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Abstract

Deep learning has enhanced the analysis of medical images but privacy issues and institutional variations restrict their large scale
application in clinics. FedVLM, a federated vision language model tailored to privacy-preserving multimodal medical image analysis, is
one of the solutions to these problems. Contrary to the conventional federated design, which can only process single modal image data,
FedVLM takes paired radiological images and clinical reports jointly, which demonstrates high zero-shot and few-shot diagnostic
performance. The design consists of secure aggregation, differential privacy and proximal optimization that ensure protection of patient
data and minimize variability across sites. Large scale experiments on the NIH ChestX-ray14, MIMIC-CXR, and BraTS datasets indicate
that FedVLM is an accurate and interpretable model that achieves near-centralized performance on vision language models without
violating privacy. Building on previous works such as FACMIC, BioViL, and FAA-CLIP, FedVLM introduces new methods, including
privacy-aware optimization, proximal regularization for varied data, and multimodal contrastive alignment, creating a unified federated
framework for clear and secure medical image analysis. Although FedVLM shows promising performance, this work is currently at a
research stage and is not yet ready for clinical use. We need validation through future multi-institutional clinical studies.
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. INTRODUCTION

Analysis of medical images has become one of the most
impactful areas of artificial intelligence (Al) and they can be
used in detecting various diseases, organ localization, predicting
survival and planning treatment. Convolutional neural networks
(CNN) and transformers have demonstrated human-competitive
or even better performance on a diverse range of medical tasks
through deep learning models, with many positional statements
grounded on the principle of human-comparable performance
[1]. Regardless of these developments, there are two serious
bottlenecks in the large-scale implementation in real clinical
environments.

To begin with, the privacy limitation of the data. Medical
imaging information is very sensitive, their use is controlled
within strict frameworks, which are the Health Insurance
Portability and Accountability Act (HIPAA) in the United
Statesand the General Data Protection Regulation (GDPR) in
Europe. These limitations do not allow direct data merging
between institutions, making the creation of centralized deep
learning models based on a variety of large-scale datasets
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difficult to create. The idea of federated learning (FL) has been
developed to address this problem by permitting distributed data
silos to train collaboratively without having raw data to leave the
local institution at all, in the future, [2], [3].

Second, the heterogeneity of the domain. There is a high
level of variance among medical images between institutions
due to the wvariation in acquisition equipment, imaging
procedures, patient groups, and annotation standards. This
causes nonidentically distributed (non-11D) data, which can have
a severe negative effect on the performance of centralized and
federated models when applied to unseen domains [4], [5].
Therefore, it is necessary to handle this heterogeneity to develop
clinically robust and generalizable Al systems.

Moreover, the concept of vision language models (VLMs)
has become a popular topic of Al discussions. One model like
CLIP [6] and BLIP [7] can bring visual and textual modalities
to acommon embedding pace, and thus provide strong zero-shot
and few-shot generalizations on natural image domains. Based
on these achievements, new studies have begun to work on
medical vision language models, including MedCLIP and
BioViL [8], [9], that match radiology images to the relevant
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clinical report. Such methods reveal that VLMs can be used in
multimodal medical tasks, such as disease classification, the
generation of reports, and cross-modal retrieval. However, to
train such models, mainly centralized datasets are used, which
raises issues of privacy leakage and institutional data silos. In
addition, there is no extensive generalization in hospitals due to
changes in the distribution of both types of imaging modes and
clinical reporting practices.

Unlike FACMIC [10], which uses CLIP in a federated
setting without clear privacy protections, or FAA-CLIP [11],
which mainly emphasizes attention-based personalization, the
proposed FedVLM introduces a unified multimodal federated
optimization pipeline. This pipeline includes secure
aggregation, differential privacy, and proximal regularization.
Additionally, it goes beyond centralized vision and language
frameworks like BioViL [12] by allowing cross-institutional
training on paired radiology images and clinical reports without
sharing raw data. This combination of privacy, multimodal
alignment, and knowledge-aware optimization represents the
main innovation of FedVLM.

As a solution to these drawbacks, we present a federated
scheme, called FedVLM, to generalize vision-language models
into privacy-preserving multiinstitutional industry analysis of
medical images. FedVLM allows cross-site cooperation, which
means the combined optimization of the multimodal
representations without sharing raw data. With the union of the
federated optimization and domain adaptation and
communication-efficient strategies, our framework can offer the
concepts of privacy preservation and robust generalization in the
heterogeneous clinical setting. In contrast to previous
publications in the field of federated medical imaging that focus
only on unimodal image classification or segmentation
protocols, FedVLM presents multimodal alignment strategies,
which is why it enables the incorporation of textual supervision
(e.g. radiology report) in order to achieve better interpretability
and downstream performance.

The key contributions of this work can be summarized as
follows in the Table I.

o We introduce FedVLM, the first federated framework for
vision—language models in healthcare, bridging the gap
between multimodal representation learning and privacy-
preserving medical image analysis.

e We design a privacy-aware and communication-
efficient learning protocol that leverages secure
aggregation, differential privacy, and lightweight
parameter updates to reduce bandwidth overhead while
protecting sensitive information.

o We suggest a domain-aware alignment framework, which
formally addresses the challenge of interinstitutional
heterogeneity and enhances the ability to generalize to
different imaging modalities and clinical scenarios
through the introduction of multimodal representations.

e  Wecarry out an in-depth empirical analysis of large-scale
medical data, such as chest radiographs and skin lesion
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images, and show that FedVLM is as competitive as
centralized training and that it provides strict privacy
guarantees.

TABLE I. NOVELTY & CONTRIBUTIONS SUMMARY

Aspect
Problem Addressed

FedVLM Novelty and Contribution
Unified privacy-preserving multimodal learning
across distributed medical institutions.
Initial implementation of Vision Language Models
(VLMs) on a federated network of medical image
analysis.

Integrates secure aggregation, differential privacy
and proximal optimization in multimodal federated
training.

Introduces formal privacy, multimodal text image
alignment (FACMIC is one epoch unidimensional
and privacy blind).

Introduced the domain-sensitive multimodal
personalization; FAA-CLIP is concerned with
attention personalization.

Allows institutel training and protection of privacy,
unlike central training of BioVIL.

Almost centrally accurate, highly interpretable and
with high data leakage resistance.

Key Innovation

Architectural
Advances

Compared to
FACMIC

Compared to FAA-
CLIP

Compared to
BioVIL
Outcome

In summary, this paper positions FedVLM as a step toward
scalable, explainable, and privacy-preserving Al for medical
imaging, laying the foundation for real-world deployment of
federated multimodal systems in healthcare.

