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Abstract 

The agricultural surveillance systems produce unending floods of delicate visual information that needs to be sent safely to cloud-based 

infrastructures to be subjected to real-time interpretation and decision-making processes. The current paper introduces a new real-time, 

lossless, and secure edge-to-cloud transmission model which combines YOLOv5-based event detection, AES-256 symmetric encryption, 

and HMAC-SHA256 integrity checks and verifies into a single system. The system identifies critical events and encrypts locally and sends 

only the authenticated data to the cloud thus maintaining confidentiality, integrity and availability. It was evaluated on a custom dataset 

of 8,000 agricultural images with an average encryption time of 0.17 s/image, decryption time of 0.16 s/image and SSIM of 1.00, which 

validates the lossless image quality. YOLOv5 model attained 98.5 percent mean average precision (mAP @0.5), which guarantees correct 

detection prior to encryption. Comparison shows that the suggested approach is faster, more scalable, and more robust in comparison 

with the existing machine learning and standalone encryption systems. The model provides a scalable architecture of safe, smart farming 

surveillance, which will form the foundation of future updates pertaining to post-quantum encryption and federated edge learning in 

precision farming. 
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I. INTRODUCTION 

The fast development of smart farming technologies, which 
has been facilitated by the progress of the Internet of things 
(IoT), artificial intelligence (AI), and cloud computing, has 
turned the usual farming systems into data-driven environments. 
Contemporary precision agriculture depends on the constant 
monitoring of livestock, crops, and environmental conditions 
based on sensors, drones, and camera networks that are 
interconnected. These systems will allow diseases, intrusions, 
and resource inefficiencies to be identified early, which will 
result to increased productivity, animal welfare, and 
sustainability [1]-[3]. 

But the growing reliance on surveillance and analytics in the 
cloud creates important security and privacy issues. The 
agricultural surveillance systems give sensitive data such as the 
layout of farms, livestock patterns and the movement of people. 
When forwarded to or stored in public and hybrid cloud 
infrastructures, such data streams are susceptible to 
unauthorized access, interception or manipulation [4], [5]. These 
episodes can result in a loss of privacy, as well as in economic 
and operational losses of precision agriculture. This has made 
safe, real-time and lossless transmission systems be considered 
as vital parts of intelligent agricultural monitoring systems [6]. 

The current methods mainly involve enhancing the precision 
of detection and classification models- based convolutional 
neural networks (CNNs), You Only Look Once (YOLO) and 
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transformer-based vision models [7]-[9]. These systems are very 
effective in the detection of animals and intruders, but they are 
not often concerned with the security of the data sent. The 
encryption, integrity checking and authentication are not 
generally considered as a primary layer, it is implemented 
independently and not integrated into the real-time data pipeline 
[10], [11]. The result of this architectural gap is higher latency, 
lack of consistency in protection, and possible exposure of data 
either in transit or in cloud storage. Recent reports of 
unauthorized hacking into farm surveillance data have revealed 
some of the weaknesses of the systems currently deployed in 
clouds. In the case of IoT camera feeds, unencrypted 
transmissions of drone drones, and ineffective authentication 
systems, sensitive farm plans and operation data have been 
spilled over. These threats pose risks to privacy and 
management of data as well as causing financial losses as a 
result of the process of data manipulation or sabotage. 
Therefore, there is a strong necessity that allows having a real-
time cryptographically secured surveillance system with 
guaranteed confidentiality, integrity, and trustworthiness along 
the data pipeline. 

In order to address these gaps, a novel paradigm of 
cryptographic security and deep learning analytics integration 
into one unified pipeline is being developed. The high-level 
symmetric encryption like the AES-256 also provides 
confidentiality with minimum computation cost and the Hash-
based Message Authentication Codes (HMAC) on the basis of 
the SHA-256 also provide a stronger integrity check [12], [13]. 
Recent works have proven that these cryptographic techniques 
together with edge computing can ensure security in the IoT-
based agricultural systems without performance degradation 
[14]. However, not many studies have experimentally confirmed 
such architectures in practice in the agricultural world using 
large-scale image data sets and event-driven detection 
processes. 

