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Abstract 

Deep learning has enhanced the analysis of medical images but privacy issues and institutional variations restrict their large scale 

application in clinics. FedVLM, a federated vision language model tailored to privacy-preserving multimodal medical image analysis, is 

one of the solutions to these problems. Contrary to the conventional federated design, which can only process single modal image data, 

FedVLM takes paired radiological images and clinical reports jointly, which demonstrates high zero-shot and few-shot diagnostic 

performance. The design consists of secure aggregation, differential privacy and proximal optimization that ensure protection of patient 

data and minimize variability across sites. Large scale experiments on the NIH ChestX-ray14, MIMIC-CXR, and BraTS datasets indicate 

that FedVLM is an accurate and interpretable model that achieves near-centralized performance on vision language models without 

violating privacy. Building on previous works such as FACMIC, BioViL, and FAA-CLIP, FedVLM introduces new methods, including 

privacy-aware optimization, proximal regularization for varied data, and multimodal contrastive alignment, creating a unified federated 

framework for clear and secure medical image analysis. Although FedVLM shows promising performance, this work is currently at a 

research stage and is not yet ready for clinical use. We need validation through future multi-institutional clinical studies. 
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I. INTRODUCTION  

Analysis of medical images has become one of the most 
impactful areas of artificial intelligence (AI) and they can be 
used in detecting various diseases, organ localization, predicting 
survival and planning treatment. Convolutional neural networks 
(CNN) and transformers have demonstrated human-competitive 
or even better performance on a diverse range of medical tasks 
through deep learning models, with many positional statements 
grounded on the principle of human-comparable performance 
[1]. Regardless of these developments, there are two serious 
bottlenecks in the large-scale implementation in real clinical 
environments. 

To begin with, the privacy limitation of the data. Medical 
imaging information is very sensitive, their use is controlled 
within strict frameworks, which are the Health Insurance 
Portability and Accountability Act (HIPAA) in the United 
Statesand the General Data Protection Regulation (GDPR) in 
Europe. These limitations do not allow direct data merging 
between institutions, making the creation of centralized deep 
learning models based on a variety of large-scale datasets 

difficult to create. The idea of federated learning (FL) has been 
developed to address this problem by permitting distributed data 
silos to train collaboratively without having raw data to leave the 
local institution at all, in the future, [2], [3]. 

Second, the heterogeneity of the domain. There is a high 
level of variance among medical images between institutions 
due to the variation in acquisition equipment, imaging 
procedures, patient groups, and annotation standards. This 
causes nonidentically distributed (non-IID) data, which can have 
a severe negative effect on the performance of centralized and 
federated models when applied to unseen domains [4], [5]. 
Therefore, it is necessary to handle this heterogeneity to develop 
clinically robust and generalizable AI systems. 

Moreover, the concept of vision language models (VLMs) 
has become a popular topic of AI discussions. One model like 
CLIP [6] and BLIP [7] can bring visual and textual modalities 
to a common embedding pace, and thus provide strong zero-shot 
and few-shot generalizations on natural image domains. Based 
on these achievements, new studies have begun to work on 
medical vision language models, including MedCLIP and 
BioViL [8], [9], that match radiology images to the relevant 
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clinical report. Such methods reveal that VLMs can be used in 
multimodal medical tasks, such as disease classification, the 
generation of reports, and cross-modal retrieval. However, to 
train such models, mainly centralized datasets are used, which 
raises issues of privacy leakage and institutional data silos. In 
addition, there is no extensive generalization in hospitals due to 
changes in the distribution of both types of imaging modes and 
clinical reporting practices. 

Unlike FACMIC [10], which uses CLIP in a federated 
setting without clear privacy protections, or FAA-CLIP [11], 
which mainly emphasizes attention-based personalization, the 
proposed FedVLM introduces a unified multimodal federated 
optimization pipeline. This pipeline includes secure 
aggregation, differential privacy, and proximal regularization. 
Additionally, it goes beyond centralized vision and language 
frameworks like BioViL [12] by allowing cross-institutional 
training on paired radiology images and clinical reports without 
sharing raw data. This combination of privacy, multimodal 
alignment, and knowledge-aware optimization represents the 
main innovation of FedVLM. 

As a solution to these drawbacks, we present a federated 
scheme, called FedVLM, to generalize vision-language models 
into privacy-preserving multiinstitutional industry analysis of 
medical images. FedVLM allows cross-site cooperation, which 
means the combined optimization of the multimodal 
representations without sharing raw data. With the union of the 
federated optimization and domain adaptation and 
communication-efficient strategies, our framework can offer the 
concepts of privacy preservation and robust generalization in the 
heterogeneous clinical setting. In contrast to previous 
publications in the field of federated medical imaging that focus 
only on unimodal image classification or segmentation 
protocols, FedVLM presents multimodal alignment strategies, 
which is why it enables the incorporation of textual supervision 
(e.g. radiology report) in order to achieve better interpretability 
and downstream performance. 

The key contributions of this work can be summarized as 
follows in the Table I. 

 We introduce FedVLM, the first federated framework for 

vision–language models in healthcare, bridging the gap 

between multimodal representation learning and privacy-

preserving medical image analysis. 

 We design a privacy-aware and communication-

efficient learning protocol that leverages secure 

aggregation, differential privacy, and lightweight 

parameter updates to reduce bandwidth overhead while 

protecting sensitive information. 

 We suggest a domain-aware alignment framework, which 

formally addresses the challenge of interinstitutional 

heterogeneity and enhances the ability to generalize to 

different imaging modalities and clinical scenarios 

through the introduction of multimodal representations. 

  We carry out an in-depth empirical analysis of large-scale 

medical data, such as chest radiographs and skin lesion 

images, and show that FedVLM is as competitive as 

centralized training and that it provides strict privacy 

guarantees. 

TABLE I. NOVELTY & CONTRIBUTIONS SUMMARY 

Aspect FedVLM Novelty and Contribution 

Problem Addressed Unified privacy-preserving multimodal learning 
across distributed medical institutions. 

Key Innovation Initial implementation of Vision Language Models 

(VLMs) on a federated network of medical image 

analysis. 

Architectural 

Advances 

Integrates secure aggregation, differential privacy 

and proximal optimization in multimodal federated 

training. 

Compared to 

FACMIC 

Introduces formal privacy, multimodal text image 

alignment (FACMIC is one epoch unidimensional 

and privacy blind). 

Compared to FAA-

CLIP 

Introduced the domain-sensitive multimodal 

personalization; FAA-CLIP is concerned with 

attention personalization. 

Compared to 
BioVIL 

Allows institutel training and protection of privacy, 
unlike central training of BioVIL. 

Outcome Almost centrally accurate, highly interpretable and 

with high data leakage resistance. 

 
In summary, this paper positions FedVLM as a step toward 

scalable, explainable, and privacy-preserving AI for medical 
imaging, laying the foundation for real-world deployment of 
federated multimodal systems in healthcare. 

