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Abstract

The agricultural surveillance systems produce unending floods of delicate visual information that needs to be sent safely to cloud-based
infrastructures to be subjected to real-time interpretation and decision-making processes. The current paper introduces a new real-time,
lossless, and secure edge-to-cloud transmission model which combines YOLOV5-based event detection, AES-256 symmetric encryption,
and HMAC-SHA256 integrity checks and verifies into a single system. The system identifies critical events and encrypts locally and sends
only the authenticated data to the cloud thus maintaining confidentiality, integrity and availability. It was evaluated on a custom dataset
of 8,000 agricultural images with an average encryption time of 0.17 s/image, decryption time of 0.16 s/image and SSIM of 1.00, which
validates the lossless image quality. YOLOvV5 model attained 98.5 percent mean average precision (mAP @0.5), which guarantees correct
detection prior to encryption. Comparison shows that the suggested approach is faster, more scalable, and more robust in comparison
with the existing machine learning and standalone encryption systems. The model provides a scalable architecture of safe, smart farming
surveillance, which will form the foundation of future updates pertaining to post-quantum encryption and federated edge learning in
precision farming.
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But the growing reliance on surveillance and analytics in the
cloud creates important security and privacy issues. The
agricultural surveillance systems give sensitive data such as the
layout of farms, livestock patterns and the movement of people.
When forwarded to or stored in public and hybrid cloud
infrastructures, such data streams are susceptible to
unauthorized access, interception or manipulation [4], [5]. These

I. INTRODUCTION

The fast development of smart farming technologies, which
has been facilitated by the progress of the Internet of things
(loT), artificial intelligence (Al), and cloud computing, has
turned the usual farming systems into data-driven environments.
Contemporary precision agriculture depends on the constant

monitoring of livestock, crops, and environmental conditions
based on sensors, drones, and camera networks that are
interconnected. These systems will allow diseases, intrusions,
and resource inefficiencies to be identified early, which will
result to increased productivity, animal welfare, and
sustainability [1]-[3].

episodes can result in a loss of privacy, as well as in economic
and operational losses of precision agriculture. This has made
safe, real-time and lossless transmission systems be considered
as vital parts of intelligent agricultural monitoring systems [6].

The current methods mainly involve enhancing the precision
of detection and classification models- based convolutional
neural networks (CNNs), You Only Look Once (YOLO) and

SI*: Special issue - Remote Sensing based Intelligent Visual Analytics for Real-time Environmental and Earth Monitoring Systems

doi: 10.38094/jastt605582

www.ipacademia.org

_ipAraliimia


http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt605582
https://jastt.org
https://ipacademia.org/
mailto:himanshuy69486@gmail.com
mailto:hsarri@gmail.com
mailto:ravi8507cpr@gmail.com
mailto:amanpal84@gmail.com
mailto:er.akashbadhan@gmail.com
mailto:vishalkumarsingh162@gmail.com
mailto:er.akashbadhan@gmail.com

Himanshu et al. / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 15 —24 (2025)

transformer-based vision models [7]-[9]. These systems are very
effective in the detection of animals and intruders, but they are
not often concerned with the security of the data sent. The
encryption, integrity checking and authentication are not
generally considered as a primary layer, it is implemented
independently and not integrated into the real-time data pipeline
[10], [11]. The result of this architectural gap is higher latency,
lack of consistency in protection, and possible exposure of data
either in transit or in cloud storage. Recent reports of
unauthorized hacking into farm surveillance data have revealed
some of the weaknesses of the systems currently deployed in
clouds. In the case of loT camera feeds, unencrypted
transmissions of drone drones, and ineffective authentication
systems, sensitive farm plans and operation data have been
spilled over. These threats pose risks to privacy and
management of data as well as causing financial losses as a
result of the process of data manipulation or sabotage.
Therefore, there is a strong necessity that allows having a real-
time cryptographically secured surveillance system with
guaranteed confidentiality, integrity, and trustworthiness along
the data pipeline.