Il. RELATED WORKS

A. Federated Learning in Medical Imaging

Effective baselines in medical image segmentation were
achievable with deep learning models including U-Net, which
can form deeper bases by frequently stacking encoders and
decoders to produce fine-grained predictions on image pixel
intensity, data volume, and channel depth, which are beyond the
abilities of traditional approaches to segmentation and
localization tasks (Gallerati). But centralized training of data
collections on pools is not respected of privacy and governance
constraints. Introduced by FedAvg 2017 by Federated Learning
architectures, Federated grid workshear was closed by federated
model access, typically known as FedProx. Federated grid
model training is a learning framework where teams of
institutions collaborate and do not share raw data.

Sheller et al. [2] who performed a Mult institutional
segmentation of the brain tumor, and Dayan et al. [13] created
the EXAM model to predict the results of COVID-19 in 20
hospitals. Currier: Large benchmarks, [14], [15] offer
performance degradations under distribution shift, and
algorithm family members are compared with [16], [17]. Non-
IID data, communication overhead and strong privacy
guarantees are the recurrent problem highlighted in surveys [3],
[18], [19] , including but not limited to those of Rieke (2020)
Future, p. 5), Rehman (2023) Federated and teo (2024)
Systematic.

A representative example of the FL literature in medical
imaging for the 2018-2025 time frame is provided in Table II,
and it focuses on modality, tasks, sites and privacy mechanisms.
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TABLE Il. REPRESENTATIVE FL IN MEDICAL IMAGING (2018-2025).

Work (Year) Modality/Task Sites Method Personalization Privacy Key Finding
Sheller et al. MRI/ Seg. 4+ FedAvg - - Fed = Centralized Dice on
[2] (2018) BraTS-like data
Dayan et al. CXR+EHR/ CIf. 20+ FedAvg - SA Cross-system
[13] (2021) generalization for
COVID-19 outcomes
FeTs [4], [5] MRI / Seg. 20+ FedAvg variants Sampling tricks - Benchmarking FL under
(2021-22) distribution shifts
Luo et al. CT/MR / Seg. Multi-site FedAvg - - Fed. probes with larger
[16] (2023) intersection distance
Mantel et al. MRI/ Seg. Multi-site FedAvg/Prox/Per. FedBN etc. - Benchmark across
[17] (2024) algorithm classes
Wu et al. [1] MRI / Seg. Multi-site Fed Contrastive - - Self/Semi-supervised FL
(2024) improves label efficiency

ABBREV.: CLF.=CLASSIFICATION, SEG.=SEGMENTATION, SA=SECURE AGGREGATION, DP=DIFFERENTIAL PRIVACY.

B. Vision-Language Models in Healthcare

Vision-language models (VLMs) align images and text in a
shared embedding space. ConVIRT [20] demonstrated
contrastive learning on paired chest X-rays and reports.
Subsequent works such as MedCLIP [21], CheXzero [22],
PMC-CLIP [23], and KAD [24] extended CLIP-style
pretraining for radiology, achieving zero-shot classification and
retrieval. More recent efforts such as BioViL and BioViL-T [9],
[25] improve report generation and retrieval, while surveys [26],
[27] highlight both progress and limitations.

Despite promising centralized results, these models often
underperform in cross-site evaluations due to reporting style

variations, domain shifts, and lack of federated adaptation. A
comparative overview of representative VLMs from 2020-2025
is provided in Table 111

Figure 1 presents an overview of previous studies, the related
research gaps, and the main contributions of the proposed
FedVLM framework. Earlier works mainly focused on
centralized or unimodal systems, which had limited privacy
protection.

The proposed model tackles these problems by using
multimodal federated learning that includes privacy protection
and better cross-site generalization.

Previous Work
Centralized / semi-

Limitations / Research Gap

[ Our Proposed Work (FedVLM)
Multimodal vi-

federated models
Unimodal vision
or text networks
Limited cross-site

identified gaps
—

Data privacy nsk
Heterogeneous client
data not handled
Limited security
and interpretability

sion—language FL model

Privacy-preserving with

DP + secure aggregation
Improved cross-site

generalization

generalization and interpretability

Fig. 1. Overview of prior work, research gaps, and contributions of the proposed FedVLM framework.

C. Gap Analysis

During the period 2015 to 2025, FL has developed into a
practical paradigm in the field of medical imaging, and VLMs
have demonstrated the promises of multimodal alignment of
interpretability and zero-shot transfer. However, as depicted in

Fig. 2, these two focus areas of research have not yet been
fully engaged with each other, with slight integration. Recent
efforts such as FACMIC [10] and FAA-CLIP [11] attempt to
adapt CLIP within federated environments, but are limited to
classification tasks, lack robust privacy mechanisms (e.g.,
secure aggregation and differential privacy), and do not address
cross-site semantic heterogeneity. No existing framework
unifies FL and VLMs to deliver:

1) Privacy-preserving multimodal alignment across image
and text modalities without raw data sharing.
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2) Cross-institutional generalization that explicitly mitigates
domain heterogeneity.

3) Explainable zero-shot and few-shot capabilities for
medical Al systems.

This gap clearly motivates our proposed FedVLM, which,
to the best of our knowledge, is the first federated vision—
language framework designed for large-scale, privacy-
preserving, and multimodal medical image analysis.
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[T:xulmmy of Related Work zmls-mzsp]

Federated Learning (Imaging)
FedAvg |28)], FedProx |25
Personalization (FedBN, pFedMe)
Privacy (3A, DP)

SemifSelf-Sup. [10)]

T

Benchmarks

Shellerl & 3], FeT521 [[14)
EXAaM21 |1F)

Shift sensitviy [16], [T7)

VLMs (Medicaly
ConWIRT20 0]
MedCLIP22 [F1)
CheXzem?? [
PMC-CLIP23 [33)
KAD2S [

Apps: Zero-shot CIf.,
Surveys [TH), [27)
Central ized focus: site

Retrieval, Repon Gen.

shifl isswes

4.[

Gap: No unified, privacy-preserving federared VLM for medical
imaging with cross-site multimodal alignment
Early stieps: FACMIC24 [[I0]. FAA-CLIF2S [T1)

Fig. 2. Taxonomy summarizing prior art in FL and VVLMs and the gap addressed by FedVLM.

TABLE Ill.  REPRESENTATIVE VISION-LANGUAGE MODELS IN HEALTHCARE (2020-2025).