II. RELATED WORKS 

A. Federated Learning in Medical Imaging 

Effective baselines in medical image segmentation were 
achievable with deep learning models including U–Net, which 
can form deeper bases by frequently stacking encoders and 
decoders to produce fine-grained predictions on image pixel 
intensity, data volume, and channel depth, which are beyond the 
abilities of traditional approaches to segmentation and 
localization tasks (Gallerati). But centralized training of data 
collections on pools is not respected of privacy and governance 
constraints. Introduced by FedAvg 2017 by Federated Learning 
architectures, Federated grid workshear was closed by federated 
model access, typically known as FedProx. Federated grid 
model training is a learning framework where teams of 
institutions collaborate and do not share raw data. 

Sheller et al. [2] who performed a Mult institutional 
segmentation of the brain tumor, and Dayan et al. [13] created 
the EXAM model to predict the results of COVID-19 in 20 
hospitals. Currier: Large benchmarks, [14], [15] offer 
performance degradations under distribution shift, and 
algorithm family members are compared with [16], [17]. Non-
IID data, communication overhead and strong privacy 
guarantees are the recurrent problem highlighted in surveys [3], 
[18], [19] , including but not limited to those of Rieke (2020) 
Future, p. 5), Rehman (2023) Federated and teo (2024) 
Systematic. 

A representative example of the FL literature in medical 
imaging for the 2018-2025 time frame is provided in Table II, 
and it focuses on modality, tasks, sites and privacy mechanisms.
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TABLE II.  REPRESENTATIVE FL IN MEDICAL IMAGING (2018–2025). 

Work (Year) Modality/Task Sites Method Personalization Privacy Key Finding 

Sheller et al. 

[2] (2018) 

MRI / Seg. 4+ FedAvg – – Fed ≈ Centralized Dice on 

BraTS-like data 

Dayan et al. 

[13] (2021) 

CXR+EHR / Clf. 20+ FedAvg – SA Cross-system 

generalization for 

COVID-19 outcomes 

FeTs [4], [5] 
(2021–22) 

MRI / Seg. 20+ FedAvg variants Sampling tricks – Benchmarking FL under 
distribution shifts 

Luo et al. 

[16] (2023) 

CT/MR / Seg. Multi-site FedAvg – – Fed. probes with larger 

intersection distance 

Mantel et al. 
[17] (2024) 

MRI / Seg. Multi-site FedAvg/Prox/Per. FedBN etc. – Benchmark across 
algorithm classes 

Wu et al. [1] 

(2024) 

MRI / Seg. Multi-site Fed Contrastive – – Self/Semi-supervised FL 

improves label efficiency 

ABBREV.: CLF.=CLASSIFICATION, SEG.=SEGMENTATION, SA=SECURE AGGREGATION, DP=DIFFERENTIAL PRIVACY.

 

B. Vision-Language Models in Healthcare 

Vision-language models (VLMs) align images and text in a 
shared embedding space. ConVIRT [20] demonstrated 
contrastive learning on paired chest X-rays and reports. 
Subsequent works such as MedCLIP [21], CheXzero [22], 
PMC–CLIP [23], and KAD [24] extended CLIP-style 
pretraining for radiology, achieving zero-shot classification and 
retrieval. More recent efforts such as BioViL and BioViL-T [9], 
[25] improve report generation and retrieval, while surveys [26], 
[27] highlight both progress and limitations. 

Despite promising centralized results, these models often 
underperform in cross-site evaluations due to reporting style 

variations, domain shifts, and lack of federated adaptation. A 
comparative overview of representative VLMs from 2020–2025 
is provided in Table III.  

Figure 1 presents an overview of previous studies, the related 
research gaps, and the main contributions of the proposed 
FedVLM framework. Earlier works mainly focused on 
centralized or unimodal systems, which had limited privacy 
protection. 

The proposed model tackles these problems by using 
multimodal federated learning that includes privacy protection 
and better cross-site generalization. 

 

Fig. 1. Overview of prior work, research gaps, and contributions of the proposed FedVLM framework. 

C. Gap Analysis 

During the period 2015 to 2025, FL has developed into a 
practical paradigm in the field of medical imaging, and VLMs 
have demonstrated the promises of multimodal alignment of 
interpretability and zero-shot transfer. However, as depicted in 

Fig. 2, these two focus areas of research have not yet been 
fully engaged with each other, with slight integration. Recent 
efforts such as FACMIC [10] and FAA-CLIP [11] attempt to 
adapt CLIP within federated environments, but are limited to 
classification tasks, lack robust privacy mechanisms (e.g., 
secure aggregation and differential privacy), and do not address 
cross-site semantic heterogeneity. No existing framework 
unifies FL and VLMs to deliver: 

1) Privacy-preserving multimodal alignment across image 

and text modalities without raw data sharing. 

2) Cross-institutional generalization that explicitly mitigates 

domain heterogeneity. 

3) Explainable zero-shot and few-shot capabilities for 

medical AI systems. 
This gap clearly motivates our proposed FedVLM, which, 

to the best of our knowledge, is the first federated vision–
language framework designed for large-scale, privacy-
preserving, and multimodal medical image analysis. 
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Fig. 2. Taxonomy summarizing prior art in FL and VLMs and the gap addressed by FedVLM.

.  

TABLE III.     REPRESENTATIVE VISION–LANGUAGE MODELS IN HEALTHCARE (2020–2025). 

Work (Year) Pretraining Data Text Source Zero-Shot Tasks Cross-Site Notes 

ConVIRT [20] 
(2020) 

CXR, others Reports No Cfr., Retrieval Sensitive to site/report shifts 

MedCLIP [21] 
(2022) 

20K pairs Captions/Reports Yes Clf., Retrieval Limited external validation 

CheXCLIP [22] 
(2022) 

377 CXR pairs Reports Yes Zero-shot CLF Crosshospital evals show gaps 

PMC-CLIP [23] 
(2023) 

1.6M PMC pairs Captions Yes Z.retrieval, VQA Style mismatch to hospitals 

KAD [24] (2023) X-ray corpus Reports+ Knowledge Yes Ext. Clf. Knowledge boosts zero-shot, shift 
remains 

BioViL/Report-
VLMs [9], [25] (2022–
24) 

Rad. images+reports Reports Gen. Report 
Gen./Retrieval 

No federated evals 

III. PROPOSED METHODOLOGY 

In this section, we present FedVLM, a federated vision–
language model framework for privacy-preserving medical 
image analysis. The framework unifies multimodal alignment 
with federated optimization across heterogeneous institutions 
while ensuring strict privacy guarantees. Fig. 3 illustrates the 
overall pipeline. 

A. Overall Architecture 

Under the FedVLM, hospitals are the clients and each 
hospital has its local collection of matched medical images and 
corresponding clinical text (e.g., radiology reports). Making 
alignment Multimodal encoders are trained locally to generate 

mutually aligned encodings across vision and language. Rather 
than exchange the raw data a central server is updated with only 
model updates (gradients or encoder parameters) and then 
conducts secure global aggregation. An integrated model of the 
globe is reallocated to the clients and allows the elegant 
collaborative enhancement without jeopardising the 
confidentiality of data. This pipeline is based on a regular cross-
silo federated learning model prescribed by [28], [30], but 
specific to multimodal medical environments. 
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Fig. 3. Vertical FedVLM pipeline: hospitals (clients) train local image and text 

encoders with contrastive alignment. Updates are securely aggregated, the 

server performs FedAvg+Prox, and the global model is broadcast back. 

