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Abstract

The populations in urban centres continue to rise, and cities incur mounting environmental challenges that include worsening air quality,
untimely disposal of waste, and uncontrollable changes in the climate. Real-time monitoring of changes in the environment, analysis, and
predictions using high-level technologies are necessary to achieve sustainable urban development and resilience. Conventional methods
of environmental monitoring do not generally have real-time flexibility, spatial accuracy, and intelligent data analysis, which prevents
policymakers from responding in time to impending environmental hazards. A multi-purpose and scalable architecture are needed to
combine different sources of data and provide dynamically generated actionable insights. This paper presents the Environmental
Cognitive Observation and Intelligent Geospatial Hybrid Tracking (ECO-INSIGHT) model. The approach is a hybrid of unmanned
Aerial Vehicles (UAV)-assisted remote sensing, 1oT-sensed environmental sensors, and a hybrid deep reinforcement learning model to
recognize patterns in real-time and predict events. ECO-INSIGHT deeply integrates a decision fusion layer, which is adaptive, to combine
data related to satellites, drones, and ground sensors and provide ongoing environmental intelligence with contextual visualization using
Al-powered dashboards. Empirical analysis shows that ECO-INSIGHT increases monitoring accuracy by 94 percent, data redundancy
by 38 percent, and predictive response efficiency in a variety of indicators of the ecological condition of cities. ECO-INSIGHT allows
proactive environmental management, evidence-based city planning, and sustainable city ecosystems by means of intelligent visual
analytics.
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environmental monitoring paradigms often fail to provide the
spatial and temporal fineness required by the urban ecosystems

I. INTRODUCTION

The world is experiencing an increased challenge in cities
with regard to environmental issues due to the huge urbanization
that has taken place in the twenty-first century [1]. Human
activities like rapid industrialization, growing urbanization, and
population expansion have given rise to air pollution, poor waste
management, and alarming climatic abnormalities [2].
According to international urban figures, intelligent
environmental management systems are increasingly becoming
significant since, by the year 2050, nearly two-thirds of the
global population is expected to be in cities [3]. Due to human
sampling and latent reporting of the data, the conventional

that evolve continuously [4].

Sustainable urban development needs timely insights and
decisions made based on data [5]. Real-time surveillance
coupled with predictive analytics can enable policymakers to
anticipate environmental threats before they erupt into a crisis
[6]. Since, a majority of existing monitoring systems do not
interoperate sufficiently between devices placed on the ground
(loT) and flying (drone) in the air, as well as space satellite
imaging [7]. This fragmented system does not allow for a
comprehensive assessment of the environment and waits for the
process of reaction [8]. Consequently, to transform unutilized

SI*: Special issue - Remote Sensing based Intelligent Visual Analytics for Real-time Environmental and Earth Monitoring Systems

doi: 10.38094/jastt605619

o www.lpacademia.org

ipAcalimia


http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt605619
https://jastt.org
https://ipacademia.org/
mailto:kavitha.priya86@gmail.com
mailto:vilasan30@yahoo.com
mailto:balajivr@skcet.ac.in
mailto:arulkumarssk@gmail.com
mailto:Krishnaraj.n@vit.ac.in
mailto:hemakumarbeece@gmail.com
mailto:kavitha.priya86@gmail.com

Kavipriya K et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 76 —89 (2025)

environmental information into valuable urban information, an
intelligent and integrated system of monitoring is needed [9].

The emergence of technologies such as deep reinforcement
learning (DRL), Internet of Things, and remote sensing has
opened new opportunities in real-time environmental analysis
[10]. 10T sensors provide local and continuous measurements,
remote sensing is a spatial scale, and DRL algorithms enable
systems to learn and optimize responses based on dynamic
environmental feedback. A combination of these technologies
will provide an opportunity to create a data-driven ecosystem
that can evolve itself, identify patterns, anticipate environmental
issues, and support proactive actions [21].

To address the gaps in both the technology and analysis of
the environment, this paper provides the ECO-INSIGHT model
with a hybrid architecture that integrates environmental
cognitive observation with intelligent geospatial hybrid tracking
[22]. ECO-INSIGHT is a fusion of the 10T sensor networks,
adaptive decision fusion layer, and UAV-assisted remote
sensing [23]. The model enables the city planners and
lawmakers to be aware of the situation at any given time, as it
provides real-time environmental intelligence in the form of
visual dashboards that are operated by artificial intelligence
[24]. Deep reinforcement learning algorithms may describe
sequential environmental dynamics as Markov decision
processes, allowing policy-driven optimization instead of
passive sequence prediction like LSTM or CNN-RNN hybrids.
State—action—reward formulations allow the framework to adapt
to non-stationary urban environments including pollution
dispersion, heat anomalies, and land-use patterns while retaining
stable convergence over long-horizon decision trajectories.
Unlike LSTM-based temporal encoders that forecast from
historical patterns, the deep reinforcement learning layer
evaluates sensor reconfiguration, UAV path adjustment, and
adaptive sampling rate modification based on real-time
feedback, maximizing environmental observability and
minimizing information redundancy. Policy networks with
environment-aware reward shaping, hierarchical state
abstraction, and dynamic exploration—exploitation balancing
adapt better to uncertainty and varying data density.

The intended purpose of the proposed architecture is to
establish a smart, predictive, and scalable urban environment
monitoring system [25]. The future trends lie in sustainable,
resilient, and smart urban ecosystems, which the ECO-
INSIGHT seeks to enhance environmental governance, reduce
ecological hazards, and speed up their development by
combining cognitive analytics and harmonizing data from
multiple sources [26].

Il. RELATED WORKS

To measure the smart environmental monitoring, the
reviewed literature digs deep into how the 10T technology,
remote sensing, big data analytics, and sustainable innovation
are converging. The findings of the research indicate that all of
the data-driven urban management, energy-efficient
technologies, and real-time sensing have progressed. These
articles highlight the transformation in the conventional
monitoring systems to the intelligent, unified systems that
enhance the sustainability of the ecosystem, environmental
awareness, and predictability amidst rapid urbanization.
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Salam [11], in his explanation of the 10T-ES architecture,
underscores the application of the 1oT-based systems to increase
climate resilience. The model will have smart sensors and
wireless internet connectivity to enable adaptive policy-making
and real-time monitoring. 10T-ES can provide technological
infrastructure that can support smart communities to protect
nature and address climate change by making communities more
energy efficient, tracking carbon, and exchanging information.

Ullo and Sinha [12] introduce the SEMS-10T architecture to
monitor the urban environment continuously and incorporate
10T devices with sensor networks. To determine environmental
abnormalities and pollutants, SEMS-IoT focuses on the
concepts of scalability, low-latency communication, and
predictive analytics. Providing a robust digital base for a
sustainable populated urban ecosystem monitoring, the system
provides smart decision-making and automatic alarms.