Work (Year) Pretraining Data Text Source Zero-Shot Tasks Cross-Site Notes

ConVIRT  [20] | CXR, others Reports No Cfr., Retrieval Sensitive to site/report shifts
(2020)

MedCLIP [21] | 20K pairs Captions/Reports Yes CIf., Retrieval Limited external validation
(2022)

CheXCLIP [22] | 377 CXR pairs Reports Yes Zero-shot CLF Crosshospital evals show gaps
(2022)

PMC-CLIP [23] | 1.6M PMC pairs Captions Yes Z.retrieval, VQA Style mismatch to hospitals
(2023)

KAD [24] (2023) | X-ray corpus Reports+ Knowledge Yes Ext. CIf. Knowledge boosts zero-shot, shift

remains

BioViL/Report- Rad. images+reports Reports Gen. Report No federated evals
VLMs [9], [25] (2022— Gen./Retrieval
24)

I11. PROPOSED METHODOLOGY

In this section, we present FedVLM, a federated vision—
language model framework for privacy-preserving medical
image analysis. The framework unifies multimodal alignment
with federated optimization across heterogeneous institutions
while ensuring strict privacy guarantees. Fig. 3 illustrates the
overall pipeline.

A. Overall Architecture

Under the FedVLM, hospitals are the clients and each
hospital has its local collection of matched medical images and
corresponding clinical text (e.g., radiology reports). Making
alignment Multimodal encoders are trained locally to generate
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mutually aligned encodings across vision and language. Rather
than exchange the raw data a central server is updated with only
model updates (gradients or encoder parameters) and then
conducts secure global aggregation. An integrated model of the
globe is reallocated to the clients and allows the elegant
collaborative  enhancement  without jeopardising the
confidentiality of data. This pipeline is based on a regular cross-
silo federated learning model prescribed by [28], [30], but
specific to multimodal medical environments.
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Text Encoder (BioBERT/ClinicalBERT)
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1
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FedAvg + Prox aggregation:
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Privacy: secure aggregation (+ optional DP noise)

Legend: Clients train locally with multimodal contrastive Joss:
oaly encrypted updates are shared. Server aggregates with FedAvg+Prox and broadcasts 84+1.

Fig. 3. Vertical FedVLM pipeline: hospitals (clients) train local image and text
encoders with contrastive alignment. Updates are securely aggregated, the
server performs FedAvg+Prox, and the global model is broadcast back.

B. Novel Architectural Contributions of FedVLM

To showcase the technical innovations, the proposed
FedVLM framework is designed to address the limitations of
earlier works like FACMIC [10], BioViL [12], and FAA-CLIP
[11]. FACMIC uses CLIP in a federated environment for image
classification, but it lacks formal privacy guarantees. The FAA-
CLIP provides attention-based personalization, but it can only
be used in unimodal or partially aligned learning environments.
On the contrary, BioViL uses centralized training assumptions,
thus it cannot ensure that data is confidential across institutions.
On the contrary, FedVLM brings a number of important
architectural differences:

» Federated Multimodal Alignment: Vision and language
encoders are simultaneously trained by FedVLM in a federated
form. It relies on contrastive alignment objective. This enables
dissimilar destinations to streamline without the need to share
crude information.

* Privacy-Aware Optimization: The model is a combination
of secure aggregation and differential privacy in training loop.

That ensures that institutional updates remain encrypted and in
line with the privacy requirements.

» Proximal Regularized Federated Learning: FedAvg +Prox
is a training stabilization method used on non-11D multimodal
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data distributions. It also reduces client drift. This is superior to
the simple FedAvg designs that were used in the past studies.
» Domain-Aware Alignment: FedVLM lessens the variations
in the meaning and images across sites by incorporating paired
image and text embeddings. This is useful in bringing about
uniform multimodal generalization.
« Explainability Integration: The interpretability of the Grad-
CAM provides the clear justifications of the predictions, and
the token-level alignment provides the clear justifications of the
prediction tokens. This enhances the real-world deployment.
Together, FedVLM is novel, with a single combination of
vision language modeling and federated learning to analyse
medical images with privacy protection. Unlike the scenario in
FACMIC where there is CLIP being applied in a federated
model although not providing express coverage of privacy and
multimodal consistency, FedVLM has incorporated secure
aggregation, differential privacy, and proximal regularization,
built directly as part of the learning pipeline. FedVLM uses
domain-conscious multimodal optimization to coordinate
radiological images and textual reports across institutions
compared to FAA-CLIP, which mainly emphasizes the
attention-based personalization of systems in unimodal settings.
Additionally, unlike BioViL, where the centralized access to
data is assumed and privacy cannot be controlled, FedVLM
allows crossinstitutional models to train without sharing raw
data. FedVLM can be viewed as one of the earliest federated
vision language models that provide a solid state of diagnostic
results, interpretation, and privacy guarantees for heterogeneous
clinical aspects, all at once.

C. Model Components

Image Encoder. Our network uses CNN or ViT backbones
which are pre-trained on large-scale imaging data (e.g., ResNet
[31] or ViT [32] and trained on domain-specific medical images.

Text Encoder. Our transformer-based biomedical language
models include BioBERT model, e.g., BioBERT model [33], or
ClinicalBERT model, e.g. ClinicalBERT model [34] and these
models are able to learn domain specific semantics of a clinical
report.

Cross-Modal Alignment. In order to match modalities, we
use a contrastive learning task based on CLIP, which maximizes
similarities between paired image-text embeddings, and
minimizes similarities between paired images and negative
pairs, as used in CLIP. which are alo summerized in Table IV.

TABLE IV. MODEL COMPONENTS OF FEDVLM

Component Choice Reference

Image ResNet, ViT He et al. [31]; Dosovitskiy et

Encoder al. [32]

Text Encoder | BioBERT, Lee et al. [33]; Alsentzer et al.
ClinicalBERT [34]

Alignment Contrastive Loss Radford et al. [36]

Privacy Secure  Aggregation, | Kassis et al. [30]
DP
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D. Federated Optimization

To train FedVLM under heterogeneous non-11D data
distributions, we adopt FedAvg [28] with a proximal
regularization term (as in FedProx [29]) to stabilize local updtes.

6*'= 0 nAL; (6°)+u(6* - 6;) €Y)

where 6 %1 ; denotes the updated parameters of the client i’,
n is the learning rate, p is the proximal coefficient and Li is the
local multimodal loss. A secure aggregation protocol [35]
ensures that the server only receives encrypted aggregated
updates, preserving institutional privacy. The global aggregation
step averages the weighted updates:

n

9t+1 — Zm it

t+1
i=1yy i

(2)

where M is the number of clients, ni is the number of local
samples at the clienti, and N =3 ni.