 

B. Novel Architectural Contributions of FedVLM 

To showcase the technical innovations, the proposed 
FedVLM framework is designed to address the limitations of 
earlier works like FACMIC [10], BioViL [12], and FAA-CLIP 
[11]. FACMIC uses CLIP in a federated environment for image 
classification, but it lacks formal privacy guarantees. The FAA-
CLIP provides attention-based personalization, but it can only 
be used in unimodal or partially aligned learning environments. 
On the contrary, BioViL uses centralized training assumptions, 
thus it cannot ensure that data is confidential across institutions. 
On the contrary, FedVLM brings a number of important 
architectural differences: 

• Federated Multimodal Alignment: Vision and language 

encoders are simultaneously trained by FedVLM in a federated 

form. It relies on contrastive alignment objective. This enables 

dissimilar destinations to streamline without the need to share 

crude information. 

• Privacy-Aware Optimization: The model is a combination 

of secure aggregation and differential privacy in training loop. 

That ensures that institutional updates remain encrypted and in 

line with the privacy requirements. 

• Proximal Regularized Federated Learning: FedAvg +Prox 

is a training stabilization method used on non-IID multimodal 

data distributions. It also reduces client drift. This is superior to 

the simple FedAvg designs that were used in the past studies. 

• Domain-Aware Alignment: FedVLM lessens the variations 

in the meaning and images across sites by incorporating paired 

image and text embeddings. This is useful in bringing about 

uniform multimodal generalization. 

• Explainability Integration: The interpretability of the Grad-

CAM provides the clear justifications of the predictions, and 

the token-level alignment provides the clear justifications of the 

prediction tokens. This enhances the real-world deployment. 
Together, FedVLM is novel, with a single combination of 

vision language modeling and federated learning to analyse 
medical images with privacy protection. Unlike the scenario in 
FACMIC where there is CLIP being applied in a federated 
model although not providing express coverage of privacy and 
multimodal consistency, FedVLM has incorporated secure 
aggregation, differential privacy, and proximal regularization, 
built directly as part of the learning pipeline. FedVLM uses 
domain-conscious multimodal optimization to coordinate 
radiological images and textual reports across institutions 
compared to FAA-CLIP, which mainly emphasizes the 
attention-based personalization of systems in unimodal settings. 
Additionally, unlike BioViL, where the centralized access to 
data is assumed and privacy cannot be controlled, FedVLM 
allows crossinstitutional models to train without sharing raw 
data. FedVLM can be viewed as one of the earliest federated 
vision language models that provide a solid state of diagnostic 
results, interpretation, and privacy guarantees for heterogeneous 
clinical aspects, all at once. 

 

C. Model Components 

Image Encoder. Our network uses CNN or ViT backbones 
which are pre-trained on large-scale imaging data (e.g., ResNet 
[31] or ViT [32] and trained on domain-specific medical images. 

Text Encoder. Our transformer-based biomedical language 
models include BioBERT model, e.g., BioBERT model [33], or 
ClinicalBERT model, e.g. ClinicalBERT model [34] and these 
models are able to learn domain specific semantics of a clinical 
report. 

Cross-Modal Alignment. In order to match modalities, we 
use a contrastive learning task based on CLIP, which maximizes 
similarities between paired image-text embeddings, and 
minimizes similarities between paired images and negative 
pairs, as used in CLIP. which are alo summerized in Table IV. 
 

TABLE IV.  MODEL COMPONENTS OF FEDVLM 

Component Choice Reference 

Image 
Encoder 

ResNet, ViT He et al. [31]; Dosovitskiy et 
al. [32] 

Text Encoder BioBERT, 

ClinicalBERT 

Lee et al. [33]; Alsentzer et al. 

[34] 

Alignment Contrastive Loss Radford et al. [36] 

Privacy Secure Aggregation, 

DP 

Kassis et al. [30] 
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D. Federated Optimization 

To train FedVLM under heterogeneous non-IID data 
distributions, we adopt FedAvg [28] with a proximal 
regularization term (as in FedProx [29]) to stabilize local updtes. 

 

𝜃𝑖
𝑡+1= 𝜃𝑡-𝜂Δ𝐿𝑖 (𝜃

𝑡)+𝜇(𝜃𝑡 − 𝜃𝑖
𝑡)                (1) 

 
where θ t+1 i denotes the updated parameters of the client i’, 

η is the learning rate, µ is the proximal coefficient and Li is the 
local multimodal loss. A secure aggregation protocol [35] 
ensures that the server only receives encrypted aggregated 
updates, preserving institutional privacy. The global aggregation 
step averages the weighted updates: 

  

𝜃𝑡+1 = ∑
𝑛𝑖

𝑁
 𝜃𝑖

𝑡+1𝑚
𝑖=1                           (2)                

 

 
where M is the number of clients, ni is the number of local 

samples at the client i, and N = ∑ ni. 

The local objective combines unimodal reconstruction with 
multimodal contrastive alignment. For client i with dataset 

Di = {(xI j , xT
 j )} of image–text pairs: 

 

ℒ𝑖(𝜃) =
1

|𝐷𝑖|
∑ {ℒ𝑖𝑚𝑔(𝑓𝑇(𝑥𝑇

(𝑥𝑖,𝑥𝑇)𝜀𝐷𝑖
: 𝜃𝑇)) +

ℒ𝑡𝑒𝑥𝑡(𝑓𝑇(𝑥𝑇: 𝜃𝑇 )) + 𝜆ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑓𝑡(𝑥𝑡), 𝑓𝑇(𝑥𝑇))}          (3)  

 

 
where fI and fT denote image and text encoders, Limg and Ltext 

are unimodal cross-entropy/reconstruction losses, Lcontrast is a 
contrastive loss: 

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑎𝑠𝑡 = −𝑙𝑜𝑔
exp (

𝑠𝑖𝑚(𝑧𝐼 , 𝑧𝑇)
𝜏

∑ exp (
𝑠𝑖𝑚(𝑧𝐼 , 𝑧𝑇

𝑘)
𝜏

)𝐵
𝑘=1

                (4) 

 
with zI, zT being normalized embeddings, τ a temperature 

parameter, and B the batch size. This enforces alignment 
between paired image–text samples while contrasting with 
negatives. 

 

E. Security Threat Model and Defenses 

In collaborative training between institutions, we look at 
risks from both honest-but-curious and potentially harmful 
participants. The server might try to gather information from 
client updates, which come from honest-but-curious adversaries. 