Sanislav et al. [13] developed the EH-10T, or the Energy-
Harvesting Internet of Things Network, to achieve a more
energy-efficient monitoring system based on 1oT. The EH-10T
sensor nodes can be self-powered through thermo-based,
kinetic, and solar energy. This approach promotes the
sustainability of collecting environmental data to use in smart
cities in the long run through increasing the life of sensors,
maintaining continuous operations, and minimizing dependence
0N power sources.

Trinder and Liu [14] propose the Urban Growth Remote
Sensing Model (UG-RSM) to determine the impact of fast
urbanization on the environment, where remote sensing is
employed. UG-RSM employs spatial analysis and multi-
temporal satellite images to monitor the processes of land use,
vegetation loss, and urban heat. In alignment with evidence-
based planning and the reduction of ecological erosion in
growing urban centers, the framework provides -crucial
geospatial data.

To introduce the concept of ecological intelligence in urban
planning, Wellmann et al. [15] propose RS-UPF, or Remote
Sensing-Based Urban Planning Framework. RS-UPF integrates
high-resolution spatial data with landscape analytics to assist in
policy-making decisions that are likely to be sustainable.
Consequently, remote sensing is considered to be an effective
instrument in the ecologically friendly design of cities, efficient
use of resources, and mapping of biodiversity.

Yu and Fang [16] introduce the SB-URS model that
combines big data analytics and remote sensing to study
complex urban phenomena. SBD-URS applies machine learning
and spatial statistics to extract value out of big data. The model
proves how urban data can be used to create environmentally
friendly city planning by enhancing the effectiveness of the
urban monitoring process and the precision of the forecasts.

Coenen and Morgan [17] developed the Geographic
Innovation and Sustainability Framework (GISF) to trace the
geographical advancement of innovations that are sustainability-
oriented. To bridge the gap in terms of environmental
governance and technology uptake, GISF emphasizes the so-
called eco-innovation clusters and regional models of
collaboration. This architecture allows the implementation of
smart, location-specific environmental monitoring and adaptive
management strategies that are based on decentralized
knowledge systems.
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Bertaggi et al. [18] refer to smart types of the monitoring
devices using biodegradable energy sources as inspired by
nature as a part of the Eco-Friendly Energy Storage Paradigm
(EFESP). EFESP enhances sustainability by strengthening loT
systems powered by renewable sources and reducing
environmental risks. The paradigm ensures distributed
environmental sensing networks in the long-term energy
independence of sustainable city infrastructures, in addition to
enhancing  operational efficiency and  environmental
friendliness.

Ma et al. [19] introduce the Big Data-Enabled Smart City
Monitoring Framework (BD-SCMF) that incorporates Al, cloud
computing, and digital twin technologies. BD-SCMF facilitates
performing environmental forecasts, real-time spotting of
anomalies, and urban resilience planning. The framework
reduces policy formulation based on evidence, promotes
continuous smart monitoring systems, adaptive environmental
governance, and data-driven urban sustainability.

The Smart Environmental Data Fusion Model (SEDFM),
which was proposed by lzah [20], focuses on the smart
combination of data provided by different sources of sensors.
SEDFM relies on automation, ML, and real-time analytics to
provide more reliable environmental data that is easy to
visualize. The model allows making proactive decisions in the
management of the smart environment and urban sustainability
due to its increased ability to detect environmental variations
early.

According to all these, cognitive, adaptive, and energy
sustainable environmental monitoring systems have been
increasingly getting better over recent years, as revealed in the
literature [11]-[20]. The analyzed models are the foundation of
resilient urban ecosystems in general, such as architectures
founded on the internet of things (loT), remote sensing
frameworks, and analytics that are powered by artificial
intelligence (Al). The results point to the relevance of a hybrid
paradigm that combines these technologies towards sustainable
city development and comprehensive environmental
intelligence, such as ECO-INSIGHT. In below Table | shows
the summary of related works.

TABLE I. RELATED WORKS SUMMARY
Ref. Technological Core Contribution Key Limitations /
Domain / Tools / Findings Research Gaps
Used

[11] | IoT, Wireless Establishes an 1oT- Limited integration
Sensing, Edge based architecture with Al and lacks
Communication for real-time dynamic

environmental visualization for
tracking and rapid decision-
sustainable climate making.
response.

[12] | 10T Sensors, Data | Proposes scalable Focuses only on
Analytics, Cloud 10T and sensor localized sensing;
Storage network lacks spatial data

architecture for fusion and predictive
continuous geospatial modeling.
monitoring and

automated alerts.

[13] | Renewable Introduces self- Limited large-scale
Energy powered loT deployment testing;
Harvesting, Smart | sensors using solar, it does not address
Sensors kinetic, and thermal | synchronization
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energy for long- across hybrid
term monitoring. networks.

[14] | Remote Sensing, Uses satellite Lacks temporal
GIS, Spatial imagery to evaluate | continuity and real-
Analysis the environmental time predictive

effects of rapid mechanisms.
urban expansion

and land-use

changes.

[15] | Satellite Data, Integrates remote Relies on manual
Geospatial sensing data for analysis without
Analytics, Urban ecologically automated Al
Planning sustainable urban integration for

design and policy forecasting.
support.

[16] | Big Data, Merges spatial big High computational
Machine data and machine cost; lacks loT-
Learning, Remote | learning to interpret | sensor linkage and
Sensing complex urban real-time

environmental adaptability.
patterns.

[17] | Spatial Examines how Conceptual model;
Economics, spatially distributed | lacks empirical
Innovation eco-innovation validation and
Systems networks promote integration with real-

sustainable time environmental
technology data.
adoption.

[18] | Green Materials, Advocates of Focuses on materials
Battery nature-inspired, design; limited link
Technology, loT biodegradable to data analytics and
Power Systems energy storage for system-level

powering intelligence.
sustainable loT
systems.

[19] | Big Data, Al, Integrates Al and Limited attention to
Digital Twins, big data for cross-sensor data
Cloud Analytics predictive integration and

environmental adaptive real-time
monitoring and updates.

smart city

management.

[20] | Machine Employs intelligent | Lacks energy
Learning, loT, sensor fusion and optimization
Data Fusion, Al for improved strategies and large-
Visualization accuracy in scale real-world

environmental evaluation.
monitoring
dashboards.

A. Research Gaps and Limitations:

Feature Repository & Cache Layer Despite the
improvement that has been achieved, there are still some
boundaries to the achievement of full and real-time
environmental intelligence in the research that was studied
above. In the majority of frameworks, the integration is not done
on every layer and is focused on specific areas of technology
such as big data, remote sensing, or the 10T. Most creative
energy-saving technologies cannot be scaled in densely
populated urban environments. Similar to remote sensing
models, which are not very time responsive and are accurate in
space. Furthermore, Al-enabled systems do not always consider
the details of data fusion and contextual visualization, which
restricts their value in decision-making. To attain dynamic and
sustainable environmental monitoring in urban areas, this should
have a flexible and hybrid unified paradigm.
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I1. PROPOSED METHODOLOGY

The technique presents a multi-phase and integrated system
of real-time environmental monitoring based on remote sensing,
IoT, and cognitive analytics It enhances environmental
awareness and prediction accuracy through integrating deep
reinforcement learning, multimodal fusion, and data acquired
with the help of a UAV. The process flow makes adaptive
visualization and proactive responses to sustainable urban
management and climate resilience possible, and it starts with
data collection and proceeds through feature engineering and
decision support.