In order to address these gaps, a novel paradigm of
cryptographic security and deep learning analytics integration
into one unified pipeline is being developed. The high-level
symmetric encryption like the AES-256 also provides
confidentiality with minimum computation cost and the Hash-
based Message Authentication Codes (HMAC) on the basis of
the SHA-256 also provide a stronger integrity check [12], [13].
Recent works have proven that these cryptographic techniques
together with edge computing can ensure security in the 10T-
based agricultural systems without performance degradation
[14]. However, not many studies have experimentally confirmed
such architectures in practice in the agricultural world using
large-scale image data sets and event-driven detection
processes.

Thus, this paper suggests a lossless, real-time cryptographic
infrastructure of secure transmission on clouds of agricultural
surveillance images into a unified system of object identification
based on YOLOV5, AES-256 encryption, and HMAC-SHA256
integrity check. The suggested solution will guarantee end-to-
end data confidentiality, authenticity, and availability, not
compromising the real-time responsiveness. It was tested with
an 8,000 image ad-hoc dataset of drone and field images and
achieved under-0.2 s encryption/decryption, less than 2%
storage overheads, 100 percent image fidelity (SSIM = 1.0), and
98.5 percent detection rates.

This paper has fourfold contributions:

e A secure transmission framework that combines edge
intelligence and cryptography to provide agricultural
surveillance, which is event-driven.

e An AES-HMAC pipeline, which is real-time, has
confidence, integrity and low latency in cloud
transmission.

e Extensive comparison of multi-class drone and field
imagery datasets, speed, fidelity, and detection
accuracy.
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e A modular, high-scale architecture that can be adapted
to many different 10T and smart agriculture
applications.

The hypothesis that drives the current study is the possibility
to have an integrated edge-to-cloud security pipeline with
YOLOV5, AES-256 and HMAC-SHA256 to ensure both high
event detection accuracy and low-latencies of lossless data
transmission of agricultural surveillance. The quantifiable goals
include:

e to keep the mean Average Precision (mMAP@0.5)
high (over 98).

e to encrypt and decrypt images at average
encryption and decryption rates of less than 0.2
seconds on average.

e to maintain total image integrity (SSIM~1.00) in
the process of secure cloud transmission.

The rest of this paper will be structured as follows: Section
2 will cover related literature in the field of smart agriculture
security and deep learning integration. The proposed
methodology is discussed in Section 3. Section 4 gives
experimental results and discussion. Section 5 summarizes the
research and explains the research directions in the future.

Il. RELATED WORK

Artificial intelligence (Al), cloud computing, and the
Internet of Things (10T) have converged, which has transformed
the field of automation in agriculture due to the ability to
monitor in real-time, predict, and make decisions based on the
available data. Nonetheless, even though the modern world has
achieved considerable progress when it comes to applying
precision agriculture, the vast majority of available frameworks
have concentrated on the accuracy of analytics and efficiency of
data collection, neglecting the data security, integrity, and
protection in real-time.

A. Deep Learning and Smart Surveillance in Agriculture

Deep learning (DL) has emerged as the key to the
contemporary agricultural surveillance system as it offers
powerful methods of livestock, crop, and intrusion detection in
various settings. Yousefi et al. [1] provided a literature review
of the UAV-based accurate monitoring of livestock with CNN
and YOLO architecture to produce high-quality localization and
counting of animals. On the same note, Biglari and Tang [2]
used object recognition based on TensorFlow to monitor cattle
drinking behavior, and Yu et al. [3] optimized underwater fish-
scale detection with YOLOV5, showing that the use of DL in
complex and noisy environments is effective.

In addition to object detection, multi-sensor fusion based on
Al has been used to predict calving occurrences [4], animal
lameness [5], and harmful insects [6]. There are still further
improvements to be made, but even with those, there is an
almost universal transfer of unencrypted or semi-protected data
streams to the cloud, which exposes the farms to cyber-attacks
and compromised manipulation of data.
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B. Agriculture Cloud and loT Security.

loT and cloud computing in agriculture enable remote
monitoring and consolidation of the data in the central position,
yet present the vulnerability as they are dependent on the use of
public networks. Chaganti et al. [7] suggested a cloud
monitoring system based on blockchain that protects loT sensor
data with the agriculture industry using distributed ledger
systems. Li et al. [8] discussed the concept of secure cloud data
sharing using hierarchical searchable encryptions of enterprise
systems and proved that it is applicable in agricultural fields.