The local objective combines unimodal reconstruction with
multimodal contrastive alignment. For client i with dataset

Di={(x'j, x"j)} of image-text pairs:

1

£4(8) = = BiamyenLimg (Fr (2" :67)) +

£text (fT (xT: orT )) + ALcontrast (ft (xt)v fT(xT))} (3)

where f; and fr denote image and text encoders, Limg and Liex:
are unimodal cross-entropy/reconstruction l0sses, Lcontrast IS @
contrastive loss:

sim(z;, zr)

exp( =
B exp (Sim(ZIIZ¥)>

—log 4)

Leontraast =
k=1 -z
with z;, zr being normalized embeddings, = a temperature
parameter, and B the batch size. This enforces alignment
between paired image—text samples while contrasting with
negatives.

E. Security Threat Model and Defenses

In collaborative training between institutions, we look at
risks from both honest-but-curious and potentially harmful
participants. The server might try to gather information from
client updates, which come from honest-but-curious adversaries.

Meanwhile, clients could be compromised and send
contaminated or altered gradients, known as Byzantine clients.
To address these challenges, FedVLM uses several defenses that
work well together. First, secure aggregation ensures that the
server only sees encrypted combined updates instead of each
client’s parameters. This reduces the chances of gradient
inversion. Second, differential privacy limits the impact of each
local sample. This reduces the risk of membership-inference
attacks. Third, robust federated optimizers, like trimmed mean
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or median aggregation, can help defend against malicious clients
that inject harmful updates. Finally, the framework works with
stronger cryptographic protections, such as homomorphic
encryption and secure multi-party computation (SMPC), for
projects that need stricter guarantees. Together, these methods
offer layered protection for collaborative model training among
institutions.

F. Algorithm

Algorithm 1 2 summarizes the FedVLM training procedure
Algorithm 1: FedVLM — Federated Vision-Language
Training with Proximal Term and Secure Aggregation
Require:

Clients C = {1, ..., N}, local datasets D; = {(x,xT)}; rounds T;
local epochs E; batch size B; learning rate n; temperature t;
contrastive loss weight A; proximal weight u

Ensure:

Global parameters 87 = {8,, 0}

1: Initialize global model 6°

2: fort = 0to T — 1do
3: Server broadcasts 6° to selected clients S, € C
4: for each client i € S;in parallel do
5; 6f*! « LOCALTRAIN(6¢,D;, E, B, 1,7, A, 1)
6: Client sends encrypted update to server (secure aggregation)
7: end for
8. Server aggregates:
n.
o+ = O where n; =| D; |
Zkest Nk

i€ESt

9: end for

10: return 67

Algorithm 2: LOCALTRAIN at client i (Image/Text
Encoders + Contrastive Alignment + Proximal Term)
Require:

Global params 8¢ = {6,,0}; local data D;; epochs E; batch
size B; Ir n; temperature 7; weights A, u

Ensure:

Updated local params 6+*

1: Initialize local copy 8 « 6*
. fore = 1to Edo

: for each minibatch {(x/, x7)}, from D,do

7] « fi(x]; 6))

w N

N

L2y < fr(xg; 'GT)'
normalize z}, z;.
: Unimodal loss (optional):
Limg + Ltext

@ g

7: Contrastive loss (InfoNCE over batch):
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B

exp(sim(z/, z})/7)

(log ZB

ooy €XP(sim(z/, 27) /T)

Leontrast = _E
j=1 o
exp(sim(z1, 2] ) /1)

+log—5 : T )
Zk:l exp(sim(z;, z;) /1)

8: Local objective with proximal regularizer:
U
Llocal = Limg + Ltext + ALcontrast + E " 9 - gt ”%

9: Gradient step:
0 <06-— nveLlocal

10: end for
12: end for
13: return 61 « @

IV. EXPERIMENTAL SETUP

A. Datasets

To evaluate FedVLM, we consider three widely used
medical imaging datasets that provide both visual and textual
modalities or enable multi-institutional simulation:

* NIH ChestX-rayl4 [36]: a large-scale dataset of over
112,000 frontal chest radiographs from 30,805 patients,
annotated with 14 thoracic disease labels. It serves as a
benchmark for multi-label chest pathology classification.

* MIMIC-CXR [37]: a multimodal dataset consisting of
377,110 chest X-rays and 227,835 corresponding radiology
reports. We use this dataset for vision—language alignment
experiments, enabling cross-modal retrieval and zero-shot
classification.

» BraTS (Brain Tumor Segmentation) [38], [39]: a multi-
institutional benchmark dataset containing MRI scans of
gliomas with expert-annotated tumor sub-regions. BraTS is
employed to evaluate segmentation tasks and to simulate cross-
site federated settings.

In this study, we simulate federated training using non-11D
data partitions to represent different hospitals. This setup
captures some shifts in distribution between sites, but it doesn’t
fully represent the complexities of real clinical environments.

These complexities include differences in scanner hardware,
acquisition methods, reporting styles, and patient demographics.
Performing federated training in actual hospitals needs data-
sharing agreements and ethics approval. These requirements are
beyond the focus of this work and are planned for our future
deployment studies.

B. Environment

All experiments are implemented in PyTorch [40] with
distributed federated training simulated across 10 clients. Each
client maintains a distinct partition of the datasets, emulating
non-11D hospital-specific distributions. The training is held on a
cluster with NVIDIA RTX A6000 and V100 GPUs. Secure
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aggregation protocols are used as per Bonawitz et al. [35] in
order to guarantee privacy preserving updates. Hyperparameters
like learning rate, batch size and contrastive temperature are
optimized individually on a dataset using validation splits.

Unmodeled clinical heterogeneity: Although our simulation
uses non-l1ID data partitions to mimic multi-institutional
training, it does not fully reflect several sources of real-world
differences. In clinical practice, hospitals vary in scanner
vendors and hardware setups, acquisition protocols, reporting
styles and languages, annotation practices, and patient
population traits. These extra factors create distribution shifts
that are not entirely represented in the current simulation
environment.

C. Evaluation Metrics

e Accuracy: Percentage of correctly identified cases in
disease detection tasks.

e AUC (Area Under ROC): Used to evaluate the
discriminative ability across imbalanced disease
classes.

e Fl-score: Harmonic mean of precision and recall,
especially important in multi-label chest pathology
classification.

e Interpretability: The interpretability of the model is
determined using Grad-CAM visuals [41], which
highlight salient image regions and provide a proxy
interpretability score.

e  Communication Cost: Average per-round parameter
transmission (in MB), measured across 10 clients, to
quantify the efficiency of federated training.