Meanwhile, clients could be compromised and send 
contaminated or altered gradients, known as Byzantine clients. 
To address these challenges, FedVLM uses several defenses that 
work well together. First, secure aggregation ensures that the 
server only sees encrypted combined updates instead of each 
client’s parameters. This reduces the chances of gradient 
inversion. Second, differential privacy limits the impact of each 
local sample. This reduces the risk of membership-inference 
attacks. Third, robust federated optimizers, like trimmed mean 

or median aggregation, can help defend against malicious clients 
that inject harmful updates. Finally, the framework works with 
stronger cryptographic protections, such as homomorphic 
encryption and secure multi-party computation (SMPC), for 
projects that need stricter guarantees. Together, these methods 
offer layered protection for collaborative model training among 
institutions. 
 

F. Algorithm 

Algorithm 1 2 summarizes the FedVLM training procedure 

Algorithm 1: FedVLM — Federated Vision–Language 

Training with Proximal Term and Secure Aggregation 

Require: 

Clients 𝐶 = {1, … , 𝑁}; local datasets 𝐷𝑖 = {(𝑥, 𝑥𝑇)}; rounds 𝑇; 

local epochs 𝐸; batch size 𝐵; learning rate 𝜂; temperature 𝜏; 

contrastive loss weight 𝜆; proximal weight 𝜇 

Ensure: 

Global parameters 𝜃𝑇 = {𝜃𝐼 , 𝜃𝑇} 

 
1: Initialize global model 𝜃0 

2:  for 𝑡 = 0to 𝑇 − 1do 

 

3:  Server broadcasts 𝜃𝑡 to selected clients 𝑆𝑡 ⊆ 𝐶 

4:  for each client 𝑖 ∈ 𝑆𝑡in parallel do 

5:  𝜃𝑖
𝑡+1 ← LOCALTRAIN(𝜃𝑡 , 𝐷𝑖 , 𝐸, 𝐵, 𝜂, 𝜏, 𝜆, 𝜇) 

6:  Client sends encrypted update to server (secure aggregation) 

7: end for 

8: Server aggregates: 

𝜃𝑡+1 ← ∑
𝑛𝑖

∑ 𝑛𝑘𝑘∈𝑆𝑡
𝑖∈𝑆𝑡

 𝜃𝑖
𝑡+1where 𝑛𝑖 =∣ 𝐷𝑖 ∣ 

 

9: end for 

10: return 𝜃𝑇 

 

Algorithm 2: LOCALTRAIN at client 𝑖 (Image/Text 

Encoders + Contrastive Alignment + Proximal Term) 

Require: 

Global params 𝜃𝑡 = {𝜃𝐼 , 𝜃𝑇}; local data 𝐷𝑖 ; epochs 𝐸 ; batch 

size 𝐵; lr 𝜂; temperature 𝜏; weights 𝜆, 𝜇 

Ensure: 

Updated local params 𝜃𝑖
𝑡+1 

 
1: Initialize local copy 𝜃 ← 𝜃𝑡 

2: for 𝑒 = 1to 𝐸do 

3:  for each minibatch {(𝑥𝐼
𝑗
, 𝑥𝑇

𝑗
)}𝑗=1

𝐵 from 𝐷𝑖do 

𝑧𝐼
𝑗

← 𝑓𝐼(𝑥𝐼
𝑗
; 𝜃𝐼) 

4: 𝑧𝑇
𝑗

← 𝑓𝑇(𝑥𝑇
𝑗

; 𝜃𝑇) 

5:  normalize 𝑧𝐼
𝑗
, 𝑧𝑇

𝑗
 

6: Unimodal loss (optional): 

ℒ𝑖𝑚𝑔 + ℒ𝑡𝑒𝑥𝑡  

 

7:  Contrastive loss (InfoNCE over batch): 
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ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = −
1

𝐵
∑ (log 

exp (sim(𝑧𝐼
𝑗
, 𝑧𝑇

𝑗
)/𝜏)

∑ exp (
𝐵

𝑘=1
sim(𝑧𝐼

𝑗
, 𝑧𝑇

𝑘)/𝜏)

𝐵

𝑗=1

+ log 
exp (sim(𝑧𝑇

𝑗
, 𝑧𝐼

𝑗
)/𝜏)

∑ exp (
𝐵

𝑘=1
sim(𝑧𝑇

𝑗
, 𝑧𝐼

𝑘)/𝜏)
) 

 

8:  Local objective with proximal regularizer: 

ℒ𝑙𝑜𝑐𝑎𝑙 = ℒ𝑖𝑚𝑔 + ℒ𝑡𝑒𝑥𝑡 + 𝜆ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 +
𝜇

2
∥ 𝜃 − 𝜃𝑡 ∥2

2 

 

9: Gradient step: 

𝜃 ← 𝜃 − 𝜂∇𝜃ℒ𝑙𝑜𝑐𝑎𝑙  

 

10: end for 

12: end for 

13: return 𝜃𝑖
𝑡+1 ← 𝜃 

 

IV. EXPERIMENTAL SETUP 

A. Datasets 

To evaluate FedVLM, we consider three widely used 
medical imaging datasets that provide both visual and textual 
modalities or enable multi-institutional simulation: 

• NIH ChestX-ray14 [36]: a large-scale dataset of over 

112,000 frontal chest radiographs from 30,805 patients, 

annotated with 14 thoracic disease labels. It serves as a 

benchmark for multi-label chest pathology classification. 

• MIMIC-CXR [37]: a multimodal dataset consisting of 

377,110 chest X-rays and 227,835 corresponding radiology 

reports. We use this dataset for vision–language alignment 

experiments, enabling cross-modal retrieval and zero-shot 

classification. 

• BraTS (Brain Tumor Segmentation) [38], [39]: a multi-

institutional benchmark dataset containing MRI scans of 

gliomas with expert-annotated tumor sub-regions. BraTS is 

employed to evaluate segmentation tasks and to simulate cross-

site federated settings. 
In this study, we simulate federated training using non-IID 

data partitions to represent different hospitals. This setup 
captures some shifts in distribution between sites, but it doesn’t 
fully represent the complexities of real clinical environments. 

These complexities include differences in scanner hardware, 
acquisition methods, reporting styles, and patient demographics. 
Performing federated training in actual hospitals needs data-
sharing agreements and ethics approval. These requirements are 
beyond the focus of this work and are planned for our future 
deployment studies. 

B. Environment 

All experiments are implemented in PyTorch [40] with 
distributed federated training simulated across 10 clients. Each 
client maintains a distinct partition of the datasets, emulating 
non-IID hospital-specific distributions. The training is held on a 
cluster with NVIDIA RTX A6000 and V100 GPUs. Secure 

aggregation protocols are used as per Bonawitz et al. [35] in 
order to guarantee privacy preserving updates. Hyperparameters 
like learning rate, batch size and contrastive temperature are 
optimized individually on a dataset using validation splits. 

Unmodeled clinical heterogeneity: Although our simulation 
uses non-IID data partitions to mimic multi-institutional 
training, it does not fully reflect several sources of real-world 
differences. In clinical practice, hospitals vary in scanner 
vendors and hardware setups, acquisition protocols, reporting 
styles and languages, annotation practices, and patient 
population traits. These extra factors create distribution shifts 
that are not entirely represented in the current simulation 
environment. 