A.  Multi-Source Data Acquisition and Preprocessing
Architecture

The purpose of this initial module is to prepare ECO-
INSIGHT with a pool of various environmental information,
including open APIs, satellite feeds, 10T devices, and UAV
images. To ensure a steady timing mark, these raw streams of
data are synchronized, which adjusts timing anomalies and
eliminates sensor drift in Fig. 1. Subsequently, to offer data of
greater signal and picture enhancement techniques that eradicate
clouds, noise, and distortions [27]. The second step involves
standardization and georeferencing of the datasets to ensure that
they can be used in other coordinate systems and altitude
variations. Metadata encoding converts unstructured readings
into a regular spatio-temporal format, encoding each record with
a location, time, and device code. The final product is a set of
data integrating correct geolocation with real-time
environmental properties; it is clean, arranged, and fuseable.
This preprocessing phase guarantees that downstream fusion
and modelling operations are operated on reliable, inter-rater
consistent, and quality-managed inputs and reduces redundancy
and transmission of errors across the ranks of analytical levels
of the overall system.

MULTI-SOURCE DATA
INPUT LAYER

(@) —
10T Sensars
LAV "avloads
o
&

Satellite Feeds

Raw Multi-Modal
Sensor Streams

s

Time-Aligned [Multi-Source
Dataset
Noise Reduction

—
= Signal & Image Quality Clipping Correetion
Enhancement
Public APLs

Naoise-Minimized and
Preprocessed Signals

Cloud Masking

b,
Georeferencing & Spatial

Nourmaljzation

Geo=Stabilized and Spatially
Normalized Dala

k.
Metadata
Encoder &
Storage Interface

CLEAN, STRUCTURED
DATASET OUTPUT

Fig. 1. [Illustration of Multi-Source Data Acquisition and Preprocessing
Architecture.
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Algorithm 1: For Data Acquisition and Preprocessing

Input: S = {S,,}(modal streams),T = [t0,tN], At
Output: D .., (geo — tagged, aligned dataset)
def preprocess(S,T, At)

Deiean = [m]

# 1.temporal align

for m,stream in S.items(i)

for s in stream
t = s.time

t
if abs <t — round <E) * At) < 4t

s.t_aligned round(t/At) x At
else:
s.flag = 'time_outlier’
# 2.calibrate and denoise
for m,stream in S.items():
b,o = estimate_bias_scale(stream)
for sin stream:
s.value = (s.value — b) /o
s.value = apply_filter(s.value)
# 3. georeference, tag metadata, impute
for t_g in unique_times(S):
records collect_at_time(S,t_g)
fused weighted_aggregate(records, weights
= compute_weights(records))
fused = geo_transform(fused)
fused impute_normalize(fused)
D_clean. append(fused)
return D_clean

To get a dataset to be analyzed, this algorithm 1
systematically converts various raw data into a single one.
Initially, it identifies unalignable outliers and time warps all
samples across all modalities to a common grid within variance.
To improve the quality of the signal and the image, the denoising
filters are used, and the sensor-specific calibration is performed,
determining the bias b and the scale 0. Subsequently, the process
repeats all the global time indices sequentially, where records
unique to each modality are assembled, attention-like weights
are applied to emphasize trusted sources, and a final synthesis of
a fused record is synthesized by weighted aggregation [28].
Where normalization is used to equalize features, and where the
missing values are filled in with the imputation scale,
georeferencing is used to map the combination of the records to
one coordinate reference. The geo-tagged, time-synchronized,
and normalized data that is produced by clean can be used in
such tasks as downstream modelling and multimodal fusion.

The process has been designed to be strong enough to allow
you to change the filtering, calibration, and weighting
subroutines to any sensor ecosystem you can imagine [29]. A
multi-stage statistical and signal-quality evaluation pipeline
measures deviation trends for UAV imaging, loT telemetry, and
satellite spectral channels to calculate outlier identification
thresholds during preprocessing.  Within modality-specific
distributions, robust estimators like Median Absolute Deviation,
adaptive Z-score bands, and density-based local deviation
indices provide dynamic thresholds that represent underlying
variability rather than preset heuristic cutoffs. To distinguish
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anomalies from sensor-induced aberrations, cross-sensor
concordance tests, temporal continuity analysis, and spectrum—
texture coherence metrics are performed on each potential
outlier. Integrity restrictions include geo-tag consistency, signal
stability indicators, radiometric compliance checks, and inter-
modality correlation standards verify data dependability.

As shown in Equation 1, a common time grid is used to
synchronize asynchronous sensor readings and facilitate
consistent temporal processing.

= [ 4]

S} represents the signal that is synchronized for sensor i at
the aligned time T, and the raw timestamps are illustrated as T;.
The global sampling interval period is represented as t;. The
process of rounding to the nearest time grid point lower is

denoted by l%] This progression ensures that the different

modalities that refer to different types of data are aligned in time
as expected.

The adaptive normalization and filtering presented in
Equation 2 are used to scale and correct for the raw sensor bias
in the reading while making use of the raw value obtained from
the sensor, which is represented as X;, and the bias and scale
parameters, y; and o;.

@)

St= argmin,; € T;

X._ .
Xz’ — (Xi— u)
git 1

+ N~ N(O, a,f) 2

The term n; represented the Gaussian noise modeling the
sensor uncertainty. The field of values delivered by this stage of
the algorithm ensures that all input streams N are standardized
prior to fusion.

As shown in Equation 3, the implementation of attention-
based weighting is being utilized to fuse multiple sensor
modalities into a single observation.

Ft = %, = 1Maf, x X&,

eVm

where, at,

(3)

t
Zk = 1Mewk

The fused observation at time ¢ is denoted as F', the
processed value of the modality M is represented as X¢,, and the
weights calculated from the attention, indicated as af, can be
computed with the fusion scores w,. This process ensures that
all modalities k are represented equitably.

Equation 4 maintains consistent spatial alignment by
spatially referencing the fused features to a common
geographical reference frame.

