negative sentiments. 
These results highlight the effectiveness of RNN temporal 
modelling, AMFT-based noise filtering, and multisource data 
integration in accurately detecting early signs of distress, 
enabling timely interventions and improved diabetic care 
management. 

A. Limitations 

While the AI-driven sentiment analysis system demonstrates 
strong performance, several limitations persist. First, the 
reliance on social media data introduces demographic and 
behavioural biases, as not all diabetic patients are active online. 
Furthermore, data volume disparities between large-scale social 
media posts and smaller datasets from IoT devices and 
electronic health records (EHRs) could affect model training and 
generalization. Although ethical protocols, including data 
anonymization, were applied, scaling the system to real-world 
healthcare environments presents privacy and regulatory 
challenges. Additionally, the study focuses on urban settings, 
leaving the system's applicability in rural or resource-limited 
contexts unexplored. These limitations must be addressed to 
improve the system’s broader usability and performance. 

B. Future Work 

The current study used a female-only dataset, introducing 
potential gender bias in sentiment analysis. Future research 
should expand the dataset to include male participants and 
individuals from diverse gender identities and socio-economic 
backgrounds to improve fairness and generalizability. 
Additionally, addressing healthcare access barriers in both urban 
and rural contexts is vital, as disparities in healthcare resources 
could impact the system's effectiveness. Future work should also 
focus on integrating the AI-driven sentiment analysis model into 
healthcare workflows, such as hospital dashboards and EHR 
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systems, to enable real-time monitoring and early interventions, 
enhancing diabetic care outcomes across diverse settings. 

VI. RESEARCH CONCLUSION 

 This research demonstrates the significant 
enhancement AI-driven sentiment analysis brings to managing 
health crises among diabetics in smart urban environments. By 
processing diverse data sources like social media and patient 
feedback, AI provides crucial insights into emerging health 
issues and patient sentiments, enabling proactive crisis detection 
and early intervention. The system's ability to optimize resource 
allocation and decision-making in urban healthcare further 
enhances personalized care. With 0.92 accuracy, 0.90 precision, 
and 0.93 recall, the AI system outperforms traditional methods, 
offering promising potential for widespread adoption. This 
study paves the way for more efficient and adaptive diabetics 
management, underscoring AI's transformative impact on urban 
healthcare systems and highlighting the need for continued 
innovation in health crisis management.  
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