C. Evaluation Metrics 

 Accuracy: Percentage of correctly identified cases in 

disease detection tasks. 

 AUC (Area Under ROC): Used to evaluate the 

discriminative ability across imbalanced disease 

classes. 

 F1-score: Harmonic mean of precision and recall, 

especially important in multi-label chest pathology 

classification. 

 Interpretability: The interpretability of the model is 

determined using Grad-CAM visuals [41], which 

highlight salient image regions and provide a proxy 

interpretability score. 

  Communication Cost: Average per-round parameter 

transmission (in MB), measured across 10 clients, to 

quantify the efficiency of federated training. 

D. Study Design and Validation Protocol 

The experimental evaluation of FedVLM uses a structured 
retrospective study design that mimics real multi-institutional 
clinical settings. The main goal is to determine if privacy-
preserving federated vision and language learning can achieve 
diagnostic performance similar to centralized multimodal 
models while ensuring strict data confidentiality. 

We evaluate three clinically relevant tasks: (i) multi-label 
disease classification from chest radiographs, (ii) image-text 
alignment between medical images and their corresponding 
clinical reports, and (iii) robustness to data differences across 
institutions. Publicly available datasets, including NIH ChestX-
ray14, MIMIC-CXR, and BraTS, are split into different client 
subsets that are not identically distributed to simulate various 
hospitals. 

Since retrospective datasets do not include direct patient 
outcome variables, we use surrogate clinical performance 
indicators that are widely accepted in medical imaging research. 
These include AUC, F1-score, accuracy, and reduction in false 
negatives, which are closely linked to diagnostic reliability. We 
also assess interpretability using Grad-CAM overlap with 
expert-annotated regions, which serves as a proxy for clinical 
trust. 

Federated training is carried out across simulated clients 
using synchronized communication rounds. Each experiment is 
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repeated five times with different random seeds and client 
divisions to ensure statistical robustness. We use paired 
statistical tests to confirm the significance of the performance 
differences we observe. 

This experimental design creates a reproducible and 
clinically motivated validation protocol, establishing a basis for 
future prospective multi-institutional studies. 

 

E. Privacy and Security Parameters 

FedVLM includes clear privacy and security measures to 
meet medical data management requirements. It uses differential 
privacy (DP) at the client level through DP-SGD, with privacy 
budgets reported as (ε, δ). Here, δ is set at 10-5, and ε changes 
based on the noise multiplier. Secure aggregation ensures that 
the central server can only see encrypted combined model 
updates rather than specific client data. This approach stops the 
server from reconstructing individual client information or 
gradients, even when considering the honest-but-curious threat 
model. 

We also assess privacy robustness against two common 
attack methods: membership inference attacks and gradient 
inversion attacks. Our tests show that combining secure 
aggregation and differential privacy greatly lowers the success 
rates of these attacks while still keeping diagnostic performance 
at acceptable clinical levels. These measured privacy parameters 
offer reliable guarantees that go beyond just theoretical privacy 
claims. 

F. Deployment Considerations and Practical Feasibility 

From a deployment perspective, FedVLM is designed for 
federated learning environments found in healthcare institutions. 
It minimizes communication overhead with lightweight 
multimodal adapters, which makes the framework suitable for 
hospital networks with limited bandwidth. Potential deployment 
challenges include client drop-out, asynchronous participation, 
and differing computational capabilities across institutions. 
While this study assumes synchronous participation for clarity, 
the framework can be adapted with asynchronous federated 
optimization strategies to improve reliability in real 
deployments. Integrating with existing hospital infrastructure, 
such as Picture Archiving and Communication Systems (PACS) 
and electronic health record systems, is possible since raw 
patient data stays within the institution. Additionally, the 
framework meets regulatory requirements like HIPAA and 
GDPR by design, as sensitive data remains local and is secured 
through established privacy methods. 

V. RESULTS AND DISCUSSION 

A. Performance Comparison 

Compared the benchmark FedVLM against representative 
baselines: (i) FedAvg-CNN, a conventional federated 
convolutional neural network which is only trained on image 
modality.; (ii) FedTransformer, a federated model in medical 
imaging based on transformers.; and (iii) Centralized VLM, a 
non-privacy-preserving upper bound model that is trained on 
pooled data. Findings are presented in NIH ChestX-ray14, 
MIMIC-CXR, and BraTS summarized in the following Table V. 

TABLE V.  PERFORMANCE COMPARISON OF FEDVLM AGAINST BASELINES 

ON MULTI-INSTITUTIONAL DATASETS (MEAN ± STANDARD DEVIATION OVER 

FIVE RUNS). SIGNIFICANCE (P ¡ 0.05) VERIFIED USING PAIRED T-TESTS. BEST 

RESULTS ARE IN BOLD. 

Method Accuracy (%) AUC F1-score p-value 

FedAvg- 
CNN 

82.4 ± 0.7 0.861± 
0.004 

0.78 ± 0.006 – 

Fed-
Transformer 

84.7 ± 0.6 0.873± 
0.005 

0.81 ± 0.004 – 

Centralized 
VLM 

89.5 ± 0.5 0.912± 
0.003 

0.85 ± 0.005 – 

FedVLM 
(praposed) 

88.1 ± 0.6 0.903± 
0.004 

0.84 ± 0.005 < 
0.05 vs 
baselines 

 

To ensure strong statistics, we repeated each experiment five 
times using different random seeds and client groups. Table 
Vshows the average and standard deviation of all metrics. We 
conducted paired t-tests between FedVLM and baseline 
methods(FedAvg-CNN, FedTransformer). These tests showed 
significant improvements (p≤ 0.05) in AUC and F1-score. 
Though the average improvements are around 1 to 2%, these 
differences are important in medical imaging. Even small gains 
can lead to better diagnostic reliability and lower false negative 
rates in large-scale screenings. 

In addition to the quantitative table, we visualize results 
using two complementary figures. Fig. 4 shows a grouped bar 
chart of Accuracy, AUC, and F1-score across methods, 
illustrating that FedVLM consistently outperforms unimodal 
federated baselines and approaches centralized VLM 
performance. Fig. 5 further highlights the trade-off between 
predictive performance (AUC) and communication efficiency, 
where FedVLM achieves near-centralized accuracy with only 
modest overhead compared to FedAvg-CNN. 

Observations: 

 FedVLM is always superior to unimodal federated baselines 
(FedAvg-CNN and FedTransformer), which is the 
advantage of using multimodal alignment to address 
medical tasks. Namely, the increase in the F1 scores by +6 
points comparedto FedAvg-CNN suggests that the class 
imbalance is handled more effectively in detecting chest 
pathology. 

  FedVLM deals with the performance of centralized VLM 
and the privacy of the data is strict. The portion of 
difference between the performances (around 1 -1.5) is the 
natural trade-off between distributed learning and full 
pooled data. 

 Interpretability scores (through Grad-CAM overlap with 
annotated disease regions) show that FedVLM attends to 
clinically relevant areas more consistently than unimodal 
baselines, improving trustworthiness. 