G(x,y,t) = T(F,R(x,y)) 4

The georeferenced environmental value at spatial
coordinates (x,y) and time t is denoted by G(x,y,t). The
georeferencing operator T establishes the reference grid or map
projection and F¢ is an example of an affine or projective
operator. This process ensures that the subsequent analyses will
remain consistent in terms of spatial location. Spatial alignment
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problems affect cross-modal feature correlation, especially in
UAV orthomosaics, 10T geotagged measurements, and satellite
pixels with mismatched coordinates, varying ground sampling
distances, or perspective-induced shifts. Misalignments
diminish spatial coherence, limiting localized anomaly detection
precision and weakening predictive geographic correlation
structures. A geo-alignment  correction module uses
homography refinement, adaptive warping fields, and multi-
scale deformable convolution layers to reconcile spatial offsets
and restore pixel-to-sensor congruence. A phase-aware
temporal harmonization unit aligns asynchronous data streams
via latency profiling, timestamp interpolation, and causal
sequence reconstruction. A temporal consistency filter
integrates short-term memory states, drift compensation curves,

and time-weighted residual modifications to stabilize
predictions.
B. Cross-Modal Data Fusion and Feature Engineering

Layer

Fig. 2 explores the Multi-Modal Fusion Framework
(MMFF) and the ways it can be applied to combine numerous
data sources into a single analysis framework. Swiftly
coordinated and consolidated purposefully processed data of
Internet of Things gadgets, UAV photographs, satellite updates,
and past databases. In cases where the spatial and temporal
resolutions differ, fusion is achieved through the use of fuzzy
logic, Bayesian inference, and weighted correlation mapping to
repair it. Some of the spatial, temporal, and spectral properties
that are derived from the fused dataset using a feature
engineering pipeline include vegetation indices, heat intensity,
and dispersion of pollution [30].

Derived Feature Yectors and Intermediate
Input: Clean Structured

Dataset

Feature Extraction and Transformation
Layer

Hybrid Data Fusion
Engine

Context-Aware Fused Feature

PCA

+SNE

Autoencoder
Campression

Ready-to-Use

Feature Selection and :
Analytical Dataset

Dimensionality Reduction

OUTPUT: ANALYTICS-READY DATASET
(Supports Prediction, Visualization & Decision Fusion)

\

Fig. 2. Cross-Modal Data Fusion and Feature Engineering Layer.

Dimensionality reduction algorithms like Principal
Component Analysis (PCA) or deep autoencoders process the
raw data and transform these data into meaningful patterns by
enhancing the quality of representation and eliminating
redundancy. A product of the high level is generated, and that is
an Optimized Feature Vector (OFV), which is a mathematically
compact representation of environmental  situations.
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Subsequently, at higher stages, this module and adaptive
prediction and decision-support modeling can be assisted by the
analytically rich, low-dimensional input of this module, which
is successful at converting complicated, multimodal raw data.

TABLE II. MULTIMODAL FUSION WEIGHT MATRIX
Feature loT UAV Satellite | Historical | Weather
Type | / Sensor | Imagery Data Records APIs
Data Data
Source —

Air Quality +0.82 +0.36 +0.58 +0.69 (+) | +0.74
(PM2.5, NO:) | (+) () (*) *)
Surface +0.51 +0.87 +0.79 +0.63 (+) | +0.81
Temperature | (+) +) (+) (+)
Q)
Vegetation -0.12 +0.65 +0.91 +0.48 (+) | +0.53
Index ©) *) ) *)
(NDVI)
Humidity +0.76 +0.41 +0.59 +0.68 (+) | +0.85
(%) () () (*) (*)
Pollution +0.83 +0.47 +0.66 -0.22 (-) +0.88
Dispersion ) ) ) *)
(ng/m’)

Table 11 above presents the fusion polarity matrix, each row
of which indicates the normalized correlation weight (between -
1 and +1) between data modalities and ambient features.
Positive values of correlation (between empirical studies) denote
constructive correlation, negative values (between empirical
studies) denote inverse or noise-sensitive relation. As an
example, the correlation with surface temperature and UAV
imaging is significant (+0.87), whereas there is low dependency
of the vegetation index on loT (-0.12). It is the matrix that
dynamically modulates the relevance of features that directs the
weighted fusion mechanism in the Cross-Modal Data Fusion
layer [31]. The system enhances the multimodal environmental
model in terms of interpretability and robustness by eliminating
redundancy and enhancing the presence of complementary
signals via adaptive weighting.

The fused feature matrix is constructed in Equation 5 by
concatenating feature vectors unique to each modality for each
time step.

Xt= [t x5 0.0 x4] (5)

The feature vector for modality X at time t is given by x,
where M is the number of modalities, is the concatenated
dimension for downstream fusion and encoding, and || denotes
the concatenation of vectors.

To produce a fused feature vector at, the attention weights
W,are computed for each modality m in Equation 6.

at
ft
The normalized attention weights are denoted as af, and U

is a subset of X*+ b. The fused feature vector f¢ will
dynamically weight the modalities that are deemed dependable.

softmax( W, X tanh(U x Xt + b)),
Zn =1Mal, x x,

(6)
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Fig. 3. Multimodal Fusion Polarity Visualization.

The resultant heatmap given in Fig. 3 is a graphical depiction
of the correlation polarity table of different attributes and the
sources of environmental data. A deeper red color of the cell
means that it has stronger positive associations; a deeper blue
color of the cell means that it has stronger negative or inverse
relationships; the direction and the strength of the correlation are
indicated in the intensity of color of the particular cell [32]. An
example of such is the sensitivity of UAV photography to
fluctuation of surface temperature (0.87), which is significantly
high compared to the weak association with the vegetation index
(10T sensors -0.12). This visual structure enables optimal data
weighting in the fusion process and emphasizes the modalities
that are most successful in contributing to every environmental
indication. As a result, the graphic enhances the decision-
making procedure in multimodal analytics and simplifies data
comprehensiveness.

Equation 7 uses multispectral bands to calculate some
vegetation-related spectral index for the purpose of feature
enhancement as NDV I,

¢t _ _ (Blir—Bkep)

NDVE = f®)*(Bf g+ Bkep) 0

Reflection from near-infrared and red-bands at time b is
denoted as Bigpand BY,r, respectively. The spectra-related
index of vegetation vigour is the NDVI, which is bounded by the
interval (—1,1), and contributes to f(b) or ecologically based
assessment.

The fused features can be modeled effectively in Equation 8
by generating a compact orthogonal basis Z to the correlated
fused features.

Z =F X1,

whereV, =Z€RN xk; F= (F* X F) (8)
The top eigenvectors are the principal components of V,, are

in F, where F is the N-by-df matrix of fused features over N

samples as (FT x F). The learning models use Z € RN X k as

the reduced representation.
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C. Predictive Intelligence and Decision Support System

Fig. 4, which is part of ECO-INSIGHT, employs the OFV to
issue predictions and make valuable intelligence. A hybrid
learning engine aims to learn nonlinear interactions between
spatio-temporal variables by combining deep reinforcement
learning with conventional machine-learning approximators or
quantum-enhanced approximators. The model is capable of
creating high-precision predictions of environmental trends, risk
levels, and anomalies with the help of adaptive policy
optimization. The decision fusion and inference layer guarantees
equalized scores of confidence and reduces errors based on the
consolidation of many model outputs.
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Hybrid Training Engine Trained Policy Parameters
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Fig. 4. Predictive Intelligence and Decision Support System.
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The insights are communicated in a visual analytics
dashboard that is interactive, such as trend lines, prediction
warnings, and geospatial heatmaps. Through this interface, the
authorities can be proactive in addressing environmental issues
and create sustainable cities in real-time. A feedback loop
ensures the context-awareness of the system, its flexibility, and
robustness in the dynamic urban ecological conditions by
continually enhancing the performance of the models based on
new data streams. A systematic multi-phase harmonization
procedure aligns geographical granularity, temporal sampling
rates, and modality-specific uncertainty before aggregating
inference outputs in the decision fusion layer to ensure
consistency across heterogeneous UAV, 10T, and satellite data
sources. A calibrated spatio-temporal normalization unit maps
each data source to a coordinate and time-reference grid utilizing
geo-referencing transformations, adaptive interpolation, and
latency-compensated timestamp correction. Modality-aware
statistical calibration balances UAV high-frequency local
details, 10T point-sensor telemetry, and satellite wide-area
spectral signatures to standardize feature tensors.