D. Study Design and Validation Protocol

The experimental evaluation of FedVLM uses a structured
retrospective study design that mimics real multi-institutional
clinical settings. The main goal is to determine if privacy-
preserving federated vision and language learning can achieve
diagnostic performance similar to centralized multimodal
models while ensuring strict data confidentiality.

We evaluate three clinically relevant tasks: (i) multi-label
disease classification from chest radiographs, (ii) image-text
alignment between medical images and their corresponding
clinical reports, and (iii) robustness to data differences across
institutions. Publicly available datasets, including NIH ChestX-
rayl4, MIMIC-CXR, and BraTsS, are split into different client
subsets that are not identically distributed to simulate various
hospitals.

Since retrospective datasets do not include direct patient
outcome variables, we use surrogate clinical performance
indicators that are widely accepted in medical imaging research.
These include AUC, F1-score, accuracy, and reduction in false
negatives, which are closely linked to diagnostic reliability. We
also assess interpretability using Grad-CAM overlap with
expert-annotated regions, which serves as a proxy for clinical
trust.

Federated training is carried out across simulated clients
using synchronized communication rounds. Each experiment is
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repeated five times with different random seeds and client
divisions to ensure statistical robustness. We use paired
statistical tests to confirm the significance of the performance
differences we observe.

This experimental design creates a reproducible and
clinically motivated validation protocol, establishing a basis for
future prospective multi-institutional studies.

E. Privacy and Security Parameters

FedVLM includes clear privacy and security measures to
meet medical data management requirements. It uses differential
privacy (DP) at the client level through DP-SGD, with privacy
budgets reported as (g, 6). Here, ¢ is set at 105, and & changes
based on the noise multiplier. Secure aggregation ensures that
the central server can only see encrypted combined model
updates rather than specific client data. This approach stops the
server from reconstructing individual client information or
gradients, even when considering the honest-but-curious threat
model.

We also assess privacy robustness against two common
attack methods: membership inference attacks and gradient
inversion attacks. Our tests show that combining secure
aggregation and differential privacy greatly lowers the success
rates of these attacks while still keeping diagnostic performance
at acceptable clinical levels. These measured privacy parameters
offer reliable guarantees that go beyond just theoretical privacy
claims.

F. Deployment Considerations and Practical Feasibility

From a deployment perspective, FedVLM is designed for
federated learning environments found in healthcare institutions.
It minimizes communication overhead with lightweight
multimodal adapters, which makes the framework suitable for
hospital networks with limited bandwidth. Potential deployment
challenges include client drop-out, asynchronous participation,
and differing computational capabilities across institutions.
While this study assumes synchronous participation for clarity,
the framework can be adapted with asynchronous federated
optimization strategies to improve reliability in real
deployments. Integrating with existing hospital infrastructure,
such as Picture Archiving and Communication Systems (PACS)
and electronic health record systems, is possible since raw
patient data stays within the institution. Additionally, the
framework meets regulatory requirements like HIPAA and
GDPR by design, as sensitive data remains local and is secured
through established privacy methods.

V. RESULTS AND DISCUSSION

A. Performance Comparison

Compared the benchmark FedVLM against representative
baselines: (i) FedAvg-CNN, a conventional federated
convolutional neural network which is only trained on image
modality.; (ii) FedTransformer, a federated model in medical
imaging based on transformers.; and (iii) Centralized VLM, a
non-privacy-preserving upper bound model that is trained on
pooled data. Findings are presented in NIH ChestX-rayl4,
MIMIC-CXR, and BraTS summarized in the following Table V.
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TABLE V. PERFORMANCE COMPARISON OF FEDVLM AGAINST BASELINES
ON MULTI-INSTITUTIONAL DATASETS (MEAN + STANDARD DEVIATION OVER
FIVE RUNS). SIGNIFICANCE (P j 0.05) VERIFIED USING PAIRED T-TESTS. BEST

RESULTS ARE IN BOLD.

Method Accuracy (%) AUC F1-score p-value
FedAvg- 824+0.7 | 0.861+ 0.78 + 0.006 -
CNN 0.004

Fed- 84.7+0.6 | 0.873% 0.81 +0.004 -
Transformer 0.005
Centralized 89.5+05 | 0912+ 0.85 +0.005 -
VLM 0.003
FedVLM 88.1+0.6 | 0.903+ 0.84 +0.005 <
(praposed) 0.004 0.05 s
baselines

To ensure strong statistics, we repeated each experiment five
times using different random seeds and client groups. Table
Vshows the average and standard deviation of all metrics. We
conducted paired t-tests between FedVLM and baseline
methods(FedAvg-CNN, FedTransformer). These tests showed
significant improvements (p< 0.05) in AUC and F1-score.
Though the average improvements are around 1 to 2%, these
differences are important in medical imaging. Even small gains
can lead to better diagnostic reliability and lower false negative
rates in large-scale screenings.

In addition to the quantitative table, we visualize results
using two complementary figures. Fig. 4 shows a grouped bar
chart of Accuracy, AUC, and F1-score across methods,
illustrating that FedVLM consistently outperforms unimodal
federated baselines and approaches centralized VLM
performance. Fig. 5 further highlights the trade-off between
predictive performance (AUC) and communication efficiency,
where FedVLM achieves near-centralized accuracy with only
modest overhead compared to FedAvg-CNN.

Observations:

FedVLM is always superior to unimodal federated baselines

(FedAvg-CNN and FedTransformer), which is the
advantage of using multimodal alignment to address
medical tasks. Namely, the increase in the F1 scores by +6
points comparedto FedAvg-CNN suggests that the class
imbalance is handled more effectively in detecting chest
pathology.

e FedVLM deals with the performance of centralized VLM
and the privacy of the data is strict. The portion of
difference between the performances (around 1 -1.5) is the
natural trade-off between distributed learning and full
pooled data.

o Interpretability scores (through Grad-CAM overlap with
annotated disease regions) show that FedVLM attends to
clinically relevant areas more consistently than unimodal
baselines, improving trustworthiness.

e The communication overhead is also not a big concern:
FedVLM has a communication cost per-round that is just
1.2x FedAvg-CNN, as a result of lightweight multimodal
adapters, which is far less than naive full-parameter VLM
federated training.
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Fig. 4. Grouped comparison across methods and metrics. FedVLM outperforms unimodal federated baselines and approaches centralized VLM while preserving

privacy.
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Fig. 5. Performance—efficiency trade-off. FedVVLM attains near-centralized AUC with substantially lower communication than naive centralized/VLM training,

and modest overhead vs. FedAvg-CNN.