  The communication overhead is also not a big concern: 
FedVLM has a communication cost per-round that is just 
1.2x FedAvg-CNN, as a result of lightweight multimodal 
adapters, which is far less than naive full-parameter VLM 
federated training. 
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Fig. 4. Grouped comparison across methods and metrics. FedVLM outperforms unimodal federated baselines and approaches centralized VLM while preserving 

privacy. 

 

Fig. 5. Performance–efficiency trade-off. FedVLM attains near-centralized AUC with substantially lower communication than naive centralized/VLM training, 

and modest overhead vs. FedAvg-CNN. 

 

B. Clinical relevance of small performance gains 

Although the overall improvements of FedVLM over the 
baselines seem small (1–2% in AUC and F1-score), these gains 
are important in medical imaging tasks. In large screening 
programs like chest X-ray triage or oncology follow-up, even a 
1% boost in AUC can lead to hundreds of extra detected 
abnormalities and fewer false-negative diagnoses. So, 
performance differences that may look minor in machine 
learning tests can have a significant effect on patients in real life. 
These findings show that FedVLM offers clear clinical benefits 
while also protecting data privacy. 

 

C. Cross-Site Generalization 

One of the critical needs in medical federated learning is the 
capability of generalization to unknown institutions whose data 
distributions are not similar to the training locations. In order to 
assess this, we did a leave-one-hospital-out experiment where 
models were trained using 9 clients and tested using the held out 
10 th client. The results are summarized in Table VI. 

TABLE VI .  CROSS-SITE GENERALIZATION (LEAVE-ONE-HOSPITAL-OUT 

EVALUATION). RESULTS ARE REPORTED AS MEAN ± STANDARD DEVIATION 

OVER FIVE RUNS. SIGNIFICANCE (P ¡ 0.05) VERIFIED USING PAIRED T-TESTS 

AGAINST BASELINES. FEDVLM SHOWS IMPROVED ROBUSTNESS TO UNSEEN 

DISTRIBUTIONS. 

Method Accurac
y (%) 

AUC F1-
score 

p-
value 

FedAvg- 
CNN 

74.3 ± 
0.9 

0.781 ± 0.006 0.68 ± 
0.007 

– 

FedTransfor
mer 

76.5 ± 
0.8 

0.794 ± 0.005 0.70 ± 
0.006 

– 

Centralized 
VLM 

82.1 ± 
0.7 

0.842 ± 0.004 0.76 ± 
0.005 

– 

FedVLM 
(praposed) 

80.4 ± 
0.8 

0.833 ± 0.005 0.75 ± 
0.006 

< 0.05 vs 
baselines 

 

Although the average improvements of FedVLM over 
unimodal baselines appear modest (1–2 %), paired t-tests 
confirm that these differences are statistically significant (p ¡ 
0.05). In medical imaging, even a 1 % increase in AUC or F1-
score can translate into hundreds of correctly diagnosed or 
triaged cases across large clinical datasets, making such gains 
clinically meaningful. FedVLM is also shown to be less 
susceptible to performance reduction under domain shift, which 
confirms its strength and practical benefit in heterogeneous 
hospitals.  
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Beyond the quantitative comparison in Table VI, Fig. 6 
visualizes the AUCs of leave-one-out per hospital, confirming 
that FedVLM consistently outperforms unimodal FL baselines 
at unseen sites while approaching the centralized VLM. 

Moreover, the impact of domain shift on the decrease in 
performance is illustrated in Fig. 7, where FedVLM is less 
susceptible to cross-site heterogeneity because it has a lower 
AUC drop with the increase in the domain shift. 

 

Fig. 6. Per-hospital leave-one-out AUC across methods. FedVLM consistently narrows the gap to the centralized VLM while outperforming unimodal FL baselines 
on unseen sites. 

 

Fig. 7. Generalization under domain shift. FedVLM exhibits lower AUC degradation as domain shift increases, indicating improved robustness to unseen hospital. 

 

Discussion: 

 Improved robustness: FedVLM reduces the 
performance gap between centralized VLM in domain 
change significantly.Specifically, the generalization is 
stronger when there is an AUC improvement of +4-5 
points between unimodal FL baselines and AUC. 

 Multimodal alignment: The advantage of paired 
image-text representations can be used to counter site-
specific style variance, resulting in more consistent 
predictions in unseen hospitals. 

 Privacy-preserving transfer: In comparison to 
centralized VLM, in which data is collected, FedVLM 
can perform similarly across sites, respecting 
institutional privacy parameters. 

  Interpretability: Grad-CAM visualizations establish 
that FedVLM can still demonstrate clinically 
meaningful attention map representations under 
conditions where scanners are invisible or the style of 

reporting the maps to a computer are invisible in 
hospitals. 

Although the quantitative improvements of 1-2 % in the 
AUC and F1 score observed could be considered small, they 
have a clinical impact in a high-volume screening and diagnostic 
process. As an example, in a dataset like MIMIC-CXR or NIH 
ChestX-ray14 with more than 100,000 examinations, a 1 percent 
improvement in absolute AUC can mean several hundred cases 
typically incorrectly missed in disease detection directly 
decreased. This enhancement results in the earlier diagnosis of 
thousands of patients and reduced unwarranted follow-ups in a 
population-scale implementation in various hospitals, making 
the clinical process and patient safety more efficient.  

Therefore, minor statistical differences indicate an intense 
diagnostic influence in federated AI medical systems in real-life 
scenarios. To give context to the experimental results and place 
the proposed approach within the existing literature, we offer a 
clear comparison with key prior studies in medical vision, 
language modelling, and federated learning. Unlike earlier 
studies that emphasize either centralized multimodal learning or 
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unimodal federated frameworks, the proposed FedVLM 
combines multimodal alignment with formal privacy 
guarantees. Table VII outlines the main differences in learning 

methods, datasets, privacy mechanisms, and performance 
features between prior studies and the proposed method. 

 

TABLE VII.    COMPARISON OF FEDVLM WITH REPRESENTATIVE PRIOR STUDIES IN MEDICAL VISION–LANGUAGE AND FEDERATED LEARNING

Study Learning 
Paradigm 

Dataset(s) Privacy 
Mechanisms 

Key Performance / Findings 

ConVIRT (2020) Centralized ChestX-ray datasets None Strong multimodal alignment; privacy risk due to 
centralized data pooling 

MedCLIP (2022) Centralized MIMIC-CXR None Improved zero-shot classification; limited cross-site 
generalization 

BioViL / BioViL-T 
(2022–2024) 

Centralized Radiology images + reports None High vision-language alignment; no federated or privacy-
aware evaluation 

FACMIC (2024) Federated Medical image datasets None (no formal 
DP/SA) 

Federated CLIP adaptation; lacks formal privacy 
guarantees and multimodal robustness 

FAA-CLIP (2025) Federated Medical images Partial 
(personalization 

only) 

Attention-based personalization; limited multimodal 
alignment and privacy analysis 

FedAvg-CNN 
(Baseline) 

Federated 
(Unimodal) 

NIH ChestX-ray14, BraTS None Lower AUC and F1-score due to absence of textual 
supervision 

