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Abstract 

Earth and environmental monitoring are very crucial to identify changes in climatic conditions, destruction of an ecosystem and 

calamities. The increased access to high-resolution satellite, aerial, and UAV imagery requires sophisticated intelligent visual analytics 

that can be used to derive actionable information on the basis of massive streams of remote-sensed data. The current image and video 

recognition methods are not always capable of attaining reliable performances in the presence of multimodal data heterogeneity, 

environmental dynamics, and interference of noise in remote-sensing images. These issues restrict the precision and flexibility of 

traditional deep learning-based monitoring systems to real-life applications. In this paper, we have suggested the Enhanced Visual 

Intelligence for Adaptive Recognition Network (EVIAR-Net). This deep learning model is a hybrid one that uses Graph-Convolutional 

Vision Transformers (GCVT) and Adaptive Multi-Source Fusion (AMSF). EVIAR-Net is able to store spatial correlations along with 

temporal dependencies using the graph-based spatial reasoning and transformer-based temporal encoding. AMSF actively combines 

multispectral, hyperspectral and video modalities to provide resistance to illumination, motion, and atmospheric perturbations. 

Performance assessments of various Earth observation datasets indicate an improvement in recognition accuracy of 21 percent, inference 

speed of 30 percent, and generalisation to unknown environments are better than CNN, ViT, and LSTM-based models. The suggested 

EVIAR-Net concept exhibits a smart, adaptable, and energy-saving strategy towards the next-generation environmental monitoring and 

predictive analytics. 
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I. INTRODUCTION 

Visual intelligence is vital for environmental and earth 
monitoring practices, allowing computers to interpret satellite, 
aerial, and drone imagery to assist in ecological feedback and 
decision making [1]. Applying artificial intelligence (AI) and 
remote sensing enhances visual pattern recognition and 
understanding [2]. Image and video recognition methods 

respond to classifications in land use, damage assessment from 
disasters, and ecosystem monitoring [3]. Enhanced, high-
resolution imaging and continuous-data input from a multitude 
of sensors deliver real-time environmental information about 
climate change, landscape changes, and other dynamics [4]. 

Intelligent visual analytics becomes a vehicle for converting 
massive amounts of visual data into meaningful environmental 
indicators [5]. Advanced transition methods of mapping 

SI: Special issue - Remote Sensing based Intelligent Visual Analytics for Real-time Environmental and Earth Monitoring Systems 

http://jastt.org/index.php/index
http://www.jastt.org/
https://doi.org/10.38094/jastt605659
https://jastt.org
https://ipacademia.org/
mailto:gnanrajrad@gmail.com
mailto:drrajaj@veltech.edu.in
mailto:kamarajapandianp@gmail.com
mailto:vilasan30@yahoo.com
mailto:sheemonajoseph@gmail.com
mailto:sathyaashok2007@gmail.com
mailto:gnanrajrad@gmail.com


Gnana Rubini R et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 123 –134 (2025) 

 

124 

vegetation loss, land-use change, soil degradation, water 
pollution, etc., cost-effectively maintain sustainable systems [6]. 
Visual intelligence also supports policymakers and researchers 
to practice predictive analysis and spatial-scale sustainable 
planning [7]. AI visual intelligence, combining deep learning 
and computer vision with remote sensing, can provide high 
accuracy and automation of computation and data interpretation 
[8]. Visual intelligence underpins the next generations of 
environmental observations, monitoring, and early warning 
systems [9]. 

Current systems for recognising images and video in a 
remote-sensed context face a multitude of challenges [10]. 
Existing systems struggle with heterogeneous information, such 
as different sensors, resolutions, etc [11]. Temporal changes in 
the environment, as well as atmospheric distortion, adversely 
affect the reliability of recognition [12]. Conventional CNN or 
RNN models are inflexible and do not apply well to multimodal 
inputs. In addition, most models proposed frameworks are not 
robust to cloud cover, illumination changes, or a noisy 
contamination environment [13]. Further, training quality is 
affected by data balance and the limited availability of ground 
truth labels [14]. The existing systems have a high 
computational cost and poor scalability in a real-time 
environment. Support for cross-domain generalisation is poor, 
which leads to unreliable predictions [15]. Fusion of 
multispectral and temporal information is still inefficient [16]. 
These considerations indicate the need for an adaptable, 
intelligent, and noise-saturated analytical framework for 
environmental remote sensing applications [17]. 
Contributions of the paper 

 EVIAR-Net is introduced, integrating graph-
convolutional transformers with multimodal fusion to 
improve spatial-temporal feature extraction for 
environmental and Earth monitoring applications. 

 A robust AMSF module dynamically fuses 
multispectral, hyperspectral, and video data using 
modality gating and confidence weighting, enabling 
adaptive feature integration and improved resilience 
against noise, illumination, and sensor variability. 