Rahman et al. [9] used loT and blockchain to detect insects
automatically but did not take into account the cryptographic
confidentiality in the data transmission. Similarly, Farooq et al.
[10] and WEei et al. [11] stated the advantages of Al-based loT
designs in terms of environmental and crop safety surveillance,
but did not provide solid encryption and real-time security.

The difficulty of these works is scalability and latency -
complicated cryptography models tend to raise the
computational cost and become inapplicable to resource-
constrained agricultural edge devices. Hence, a lossless and
lightweight encryption-integrity pipeline is required in order to
secure and guarantee real-time cloud integration.

C. Cryptographic and Hybrid Security Frameworks.

A number of scientists have explored the use of
cryptography and steganography in transmitting agricultural
data. Badhan et al. [12] adopted the AES-based encryption of
loT-based smart farming data, which provides confidentiality
without integrity checks and real-time streaming. Elsewhere,
Badhan and Malhi [13] came up with a hybrid cryptography and
steganography framework to improve the level of data security
during cloud transfer. Though such strategies enhance the
confidentiality of the data, they tend to be not closely connected

with Al-based event detection and ensure a lossless quality of
decryption, which is essential in visual analytics.

Guo et al. [14] have suggested a privacy-friendly Naive
Bayes classifier to support health monitoring, presented
encryption systems that can be used in low-latency systems, and
Singh et al. [15] presented a blockchain-driven secure healthcare
data framework, all of which might have a crossover role in
agriculture. Nevertheless, in current studies, there is not often a
complete architecture that would solve the event detection,
encryption, verification of integrity simultaneously and in real
time.

D. Research Gap and Motivation
Based on the literature, there are three significant gaps:

1) Absence of end-to-end secure architectures: Current
systems are either detection (Al) or security (cryptography) but
not a combination of both into a real-time integrated pipeline.

2) Lack of validation on agricultural imagery: Most of the
systems that have been offered are not domain-specifically
tested or applied to non-agricultural imagery.

3) Lack of lossless encryption verification: The number of
studies that test the quality of decryption through the structural
similarity measures (e.g., SSIM), which is crucial in agriculture
after analysis, is very low.

To address these constraints, the present paper suggests a
single-edge-to-cloud system that integrates the deep learning
detection YOLOv5 and AES-256 encryption and HMAC-
SHA256 integrity validation. The system, unlike their
predecessors, provides real-time, lossless transmission and end-
to-end security of agricultural surveillance data, at the same time
being computationally efficient as brief comparative analysis is
shown in following Table I.

TABLE I. COMPARATIVE SUMMARY OF RELATED WORKS
Ref. Focus Area Methodology Key Contribution Limitations/ Research Gap
[1] Yousefi et al., 2022 | Precision livestock | UAV, CNN, YOLO High accuracy animal detection No cloud security or encryption
detection
[2] Biglari & Tang, | Cattle behavior | TensorFlow, CNN Cattle recognition via visual | Focused only on detection
2022 monitoring trajectory

[3] Yu etal., 2023

Fish scale counting

YOLOv5

Automated underwater detection

No integrity or encryption layer

[4] Mg et al., 2025

Cattle calving prediction

Time-series + DL

Predictive ~ monitoring  via
trajectory analysis

Data unencrypted

[5] Shrestha et al., 2018

Animal lameness

Radar sensing

Non-visual lameness detection

No cloud integration

2024

[7] Chaganti etal., 2022 | loT-Blockchain security | Blockchain, Cloud Tamper-resistant  cloud data | High latency, no image data
exchange

[8] Li et al., 2022 Cloud data sharing Hierarchical PEKS encryption Fine-grained enterprise data | Not agriculture specific
sharing