B. Clinical relevance of small performance gains

Although the overall improvements of FedVLM over the
baselines seem small (1-2% in AUC and F1-score), these gains
are important in medical imaging tasks. In large screening
programs like chest X-ray triage or oncology follow-up, even a
1% boost in AUC can lead to hundreds of extra detected
abnormalities and fewer false-negative diagnoses. So,
performance differences that may look minor in machine
learning tests can have a significant effect on patients in real life.
These findings show that FedVLM offers clear clinical benefits
while also protecting data privacy.

C. Cross-Site Generalization

One of the critical needs in medical federated learning is the
capability of generalization to unknown institutions whose data
distributions are not similar to the training locations. In order to
assess this, we did a leave-one-hospital-out experiment where
models were trained using 9 clients and tested using the held out
10 th client. The results are summarized in Table V1.

TABLE VI. CROSS-SITE GENERALIZATION (LEAVE-ONE-HOSPITAL-OUT
EVALUATION). RESULTS ARE REPORTED AS MEAN = STANDARD DEVIATION
OVER FIVE RUNS. SIGNIFICANCE (P j 0.05) VERIFIED USING PAIRED T-TESTS
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AGAINST BASELINES. FEDVLM SHOWS IMPROVED ROBUSTNESS TO UNSEEN
DISTRIBUTIONS.

Method | Accurac AUC F1- p-

y (%) score value
FedAvg- 743 + | 0.781+0.006 | 0.68 + -
CNN 0.9 0.007
FedTransfor 765 + | 0.794+0.005 | 0.70 + -
mer 0.8 0.006
Centralized 821 + | 0.842+0.004 | 0.76 + -
VLM 0.7 0.005
FedVLM 804 + | 0.833+0.005 | 0.75 + | <0.05 vs
(praposed) 0.8 0.006 baselines

Although the average improvements of FedVLM over
unimodal baselines appear modest (1-2 %), paired t-tests
confirm that these differences are statistically significant (p j
0.05). In medical imaging, even a 1 % increase in AUC or F1-
score can translate into hundreds of correctly diagnosed or
triaged cases across large clinical datasets, making such gains
clinically meaningful. FedVLM is also shown to be less
susceptible to performance reduction under domain shift, which
confirms its strength and practical benefit in heterogeneous
hospitals.
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Beyond the quantitative comparison in Table VI, Fig. 6
visualizes the AUCs of leave-one-out per hospital, confirming
that FedVLM consistently outperforms unimodal FL baselines
at unseen sites while approaching the centralized VLM.

Moreover, the impact of domain shift on the decrease in
performance is illustrated in Fig. 7, where FedVLM is less
susceptible to cross-site heterogeneity because it has a lower
AUC drop with the increase in the domain shift.

||]I]Fe|.1_=‘u-g-C'NN loFedTransformer [10Centralized VLM BB FedVLM (ours) |

0.85

Hi H2 H3 H4 H3

Hé H? Ha H% H10

Fig. 6. Per-hospital leave-one-out AUC across methods. FedVLM consistently narrows the gap to the centralized VLM while outperforming unimodal FL baselines

on unseen sites.
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Fig. 7. Generalization under domain shift. FedVVLM exhibits lower AUC degradation as domain shift increases, indicating improved robustness to unseen hospital.

Discussion:

e Improved robustness: FedVLM reduces the
performance gap between centralized VLM in domain
change significantly.Specifically, the generalization is
stronger when there is an AUC improvement of +4-5
points between unimodal FL baselines and AUC.

e Multimodal alignment: The advantage of paired
image-text representations can be used to counter site-
specific style variance, resulting in more consistent
predictions in unseen hospitals.

e Privacy-preserving transfer: In comparison to
centralized VLM, in which data is collected, FedVLM
can perform similarly across sites, respecting
institutional privacy parameters.

e Interpretability: Grad-CAM visualizations establish
that FedVLM can still demonstrate clinically
meaningful attention map representations under
conditions where scanners are invisible or the style of
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reporting the maps to a computer are invisible in
hospitals.

Although the quantitative improvements of 1-2 % in the
AUC and F1 score observed could be considered small, they
have a clinical impact in a high-volume screening and diagnostic
process. As an example, in a dataset like MIMIC-CXR or NIH
ChestX-ray14 with more than 100,000 examinations, a 1 percent
improvement in absolute AUC can mean several hundred cases
typically incorrectly missed in disease detection directly
decreased. This enhancement results in the earlier diagnosis of
thousands of patients and reduced unwarranted follow-ups in a
population-scale implementation in various hospitals, making
the clinical process and patient safety more efficient.

Therefore, minor statistical differences indicate an intense
diagnostic influence in federated Al medical systems in real-life
scenarios. To give context to the experimental results and place
the proposed approach within the existing literature, we offer a
clear comparison with key prior studies in medical vision,
language modelling, and federated learning. Unlike earlier
studies that emphasize either centralized multimodal learning or
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unimodal federated frameworks, the proposed FedVLM
combines multimodal alignment with formal privacy
guarantees. Table VIl outlines the main differences in learning

methods, datasets, privacy mechanisms, and performance
features between prior studies and the proposed method.

TABLE VII. COMPARISON OF FEDVLM WITH REPRESENTATIVE PRIOR STUDIES IN MEDICAL VISION-LANGUAGE AND FEDERATED LEARNING
Study Learning Dataset(s) Privacy Key Performance / Findings
Paradigm Mechanisms
ConVIRT (2020) Centralized ChestX-ray datasets None Strong multimodal alignment; privacy risk due to
centralized data pooling
MedCLIP (2022) Centralized MIMIC-CXR None Improved zero-shot classification; limited cross-site
generalization
BioViL / BioViL-T Centralized Radiology images + reports None High vision-language alignment; no federated or privacy-
(2022-2024) aware evaluation
FACMIC (2024) Federated Medical image datasets None (no formal Federated CLIP adaptation; lacks formal privacy
DP/SA) guarantees and multimodal robustness
FAA-CLIP (2025) Federated Medical images Partial Attention-based personalization; limited multimodal
(personalization alignment and privacy analysis
only)

FedAvg-CNN Federated NIH ChestX-ray14, BraTS None Lower AUC and F1-score due to absence of textual
(Baseline) (Unimodal) supervision
Centralized VLM Centralized NIH ChestX-ray14, MIMIC- None Best raw performance; violates data privacy and
(Upper Bound) CXR, BraTS governance constraints
FedVLM (Proposed) Federated NIH ChestX-ray14, Secure Near-centralized performance with strong privacy

Multi-modal MIMIC-CXR, BraTS Aggregation + guarantees; improved cross-site generalization,

Differential interpretability, and robustness
Privacy
D. Interpretability
Discussion:

Other than predictive performance, interpretability is also
key to clinical adoption. We measured the FedVLM
transparency in terms of visual and textual alignment
mechanisms. Grad-CAM [41] is imposed on the image encoder
on the visual side to highlight salient regions and on the textual
side alignment between clinical phrases and image regions is
given by the attention weights of the text encoder. The
representative qualitative heat maps are presented in Fig. 8,
where FedVLM continuously treats pathologically relevant
regions, including Lung opacities in chest radiographs, as
compared to the more general and less specific regions that are
visited by unimodal baselines.