 Comprehensive evaluations demonstrate EVIAR-Net’s 
superior recognition accuracy, F1-score, and 
computational efficiency, achieving 21% accuracy 
improvement and 30% faster inference compared to 
existing CNN, ViT, and LSTM-based remote-sensing 
models. 

Problem statement: The primary challenge noted 
throughout the scope of these studies, however, is the need for 
unified, efficient, and generalizable deep learning frameworks 
for remote sensing image analysis. Although some progress has 
been made in using CNN, LSTM, transformers, and hybrid 
models, issues related to multi-sensor heterogeneity, high data 
volume, temporal variability, and a lack of labeled data still need 
to be overcome. In addition, model complexity, interpretability 
of the machine learning model, and how generalizable models 
can be to various environmental conditions must also be 
addressed to be able to scale current deep learning models for 
use in practical applications with remote sensing. 

II. KNOWLEDGE LANDSCAPE 

New developments in RSIA have leveraged deep learning 
architectures to enhance classification, detection, and change-
detection capabilities. CNN-RSIA, DL-RSOD, LSTM-MTNet, 
and ViT-RS produce improved spatial-temporal learning, object 
detection, noise robustness, and a significant advance in the 
accuracy, automation, and scalability of environmental and 
Earth observations. 

RSIA has shifted from conventional feature-based methods 
to sophisticated deep learning models. Older models used 
handcrafted features, whereas advanced models, such as CNN-
RSIA (Convolutional Neural Network for Remote Sensing 
Image Analysis), are fully capable of automatically extracting 
spatial features of hierarchies [18]. CNN-RSIA increases 
classification accuracy by learning complex patterns directly 
from large-scale datasets and enables efficient capabilities in 
image classification, object detection, and scene understanding. 
CNN-RSIA models also outperform conventional machine 
learning models in land use, vegetation, and urban structures 
classification. 

Object detection in RSIs is to detect and classify targets, such 
as buildings, vehicles, or vegetation, within high-resolution 
imagery. Recent developments in deep learning–based Remote 
Sensing Object Detection (DL-RSOD) approaches have 
significantly improved detection accuracy based on 
considerations of techniques including attention mechanisms, 
multi-scale feature fusion, and super-resolution learning [19]. 
Such DL-RSOD techniques demonstrate real-time performance 
with high accuracy to produce timely data for applications like 
urban planning, environmental monitoring, and disaster 
assessment. 

The classification of multitemporal remote sensing images 
makes use of temporal data to assess changes of interest. The 
LSTM-MTNet (Long Short-Term Memory network for a 
Multitemporal Network) method is useful for capturing 
generalized dependencies sequentially, yet it deals with the 
spatial-temporal dynamics of satellite remotely sensed imagery 
specifically [20].  By learning historical features of temporal 
knowledge as it evolves, LSTM-MTNet allows for improved 
performance in land cover change detection and monitoring of 
the environmental landscape. This is due to the LSTM-MTNet 
method being capable of modeling long-term dependencies, 
which is advantageous for large-scale, time-series, remote 
sensing classification problems, compared to traditional static 
deep learning methods. 

 
Change detection in RSI identifies disparities between 

observations across various periods to monitor land use, urban 
growth, and disasters [21]. The Siamese-CDNet (Siamese 
Convolutional Network for Change Detection) algorithm 
examines potential differences by using a pair of multi-temporal 
high-resolution images and learning shared and differential 
features in the two twin CNN branches. Siamese-CDNet is adept 
at capturing fine-grained spatial changes, including 
morphological changes to buildings, and retains high accuracy 
despite subtle potatoes. Therefore, Siamese-CDNet emerges as 
a robust and highly efficient tool for contemporary applications 
for change detection. 
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Automatic detection and segmentation of objects in the Earth 
observation domain encounter obstacles originating from the 
variation in scale, shape, and sensor type. The Mask R-CNN-RS 
(Mask Region-Based Convolutional Neural Network for 
Remote Sensing) method in assessment allows researchers to 
complete the task of object detection and instance segmentation 
on multi-sensor data [22]. Mask R-CNN-RS uses region 
proposals to classify objects and fine-tune segmentation masks 
to detect intricate constructions in satellite, aerial, and UAV 
images across a myriad of environmental conditions where 
sensors may vary. 

Through the use of deep learning methods, RSI analysis has 
experienced a rapid change as they allow for convenient analysis 
and processing of difficult and complex multi-sensor data. ViT-
RS, or Vision Transformer for Remote Sensing, learns global 
spatial relationships in high-resolution RGB, LiDAR, and 
hyperspectral imagery [23]. Rather than utilizing the 
convolutional layers used in CNNs, ViT-RS can model the long-
range dependencies in the imagery through self-attention 
learning mechanisms, resulting in new improvements in land 
cover classification and environmental monitoring. In addition 
to superior long-range learning for classifying land cover, this 
method generalizes across sensors/platforms, ultimately 
creating a highly useful method for larger remote sensing 
applications. 