To reconcile disparate data and minimize modality-induced
noise, the fusion core uses a Bayesian evidence aggregation
engine and cross-modal correlation matrices.  Consistency
controllers combine uncertainty propagation tracking,
confidence-gated attention, and continual residual alignment
against previous baselines to stabilize fused output.
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Algorithm 2: Predictive Intelligence and Decision Support

Input: OFV = {z_i
€ R"d}, optional Y,8_anom, 8_conf
Output: preds = {y_i}, confs,anomalies,recs
def predict_decide(OFV,Y = None, 8_anom
= 0.8,0_conf = 0.6):
H,d_k = 8,64
WQ,WK,WV,WO0 = init_projections(H,d_k)
B_A,B_B = 0.5,0.5
preds, conf's,anomalies,recs
for zin OFV:
# multi — head attention encoding
heads

= Z

(z.wQlh]. (z. WK[h]).L

Ja;

[softmax .(z.WVTIh]) for hi
e = concat(heads). WO
# parallel inference
y_B,c_B
Model_B.predict(e), Model_B.confidence(e)
y_ A c A
Model_A.policy_predict(e), Model_A.confidence(e)
# ensemble and decision logic
y=BAxy A+ BBxyB
C = normalize(B_A*c_A + [_B*c_B)
if C < 6_conf:request_human_inloop(z)
anomaly = (§y >= 6_anom)
rec = recommend (y,anomaly, e)
update_online(e,§y, feedback_if _available(Y))
preds.append(¥); confs.append(C); anomalies. ap
return preds, confs, anomalies, recs

This system is capable of producing ensemble predictions,
confidence scores, red flagging, and intervention
recommendations by incorporating OFV in Algorithm 2. Prior
to operating each feature vector z using parallel attention heads
to produce an encoded representation e, it initializes multi-head
attention projections (WQ, WK, WV). Model A (deep
reinforcement agent making policy-based predictions) and
Model B (supervised estimator) are used as inference branches.
The outputs are combined by means of ensemble weights 8A
and 8B to make a composite forecast 8y and a combined
confidence C. In the case of C being less than the confidence
level C is found to be less than the confidence level a human in-
the-loop verification is sought. In response to an anomaly, a
contextual recommendation is generated when it exceeds the
anomaly threshold. This approach is susceptible to being
updated online; that is, it reassigns the model parameters and,
should one wish, rebalances the ensemble weights on receiving
labelled feedback. This hybrid architecture is a good
compromise in terms of the predicted precision, operational
safety, and flexibility required in the here-and-now decision-
making. Each modality—UAV imagery, loT telemetry, and
satellite spectral channels—first undergoes localized noise
profiling using signal-to-noise ratio estimation, covariance
analysis, and spectral-temporal distortion indices. These noise
descriptors are fed into a gating sub-network that modulates the
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attention coefficients by attenuating unreliable feature regions
and amplifying stable, high-salience patterns. During fusion, the
transformer-style cross-attention module computes query—key
correlations that are continuously recalibrated using noise-
conditioned scaling factors, ensuring that high-noise modalities
exert reduced influence on the aggregated representation.
Residual consistency checks and self-attention refinement
further stabilize the fused tensor by reinforcing inter-modality
agreements and suppressing stochastic feature spikes introduced
by sensor interference.

Equation 9 computes the multi-head attention
representations of feature vectors intended for contextual
encoding inputs.

(Ex WEx (E x W

E X W}
E' = concat(head,, ..., heady) X W,

") Jd_k>’
©)

Head,(E") = softmax(

Head,(E') projection matrices W', Wi, Wy and output

projection /d,will be E is mathematically contextually aware
encoding for prediction.

Equation 10 combines the RL agent output with the
supervised estimator output from above into a single ensemble
prediction.

Ji= Bax 9 + Bp X 97,
where S, + = 1; 5.=0 (10)

¥, is the prediction from the reinforcement agent and 97 is
the supervised estimator for sample i; B4 and Bz are ensemble
weights (perhaps time-varying) which balance adaptability and
accuracy.

Equation 11 computes the anomaly score s; and normalizes
the confidence into final "'yes/no" alerts or human review.

Si g (91')'

(1 +exp(=y x 0;))’
alert;= 1{s; =2 6 AN C; = T}

(11D

g maps the prediction to the anomaly score s;, o; is model
uncertainty (variance/entropy), y is the scaled factor, 8 and t
are the detection and (¥;) is confidence thresholds, 1{-} is the
indicator for triggering the alerts.

Equation 12 updates the RL policy parameters using a policy
gradient and observed rewards from the environment feedback.

Vo J(0) ~ (5) % Tiza(B} [ Vo logmg(a; | s) X (R; —
b(s)) ] (12)

6 is the policy parameters, B is the batch size, g is policy,
s; is the state (encoded features), a; is the selected action, R; is
the observed reward, and b(s;) is the baseline (variance
reduction). This updates the agent to improve its long-term
decision utility. The feedback loop refines the model's internal
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state representations, policy mappings, and fusion weights based
on real-time environment-model differences during deployment
to improve long-term performance. Incoming data streams are
compared to projected spatial-temporal states, and the residuals
drive adaptive updates in the reinforcement learning policy
layer, cross-modal attention encoder, and uncertainty-aware
weighting mechanism. This closed-loop correction modifies
sample priorities, UAV route methods, and modality relevance
factors to maintain accuracy under seasonal drift, urban
morphology changes, and sensor degradation. Gradient-based
adaptation, reward-driven policy refinement, and self-
calibrating normalization layers adjust noise profiles, temporal
offsets, and alignment transformations without operator
interaction.
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Fig. 5. Visual Analytics and Decision Support Layers of ECO-INSIGHT.