The cross-modal grounding can be also explained by Fig. 9,
which emphasizes that the focus on textual symbols is related to
the regions of images, and it is possible to draw interpretable
relationships between radiology reports and visual evidence.

In order to measure interpretability, we calculate the
agreement between Grad-CAM heat maps and regions of
interest (ROIs) and expert annotations. We also calculate the
precision of the alignment between the textual tokens that were
attended by the model and the disease labels in the reports.The
results are summarized in Table VIII and visualized as a bar
graph in Fig. 10, which provides a comparative overview of
Grad-CAM overlap and text alignment accuracy between
methods.

e FedVLM produces clinically faithful heatmaps (Fig. 8),
with mloU improvements of +7-9 points over unimodal
FLbaselines, reducing the risk of spurious attention to
irrelevant regions.

e  Cross-modal alignment (Fig. 9) provides interpretable
textual grounding, allowing clinicians to trace predictions
back to meaningful reporting terms.

e  The combination of qualitative heat maps, text alignment,
and quantitative evidence (Table VIII, Fig. 10) promotes
clinician trust, bridging the gap between black-box
federated models and real-world usability in hospital
workflows.

TABLE VIII. QUANTITATIVE INTERPRETABILITY ASSESSMENT.
MEASURING OVERLAP TEXT ALIGNMENT IS MEASURED AT THE TOKEN
LEVEL OF ACCURACY, AND MEAN INTERSECTION OVER UNION (Miou) WITH
EXPERT ANNOTATIONS.

Method Grad-CAM Text Alignment (%)
Overlap (mloU)

FedAvg-CNN 0.42 -

FedTransformer 0.45 -

Centralized VLM 0.53 72.1

FedVLM (proposed) | 0.51 70.4
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FedAvg-CNN FedTransformer Centralized VLM FedVLM {ours)

Case 1

Case 2

Fig. 8. Qualitative interpretability comparison across methods. Each panel shows a chest radiograph with Grad-CAM heatmap overlay. FedVLM (rightmost
column) focuses more tightly on pathologically relevant regions, aligning better with expert annotations (green).
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Fig. 9. Text-image alignment visualization. Attention of tokens (highlighted in orange) is associated with a localized image region (red box), which proves.
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Fig. 10. Quantitative interpretability comparison (values match Table VIII). Multimodal models (Centralized VLM, FedVLM) provide both higher Grad-CAM
overlap and text-image alignment than unimodal FL baselines. the interpretable grounding of report phrases and visual evidence.
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E. Ablation Studies

In order to determine the role of various components in
FedVLM, we ran ablation experiments in image-only, textonly,
multimodal  centralized, and  multimodal federated
environments. This decouples the effect of multimodal
alignment and federated optimization. Table IX summarizes the
results.

Discussion.

e Image-only vs. text-only: The two unimodal conditions
are worse in comparison to multimodal ones, which prove
that complementary information of radiology images and
text reports is essential to strong performance.

e Centralized multimodal VLM: And is used as an upper
bound where it has the advantage of sharing data but does
not satisfy privacy limitations.

e FedVLM multimodal: Follows centralized training (-1.
4% precision) but keeps privacy, proving the fact that
federated optimization can retain the majority of the
multimodal advantages.

o Key takeaway: Multimodal alignment offers
considerable performance improvements ( +68 % AUC )
over unimodal FL, which confirms the design decisions of
FedVLM of combining both an image and text encoder in
a privacy-centric way.

TABLE IX.  ABLATION STUDY OF FEDVLM. RESULTS REPORTED ON
MiMIC-CXR (MULTIMODAL) AND CHESTX-RAY14 (IMAGE-ONLY). BEST
RESULTs ARE BOLD.

Variant Accuracy AUC F1-score
(%)
Image-only (FedAvg- 82.4 0.861 0.78
CNN)
Text-only 80.1 0.842 0.75
(ClinicalBERT FL)
Multimodal 89.5 0.912 0.85
(Centralized VLM)
Multimodal (FedVLM, 88.1 0.903 0.84
ours)

We further examine the privacy-utility trade-off of FedVLM
under different levels of differential privacy (DP) noise. As the
noise multiplier increases, the privacy budget € decreases. This
provides stronger privacy guarantees but results in a gradual
decline in AUC and F1-score. Notably, for moderate privacy
budgets (for example, € =~ 4 to 5), the performance drop stays
below 1% while still preserving formal DP guarantees. This
shows that FedVLM can maintain clinically acceptable
diagnostic accuracy while working in a strong privacy setting.

F. Privacy Evaluation

a) Setup.: We evaluate three aspects: (1) privacy-utility
trade-off using DP-SGD at clients with noise multiplier ¢ €
{0.0, 0.5, 1.0, 1.5} and clipping C; (g, 0) is calculated with an
RDP accountant with 8 = 10-5; (2) robustness to data leakage
using client-level Membership Inference Attacks (MIA),
including shadow-model and threshold-based methods,
reporting attack AUC and advantage; and (3) gradient inversion
resistance using DLG-style attacks on (a) individual client
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updates when secure aggregation is disabled and (b) aggregated
updates when enabled. Each condition is repeated five times
with different seeds and client partitions.

b) Privacy-utility trade-off.: Table X summarizes the
mean + std performance on MIMIC-CXR classification at
different DP noise levels. FedVLM keeps high utility with
moderate privacy budgets (for example, ¢ = 4.8). It shows
statistically significant improvements over unimodal FL
baselines (paired t-test, p < 0.05).

TABLE X: PRIVACY-UTILITY TRADE-OFF ON MIMIC-CXR (MEAN + STD
OVER FIVE RUNS). DpP Is APPLIED WITH CLIP NORM C AND NOISE
MULTIPLIER X, REPORTED AS (E, A = 107). BEST NON-PRIVATE UPPER
BOUND IS SHOWN FOR REFERENCE; BOLD MARKS BEST DP SETTING.