The analysis of image and video data has progressed over 
the past few decades through deep learning, which facilitates 
intelligent analysis in a wide variety of situations. The 
Convolutional Neural Network for Visual Analytics and 
Analysis (CNN-VAA) is one approach that successfully 
integrates the ability to extract features with the ability to 
produce visual analytics from spatial-temporal data [24]. The 
CNN-VAA method identifies complex patterns from video and 
image data for applications in surveillance, health care, and 
remote sensing. The combination of AI-based recognition with 
visualization shows the potential to improve the interpretable 
aspects of analysis, for decision making or trend-finding, even 
with large-scale multimedia datasets. 

Image processing involves a range of tasks, including 
denoising, enhancement, segmentation, feature extraction, and 
classification. The MPR-CNN model (Multi-Path Residual 
CNN) has demonstrated outstanding performance for image 
denoising. Control in the MPR-CNN model is accomplished via 
multiple residual pathways that learn to suppress the noise while 
maintaining fine detail, textures, and edges in the images [25]. 
With the ability to learn adaptive noise, it can outperform the 
traditional filters used as the state-of-the-art for denoising and is 
ideally suited to applications in areas like medical imaging, 
remote sensing, and low-light scene enhancement. 

Deep learning has revolutionized RSI analysis through 
models like CNN-RSIA, DL-RSOD, LSTM-MTNet, and ViT-
RS, enhancing spatial-temporal understanding, object detection, 
and change monitoring. These methods outperform traditional 
techniques, offering higher accuracy, robustness, and scalability 
for diverse environmental, urban, and ecological applications 
using multi-sensor and multimodal satellite imagery. In below 
table I shows the summary of existing works. 

 
 

TABLE I.  SUMMARY OF KNOWLEDGE LANDSCAPE 

Model / 

Method 

Primary Focus / 

Application 
Key Features 

Advantages / 

Contributions 

CNN-

RSIA 

Image 

classification, 
object detection, 

scene 

understanding 

Learns spatial 
hierarchies from 

large datasets 

Improves 

classification 
accuracy in land 

use, vegetation, and 

urban mapping 

DL-

RSOD 

Target detection 
in high-

resolution 

imagery 

Multi-scale 

feature fusion, 

attention 
mechanisms, 

super-resolution 

Achieves high 
detection accuracy 

and real-time 

performance for 
urban and 

environmental 

monitoring 

LSTM-

MTNet 

Temporal 

classification 

and change 
detection 

Captures long-

term 

dependencies in 
satellite imagery 

Enhances land cover 

change monitoring 

and time-series 
analysis 

Siamese-

CDNet 

Multi-temporal 

change detection 

Twin CNN 

branches for 

differential 
feature learning 

Detects fine-grained 

spatial and 

structural changes 
efficiently 

Mask R-
CNN-RS 

Object detection 

and instance 

segmentation 

Region 

proposals and 

mask refinement 

Handles multi-

sensor data and 
varying scales 

effectively 

ViT-RS 

Land cover 
classification, 

environmental 

monitoring 

Self-attention 
mechanism, 

global context 

modeling 

Generalizes across 
sensors and captures 

long-range 

dependencies 

CNN-
VAA 

Image/video 

interpretation 

and visualization 

Integrates AI-

based feature 
extraction with 

visual analytics 

Enhances 
interpretability for 

decision-making 

and pattern 
recognition 

MPR-

CNN 

Image denoising 

and enhancement 

Multiple 

residual 
pathways for 

noise 

suppression 

Preserves fine 

details and edges, 
outperforming 

traditional denoising 

methods 

III. METHODOLOGY 

EVIAR-Net is an updated and advanced deep learning 
framework for environmental intelligence, applying remote-
sensed data. The EVIAR-Net combines multi-source inputs 
through adaptive fusion, spatial-graph reasoning, and 
transformer-based modeling of temporal variations to accurately 
classify, detect, and analyze change with high robustness, 
scalability, and real-time adaptability, given a broad range of 
environmental and sensing conditions. 

The EVIAR-Net architecture achieves robustness under 
extreme multimodal noise through a tightly coupled design that 
combines sensor-adaptive preprocessing, noise-aware 
representation learning, and reliability-guided decision 
modeling. Spectral–temporal harmonization layers perform 
dynamic calibration across heterogeneous remote-sensing 
inputs, compensating for sensor drift and illumination variability 
by enforcing distributional alignment in the latent space. A dual-
stream encoder jointly captures spatial semantics and temporal 
dynamics, while adaptive attention blocks suppress cloud-
induced occlusions by prioritizing invariant texture, edge, and 
motion cues that remain stable across acquisition conditions. 
Multimodal feature fusion is governed by confidence-weighted 
gating, enabling the network to down-weight corrupted spectral 
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bands or frames affected by atmospheric interference without 
disrupting global context learning. 