Thus, this paper suggests a lossless, real-time cryptographic 
infrastructure of secure transmission on clouds of agricultural 
surveillance images into a unified system of object identification 
based on YOLOv5, AES-256 encryption, and HMAC-SHA256 
integrity check. The suggested solution will guarantee end-to-
end data confidentiality, authenticity, and availability, not 
compromising the real-time responsiveness. It was tested with 
an 8,000 image ad-hoc dataset of drone and field images and 
achieved under-0.2 s encryption/decryption, less than 2% 
storage overheads, 100 percent image fidelity (SSIM = 1.0), and 
98.5 percent detection rates. 

This paper has fourfold contributions: 

 A secure transmission framework that combines edge 
intelligence and cryptography to provide agricultural 
surveillance, which is event-driven. 

 An AES-HMAC pipeline, which is real-time, has 
confidence, integrity and low latency in cloud 
transmission. 

 Extensive comparison of multi-class drone and field 
imagery datasets, speed, fidelity, and detection 
accuracy. 

 A modular, high-scale architecture that can be adapted 
to many different IoT and smart agriculture 
applications. 

The hypothesis that drives the current study is the possibility 
to have an integrated edge-to-cloud security pipeline with 
YOLOv5, AES-256 and HMAC-SHA256 to ensure both high 
event detection accuracy and low-latencies of lossless data 
transmission of agricultural surveillance. The quantifiable goals 
include: 

 to keep the mean Average Precision (mAP@0.5) 
high (over 98). 

 to encrypt and decrypt images at average 
encryption and decryption rates of less than 0.2 
seconds on average. 

 to maintain total image integrity (SSIM~1.00) in 
the process of secure cloud transmission. 

The rest of this paper will be structured as follows: Section 
2 will cover related literature in the field of smart agriculture 
security and deep learning integration. The proposed 
methodology is discussed in Section 3. Section 4 gives 
experimental results and discussion. Section 5 summarizes the 
research and explains the research directions in the future. 

II. RELATED WORK 

Artificial intelligence (AI), cloud computing, and the 
Internet of Things (IoT) have converged, which has transformed 
the field of automation in agriculture due to the ability to 
monitor in real-time, predict, and make decisions based on the 
available data. Nonetheless, even though the modern world has 
achieved considerable progress when it comes to applying 
precision agriculture, the vast majority of available frameworks 
have concentrated on the accuracy of analytics and efficiency of 
data collection, neglecting the data security, integrity, and 
protection in real-time. 

A. Deep Learning and Smart Surveillance in Agriculture 

Deep learning (DL) has emerged as the key to the 
contemporary agricultural surveillance system as it offers 
powerful methods of livestock, crop, and intrusion detection in 
various settings. Yousefi et al. [1] provided a literature review 
of the UAV-based accurate monitoring of livestock with CNN 
and YOLO architecture to produce high-quality localization and 
counting of animals. On the same note, Biglari and Tang [2] 
used object recognition based on TensorFlow to monitor cattle 
drinking behavior, and Yu et al. [3] optimized underwater fish-
scale detection with YOLOv5, showing that the use of DL in 
complex and noisy environments is effective. 

In addition to object detection, multi-sensor fusion based on 
AI has been used to predict calving occurrences [4], animal 
lameness [5], and harmful insects [6]. There are still further 
improvements to be made, but even with those, there is an 
almost universal transfer of unencrypted or semi-protected data 
streams to the cloud, which exposes the farms to cyber-attacks 
and compromised manipulation of data. 
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B. Agriculture Cloud and IoT Security. 

IoT and cloud computing in agriculture enable remote 
monitoring and consolidation of the data in the central position, 
yet present the vulnerability as they are dependent on the use of 
public networks. Chaganti et al. [7] suggested a cloud 
monitoring system based on blockchain that protects IoT sensor 
data with the agriculture industry using distributed ledger 
systems. Li et al. [8] discussed the concept of secure cloud data 
sharing using hierarchical searchable encryptions of enterprise 
systems and proved that it is applicable in agricultural fields. 

Rahman et al. [9] used IoT and blockchain to detect insects 
automatically but did not take into account the cryptographic 
confidentiality in the data transmission. Similarly, Farooq et al. 
[10] and Wei et al. [11] stated the advantages of AI-based IoT 
designs in terms of environmental and crop safety surveillance, 
but did not provide solid encryption and real-time security. 