Visual Analytics Layer converts the intricate data of the
environment into user-friendly interactive graphics that can
contribute to the knowledge and decision-making process (Fig.
5). It incorporates a spatial-temporal dataset into dynamic
dashboards, heatmaps and forecast trend graph, enabling the
user to examine environmental changes with time and place.
This layer assists in real-time monitoring, anomaly
visualization, and simulation of scenarios and allows the
stakeholders to detect any emerging risks or patterns in a short
time. It also uses adaptive visualization which modifies
according to user queries and feedbacks so that it is clear and
relevant when presenting data. The Policy and Decision Support
Layer draws on the knowledge of the visual analytics interface
to enable a sustainable approach to urban management. It
facilitates informed policymaking using automated signaling,
suggestion services, and impact evaluations. Decision-makers
are able to compare the results of the interventions, match the
strategies to the environmental objectives, and revise the
regulatory framework. The layer connects the feedback loop to
optimize sensor deployment, model accuracy and policy
effectiveness and encourages proactive and sustainable urban
governance

This methodology is effective in combining spatial,
temporal, and sensor-driven intelligence because of the use of
hybrid computational models. To have a reliable environmental
analysis, multiple sources of inputs have to be combined,
features need to be optimized, and attention-guided prediction
should be applied. Reinforcement learning and anomaly
detection are used in the system to facilitate evidence-based
decision-making and quick response to hazards. It is an ideal
approach to use in the case of sustainable environmental
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governance and smart city ecosystems due to its scalability,
automatability, and high interpretability.

The ECO-INSIGHT model offers technical advantages over
existing hybrid Al-based monitoring frameworks through its
multi-resolution geospatial cognition pipeline, where remote-
sensing mosaics, UAV-derived orthorectified scenes, and
ground-level sensor telemetry are fused using a hierarchical
cross-modal encoder that preserves spatial-temporal coherence
during feature propagation. Its cognitive observation module
applies environment-specific priors, graph-based spatial
reasoning, and adaptive spectral-texture attention to enhance
discrimination of micro-scale urban phenomena such as thermal
flux deviation zones, high-frequency particulate concentration
shifts, and structural vegetation stress indicators. The intelligent
geospatial hybrid tracking component employs dynamic region-
of-interest evolution, entropy-guided feature reweighting, and
real-time state-space refinement, enabling stable tracking of
environmental transitions under heterogeneous illumination,
seasonal drift, and complex urban morphology.

V. EXPERIMENTAL ANALYSIS AND SETUP

The section of the result analysis is the measurement of the
proposed ECO-INSIGHT model in comparison to the current
existing tools like SISCA, SEMS, and EAHT in relation to
various parameters of environmental monitoring. The accuracy,
responsiveness, and depth of analysis of the system are brought
out in key performance indicators, such as prediction efficiency,
latency, spatial correlation, and visualization interpretability.
The model is robust, scalable, and intelligent in terms of
integrating 10T, UAV, and Al-based analytics in sustaining
urban monitoring and proactive environmental decision-
making, as evidenced by quantitative results and trend-based
assessments.

A. Dataset Description

Some of the city variables that are recorded and combined in
the UrbanloT-Anomaly: Multimodal Smart City Dataset include
air quality, noise levels, temperature, humidity, and light
intensity. Some of its features include predictive analytics,
sensor fusion, and anomaly detection, which make it suitable
when conducting smart city studies in Table I1I.

TABLE IlI. DATASET SUMMARY
Parameter Description
Dataset Name UrbanloT-Anomaly: Multimodal Smart City
Dataset
Data Type Multimodal l0T sensor data (environmental and
contextual readings)
Key Variables Air quality, temperature, humidity, noise levels,

light intensity
Real-time continuous sensor monitoring
Urban smart city zones (multi-location dataset)

Sampling Frequency
Geographical

Coverage

Purpose Supports anomaly detection, predictive analytics,
and urban environment monitoring

File Format CSV and JSON structured data

Applications Smart city development, environmental

monitoring, loT-data fusion models
Enables validation of real-time sensing, data
fusion, and intelligent analytics components

Relevance to ECO-
INSIGHT
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This information will match with the ECO-INSIGHT
environmental sensing and adaptive analytics architecture
because it logs real-time 10T measurements across different
areas, which can be used to develop applications that
authenticate models, track the urban environment, and make
smart decisions in Table IV [33].

TABLE IV. THE SIMULATION ENVIRONMENT
Component Description
Simulation UAYV Simulation: Microsoft AirSim / Gazebo + PX4
Platforms SITL for aerial data capture.loT Simulation: Node-

RED + Mosquitto MQTT for real-time sensor
streaming.Remote Sensing: Google Earth Engine +
SNAP for satellite imagery processing.

Primary Dataset: UrbanloT-Anomaly (Kaggle).
Supplementary: Sentinel-2 satellite tiles, UAV-DT
images, synthetic loT data.

Python (pandas, geopandas, rasterio, xarray),
PyTorch/TensorFlow, Stable-Baselines3, QGIS,
Kepler.gl, and Plotly Dash.

Data Sources

Programming
and Libraries

Hardware 8-core CPU, 64 GB RAM, NVIDIA RTX 3080 GPU;

Setup optional Raspberry Pi 4 or Jetson Nano for edge
simulations.

Synthetic Gaussian noise (c2-based), linear drift (a't), random

Noise Models packet loss (p), and temporal jitter (At) for realism in
sensor streams.

Scenario S1: Normal operation; S2: Sensor drift; S3:

Designs Cloud/occlusion; S4: Network delay; S5: Pollution
anomaly detection.

Evaluation Detection: Precision, Recall, F1-Score.Prediction:

Metrics RMSE, MAE.Spatial: loU, spatial RMSE.System:
Latency, throughput, redundancy reduction, energy
consumption.

Visualization Grafana dashboards for real-time analytics;

Tools QGIS/Kepler.gl for spatial mapping; Deck.gl for
interactive urban overlays.

Deployment Dockerized setup using docker-compose.yml

Method integrating MQTT, InfluxDB, Grafana, and Node-RED
for reproducibility.

Output Fused multimodal dataset D_clean, optimized feature

vectors OFV, and hybrid RL-based predictive models
with performance metrics visualization.

B. Monitoring Accuracy

Fig. 6 indicates how all four methods improved the accuracy
of monitoring over time. SISCA starts at 75 percent and
gradually increases to 83 percent, whereas the performance of
SEMS and EAHT lies in the way with the highest points of 88
percent and 89 percent, respectively. Accuracy is the most
consistent and highest in ECO-INSIGHT, surpassing 94% by
the fifth observation, according to equation 13. The growing size
of the bubble and the density to a high value indicate the
improvement of the prediction consistency and the stability of
the model learning. This illustration proves that the hybrid
sensing and decision-fusion model of ECO-INSIGHT allows for
achieving a better spatial-temporal precision and responsiveness
than other loT-focused methods.
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Fig. 6. Monitoring Accuracy Analysis

Equation 13 measures the accuracy MA of detections in all
observations.

1 A
MA = () x 59— yil < ) (13)
N is total samples, §; is predicted value, y; actual, indicator,
1(.) indicates 1 (if true), MA provides the fraction of threshold
predictions e within reasonable limits of error.