A. EVIAR-Net: System Architecture 

Fig. 1 shows that EVIAR-Net is a multi-layered deep vision 
framework developed for remote-sensed environmental 
intelligence. It is capable of ingesting multi-source data 
(satellite, UAV, hyperspectral, and temporal video) through 
noise-resilient preprocessing and adaptive multi-source fusion 
based on specific CNN and 3D-CNN encoders. Spatial-graph 
reasoning with GCN can extract the regional context, and a 
novel Transformer-based temporal encoder can capture dynamic 
changes. Task-specific heads can perform classification, 
detection, and anomaly recognition based on the ground truth 
data, and Bayesian decision fusion can be used to quantify 
uncertainty associated with the predictions. Post-processing 
functions will handle the geospatial visualization and the 
geospatial optimization for deployment. The EVIAR-Net 
framework also combines unsurpassed continuous learning 
powered by transfer and self-supervised adaptation, which helps 
to ensure scalability, robustness, and potential real-time 
monitoring of environmental conditions across heterogeneous 
sensing platforms. 

 

Fig. 1. EVIAR-Net: System Architecture. 

CNN and 3D-CNN modules efficiently capture local spatial 
patterns and short-term temporal dynamics, while GCNs model 
relational dependencies across spatial regions or object graphs, 
and transformers provide global contextual reasoning; however, 
their combined use increases parameter count, memory 
footprint, and attention-related quadratic complexity, 
particularly for high-resolution remote-sensing inputs. This 
heterogeneity also complicates optimization and limits 
scalability on edge devices due to higher latency and energy 
consumption. In contrast, a unified lightweight backbone with 
shared representations and streamlined attention mechanisms 
reduces memory access overhead, simplifies scheduling, and 

improves throughput, albeit at the cost of reduced 
expressiveness in modeling long-range dependencies and 
structured relationships. 

The continuous self-supervised adaptation loop in EVIAR-
Net prevents catastrophic forgetting by combining constrained 
representation updates with memory-aware regularization and 
selective parameter adaptation. A dual-buffer replay mechanism 
retains a compact set of high-confidence historical embeddings 
from previous domains and sensors, which are interleaved with 
new unlabeled samples during adaptation to preserve previously 
learned decision boundaries. Feature-space consistency losses 
enforce alignment between current representations and frozen 
teacher projections derived from earlier model states, limiting 
abrupt drift under domain shifts. Adaptation is further localized 
through low-rank parameter updates and gated normalization 
layers, ensuring that sensor-specific changes are absorbed 
without globally overwriting shared semantic representations. 
Uncertainty-guided sample selection prioritizes stable and 
informative pseudo-labels, reducing error accumulation during 
self-supervision. 

CNN-Based spatial encoding F_d is expressed in equation 1 

𝐹𝑑 = (1 − 𝜌) ∗  (1 − 𝑈𝑑 ∗ 𝐸𝑡 + 𝑐𝑑)                                 (1) 

This defines the spatial encoding performed by 
convolutional neural networks. It extracts local texture and 
spatial dependency patterns essential for regional representation 
of environmental structures. 

In this equation,  𝐹𝑑 is the spatial feature encoding, 𝑈𝑑 
represents the convolutional kernel weights, 𝐸𝑡 is the fused 
input feature, 𝑐𝑑 is the bias term, and 𝜌  is the nonlinear 
activation function applied element-wise. 

3D-CNN temporal feature extraction 𝐹𝑢  is expressed in 
equation 2, 

𝐹𝑢 = (1 − 𝜕) ∗ (1 − 𝑈𝑠 ∗ 3𝐷 −  𝑊𝑠 + 𝑐𝑠)                        (2) 

This describes the extraction of temporal–spatial 
dependencies through 3D convolution. It enables capturing 
motion dynamics and temporal continuity across sequential 
imagery or videos. 

Here, 𝐹𝑢 represents the temporal encoded feature volume, 
𝑈𝑠 is the 3D convolutional filter tensor, 𝑊𝑠 is the stacked 
temporal frame input, 𝑐𝑠 is the temporal bias, and 𝜕 denotes the 
activation function. 

Graph convolutional context reasoning 𝐺(𝑙+1) is expressed 
in equation 3 

𝐺(𝑙+1) = 𝜎 ∗  𝐸
1

2 +  𝐵𝐸 ∗ ( 𝐸
1

2 − 𝐺𝑙𝑈𝑓)                            (3) 

This expresses the graph convolutional reasoning for 
capturing inter-regional context. The adjacency and 
normalization terms propagate spatial dependencies across 
connected regions or objects. 

In this equation, updated node representation at layer 
(𝑙 + 1), 𝐵 is the adjacency matrix with self-loops, 𝐸   is the 

degree matrix, 𝐺𝑙  is the input node embedding, 𝑈𝑓 is the graph 

convolution weight matrix, and 𝜎  is the nonlinearity applied 
after propagation. 
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Bayesian decision fusion 𝑄 is expressed in equation 4 

𝑄 =
1

𝑋
∗ ( 𝑦 ∣∣ 𝑥 )   +  𝐾 𝜇𝑘 𝑞𝑘( 𝑦 ∣∣ 𝑥 )                               (4) 

This represents Bayesian decision fusion that combines 
probabilistic outputs from multiple task-specific heads. It 
enhances interpretability and measures uncertainty across 
classification and detection outcomes. 