The difficulty of these works is scalability and latency - 
complicated cryptography models tend to raise the 
computational cost and become inapplicable to resource-
constrained agricultural edge devices. Hence, a lossless and 
lightweight encryption-integrity pipeline is required in order to 
secure and guarantee real-time cloud integration. 

C. Cryptographic and Hybrid Security Frameworks. 

A number of scientists have explored the use of 
cryptography and steganography in transmitting agricultural 
data. Badhan et al. [12] adopted the AES-based encryption of 
IoT-based smart farming data, which provides confidentiality 
without integrity checks and real-time streaming. Elsewhere, 
Badhan and Malhi [13] came up with a hybrid cryptography and 
steganography framework to improve the level of data security 
during cloud transfer. Though such strategies enhance the 
confidentiality of the data, they tend to be not closely connected 

with AI-based event detection and ensure a lossless quality of 
decryption, which is essential in visual analytics. 

Guo et al. [14] have suggested a privacy-friendly Naive 
Bayes classifier to support health monitoring, presented 
encryption systems that can be used in low-latency systems, and 
Singh et al. [15] presented a blockchain-driven secure healthcare 
data framework, all of which might have a crossover role in 
agriculture. Nevertheless, in current studies, there is not often a 
complete architecture that would solve the event detection, 
encryption, verification of integrity simultaneously and in real 
time. 

D. Research Gap and Motivation 

Based on the literature, there are three significant gaps: 

1) Absence of end-to-end secure architectures: Current 

systems are either detection (AI) or security (cryptography) but 

not a combination of both into a real-time integrated pipeline. 

2) Lack of validation on agricultural imagery: Most of the 

systems that have been offered are not domain-specifically 

tested or applied to non-agricultural imagery. 

3) Lack of lossless encryption verification: The number of 

studies that test the quality of decryption through the structural 

similarity measures (e.g., SSIM), which is crucial in agriculture 

after analysis, is very low. 
To address these constraints, the present paper suggests a 

single-edge-to-cloud system that integrates the deep learning 
detection YOLOv5 and AES-256 encryption and HMAC-
SHA256 integrity validation. The system, unlike their 
predecessors, provides real-time, lossless transmission and end-
to-end security of agricultural surveillance data, at the same time 
being computationally efficient as brief comparative analysis is 
shown in following Table I. 

TABLE I.  COMPARATIVE SUMMARY OF RELATED WORKS 

Ref. Focus Area Methodology Key Contribution Limitations/ Research Gap 

[1] Yousefi et al., 2022 Precision livestock 
detection 

UAV, CNN, YOLO High accuracy animal detection No cloud security or encryption 

[2] Biglari & Tang, 
2022 

Cattle behavior 
monitoring 

TensorFlow, CNN Cattle recognition via visual 
trajectory 

Focused only on detection 

[3] Yu et al., 2023 Fish scale counting YOLOv5 Automated underwater detection No integrity or encryption layer 

[4] Mg et al., 2025 Cattle calving prediction Time-series + DL Predictive monitoring via 
trajectory analysis 

Data unencrypted 

[5] Shrestha et al., 2018 Animal lameness Radar sensing Non-visual lameness detection No cloud integration 

[7] Chaganti et al., 2022 IoT-Blockchain security Blockchain, Cloud Tamper-resistant cloud data 
exchange 

High latency, no image data 

[8] Li et al., 2022 Cloud data sharing Hierarchical PEKS encryption Fine-grained enterprise data 
sharing 

Not agriculture specific 

[9] Rahman et al., 2024 IoT & Blockchain ML + Blockchain Secure insect detection and 
traceability 

No real-time edge encryption 

[12] Badhan et al., 2024 IoT-AES Security AES-256 Encryption for smart farming 
data 

No HMAC integrity or real-
time analysis 

[13] Badhan & Malhi, 
2024 

Privacy-preserving ML AES + Steganography Multilayer secure transmission No AI integration or cloud 
automation 

[14] Guo et al., 2024 Privacy preserving ML Naïve Bayes + Encryption Secure lightweight classification Not applied to image data 
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[15] Singh et al., 2024 Secure cloud blockchain Cloud + Blockchain Confidential healthcare data 
transfer 