Centralized VLM 
(Upper Bound) 

Centralized NIH ChestX-ray14, MIMIC-
CXR, BraTS 

None Best raw performance; violates data privacy and 
governance constraints 

FedVLM  (Proposed) Federated 
Multi-modal 

NIH ChestX-ray14, 
MIMIC-CXR, BraTS 

Secure 
Aggregation + 

Differential 
Privacy 

Near-centralized performance with strong privacy 
guarantees; improved cross-site generalization, 

interpretability, and robustness 

D. Interpretability 

Other than predictive performance, interpretability is also 
key to clinical adoption. We measured the FedVLM 
transparency in terms of visual and textual alignment 
mechanisms. Grad-CAM [41] is imposed on the image encoder 
on the visual side to highlight salient regions and on the textual 
side alignment between clinical phrases and image regions is 
given by the attention weights of the text encoder. The 
representative qualitative heat maps are presented in Fig. 8, 
where FedVLM continuously treats pathologically relevant 
regions, including Lung opacities in chest radiographs, as 
compared to the more general and less specific regions that are 
visited by unimodal baselines. 

The cross-modal grounding can be also explained by Fig. 9, 
which emphasizes that the focus on textual symbols is related to 
the regions of images, and it is possible to draw interpretable 
relationships between radiology reports and visual evidence. 

In order to measure interpretability, we calculate the 
agreement between Grad-CAM heat maps and regions of 
interest (ROIs) and expert annotations. We also calculate the 
precision of the alignment between the textual tokens that were 
attended by the model and the disease labels in the reports.The 
results are summarized in Table VIII and visualized as a bar 
graph in Fig. 10, which provides a comparative overview of 
Grad-CAM overlap and text alignment accuracy between 
methods. 

 
 

 
Discussion: 

 FedVLM produces clinically faithful heatmaps (Fig. 8), 

with mIoU improvements of +7–9 points over unimodal 

FLbaselines, reducing the risk of  spurious attention to 

irrelevant regions. 

  Cross-modal alignment (Fig. 9) provides interpretable 

textual grounding, allowing clinicians to trace predictions 

back to meaningful reporting terms. 

  The combination of qualitative heat maps, text alignment, 

and quantitative evidence (Table VIII, Fig. 10) promotes 

clinician trust, bridging the gap between black-box 

federated models and real-world usability in hospital 

workflows. 

TABLE VIII. QUANTITATIVE INTERPRETABILITY ASSESSMENT. 
MEASURING OVERLAP TEXT ALIGNMENT IS MEASURED AT THE TOKEN 

LEVEL OF ACCURACY, AND MEAN INTERSECTION OVER UNION (MIOU) WITH 

EXPERT ANNOTATIONS. 

Method Grad-CAM 

Overlap (mIoU) 

Text Alignment (%) 

FedAvg-CNN 0.42 – 

FedTransformer 0.45 – 

Centralized VLM 0.53 72.1 

FedVLM (proposed) 0.51 70.4 
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Fig. 8. Qualitative interpretability comparison across methods. Each panel shows a chest radiograph with Grad-CAM heatmap overlay. FedVLM (rightmost 
column) focuses more tightly on pathologically relevant regions, aligning better with expert annotations (green). 

 

Fig. 9. Text–image alignment visualization. Attention of tokens (highlighted in orange) is associated with a localized image region (red box), which proves. 

 

Fig. 10. Quantitative interpretability comparison (values match Table VIII). Multimodal models (Centralized VLM, FedVLM) provide both higher Grad-CAM 

overlap and text–image alignment than unimodal FL baselines. the interpretable grounding of report phrases and visual evidence.
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E. Ablation Studies 

In order to determine the role of various components in 
FedVLM, we ran ablation experiments in image-only, textonly, 
multimodal centralized, and multimodal federated 
environments. This decouples the effect of multimodal 
alignment and federated optimization. Table IX summarizes the 
results. 

Discussion. 

 Image-only vs. text-only: The two unimodal conditions 

are worse in comparison to multimodal ones, which prove 

that complementary information of radiology images and 

text reports is essential to strong performance. 

 Centralized multimodal VLM: And is used as an upper 

bound where it has the advantage of sharing data but does 

not satisfy privacy limitations. 

 FedVLM multimodal: Follows centralized training (-1. 

4% precision) but keeps privacy, proving the fact that 

federated optimization can retain the majority of the 

multimodal advantages. 

  Key takeaway: Multimodal alignment offers 

considerable performance improvements ( +68 % AUC ) 

over unimodal FL, which confirms the design decisions of 

FedVLM of combining both an image and text encoder in 

a privacy-centric way. 

TABLE IX .       ABLATION STUDY OF FEDVLM. RESULTS REPORTED ON 

MIMIC-CXR (MULTIMODAL) AND CHESTX-RAY14 (IMAGE-ONLY). BEST 

RESULTS ARE BOLD. 

Variant Accuracy 

(%) 

AUC F1-score 

Image-only (FedAvg-

CNN) 

82.4 0.861 0.78 

Text-only 

(ClinicalBERT FL) 

80.1 0.842 0.75 

Multimodal 

(Centralized VLM) 

89.5 0.912 0.85 

Multimodal (FedVLM, 

ours) 

88.1 0.903 0.84 

 
We further examine the privacy-utility trade-off of FedVLM 

under different levels of differential privacy (DP) noise. As the 
noise multiplier increases, the privacy budget ε decreases. This 
provides stronger privacy guarantees but results in a gradual 
decline in AUC and F1-score. Notably, for moderate privacy 
budgets (for example, ε ≈ 4 to 5), the performance drop stays 
below 1% while still preserving formal DP guarantees. This 
shows that FedVLM can maintain clinically acceptable 
diagnostic accuracy while working in a strong privacy setting. 

F. Privacy Evaluation 

a) Setup.: We evaluate three aspects: (1) privacy-utility 

trade-off using DP-SGD at clients with noise multiplier σ ∈ 

{0.0, 0.5, 1.0, 1.5} and clipping C; (ε, δ) is calculated with an 

RDP accountant with δ = 10-5; (2) robustness to data leakage 

using client-level Membership Inference Attacks (MIA), 

including shadow-model and threshold-based methods, 

reporting attack AUC and advantage; and (3) gradient inversion 

resistance using DLG-style attacks on (a) individual client 

updates when secure aggregation is disabled and (b) aggregated 

updates when enabled. Each condition is repeated five times 

with different seeds and client partitions. 

b) Privacy–utility trade-off.: Table X summarizes the 

mean ± std performance on MIMIC-CXR classification at 

different DP noise levels. FedVLM keeps high utility with 

moderate privacy budgets (for example, ε ≈ 4.8). It shows 

statistically significant improvements over unimodal FL 

baselines (paired t-test, p < 0.05). 

TABLE X:  PRIVACY–UTILITY TRADE-OFF ON MIMIC-CXR (MEAN ± STD 

OVER FIVE RUNS). DP IS APPLIED WITH CLIP NORM C AND NOISE 

MULTIPLIER Σ, REPORTED AS (Ε, Δ = 10-5). BEST NON-PRIVATE UPPER 

BOUND IS SHOWN FOR REFERENCE; BOLD MARKS BEST DP SETTING. 