Bayesian decision fusion in EVIAR-Net is calibrated by 
explicitly modeling predictive uncertainty from each modality-
specific branch using Monte Carlo dropout and temperature-
scaled softmax likelihoods, producing well-behaved posterior 
distributions rather than raw confidence scores. During training, 
calibration parameters are optimized on a validation split by 
minimizing negative log-likelihood and expected calibration 
error, aligning posterior confidence with observed correctness. 
The fused decision integrates modality posteriors through 
precision-weighted Bayesian averaging, where higher epistemic 
and aleatoric uncertainty directly reduces a branch’s influence 
on the final prediction. Empirical validation of uncertainty 
quality is performed by correlating predictive entropy and 
variance with misclassification events across test datasets, 
demonstrating a monotonic increase in error probability with 
rising uncertainty. 

In this equation, 𝑄 is the final fused posterior probability, 𝑋 
is the normalization constant, 𝜇𝑘 denotes the prior weight for 
each task-specific model, 𝑞𝑘 is the likelihood from the 𝑘 th 
model, and 𝐾 is the total number of contributing heads. 

Configurations with 8 attention heads and 4 stacked layers 
were found to optimally balance fine-grained temporal feature 
extraction with computational efficiency, achieving high frame-
to-frame agreement ratios and robust detection of subtle 
changes. Reducing the number of heads to 4 or layers to 2 
decreases the model’s capacity to capture long-range temporal 
dependencies, resulting in a 12–15% drop in temporal 
consistency metrics and missed detection of small or transient 
change events. Conversely, increasing heads to 12 or layers to 6 
improves sensitivity to rare and small-scale changes by 
enhancing cross-frame contextual aggregation but marginally 
increases false positives and inference latency by approximately 
18–20%, reflecting over-attention to noise in dynamic scenes. 

B. Adaptive Multi-Source Fusion (AMSF) Module 

Fig. 2 shows that the AMSF module in EVIAR-Net brings 
together heterogeneous remote-sensing data, including satellite, 
aerial, and hyperspectral data, and video data. It leverages CNNs 
for features derived from 2D images, and 3D-CNNs for features 
generated from temporal data. The AMSF module normalizes 
features from different modalities and uses confidence-based 
weighting to normalize and balance modalities. The AMSF 
operates using dynamic attention and adaptive gating to allow 
EVIAR-Net to prioritize and highlight the most informative 
spectral-spatial features, taking into account redundancy and 
noise from sources. The AMSF module provides a unified 
multimodal representation of all inputs to classify diverse 
classes of complex environmental recognition tasks, and to 
maintain robustness through noisy payloads and diverse sensing 
environments. 

 

Fig. 2. Adaptive Multi-Source Fusion (AMSF) Module. 

When a modality becomes severely degraded, such as heavy 
cloud obstruction or sensor saturation, its spectral responses 
exhibit elevated variance and reduced cross-scale consistency, 
which are detected by the AMSF confidence estimator and 
translated into progressively lower fusion weights rather than 
abrupt exclusion. In cases where a modality is entirely missing, 
AMSF defaults to a learned prior derived from modality-
agnostic spatial features, allowing the remaining modalities to 
dominate the fused representation without disrupting feature 
alignment. This soft reweighting strategy prevents hard-failure 
modes by maintaining bounded contributions from unreliable 
inputs and preserving gradient stability during adaptation. 

 Input normalization for multi-modal data 𝑌𝑚 is expressed in 
equation 5, 

𝑌𝑚 = (1 − 𝜌𝑚) ∗
𝑋𝑚−𝜋𝑚

𝜌𝑚+𝜑
+ (𝜑 − 𝜌𝑚)                              (5) 

This equation normalizes each modality to reduce the bias 
due to varying sensor scales or illumination differences. It 
ensures that all modalities contribute uniformly to the fusion 
process by stabilizing statistical variance. 

In this equation, 𝑋𝑚 is the original feature input, 𝜋𝑚 is the 
mean of that modality, 𝜌𝑚 is its standard deviation, and 𝜑 is a 
small regularization constant to prevent division by zero. 

Unified multimodal representation 𝐸𝑢  is expressed in 
equation 6, 

𝐸𝑢 = 𝐻 ∅ 𝐵 + (1 − 𝐻) ∅ − (1 − 𝐺𝑏 )                             (6) 

This final fusion equation integrates the gated attention and 
raw fused features into a unified multimodal representation, 
balancing adaptivity and stability for environmental recognition 
tasks. 

In this equation, 𝐻 is the adaptive gate coefficient, 𝐵 is the 
attention-refined feature, and 𝐺𝑏 is the aggregated fusion 
feature. 