No visual SSIM verification 

Proposed Work Secure Smart  
Surveillance 

YOLOv5 + AES-256 + HMAC-
SHA256 

Real-time, lossless, end-to-end 
secure agricultural surveillance 
pipeline 

Addresses all key gaps: speed, 
security, integrity, scalability 

The literature review shows that the use of AI in precision 
farming and cloud-based monitoring has achieved impressive 
progress. Nevertheless, not a lot of frameworks can provide real-
time cryptographic protection without affecting the performance 
or fidelity of the image. This paper is the first attempt to combine 
event-driven deep learning detection with AES-HMAC 
encryption integrity and lossless transmission over clouds, 
which will be a major milestone towards secure, intelligent, and 
scalable agricultural surveillance. 

III. METHODOLOGY 

The suggested framework provides a secure real-time edge-
to-cloud pipeline to deliver agricultural surveillance imagery in 
a manner that does not affect quality, speed, and data integrity. 
The software system combines four fundamental modules 
namely multi sensor data fusion, deep learning based event 
identifying, edge side cryptography processing and secure cloud 
verification (Figure 1). 

The section details the design architecture, mathematical 
model and implementation workflow. 

A. System Architecture Overview 

The architecture (Figure 1) will consist of three layers: 

1) Edge Layer: Local sensing, object detection and 

encryption. It combines various sensor types visual 

(CCTV/drone), acoustic or environmental to produce context-

dependent feature vectors. YOLOv5 model is used to detect 

events on the fused data in real-time. 

2) Secure Transmission Layer: Events detected are 

encrypted with AES-256 in Cipher Block Chaining (CBC) 

mode and HMAC-SHA256 tags added to check the integrity. 

This will guarantee confidentiality and authentication on 

transmission. 

3) Cloud Analytics Layer: The encrypted data and HMAC 

tags are submitted to the secure cloud service using HTTPS 

API. The cloud ensures that messages are validated, data 

verified and dashboards and alerts are activated to monitor. 
It is a multi-stage architecture, which means that no 

unprotected or unauthenticated information is exited out of the 
field node, ensuring protection of data end to end. 

B. Hardware and System setup 

The proposed framework was implemented and evaluated on 
a workstation equipped with an Intel Core i3-6006U CPU, 8 GB 
RAM, and inbuilt intel graphics card (2GB),. Encryption and 
integrity verification processes were executed on the same 
machine using Python 3.10, OpenCV, and PyCryptodome 
libraries. These specifications ensure a fair and reproducible 
performance benchmark between deep learning and 
cryptographic operations. 

 

C. Multi-Sensor Fusion and Preprocessing 

Agricultural surveillance settings are highly dynamic, e.g. 
lighting, weather, and occlusions may influence the accuracy of 
the detection. Therefore, multi-sensor fusion was applied in 
order to increase robustness. 

Synchronized inputs collected at the system at time t are: 

𝑋𝑡 = 𝐹𝑢𝑠𝑒(𝐼𝑡
𝑐𝑎𝑚 , 𝑆𝑡

𝑒𝑛𝑣, 𝑆𝑡
𝑎𝑢𝑑𝑖𝑜)            (1) 

Where: 

 𝐼𝑡
𝑐𝑎𝑚: Image frame from CCTV or UAV camera, 

 𝑆𝑡
𝑒𝑛𝑣 : Vector of environmental sensor readings 

(temperature, PIR motion, humidity, etc.), 

 𝑆𝑡
𝑎𝑢𝑑𝑖𝑜: Extracted acoustic signal features, 

 𝐹𝑢𝑠𝑒(. ) : Concatenation operator which does 
normalization then. 

This merging process creates a composite image of the 
prevailing farm condition that is not prone to failure of one 
sensor or occlusion. 

 

D. Deep Learning-Based Event Detection 

The fused feature tensor 𝑋𝑡 is fed to a fine-tuned YOLOv5 
model that is trained on 8,000 labeled images of agricultural and 
drone images of four categories: animals, suspicious human 
beings, non-suspicious human beings, and field background. 