[9] Rahman et al., 2024 | loT & Blockchain ML + Blockchain Secure insect detection and | No real-time edge encryption
traceability

[12] Badhan et al., 2024 | 1oT-AES Security AES-256 Encryption for smart farming | No HMAC integrity or real-
data time analysis

[13] Badhan & Malhi, | Privacy-preserving ML AES + Steganography Multilayer secure transmission No Al integration or cloud

automation

[14] Guo et al., 2024

Privacy preserving ML

Naive Bayes + Encryption

Secure lightweight classification

Not applied to image data
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[15] Singh et al., 2024 Secure cloud blockchain | Cloud + Blockchain

Confidential healthcare data | No visual SSIM verification

transfer

Secure Smart

Surveillance

Proposed Work
SHA256

YOLOV5 + AES-256 + HMAC-

Real-time, lossless, end-to-end
secure agricultural surveillance
pipeline

Addresses all key gaps: speed,
security, integrity, scalability

The literature review shows that the use of Al in precision
farming and cloud-based monitoring has achieved impressive
progress. Nevertheless, not a lot of frameworks can provide real-
time cryptographic protection without affecting the performance
or fidelity of the image. This paper is the first attempt to combine
event-driven deep learning detection with AES-HMAC
encryption integrity and lossless transmission over clouds,
which will be a major milestone towards secure, intelligent, and
scalable agricultural surveillance.

I1l. METHODOLOGY

The suggested framework provides a secure real-time edge-
to-cloud pipeline to deliver agricultural surveillance imagery in
a manner that does not affect quality, speed, and data integrity.
The software system combines four fundamental modules
namely multi sensor data fusion, deep learning based event
identifying, edge side cryptography processing and secure cloud
verification (Figure 1).

The section details the design architecture, mathematical
model and implementation workflow.

A. System Architecture Overview
The architecture (Figure 1) will consist of three layers:

1) Edge Layer: Local sensing, object detection and
encryption. It combines various sensor types visual
(CCTV/drone), acoustic or environmental to produce context-
dependent feature vectors. YOLOvV5 model is used to detect
events on the fused data in real-time.

2) Secure Transmission Layer: Events detected are
encrypted with AES-256 in Cipher Block Chaining (CBC)
mode and HMAC-SHA256 tags added to check the integrity.
This will guarantee confidentiality and authentication on
transmission.

3) Cloud Analytics Layer: The encrypted data and HMAC
tags are submitted to the secure cloud service using HTTPS
API. The cloud ensures that messages are validated, data
verified and dashboards and alerts are activated to monitor.

It is a multi-stage architecture, which means that no
unprotected or unauthenticated information is exited out of the
field node, ensuring protection of data end to end.

B. Hardware and System setup

The proposed framework was implemented and evaluated on
a workstation equipped with an Intel Core i3-6006U CPU, 8 GB
RAM, and inbuilt intel graphics card (2GB),. Encryption and
integrity verification processes were executed on the same
machine using Python 3.10, OpenCV, and PyCryptodome
libraries. These specifications ensure a fair and reproducible
performance benchmark between deep learning and
cryptographic operations.
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Advanced Workflow of Proposed Real-Time Secure Surveillance System

Multi-Sensor Data Collection
(CCTV, Drone, Environmental Sensors)

v

(Edge Data Fusion & Deep Learning Detection|

v

[Event Trigger: Suspicious Activity?]

v

AES-256 Encryption (Eq. 3)
+ HMAC-SHA256 (Eq. 4)

‘

[Secure Cloud Upload & Integrity Check (Eq. 5)]

v

[Automated Alerts & Analytics)

v

[SSIM Quality Check (Eq. 6)]

Fig. 1. Workflow of the proposed secure agricultural surveillance system

C. Multi-Sensor Fusion and Preprocessing

Agricultural surveillance settings are highly dynamic, e.g.
lighting, weather, and occlusions may influence the accuracy of
the detection. Therefore, multi-sensor fusion was applied in
order to increase robustness.