Algorithm 1 integrates graph convolution with transformer 
attention to capture both spatial relationships and contextual 
dependencies in remote-sensed images. It models inter-pixel 
correlations through adjacency matrices and attention scores, 
enabling adaptive feature learning across frames. The output 
spatial feature map (Fₛ) enhances spatial reasoning and object 
recognition accuracy. 
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Algorithm 1: Graph-Convolutional Vision Transformer 

(GCVT) Feature Extraction 

𝐼𝑛𝑝𝑢𝑡: 𝐼𝑚𝑎𝑔𝑒 𝑓𝑟𝑎𝑚𝑒𝑠 {𝐼1, 𝐼2, … , 𝐼𝑇}, 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 𝐹𝑠 

1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑛𝑜𝑑𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑋0

←  𝑃𝑎𝑡𝑐ℎ𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝐼𝑡) 

2: 𝑓𝑜𝑟 𝑙 =  1 𝑡𝑜 𝐿 𝑑𝑜 

3:  𝐻𝑙 ←  𝜎(𝐴 · 𝑋{𝑙−1} · 𝑊𝑙)  # 𝐺𝑟𝑎𝑝ℎ 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

4:   𝑄, 𝐾, 𝑉 ←  𝐿𝑖𝑛𝑒𝑎𝑟(𝐻𝑙) 

5:   𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝛼 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 · 𝐾ᵀ

√𝑑𝑘

) 

6:  𝑍𝑙 =  𝛼 · 𝑉 

7:  𝑋𝑙 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻𝑙 +  𝑍𝑙) 

8: 𝑒𝑛𝑑 𝑓𝑜𝑟 
9: 𝐹𝑠 =  𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙(𝑋𝐿) 

10: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑠 

 
AMSF dynamically integrates multispectral, hyperspectral, 

and video features using attention-based weighting is explained 
in algorithm 2. Each modality’s contribution is adaptively scaled 
based on relevance and environmental conditions. The fusion 
process concatenates, normalizes, and rebalances features to 
produce a robust fused representation F_fused, improving 
system resilience under illumination, motion, and atmospheric 
disturbances. 

 

Algorithm 2: Adaptive Multi-Source Fusion (AMSF) 

𝐼𝑛𝑝𝑢𝑡: 𝐹𝑚(𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙), 𝐹ℎ(ℎ𝑦𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙), 𝐹𝑣(𝑣𝑖𝑑𝑒𝑜) 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝐹𝑓𝑢𝑠𝑒𝑑(𝑓𝑢𝑠𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝) 

1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑓𝑢𝑠𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑚, 𝑤ℎ , 𝑤𝑣 ←
1

3
 

2: 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑖 ∈  {𝑚, ℎ, 𝑣}𝑑𝑜 

3:  𝐴𝑖 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑎 · 𝐹𝑖)  # 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 

4:  𝑤𝑖 =
𝐴𝑖

𝛴𝑗𝐴𝑗

  # 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

5: 𝑒𝑛𝑑 𝑓𝑜𝑟 
6: 𝐹𝑐𝑜𝑛𝑐𝑎𝑡 =  [𝐹𝑚, 𝐹ℎ, 𝐹𝑣]  # 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

7: 𝐹𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  𝑤𝑚 · 𝐹𝑚 + 𝑤ℎ · 𝐹ℎ + 𝑤𝑣 · 𝐹𝑣 

8: 𝐹𝑓𝑢𝑠𝑒𝑑 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐹𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 +  𝐿𝑖𝑛𝑒𝑎𝑟(𝐹𝑐𝑜𝑛𝑐𝑎𝑡)) 

9: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑓𝑢𝑠𝑒𝑑  
 

C. Multi-Source Data Acquisition Layer 

This tier comprises multiple remote-sensing data, including 
satellite, UAV, hyperspectral, and temporal video data. It 
standardizes multi-resolution data formats and spatially and t-
temporally harmonises them. It incorporates the various sensors 
to give a heterogeneity of information in order to have rich and 
complementary information input. A combination of the remote-
sensing data enables the EviAR-Net to produce stable data of the 
environment and contextual features that can be processed 
effectively downstream. 

D. Spatial-Graph Reasoning and Contextual Correlation 

(GCVT Layer) 

This layer considers spatial associations by representing 
superpixels or areas as nodes in a graph. Graph Convolutional 
Networks with attention-based reasoning identify contextual 
relations between regions. Included with visual transformers, a 
process can be made to better spatial correlation to better even 
object-level comprehension and pattern recognition that 
incorporates environmental information of heterogeneous 
sources. 

 

E. Transformer-Based Temporal Encoder 

The temporal encoder exploits multi-head self-attention and 
positional embedding so as to effectively encode the temporal 
dynamics of various sources of data. It can also learn 
dependence of the long term and can recognize the change of 
land cover or environmental condition over time. This is a true 
way of supporting temporally oriented reasoning in the 
monitoring, forecasting and trend analyses in spatio-temporal 
remote sensing. 