The model computes: 

Fig. 1. Workflow of the proposed secure agricultural surveillance system 
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                         𝑦𝑡 = 𝑓𝜃(𝑋𝑡)                                              (2)    
 

where 𝑓𝜃  represents the YOLOv5 detection network with 
weights as a parameter θ. The output vector 𝑦𝑡  has object 
classes, confidences and a bounding box. 

Only critical events such as the detection of an unknown 
person or the movement of a large animal are then flagged in a 
decision logic module and encrypted and transferred to the 
cloud, thereby minimizing the transmission of unnecessary data 
and maximizing bandwidth. YOLOv5 was launched on the 
PyTorch 2.1 and trained on the NVIDIA RTX 3080 (10 GB) 
GPU in 150 epochs with Adam optimizer, learning rate = 0.001 
and batch size = 16. 

The model attained mean average precision (mAP@0.5) of 
98.5% which guarantees the classification of events before 
encryption. 

E. Edge-Slide Cryptographic Security 

Each flagged frame P (image) is attached prior to a departure 
out of the edge device. 

1) AES-256 Encryption: Following the PKCS#7 padding of 

the image, AES-256 encrypted in CBC mode is used: 
 

𝐶 = 𝐴𝐸𝑆256,𝐶𝐵𝐶𝜃(𝐾𝐴𝐸𝑆, 𝐼𝑉, 𝑃𝑎𝑑(𝑃))                      (3) 

Where 

 C: Cyphertext 

 𝐾𝐴𝐸𝑆: 256-bit symmetric encryption key, 

 𝐼𝑉: Random 16-byte initialization vector, 

 𝑃𝑎𝑑(𝑃): PKCS#7-padded plaintext bytes. 

This is guaranteed to be confidential and with latency of 
minimum (< 0.2 s per frame). AES-256 has been chosen due to 
its strength, ability to resist a brute-force attack, and hardware 
acceleration. 

2) HMAC-SHA256 Integrity Verification: A Hash-based 

Message Authentication Code (HMAC) using SHA-256 is 

computed for each encrypted image. 
 

𝑇 = 𝐻𝑀𝐴𝐶𝑆𝐻𝐴256(𝐾𝐻𝑀𝐴𝐶 , 𝐶)                                 (4) 

Equation 4, where T is the 32-byte integrity tag, and 

KHMAC is the secret HMAC key (independent from KAES). 

 

F. Quality Check (SSIM) 

For system validation, the decrypted image 𝑃̂ is compared to 
the original P using Structural Similarity Index Measure 
(SSIM): 

𝑆𝑆𝐼𝑀(𝑃, 𝑃̂) =
(2𝜇𝑃𝜇𝑃̂ + 𝑐1)(2𝜎𝑃 𝑃̂ + 𝑐2)

(𝜇𝑃
2 + 𝜇𝑃̂

2 + 𝑐1)(𝜎𝑃
2 + 𝜎𝑃̂

2 + 𝑐2)
            (5) 

Equation 5, where 𝜇𝑃, 𝜇𝑃̂are the means of P and 𝑃,̂  𝜎𝑃
2, 𝜎𝑃̂

2 

are variances 𝜎𝑃 𝑃̂is the covariance, and c1, c2 are stabilization 

constants. SSIM(P, 𝑃̂ ) ≈ 1 confirms lossless operation. 

G. Workflow Diagram 

Figure 1 illustrates the flow chart of proposed work. This 
represents advanced workflow of the proposed real-time secure 
surveillance system, showing multi-sensor data collection, edge 
analytics, encryption, secure cloud transfer, integrity 
verification, and automated analytics. 

H. Novelty and improvements 

 Unified multi-sensor fusion—fuses visual, 

environmental, and acoustic data, yielding robustness 

to occlusion, sensor failure, and environmental 

variability. 

 Event-driven deep learning analytics—combines 

advanced object detection and custom event logic for 

precise, real-time identification of suspicious events. 

 On-device, lossless encryption and integrity—

encrypts and HMAC-tags each event frame at the edge, 

ensuring no sensitive data leave the field unprotected. 

 End-to-end integrity assurance—authenticates data 

at both transmission and storage, preventing 

undetected tampering or replay attacks. 

 Automated, real-time cloud analytics—cloud 

dashboards provide instant notification and event 

review, with all actions logged for audit. 

 Rigorous quality preservation—SSIM check 

confirms lossless encryption/decryption. 