C. Prediction Efficiency

Table V presents the results and shows the incremental
accuracy improvement of ECO-INSIGHT over the baseline
techniques SISCA, SEMS, and EAHT. Throughout all periods,
ECO-INSIGHT is the most positive (maximum +90.1). The
growth is an indication of the hybrid deep reinforcement
learning in the system to perpetually update the feature weights
by using adaptive attention mechanisms, as shown in equation
14. Convergence and plateau are seen at a slow rate in traditional
loT frameworks, and faster in ECO-INSIGHT due to its
dynamic gradient optimization approach, which lowers error
propagation and runs faster. The positive gain growth over the
epochs confirms the strength of the architecture to manipulate
the multi-sensor environment data and attain the near-real-time
predictive stability of the structure to monitor the sustainability
of the urban environment.

TABLE V. PREDICTION EFFICIENCY COMPARISON
Epochs | SISCA | SEMS | EAHT | ECO- Justification
INSIG
HT

100 +68.2 +72.4 +74.6 +81.3 | ECO-INSIGHT gains
early precision due to
faster sensor—data
fusion convergence.

200 +70.9 +75.1 | +775 +84.0 | Hybrid attention
learning enhances
prediction
smoothness across
streams.

300 +73.8 +78.3 +80.2 +86.5 | Gradual accuracy
gains through
adaptive weight
calibration.

400 +75.5 +80.0 | +82.1 +88.2 | Reduced overfitting
via dynamic noise
filtering.

500 +76.9 +81.8 +83.9 +90.1 | Final convergence
stabilizes with
consistent gradient
flow.
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Equation 14 normalizes the measure of predictive quality
divided by target variability.

PE = (1 - <RMSE)) x 100%
gy

RMSE is standard deviation of actual goals, PE, which
means efficiency, a, the higher the better.

(14)

D. Data Redundancy Reduction

Fig. 7 shows that with increased sensor nodes there is a
decrease in data redundancy. There is a small increase in SISCA
and SEMS, yet redundancy converts around 36%. EAHT has a
minor improvement in compression with energy-optimized
transmission protocols. ECO-INSIGHT is notably superior, with
the maximum reduction of 41% in an efficient integration of
multi-source UAV, satellite, and loT data. The increasing
gradient on the Y axis (methods) and the X axis (nodes)
represents the description of a high positive correlation between
smart aggregation of data and optimization of transmission by
equation 15. This finding confirms the ability of ECO-INSIGHT
to reduce unnecessary data traffic and boost network throughput
when deploying sensor networks in crowded urban areas.
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Fig. 7. Data Redundancy Reduction.
Equation 15 illustrates the fractional loss of
stored/transmitted data following fusion.
D
DRR = <1 - (M))x 100% (15)
Draw

Get the cumulative number of bytes accessed on D,
sensors, Dr,s.q NUMber of bytes after fusion/compression, DRR
presents percent savings in volume of data as a result of fusion.

E. Response Latency

Table VI shows that ECO-INSIGHT reduced the latency
when using different volumes of data. The negative values are
always smaller, which implies a faster response time compared
with SISCA, SEMS, and EAHT. The inference engine and the
predictive queue balancing of the model make its multi-threaded
inference engine efficient in data flow, even when the volume of
the input grows. Contrary to single-thread pipelines, ECO-
INSIGHT utilizes real-time parallelism to squeeze latency
without accuracy in equation 16. Scalability is confirmed by the
fact that performance scales linearly with volume. Such
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efficiency  facilitates  proactive  decision-making  in
environmental monitoring tasks where latencies of responding
may result in poor situation awareness. ECO-INSIGHT,
therefore, is intelligent to provide high real-time flexibility with
intelligent scheduling and load balancing methods.

TABLE VI.
SISCA | SEMS

RESPONSE LATENCY COMPARISON

EAHT

ECO-
INSIGHT

Data Justification
Volume

(MBIs)

-9.1 -84 -8.1 -7.2 ECO-INSIGHT
reduces delay
via
multithreaded
inference.
Streamlined 1/0
enhances
throughput
under higher
volume.
Adaptive
caching
minimizes
packet wait
time.
Latency
compression
through
pipelined batch
scheduling.
Best
performance
achieved with
predictive queue
balancing.

20 —83 -8.0

30 —8.8 -8.0 -7.8

40 —8.6 -7.8 =75

50 7.6 -7.3

Equation 16 models the sensing to dashboard availability
end-to-end time.

RL = tacq + ttrans + tproc + trender (16)

tacq 1S sensor acquisition delay, tyqns NEtwork
transmission, t,.,. preprocessing + inference, t,epger IS
visualization/dispatch time. System responsiveness is measured
by RL (seconds).

F. Energy Utilization Efficiency

Fig. 8 represents progressive increases in energy utilization
efficiency (EUE) over progressively increasing operational
periods. SISCA and SEMS have moderate efficiency of between
70-83, and EAHT demonstrates better efficiency of up to 86 as
a result of adaptive harvesting. The ECO-INSIGHT contours
change to more dominating towards the high efficiency zones
(85 to 93 percent), which involves the balanced energy
expenditure in the distributed nodes through equation 17. The
gradient transition is smooth, which is appropriate in terms of
stability of performance over time. These findings attest to the
fact that the adaptive deep reinforcement model used in ECO-
INSIGHT is effective in ensuring the optimal distribution of
power and ensuring the environmental data is accurate, which
makes it very suitable for deploying smart cities over a long
period.

86

Energy Utilization Efficiency (EUE %)

() sisca (7]
o O SEMS @) L
T) EAHT
- 0 ECO-INSIGHT )
£ @ Q p
a fj - 9]
=] o iy
.E 80 &p)
£ ) O ©
O , @
75 1 o O
\_ -
Iﬁl l" *
(L
04 QO

T T T T T
25 30 35 40 45

Duration (min)

T
15 50

Fig. 8. Energy Utilization Efficiency.

The data quality per unit energy consumed (efficiency
metric) is discussed in equation 17.

qi

cons

EUE = (5 =—2) x 100% 17)

q; is quality-weighted data unit (e.g. 0-1 of sample E_, .
total energy consumed (Joules), EUE shows useful data
yield/energy i.

G. Spatial Correlation Index

Results of the spatial correlation in Table VII highlight the
capability of ECO-INSIGHT to maintain greater coherence of
distributed sensing points. Most of the techniques suffer
correlation decay with range, and in ECO-INSIGHT, strong
positive deltas up to +0.85 are obtained using UAV-assisted
mapping and adaptive spatial smoothing. Its combination of
satellite, drone, and ground sensor data allows contextual
recalibration to maintain consistency between scales using
equation 18. In comparison, SISCA and SEMS have a reduced
capacity to fix outside of local areas. The positive, gradual
inclination confirms the geospatial learning capability of ECO-
INSIGHT as well as its capability in recreating sound
environmental continuity maps that are crucial in studying and
analyzing the ecological aspects of the urban environment and
the prediction of spatial models.