Synchronized inputs collected at the system at time t are:
X, = Fuse(If*™, Sgnv, Sgudio) €Y
Where:
e [f%M: Image frame from CCTV or UAV camera,

e SF™: Vector of environmental sensor readings
(temperature, PIR motion, humidity, etc.),

o  Spudio: Extracted acoustic signal features,

e Fuse(.) : Concatenation operator which does
normalization then.

This merging process creates a composite image of the
prevailing farm condition that is not prone to failure of one
sensor or occlusion.

D. Deep Learning-Based Event Detection

The fused feature tensor X, is fed to a fine-tuned YOLOV5
model that is trained on 8,000 labeled images of agricultural and
drone images of four categories: animals, suspicious human
beings, non-suspicious human beings, and field background.

The model computes:
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Ve = fo(Xe) 2)

where f, represents the YOLOV5 detection network with
weights as a parameter 6. The output vector y, has object
classes, confidences and a bounding box.

Only critical events such as the detection of an unknown
person or the movement of a large animal are then flagged in a
decision logic module and encrypted and transferred to the
cloud, thereby minimizing the transmission of unnecessary data
and maximizing bandwidth. YOLOvV5 was launched on the
PyTorch 2.1 and trained on the NVIDIA RTX 3080 (10 GB)
GPU in 150 epochs with Adam optimizer, learning rate = 0.001
and batch size = 16.

The model attained mean average precision (MAP@0.5) of
98.5% which guarantees the classification of events before
encryption.

E. Edge-Slide Cryptographic Security

Each flagged frame P (image) is attached prior to a departure
out of the edge device.

1) AES-256 Encryption: Following the PKCS#7 padding of
the image, AES-256 encrypted in CBC mode is used:

C = AES;s6caco (Kags, IV, Pad (P))
Where

(3)

e C: Cyphertext

o Kypg: 256-bit symmetric encryption key,
e [V:Random 16-byte initialization vector,
e Pad(P): PKCS#7-padded plaintext bytes.

This is guaranteed to be confidential and with latency of
minimum (< 0.2 s per frame). AES-256 has been chosen due to
its strength, ability to resist a brute-force attack, and hardware
acceleration.

2) HMAC-SHA256 Integrity Verification: A Hash-based
Message Authentication Code (HMAC) using SHA-256 is
computed for each encrypted image.

T = HMACsy 256 (Kymac, €) €))

Equation 4, where T is the 32-byte integrity tag, and
KHMAC is the secret HMAC key (independent from KAES).

F. Quality Check (SSIM)

For system validation, the decrypted image P is compared to
the original P using Structural Similarity Index Measure
(SSIM):

Cupup +¢1)(2opp + ¢3)
2+ ud+c)(of+0k+c,)

SSIM(P,P) = )
(u
Equation 5, where up, upare the means of P and P, aﬁ,ag
are variances o pis the covariance, and ¢y, ¢, are stabilization
constants. SSIM(P, P ) = 1 confirms lossless operation.
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G. Workflow Diagram

Figure 1 illustrates the flow chart of proposed work. This
represents advanced workflow of the proposed real-time secure
surveillance system, showing multi-sensor data collection, edge

analytics, encryption, secure cloud transfer, integrity
verification, and automated analytics.
H. Novelty and improvements

e Unified multi-sensor  fusion—fuses  visual,

environmental, and acoustic data, yielding robustness
to occlusion, sensor failure, and environmental
variability.

e Event-driven deep learning analytics—combines
advanced object detection and custom event logic for
precise, real-time identification of suspicious events.

e On-device, lossless encryption and integrity—
encrypts and HMAC-tags each event frame at the edge,
ensuring no sensitive data leave the field unprotected.

e End-to-end integrity assurance—authenticates data
at both transmission and storage, preventing
undetected tampering or replay attacks.

e Automated, real-time cloud analytics—cloud
dashboards provide instant notification and event
review, with all actions logged for audit.

e Rigorous quality preservation—SSIM
confirms lossless encryption/decryption.

e Scalability and modularity—architecture scales
from smallholdings to large farms and is modular for
new sensors or analytics.

e Comparative evaluation—benchmarked against
existing frameworks for detection accuracy, security,
latency, and quality.

check

IV. RESULTS AND DISCUSSION

Here, the efficiency of the suggested approach to real-time
automatic cloud directory and processing of detected suspicious
events is analyzed with the focus on the integrity and safety of
the surveillance information along the pipeline. The robustness
of the system was confirmed in both self-designed multi-class
agricultural activity data and a vast publicly available drone
image data.