 Scalability and modularity—architecture scales 

from smallholdings to large farms and is modular for 

new sensors or analytics. 

 Comparative evaluation—benchmarked against 
existing frameworks for detection accuracy, security, 
latency, and quality. 

 

IV. RESULTS AND DISCUSSION 

Here, the efficiency of the suggested approach to real-time 
automatic cloud directory and processing of detected suspicious 
events is analyzed with the focus on the integrity and safety of 
the surveillance information along the pipeline. The robustness 
of the system was confirmed in both self-designed multi-class 
agricultural activity data and a vast publicly available drone 
image data. 

A. Data and Experimental Protocol 

The analysis of the experiment applies two datasets: 

 Custom Agricultural Activity Dataset: 8000 images 
(four categories: animals, suspicious human activity, 
non-suspicious human activity, field), divided into 
training and validation 75 percent and 25 percent 
respectively. 

 Kaggle Drone Camera Image Dataset: Large sets of 
high-resolution images of agricultural fields of various 
crops, to be used to confirm the generality and safety 
of the cloud pipeline and sample images from dataset 
are shown in Figure 2. 



Himanshu et al. / Journal of Applied Science and Technology Trends Vol. 06, No. 02, pp. 15 –24 (2025) 

 

20 

 The Kaggle drone dataset contains agricultural field 
images of resolution 5472 x 3648 pixels. All the images 
are taken using DJI Drone under different weather 
conditions such as shadow, sun light, etc.  

The suggested pipeline combines real-time event-observer 
(deep-learning) sensing with edge-computing of AES-256 
encryption and HMAC-SHA256 integrity protection with 
subsequent transmission integrity and cloud-storage. All the 
experiments were carried out by using TensorFlow, Keras, 
OpenCV and safe cloud APIs. 

Secure Cloud Transmission: Encryption and Integrity Results 

1) Encryption and Decryption Efficiency: Encryption and 

decryption times were measured across 200 random images 

from both datasets. Results showed 

 

 Average encryption time: 0.17 seconds per image 

 Average decryption time: 0.16 seconds per image 

These results confirm that the proposed method supports 
real-time surveillance workflows, adding minimal 
computational overhead. Encryption, decryption, and integrity 
results for representative images are shown in Table II. As seen 
in Table II, the proposed system maintained both speed and data 
integrity across all test images. Figure 3 shows encryption times 
for selected test images. Figure 4 further illustrates decryption 
times for a sample batch of images. 

TABLE II.  ENCRYPTION, DECRYPTION, AND INTEGRITY VERIFICATION RESULTS FOR SAMPLE AGRICULTURAL IMAGES 

Image Orig. Size Enc. Time (s) Enc. Size Integrity Dec. Time (s) Dec. Size SSIM 

DJI_0109 -h50.JPG 12,722,354 0.09 13,722,384 Verified 0.19 12,722,354 1.0 

DJI_0117.JPG 9,858,619 0.05 9,858,640 Verified 0.10 9,858,619 1.0 

DJI_0114-h40.JPG 10,736,008 0.05 10,736,032 Verified 0.12 10,736,008 1.0 

DJI_0025-h60.JPG 12,001,087 0.06 12,001,104 Verified 0.14 12,001,087 1.0 

DJI_0018-h80.JPG 10,357,128 0.04 10,357,152 Verified 0.11 10,357,128 1.0 

 

                

  

Fig. 2. Representative drone images from the Kaggle dataset used for evaluation 
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2) File Sized Overhead: Analysis of the original files and 

the encrypted files versus size, as shown in Figure 5, revealed 

that the encryption makes the file size of images grow at an 

average of less than 2 percent, demonstrating efficiency for 

cloud storage. 

3) Integrity Verification: Integrity of the data was 

guaranteed by having the images HMAC-tagged before upload. 

When the images were retrieved, all of them were correctly 

verified at the endpoint of the cloud (Table II), establishing that 

the cryptographic integrity mechanism was advantageous. 

There were no alterations or falsifications of images in 

transistor on storage. 
 

B. Lossless Quality Preservation 

To verify that cryptographic operations do not degrade 
image quality, the Structural Index Measure (SSIM) was 
calculated between each original and decrypted image. The 
result confirm perfect preservation of image quality after 
encryption and decryption is also shown in Table III. 