TABLE VII.
SISCA | SEMS

SPATIAL CORRELATION INDEX

EAHT ECO-
INSIGHT

+0.75

Distance Justification
(km)

10

+0.61 +0.66 | +0.69 ECO-
INSIGHT’s
UAV-based
mapping
preserves
spatial
coherence.
Context-aware
clustering
enhances local
connectivity.
Incremental
gain from
regional data
self-alignment.
Spatial
smoothing
ensures

15 +0.63 +0.68 +0.71 +0.78

20 +0.65 +0.70 +0.73 +0.81

25 +0.67 +0.72 +0.75 +0.83




Kavipriya K et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 76 —89 (2025)

continuity over
distance.
Max correlation
achieved
through
adaptive UAV
redistribution.

30 +0.68 +0.73 +0.76 +0.85

The paired modalities across spatial cells SCI are averaged
by using Equation 18 to find the Pearson correlation.

SCI = (3)* 5. = (S, 51T (18)

C number of spatial cells / tiles, UAV, loT vectors of
measurements in spatial cell, (S¥4,SI°T) is a measure of
spatial agreement.

H. Anomaly Detection Rate

Fig. 9 demonstrates the statistical distribution of the rate of
Anomaly Detection (ADR) between methods. SISCA and
SEMS are narrower, with lower distribution (7283%), which
implies a low ability to adapt to complex environmental
changes. EAHT is characterized by moderate dispersion (7887),
which is energy-aware transmission and provides no profound
contextual interpretation. Conversely, ECO-INSIGHT has a
wider and more concentrated upper distribution (8594%),
indicating stability and excellent detection accuracy by equation
19. The symmetrical curve pattern is an affirmation of the
uniform generalization of models. The positive upward
movement of the distribution confirms that the combination of
multi-modal data and Al-based visual analytics allows ECO-
INSIGHT to significantly enhance the accuracy of the real-time
detection of anomalies.
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Fig. 9. Anomaly Detection Rate.

Recall measure of anomalies (true positives fraction) is
measured in equation 19.

TP
(TP + FN)

ADR = ( )x 100% (19)

TP are true positives (anomalies identified), FN is false
negatives (anomalies not identified), ADR indicates sensitivity
of the recognition system.

I. Visualization Interpretability Score

Table VIII illustrates that ECO-INSIGHT ensures a
significant improvement in the interpretability of the data by
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different groups of stakeholders. The maximum score of +92.4
on citizen viewers occurs; it surpasses all baseline models by
more than 10 points. The platform can be used to provide easy-
to-understand dashboards, achievable through Al visual
analytics, multi-layer context fusion, and semantic overlays, so
that complex environmental trends can be easily explained by
Equation 20. Temporal-spatial overlays are valuable to
engineers and planners by providing them with exact data on the
utilization of space and time, and policymakers with traditional
decision indicators for sustainable planning. The fact that all
types of users have improved consistently proves that ECO-
INSIGHT is not only efficient in processing the data, and
communicates insights effectively, which is a gap between
technical analysis and the environmental intelligence that can
lead to action.

TABLE VIII.
SISCA

VISUALIZATION INTERPRETABILITY SCORE

SEMS ECO-
INSIGHT
+86.7

User EAHT Justification
Group

Analyst

+70.2 | +745 | +76.3 Clearer pattern
emergence via
fused spatial-
temporal
display.
Real-time
overlays
improve
technical insight
accuracy.
Enhanced visual
depth supports
decision
precision.
Simplified
semantic
mapping aids
strategic
interpretation.
Intuitive visuals
ensure public
comprehension
of data trends.

Engineer | +71.5 +75.8 +78.1 +88.4

Planner +73.4 +77.3 +80.0 +89.5

Policy +74.6 +79.0 +82.2 +91.0

Maker

Citizen +75.8 +80.1 +83.3 +92.4

Viewer

Equation 20 defined dashboards as a weighted composite k

of interpretability sub-scores.
VIS = Z,(wy X i) (20)

s, normalized, user-satisfaction, accuracy, responsiveness,
(wy * s )user-satisfaction, dashboards. VIS is used to measure
the interpretability of the dashboard to the stakeholders (0-1 or
0-100).

Generally, the findings indicate that ECO-INSIGHT always
outperforms benchmark models in terms of all the considered
parameters. The system is more accurate, responds quicker, and
is more interpretable, which confirms its efficiency in real-time
environmental assessment. Its hybrid decision-fusion model and
adaptive learning features make it possible to have the best data
correlation and predictive accuracy. The relative analysis and
trends chart support the notion that ECO-INSIGHT is a
promising total, smart, and scalable framework of sustainable
city development based on uninterrupted monitoring and
cognitive environmental control.
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A structured uncertainty quantification and propagation-
control ~ framework  models  modality-specific  error
characteristics before fusion in heterogeneous sensor inputs for
ECO-INSIGHT. A probabilistic calibration layer uses Bayesian
residual analysis, heteroscedastic regression outputs, and
sensor-specific reliability coefficients to calculate noise priors,
confidence intervals, and variance maps for UAV imagery, loT
telemetry, and satellite spectral observations. These uncertainty
descriptors are encoded into feature tensors and fed into the
fusion engine, where a confidence-gated cross-attention
mechanism reweights contributions depending on localized
uncertainty magnitudes to avoid low-fidelity areas from
dominating the joint representation. A stochastic inference
module suppresses spatial-temporal error amplification during
prediction via Monte Carlo dropout sampling, uncertainty-
aware state aggregation, and covariance-controlled message
delivery. A post-fusion residual correction unit compares
inferred states to historical baselines, structural priors, and inter-
modality consistency cues to reduce prediction drift.

V. CONCLUSION AND FUTURE WORKS

The ECO-INSIGHT framework proposed manages to
incorporate the UAV-enabled remote sensing, loT-enabled
environmental sensing, and hybrid deep reinforcement learning
into a unified real-time monitoring framework. Experimental
validation showed that the model had a higher level of prediction
accuracy, spatial correlation, and response latency than the
current frameworks (SISCA, SEMS, and EAHT). The adaptive
decision-fusion mechanism, coupled with Al-driven visual
analytics, allows for maintaining environmental intelligence
continuously and assists in data-oriented urban planning and
proactive ecological control. The quantitative tests validate that
ECO-INSIGHT has the capacity to minimize redundancy in
data, increase interpretability, and responsiveness of predictions
that are 90 percent better than the existing status, which is a
strong move towards sustainable and resilient smart cities.

The next phase of research will involve improving the scale
of ECO-INSIGHT to process multi-city data worldwide through
federated learning to provide data privacy and generalizability
of models. Data validation through blockchain can be
implemented to increase the reliability of sensors and the level
of transparency in decision-making. The addition of quantum-
inspired optimization algorithms can help speed up the
computation of high-frequency data streams. Moreover, the
further development of visual analytics using immersive
technology in the form of AR/VR would offer interactive
dashboards to a variety of stakeholders. These innovations will
enhance the ability of ECO-INSIGHT in assisting sustainable
urban ecosystems and providing a benchmark framework in
intelligent environmental surveillance of the next-generation
smart city infrastructures.
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