A. Data and Experimental Protocol
The analysis of the experiment applies two datasets:

e  Custom Agricultural Activity Dataset: 8000 images
(four categories: animals, suspicious human activity,
non-suspicious human activity, field), divided into
training and validation 75 percent and 25 percent
respectively.

e Kaggle Drone Camera Image Dataset: Large sets of
high-resolution images of agricultural fields of various
crops, to be used to confirm the generality and safety
of the cloud pipeline and sample images from dataset
are shown in Figure 2.
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e The Kaggle drone dataset contains agricultural field
images of resolution 5472 x 3648 pixels. All the images
are taken using DJI Drone under different weather
conditions such as shadow, sun light, etc.

The suggested pipeline combines real-time event-observer
(deep-learning) sensing with edge-computing of AES-256
encryption and HMAC-SHA256 integrity protection with
subsequent transmission integrity and cloud-storage. All the
experiments were carried out by using TensorFlow, Keras,
OpenCV and safe cloud APIs.

Secure Cloud Transmission: Encryption and Integrity Results

1) Encryption and Decryption Efficiency: Encryption and
decryption times were measured across 200 random images
from both datasets. Results showed

e  Average encryption time: 0.17 seconds per image
e  Average decryption time: 0.16 seconds per image

These results confirm that the proposed method supports
real-time  surveillance  workflows, adding  minimal
computational overhead. Encryption, decryption, and integrity
results for representative images are shown in Table Il. As seen
in Table 11, the proposed system maintained both speed and data
integrity across all test images. Figure 3 shows encryption times
for selected test images. Figure 4 further illustrates decryption
times for a sample batch of images.

TABLE II. ENCRYPTION, DECRYPTION, AND INTEGRITY VERIFICATION RESULTS FOR SAMPLE AGRICULTURAL IMAGES
Image Orig. Size Enc. Time () Enc. Size Integrity Dec. Time (s) Dec. Size SSIM
DJI_0109 -h50.JPG 12,722,354 0.09 13,722,384 Verified 0.19 12,722,354 1.0
DJI_0117.JPG 9,858,619 0.05 9,858,640 Verified 0.10 9,858,619 1.0
DJI_0114-h40.JPG 10,736,008 0.05 10,736,032 Verified 0.12 10,736,008 1.0
DJI_0025-h60.JPG 12,001,087 0.06 12,001,104 Verified 0.14 12,001,087 1.0
DJI_0018-h80.JPG 10,357,128 0.04 10,357,152 Verified 0.11 10,357,128 1.0

Fig. 2. Representative drone images from the Kaggle dataset used for evaluation
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Fig. 3. Encryption times across sample images
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Fig. 4. Decryption times across sample images

2) File Sized Overhead: Analysis of the original files and
the encrypted files versus size, as shown in Figure 5, revealed
that the encryption makes the file size of images grow at an
average of less than 2 percent, demonstrating efficiency for
cloud storage.

3) Integrity Verification: Integrity of the data was
guaranteed by having the images HMAC-tagged before upload.
When the images were retrieved, all of them were correctly
verified at the endpoint of the cloud (Table 1), establishing that
the cryptographic integrity mechanism was advantageous.
There were no alterations or falsifications of images in
transistor on storage.

B. Lossless Quality Preservation

To verify that cryptographic operations do not degrade
image quality, the Structural Index Measure (SSIM) was
calculated between each original and decrypted image. The
result confirm perfect preservation of image quality after
encryption and decryption is also shown in Table I1I.

e Mean SSIM: 1.00 (all images)
e  Minimum SSIM: 1.00

e Interpretation: No visual or statistical loss occurred
during secure transmission images are perfecty
preserved for analysis.

e  Average decryption time: 0.16 seconds per image

Figure 6 displays the SSIM scores for all test images. All
values are at maximum (1.0), indicating lossless transmission.