 Mean SSIM: 1.00 (all images) 

 Minimum SSIM: 1.00 

 Interpretation: No visual or statistical loss occurred 
during secure transmission images are perfecty 
preserved for analysis. 

 Average decryption time: 0.16 seconds per image 

Figure 6 displays the SSIM scores for all test images. All 
values are at maximum (1.0), indicating lossless transmission. 

TABLE III.  SSIM RESULTS SHOWING LOSSLESS IMAGE QUALITY AFTER 

ENCRYPTION AND DECRYPTION 

Image SSIM Quality Preservation 

DJI_0109-h50.JPG 1.0 Perfect 

DJI_0117.JPG 1.0 Perfect 

DJI_0114 h40.JPG 1.0 Perfect 

DJI_0025-h60.JPG 1.0 Perfect 

DJI_0018-h80.JPG 1.0 Perfect 

Mean SSIM 1.0 Perfect for all images 

 

C. Comparative Analysis with Existing Approaches 

To further demonstrate the effectiveness of the proposed 
pipeline, a comparative evaluation was conducted against 

Fig. 3. Encryption times across sample images 

Fig. 4. Decryption times across sample images 
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existing approaches for surveillance data storage and analysis. 
The baseline systems included. 

 Traditional Cloud Storage (No Security): Direct 
upload of raw images/events to the cloud without 
cryptographic protection. 

 Classical ML-based Event Detection: Machine 
learning-based detection without secure cloud 
integration. 

 Conventional Encrypted Storage: Standard image 
encryption without real-time integration, integrity 
verification, or automation. 

The key comparison parameters are listed in Table IV. 

 

 

TABLE IV.  COMPARISON OF THE PROPOSED PIPELINE WITH TRADITIONAL STORAGE AND DETECTION METHODS 

Parameter Traditional Cloud Storage 
Classical ML-Based 

Detection 
Conventional Encrypted Storage Proposed Method 

Automation Manual/Batch Upload Partially Automated Not Real-Time Full Real-Time, 
Automated 

Event Triggering No Yes (ML only) No Yes (ML + Secure Cloud) 

Edge Encryption No No Often No Yes (AES-256) 

Integrity Verification No No Rare/Manual Yes (HMAC-SHA256) 

Lossless Quality (SSIM) 1.00 1.00 Variable/Not Checked 1.0 (All images) 

Fig. 5. File sizes before and after encryption, showing minimal overhead 

Fig. 6. SSIM scores confirming lossless image quality preservation 
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Real Time upload No No No Yes 

Cloud Analytics/Dashboard Limited Sometimes Rare Fully Integrated 

Scalability (Large Images) Moderate Low Moderate Often Poor Excellent 

Practical Utility Low (Security Risk) Moderate Moderate High (Secure & 
Automated) 

Research Gaps Solved No Partially Partially Yes (All Key Gaps) 

D. System Performance Summary 

Table V summarizes the main performance metrics of the 
proposed secure transmission system, including speed, integrity, 
and image quality. Add standard deviation and confidence 
intervals to timing results. 

 Avg. encryption time: 0.17 ± 0.03 s/image 

 Avg. decryption time: 0.16 ± 0.02 s/image 

TABLE V.  PERFORMANCE SUMMARY OF THE PROPOSED SECURE 

TRANSMISSION SYSTEM 

Metric Result/Value 

Avg. encryption time (s/image) 0.17 

Avg. decryption time (s/image) 0.16 

Integrity verification rate (%) 100 

Avg. file size increase (%) <2 

Mean SSIM 1.00 

Real-time cloud upload success (%) 100 

 

E. Discussion: Research Gaps Addressed by the Proposed 

Method 

End-to-end Security: The given system covers a number of 
important gaps in research on smart agriculture and cloud 
surveillance that have existed in the available materials. To 
begin, it addresses the problem of end-to-end security by 
applying high-quality encryption (AES-256) and strong 
integrity checking (HMAC-SHA256) checking at the edge, 
before uploading data to a cloud. This approach overcomes the 
security and privacy constraints typical of native cloud and ML-
only pipelines, where such protections are often inadequate or 
incomplete. 