The contribution of each EVIAR-Net core component was 
quantified using structured ablation analysis in similar training 
and assessment scenarios. When replacing the Adaptive 
Multiscale Spectral Fusion (AMSF) module with a single-scale 
spectral aggregation, mean recognition accuracy drops from 
91.6% to 86.2%, performance variance rises from ±0.9 to ±1.3, 
and class-wise accuracy decreases by 7.8% in cloud-dominated 
scenes, emphasizing the importance of AMSF in stabilizing 
spectral responses under atmospheric interference. The Global–
Contextual Vision Transformer (GCVT) is simplified to a 
standard self-attention encoder without global–local coupling, 
lowering accuracy to 87.4%, cross-domain F1-score from 0.89 
to 0.82, and error rates in geographically unseen regions by 14%. 
This reduces contextual reasoning and generalization capacity. 
Video-based tasks suffer the most when the temporal encoder is 
removed and frame-level spatial features are used exclusively. 
Recognition accuracy drops to 83.9% and temporal consistency 
metrics drop by 18%, especially in long-term monitoring 
sequences affected by illumination fluctuations and sensor drift. 
Inference speed gains of 6–9% from module removal are offset 
by higher prediction variance and reduced robustness, 
confirming the complementary role of AMSF, GCVT, and 
temporal encoding in stable and generalizable performance 
across dynamic Earth observation scenarios. 

This stage encodes temporal dependencies across sequential 
fused features using transformer-based self-attention is 
explained in algorithm 3. It integrates positional embeddings 
and aggregates temporal representations to form a global 
contextual vector. The final softmax layer predicts 
environmental classes or events (ŷ), ensuring accurate, 
temporally-aware recognition in dynamic Earth observation 
scenarios. 

 

Algorithm 3: Temporal Encoding and Final Prediction 

𝐼𝑛𝑝𝑢𝑡: 𝐹𝑓𝑢𝑠𝑒𝑑𝑜𝑣𝑒𝑟 𝑇 𝑓𝑟𝑎𝑚𝑒𝑠 {𝐹1, 𝐹2, … , 𝐹𝑇} 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 ŷ 

1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 𝑃𝑡 ∈  ℝ𝑑 

2: 𝑓𝑜𝑟 𝑡 =  1 𝑡𝑜 𝑇 𝑑𝑜 
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3:  𝐸𝑡 =  𝐹𝑡 + 𝑃𝑡 

4: 𝑒𝑛𝑑 𝑓𝑜𝑟 
5: [𝑄, 𝐾, 𝑉] =  𝐿𝑖𝑛𝑒𝑎𝑟(𝐸𝑡) 

6: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑡 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 · 𝐾ᵀ

√𝑑𝑘

) · 𝑉 

7: 𝐻𝑡 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐸𝑡 +  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑡) 

8: 𝐻𝑔𝑙𝑜𝑏𝑎𝑙 =
𝛴𝑡𝐻𝑡

𝑇
  # 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 

9: ŷ =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜 · 𝐻𝑔𝑙𝑜𝑏𝑎𝑙 +  𝑏𝑜) 

10: 𝑟𝑒𝑡𝑢𝑟𝑛 ŷ 

 

F. Training Feedback and Self-Supervised Adaptation Loop 

The loop allows self-supervised adjustment and transfer as a 
means of continuing to learn. It alters parameters of the model 
in flux, in the operations of applying non-labeled data and 
environmental feedback. It facilitates better scalability, 
flexibility and resilience to domain changes, and permits 
EVIAR-Net to realize consistency of accuracy and performance 
to rapidly evolving datasets and applications in remote sensing.  

EVIAR-Net is a state-of-the-art deep vision system of 
environmental intelligence which integrates multi-source 
remote-sensing data with adaptive CNN, GCN, and transformer 
designs. EVIAR-Net has got proper environmental 
classification, detection, and change analysis, as well as is robust 
and scalable and can adapt in real-time to widely different 
sensing systems using continuous learning and self-supervised 
adaptation processes. 

 

IV. RESULTS AND DISCUSSION 

This section offers a thorough assessment of the EVIAR-Net 
model in relation to state-of-the-art deep date architectures. 
Outcomes are evaluated across several measures of performance 
and reliability, including recognition accuracy, F1-score, IoU, 
inference speed, robustness to noise, domain generalization, 
energy consumption, and temporal consistency. This supports 
claims that EVIAR-Net is generally more scalable, adaptable, 
and efficient for remote-sensing applications. 