TABLE I11. SSIM RESULTS SHOWING LOSSLESS IMAGE QUALITY AFTER
ENCRYPTION AND DECRYPTION
Image SSIM Quality Preservation

DJI_0109-h50.JPG 1.0 Perfect

DJI_0117.JPG 1.0 Perfect

DJI_0114 h40.JPG 1.0 Perfect

DJI_0025-h60.JPG 1.0 Perfect

DJI_0018-h80.JPG 1.0 Perfect

Mean SSIM 1.0 Perfect for all images

C. Comparative Analysis with Existing Approaches

To further demonstrate the effectiveness of the proposed
pipeline, a comparative evaluation was conducted against
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existing approaches for surveillance data storage and analysis. .
The baseline systems included.

e Traditional Cloud Storage (No Security): Direct
upload of raw images/events to the cloud without .
cryptographic protection.

le?

Classical

integration.

ML-based Event Detection:
learning-based detection without

Machine

secure cloud

Conventional Encrypted Storage: Standard image
encryption without real-time integration, integrity

verification, or automation.

The key comparison parameters are listed in Table V.

Original vs Encrypted File Size

File Size (bytes)
(= = = = = =
= =3 e F=] b =
' i i i i

=Y
LS

N Original
N Encrypted

0.0

Image

Fig. 5. File sizes before and after encryption, showing minimal overhead

S5IM (Decrypted vs Original)

L.04 4

1032

551M

098 1

0.96 -

1.040 BRI R T R R I R T R R i S e R R R R R

Fig. 6. SSIM scores confirming lossless image quality preservation

TABLE IV. COMPARISON OF THE PROPOSED PIPELINE WITH TRADITIONAL STORAGE AND DETECTION METHODS

Parameter Traditional Cloud Storage Classgglel(\:/:t-nBased Conventional Encrypted Storage Proposed Method

Automation Manual/Batch Upload Partially Automated Not Real-Time Full Real-Time,
Automated

Event Triggering No Yes (ML only) No Yes (ML + Secure Cloud)
Edge Encryption No No Often No Yes (AES-256)
Integrity Verification No No Rare/Manual Yes (HMAC-SHA256)
Lossless Quality (SSIM) 1.00 1.00 Variable/Not Checked 1.0 (All images)
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Real Time upload No No No Yes

Cloud Analytics/Dashboard Limited Sometimes Rare Fully Integrated

Scalability (Large Images) Moderate Low Moderate Often Poor Excellent

Practical Utility Low (Security Risk) Moderate Moderate High (Secure &
Automated)

Research Gaps Solved No Partially Partially Yes (All Key Gaps)

D. System Performance Summary

Table V summarizes the main performance metrics of the
proposed secure transmission system, including speed, integrity,
and image quality. Add standard deviation and confidence
intervals to timing results.

e Avg. encryption time: 0.17 + 0.03 s/image
e  Avg. decryption time: 0.16 + 0.02 s/image

TABLE V. PERFORMANCE SUMMARY OF THE PROPOSED SECURE
TRANSMISSION SYSTEM
Metric Result/Value

Avg. encryption time (s/image) 0.17
Avg. decryption time (s/image) 0.16
Integrity verification rate (%) 100
Avg. file size increase (%) <2

Mean SSIM 1.00
Real-time cloud upload success (%) | 100

E. Discussion: Research Gaps Addressed by the Proposed
Method

End-to-end Security: The given system covers a number of
important gaps in research on smart agriculture and cloud
surveillance that have existed in the available materials. To
begin, it addresses the problem of end-to-end security by
applying high-quality encryption (AES-256) and strong
integrity checking (HMAC-SHA256) checking at the edge,
before uploading data to a cloud. This approach overcomes the
security and privacy constraints typical of native cloud and ML-
only pipelines, where such protections are often inadequate or
incomplete.