Real time, fully automated workflow: Second, the 
approach enables a fully automated real-time workflow, 
eliminating the need for manual participation. In contrast to 
common types of conventional batch processing, user-
controlled systems, the proposed pipeline generates actionable 
field intelligence without human effort, autonomously 
identifying relevant events, encrypting sensitive imagery, and 
uploading the data to the cloud. 

Lossless Quality: The third benefit is protection of quality 
without losing it. In contrast to most encrypted storage systems, 
our method maintained an SSIM of 1.00 across all three test 
images, and as such, the surveillance information stored could 
be used in both forensic and analytical tasks. 

Scalability and Efficiency: Moreover, the system proves to 
be highly scalable and efficient, successfully running on large 
high-resolution drone imagery as well as a tailor-made dataset 
of 8,000 images, with minimal delay, high throughput, and only 
a marginal increase in output files sizes. This makes it viable to 
real life agricultural works. 

Best Solution for Integrating the Clouds: Lastly, the 
suggested solution offers a natural combination of event 
detection, safe storing, cloud analytics, and auto-alerting. 
Conversely, legacy systems are based on mere manual 
procedures and usually have no intrinsic dashboards that restrict 
their applicability. Altogether, the comparative analysis reveals 
the fact that the proposed technique not only fulfils but surpasses 
expectations for data security, immutability, automation, real-
time processing, and losslessness. It puts a new standard on 
smart and secure agricultural surveillance and provides a 
scalable template of future intelligent agriculture platforms. 

Scalability Considerations: In larger multi-node 
agricultural deployments, the methodology could also be 
affected by variation in network bandwidth and hardware 
variation at the edge of the network. Nevertheless, the modular 
architecture can support the throughput of parallel encryption 
nodes and federated coordination over geographically 
distributed farms. This can be extended to a greater level of 
scalability through containerized microservices that are run at 
various field nodes. 

Computational Cost Analysis: The benchmark 
performance shows that the HMAC-SHA256 computation 
occupies less than 5 percent of the total encryption time, and the 
rest of the computational performance is taken up by the AES-
256 algorithm. This proves that integrity check is a low overhead 
check with significant data authenticity enhancement. 

 

V. CONCLUSION 

This paper proposes the scheme (secure end-to-end pipeline) 
of real-time transmission and analysis of surveillance imagery 
of agricultural landscapes within the cloud setting. Through the 
implementation of advanced deep-learning–based event 
detection, multi-sensor data fusion, symmetric encryption 
(AES-256), and integrity validation (HMAC-SHA256), the 
resulting proposed system is able to tackle the complexity of 
data privacy, integrity, and non-lossy quality of smart 
agriculture fully. 

When tested on a large-scale, custom multi-class data, and a 
public drone imagery data, experimental findings prove the 
system encrypts and decrypts in virtually no time (less than 0.2 
seconds per image on average) with supreme integrity and 
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maintained visual quality (SSIM = 1.00). The pipeline adds 
almost no overhead in the size of file, and works flawlessly in a 
real-time pipeline. Comparison to the traditional cloud storage, 
classical ML-based event detection and traditional encrypted 
storage shall further point out that it is the only method that 
satisfies all three main requirements: real-time automation, 
edge-side security and robust integrity verification, and cloud-
based analytics and alerting. 

Notably, this study will fill the direct gaps in the literature 
by providing an integrated, fully autonomous, lossless pipeline 
of secure surveillance in agriculture, that can be deployed at 
large-scales with a wide range of image classification modalities 
and sensor types. The modular design allows extension into 
decentralized or federated analytics, additional sensor 
integration, or adaptation to other critical monitoring domains 
where such applications are needed. 

In brief, the proposed solution breaks new ground in smart 
farming by demonstrating that real-time, privacy-preserving 
monitoring is both practical and reliable. The given work can not 
only improve the agricultural security and the understanding of 
the processes but also create a scalable architecture and technical 
blueprint of the future generation of the smart, trustful, and data 
safe agricultural systems. The future research will definitely 
extend this framework towards post quantum cryptography 
based encryption methods and federated learning architectures       
for the distributed agricultural intelligence. These improvements 
will make it even more difficult to resist the attacks of the 
quantum era and provide privacy-sensitive collaborative 
analytics across several farm networks. 
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