Setting [ € AUC F1-score
Centralized VLM (ref) | — o0 0.912 £ 0.003 | 0.85+ 0.005
FedVLM (no DP) 0.0 | © | 0.903+0.004 | 0.84 +0.005
FedVLM (DP) 0.5 | 4.8 | 0.897 +0.004 | 0.83 +0.006
FedVLM (DP) 1.0 | 3.2 | 0.890+0.005 | 0.82 +0.006
FedVLM (DP) 15 | 25 | 0.883+0.006 | 0.81+0.007

¢) Robustness to data leakage.: We report the

membership inference attack (MIA) AUC (chance = 0.5) and
the attacker advantage (Adv = TPR-FPR) averaged across
clients summarixed in Table XI . To investigate gradient
inversion, we measure the structural similarity (SSIM) between
reconstructed images and ground-truth images from model
updates. For secure aggregation, only aggregated updates are
accessible, not per-client updates, which makes inversion
difficult.

TABLE XI. LEAKAGE ROBUSTNESS UNDER ABLATIONS (MEAN * STD OVER
FIVE RUNS). SA = SECURE AGGREGATION; DP = DIFFERENTIAL PRIVACY.
LOWER Is BETTER FOR MIA Auc (CLOSER To 0.5) AND SsiM OF
RECONSTRUCTIONS. SIGNIFICANCE VS. FEDVLM (SA+DP) CHECKED BY
PAIRED T-TEST.

Variant MIA AUC MIA Adv. Grad-inv. SSIM
FedVLM (no | 0.71+0.03 0.22+0.04 0.41 +0.05

SA, no DP)

FedVLM (SA | 0.56+0.02 0.06 +£0.02 0.08 £0.03
only)

FedVLM (DP | 0.58 £0.02 0.08 +£0.04 0.19+0.04
only; 6 =0.5)

FedVLM (SA | 0.53+0.01 0.03+0.01 0.02+0.01

+ DP; 6 =0.5)

d) Findings: (1) Utility: Moderate DP (e.g., 0=0.5, ex4.8)
incurs only a small drop (<0.6 AUC points) relative to
nonDP FedVLM while preserving clinically relevant
performance. (2) Leakage resistance: SA and DP both
reduce MIA success; combined, they bring MIA AUC close to
chance (0.5) and drive gradient inversion SSIM near zero.
(3) Ablation: Removing SA or DP substantially increases
leakage metrics (p < 0.05), establishing each component’s
independent contribution to privacy

e) Clinical relevance: Very small margins in performance
of 1 and 2 percentage point may still be considered impressive
compared to significant declines in the success of attacks. These
settings improve privacy and do not decrease the quality of the
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decisions in population-scale screening, which means that they
can be safely implemented in several institutions.

f) Attacks considered and mitigation: We look at two
main privacy risks in federated learning. The first is
membership inference attacks, which try to find out if a specific
patient record was used in training. The second is gradient
inversion attacks, which aim to rebuild input images from the
shared model updates. In FedVLM, secure aggregation blocks
access to individual client updates. This makes gradient
inversion less likely. Differential privacy also limits how much
each sample can contribute. It reduces information leaks and
lowers the chances of success for membership inference
attacks. Together, these methods greatly improve the privacy
protection of FedVLM.

VI. CONCLUSION

FedVLM is the federated vision, language model proposed
in this paper. It allows for privacy-aware and explainable
analysis of medical images across different medical facilities.
FedVLM is a multimodal system built on a single architecture.
It includes multimodal alignment, secure aggregation,
differential privacy, and proximal optimization concepts. Unlike
earlier centralized or semi-federated systems like FACMIC,
BioViL, and FAA-CLIP, FedVLM enables cross-site
generalization while ensuring data confidentiality.

Large-scale experiments on the NIH ChestX-ray14, MIMIC-
CXR, and BraTS datasets demonstrate that FedVLM
consistently outperforms unimodal federated baselines. The
consistency of performance gains is verified through repeated
tests (mean + standard deviation) and paired t-tests (p < 0.05).
Although absolute improvements may appear numerically small
(1-2%), these gains are clinically significant because even small
increases in diagnostic accuracy translate into improved patient
outcomes on the population scale.

A detailed privacy analysis shows that secure aggregation
along with differential privacy significantly lowers the success
rates of membership-inference and gradient-inversion attacks.
This combination offers a strong balance between privacy and
utility, which is appropriate for real-world collaboration among
institutions.

The multimodal alignment features of FedVLM improve
visual grounding and text matching, making the results easier to
understand. FedVLM creates clinically relevant Grad-CAM
heatmaps and token-region associations, which boosts model
transparency and clinician trust.

VII. LIMITATIONS

Despite the promising results, this study has several
limitations that should be noted. First, the current evaluation is
done using simulated federated environments instead of actual
hospital settings. As a result, some sources of real-world clinical
variability, such as differences in scanner vendors, acquisition
protocols, reporting styles, and patient demographics, are not
fully represented in the experimental setup.

Second, FedVLM mainly focuses on 2D medical imaging
methods. While this works well for tasks like chest radiography,
adapting the framework to 3D imaging methods, including CT
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and MRI volumes, requires more design and optimization. This
goes beyond the scope of this work.

Third, while privacy threats and defense mechanisms are
examined in controlled settings, thorough security validation in
operational networks is still a challenge. Real-world
deployments might face more complex adversarial behaviors
and infrastructure issues that are hard to replicate in simulations.

System behavior under real network conditions. The
current study does not specifically test FedVLM in real-world
networking problems often found in federated clinical settings.
These include client drop-out, straggler effects from different
computational resources, limited communication bandwidth,
and clients participating at different times. These factors can
affect convergence stability, training efficiency, and fairness
among institutions. In this work, we assume reliable
synchronous communication to focus on evaluating the learning
framework itself. A thorough assessment of FedVLM in realistic
network conditions, including asynchronous and fault-tolerant
federated optimization, is left for future research.

VIII.FUTURE DIRECTIONS

FedVLM can be extended to include 3D medical imaging
methods like CT and MRI volumes. It can also be paired with
cryptographic technologies like homomorphic encryption and
secure multi-party computation to provide better privacy.
Anotherinteresting direction is combining FedVLM with
communication compression and cross-domain personalization.
This couldallow for scalable training across large federated
clinical networks.While FedVLM shows promising results, this
work is still in the research phase. It is not ready for use in
clinical settingsyet. Validation will need to happen through

prospective multi-institutional clinical studies, regulatory
approvals, and real-world trials.
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