Setting σ ε AUC F1-score 

Centralized VLM (ref.) – ∞ 0.912 ± 0.003 0.85 ± 0.005 

FedVLM (no DP) 0.0 ∞ 0.903 ± 0.004 0.84 ± 0.005 

FedVLM (DP) 0.5 4.8 0.897 ± 0.004 0.83 ± 0.006 

FedVLM (DP) 1.0 3.2 0.890 ± 0.005 0.82 ± 0.006 

FedVLM (DP) 1.5 2.5 0.883 ± 0.006 0.81 ± 0.007 

 

c) Robustness to data leakage.: We report the 

membership inference attack (MIA) AUC (chance = 0.5) and 

the attacker advantage (Adv = TPR-FPR) averaged across 

clients summarixed in Table XI . To investigate gradient 

inversion, we measure the structural similarity (SSIM) between 

reconstructed images and ground-truth images from model 

updates. For secure aggregation, only aggregated updates are 

accessible, not per-client updates, which makes inversion 

difficult. 

TABLE XI. LEAKAGE ROBUSTNESS UNDER ABLATIONS (MEAN ± STD OVER 

FIVE RUNS). SA = SECURE AGGREGATION; DP = DIFFERENTIAL PRIVACY. 
LOWER IS BETTER FOR MIA AUC (CLOSER TO 0.5) AND SSIM OF 

RECONSTRUCTIONS. SIGNIFICANCE VS. FEDVLM (SA+DP) CHECKED BY 

PAIRED T-TEST. 

Variant MIA AUC MIA Adv. Grad-inv. SSIM 

FedVLM (no 
SA, no DP) 

0.71 ± 0.03 0.22 ± 0.04 0.41 ± 0.05 

FedVLM (SA 

only) 

0.56 ± 0.02 0.06 ± 0.02 0.08 ± 0.03 

FedVLM (DP 
only; σ = 0.5) 

0.58 ± 0.02 0.08 ± 0.04 0.19 ± 0.04 

FedVLM (SA 

+ DP; σ = 0.5) 

0.53 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 

 

d) Findings: (1) Utility: Moderate DP (e.g., σ=0.5, ε≈4.8) 
incurs only a small drop (≤0.6 AUC points) relative to 
nonDP FedVLM while preserving clinically relevant 
performance. (2) Leakage resistance: SA and DP both 
reduce MIA success; combined, they bring MIA AUC close to 
chance (0.5) and drive gradient inversion SSIM near zero. 
(3) Ablation: Removing SA or DP substantially increases 
leakage metrics (p < 0.05), establishing each component’s 
independent contribution to privacy 

e) Clinical relevance: Very small margins in performance 

of 1 and 2 percentage point may still be considered impressive 

compared to significant declines in the success of attacks. These 

settings improve privacy and do not decrease the quality of the 
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decisions in population-scale screening, which means that they 

can be safely implemented in several institutions. 

f) Attacks considered and mitigation: We look at two 

main privacy risks in federated learning. The first is 

membership inference attacks, which try to find out if a specific 

patient record was used in training. The second is gradient 

inversion attacks, which aim to rebuild input images from the 

shared model updates. In FedVLM, secure aggregation blocks 

access to individual client updates. This makes gradient 

inversion less likely. Differential privacy also limits how much 

each sample can contribute. It reduces information leaks and 

lowers the chances of success for membership inference 

attacks. Together, these methods greatly improve the privacy 

protection of FedVLM. 

VI. CONCLUSION 

FedVLM is the federated vision, language model proposed 
in this paper. It allows for privacy-aware and explainable 
analysis of medical images across different medical facilities. 
FedVLM is a multimodal system built on a single architecture. 
It includes multimodal alignment, secure aggregation, 
differential privacy, and proximal optimization concepts. Unlike 
earlier centralized or semi-federated systems like FACMIC, 
BioViL, and FAA-CLIP, FedVLM enables cross-site 
generalization while ensuring data confidentiality. 

Large-scale experiments on the NIH ChestX-ray14, MIMIC-
CXR, and BraTS datasets demonstrate that FedVLM 
consistently outperforms unimodal federated baselines. The 
consistency of performance gains is verified through repeated 
tests (mean ± standard deviation) and paired t-tests (p < 0.05). 
Although absolute improvements may appear numerically small 
(1–2%), these gains are clinically significant because even small 
increases in diagnostic accuracy translate into improved patient 
outcomes on the population scale. 

A detailed privacy analysis shows that secure aggregation 
along with differential privacy significantly lowers the success 
rates of membership-inference and gradient-inversion attacks. 
This combination offers a strong balance between privacy and 
utility, which is appropriate for real-world collaboration among 
institutions. 

The multimodal alignment features of FedVLM improve 
visual grounding and text matching, making the results easier to 
understand. FedVLM creates clinically relevant Grad-CAM 
heatmaps and token-region associations, which boosts model 
transparency and clinician trust. 

VII. LIMITATIONS 

Despite the promising results, this study has several 
limitations that should be noted. First, the current evaluation is 
done using simulated federated environments instead of actual 
hospital settings. As a result, some sources of real-world clinical 
variability, such as differences in scanner vendors, acquisition 
protocols, reporting styles, and patient demographics, are not 
fully represented in the experimental setup. 

Second, FedVLM mainly focuses on 2D medical imaging 
methods. While this works well for tasks like chest radiography, 
adapting the framework to 3D imaging methods, including CT 

and MRI volumes, requires more design and optimization. This 
goes beyond the scope of this work. 

Third, while privacy threats and defense mechanisms are 
examined in controlled settings, thorough security validation in 
operational networks is still a challenge. Real-world 
deployments might face more complex adversarial behaviors 
and infrastructure issues that are hard to replicate in simulations. 

System behavior under real network conditions. The 
current study does not specifically test FedVLM in real-world 
networking problems often found in federated clinical settings. 
These include client drop-out, straggler effects from different 
computational resources, limited communication bandwidth, 
and clients participating at different times. These factors can 
affect convergence stability, training efficiency, and fairness 
among institutions. In this work, we assume reliable 
synchronous communication to focus on evaluating the learning 
framework itself. A thorough assessment of FedVLM in realistic 
network conditions, including asynchronous and fault-tolerant 
federated optimization, is left for future research. 

VIII. FUTURE DIRECTIONS 

FedVLM can be extended to include 3D medical imaging 
methods like CT and MRI volumes. It can also be paired with 
cryptographic technologies like homomorphic encryption and 
secure multi-party computation to provide better privacy. 
Anotherinteresting direction is combining FedVLM with 
communication compression and cross-domain personalization. 
This couldallow for scalable training across large federated 
clinical networks.While FedVLM shows promising results, this 
work is still in the research phase. It is not ready for use in 
clinical settingsyet. Validation will need to happen through 
prospective multi-institutional clinical studies, regulatory 
approvals, and real-world trials. 
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