Real time, fully automated workflow: Second, the
approach enables a fully automated real-time workflow,
eliminating the need for manual participation. In contrast to
common types of conventional batch processing, user-
controlled systems, the proposed pipeline generates actionable
field intelligence without human effort, autonomously
identifying relevant events, encrypting sensitive imagery, and
uploading the data to the cloud.

Lossless Quality: The third benefit is protection of quality
without losing it. In contrast to most encrypted storage systems,
our method maintained an SSIM of 1.00 across all three test
images, and as such, the surveillance information stored could
be used in both forensic and analytical tasks.
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Scalability and Efficiency: Moreover, the system proves to
be highly scalable and efficient, successfully running on large
high-resolution drone imagery as well as a tailor-made dataset
of 8,000 images, with minimal delay, high throughput, and only
a marginal increase in output files sizes. This makes it viable to
real life agricultural works.

Best Solution for Integrating the Clouds: Lastly, the
suggested solution offers a natural combination of event
detection, safe storing, cloud analytics, and auto-alerting.
Conversely, legacy systems are based on mere manual
procedures and usually have no intrinsic dashboards that restrict
their applicability. Altogether, the comparative analysis reveals
the fact that the proposed technique not only fulfils but surpasses
expectations for data security, immutability, automation, real-
time processing, and losslessness. It puts a new standard on
smart and secure agricultural surveillance and provides a
scalable template of future intelligent agriculture platforms.

Scalability ~ Considerations: In larger multi-node
agricultural deployments, the methodology could also be
affected by variation in network bandwidth and hardware
variation at the edge of the network. Nevertheless, the modular
architecture can support the throughput of parallel encryption
nodes and federated coordination over geographically
distributed farms. This can be extended to a greater level of
scalability through containerized microservices that are run at
various field nodes.

Computational Cost Analysis:  The  benchmark
performance shows that the HMAC-SHA256 computation
occupies less than 5 percent of the total encryption time, and the
rest of the computational performance is taken up by the AES-
256 algorithm. This proves that integrity check is a low overhead
check with significant data authenticity enhancement.

V. CONCLUSION

This paper proposes the scheme (secure end-to-end pipeline)
of real-time transmission and analysis of surveillance imagery
of agricultural landscapes within the cloud setting. Through the
implementation of advanced deep-learning—based event
detection, multi-sensor data fusion, symmetric encryption
(AES-256), and integrity validation (HMAC-SHAZ256), the
resulting proposed system is able to tackle the complexity of
data privacy, integrity, and non-lossy quality of smart
agriculture fully.

When tested on a large-scale, custom multi-class data, and a
public drone imagery data, experimental findings prove the
system encrypts and decrypts in virtually no time (less than 0.2
seconds per image on average) with supreme integrity and
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maintained visual quality (SSIM = 1.00). The pipeline adds
almost no overhead in the size of file, and works flawlessly in a
real-time pipeline. Comparison to the traditional cloud storage,
classical ML-based event detection and traditional encrypted
storage shall further point out that it is the only method that
satisfies all three main requirements: real-time automation,
edge-side security and robust integrity verification, and cloud-
based analytics and alerting.

Notably, this study will fill the direct gaps in the literature
by providing an integrated, fully autonomous, lossless pipeline
of secure surveillance in agriculture, that can be deployed at
large-scales with a wide range of image classification modalities
and sensor types. The modular design allows extension into
decentralized or federated analytics, additional sensor
integration, or adaptation to other critical monitoring domains
where such applications are needed.

In brief, the proposed solution breaks new ground in smart
farming by demonstrating that real-time, privacy-preserving
monitoring is both practical and reliable. The given work can not
only improve the agricultural security and the understanding of
the processes but also create a scalable architecture and technical
blueprint of the future generation of the smart, trustful, and data
safe agricultural systems. The future research will definitely
extend this framework towards post quantum cryptography
based encryption methods and federated learning architectures
for the distributed agricultural intelligence. These improvements
will make it even more difficult to resist the attacks of the
quantum era and provide privacy-sensitive collaborative
analytics across several farm networks.
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