EVIAR-Net was optimized using the AdamW algorithm 
with decoupled weight decay of 1×10⁻⁴, selected for its stable 
convergence in high-dimensional multimodal feature spaces and 
its effectiveness in controlling overfitting under noisy remote-
sensing conditions. Distinct learning rates were assigned to 
different architectural components to accommodate 
heterogeneous convergence behavior: 3×10⁻⁴ for the AMSF and 
GCVT spatial modules, 1×10⁻⁴ for the temporal encoder, and 
5×10⁻⁵ for the classification head. Training employed a cosine 
annealing schedule with linear warm-up, where learning rates 
increased from 1×10⁻⁶ to their respective peak values over the 
first 10 epochs, followed by smooth decay to 1×10⁻⁶ by epoch 
120, with total training conducted for 150 epochs. Mini-batch 
sizes of 32 for image-based datasets and 16 for video sequences 
were used to balance memory constraints and gradient stability. 
Hyperparameter tuning was performed systematically via 
Bayesian optimization on a dedicated validation set, exploring 
learning rates [ 1 × 10 − 5 – 3 × 10 − 4 ] [1×10 −5 –3×10 −4 ], 
weight decay [ 5 × 10 − 5 – 5 × 10 − 4 ] [5×10 −5 –5×10 −4 ], 
dropout probabilities [ 0.1 – 0.4 ] [0.1–0.4], attention head 

counts [ 4 , 8 , 12 ] [4,8,12], AMSF scale factors [ 3 , 5 , 7 ] 
[3,5,7], and temporal window lengths [ 4 , 8 , 16 ] [4,8,16]. Each 
candidate configuration was evaluated across three independent 
runs, and the final hyperparameter set was selected based on the 
joint minimization of validation loss, performance variance, and 
convergence time, resulting in accuracy fluctuations constrained 
within ±1.2% and consistent generalisation across all Earth 
observation benchmarks. 

EVIAR-Net was profiled on a typical edge–server hardware 
configuration consisting of an NVIDIA RTX 3080 (10 GB 
VRAM) and an NVIDIA Jetson AGX Orin (32 GB shared 
memory) to quantify memory footprint and input scalability. 
During training on the RTX 3080 with mixed-precision (FP16), 
the peak GPU memory consumption reaches 8.4 GB for video 
inputs of 8 frames × 512 × 512 resolution at a batch size of 16, 
while image-only training at 1024 × 1024 resolution with a batch 
size of 32 requires 6.9 GB. At inference time, memory usage 
reduces to 3.1 GB for video streams and 2.2 GB for high-
resolution still images. On the Jetson AGX Orin, optimized 
inference using TensorRT consumes approximately 1.8 GB of 
memory for 512 × 512 video inputs and supports real-time 
processing at 30 FPS. The maximum supported input resolution 
during inference reaches 2048 × 2048 for single-frame analysis 
on server-class GPUs, while training remains stable up to 1024 
× 1024 resolution due to attention memory scaling in the GCVT 
module. 

A. Dataset Description 

The Remote-Sensing Change Detection Dataset is a selected 
collection of significant remote-sensing change-detection 
datasets, including examples like WHU-CD, LEVIR-CD, and 
SYSU-CD. For each dataset, it supplies download links, relevant 
publications, and descriptions [26]. The repository represents a 
unified catalogue of several benchmark sets that can be used for 
tasks involving monitoring land-cover change, urban growth, 
and environmental disturbances. In below Table II shows the 
remote sensing change detection dataset details. 

The selection of LEVIR-CD and WHU-CD as primary 
benchmarks reflects their complementary characteristics in 
evaluating change detection under real-world remote-sensing 
conditions, including varying spatial resolutions, urban–rural 
diversity, and annotation granularity. LEVIR-CD emphasizes 
fine-grained building-level changes captured from high-
resolution imagery, enabling assessment of small-object 
sensitivity and boundary precision, while WHU-CD provides 
large-scale urban scenes with substantial temporal and structural 
variability, supporting evaluation of robustness to complex land-
cover transitions. However, inherent dataset biases influence 
reported generalization, as both benchmarks are dominated by 
urban environments and relatively regular man-made structures, 
which can favor models optimized for high-contrast and 
geometric features. Sensor homogeneity and limited seasonal 
diversity further reduce exposure to extreme atmospheric or 
phenological variations, potentially inflating cross-domain 
performance estimates. 
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TABLE II.  REMOTE SENSING CHANGE DETECTION DATASET 

Attribute Description 

Repository 

Name 

Remote-Sensing Change Detection Dataset 

GitHub Link https://github.com/rsdler/Remote-Sensing-Change-

Detection-Dataset 

Purpose To provide a centralized collection of benchmark datasets 

for change detection in remote-sensing imagery. 

Included 

Datasets 

WHU-CD, LEVIR-CD, SYSU-CD, CDD, and other 

open-source datasets. 

Data Type Multitemporal satellite and aerial images with annotated 

change masks. 

Applications Land-use change, urban expansion, deforestation, disaster 

impact analysis, and environmental monitoring. 

Content Dataset download links, papers, and documentation for 

each dataset. 

Key Benefit Offers standardized, publicly available datasets for deep-

learning-based remote-sensing change detection research. 
 

B. Recognition Accuracy (%) 

Fig. 3 illustrates their accuracy in recognition; these models 
will consist of CNN-RSIA, DL-RSOD, CNN-VAA, and the 
proposed EVIAR-Net. The various dataset sizes (1000–5000 
images) led to modest reductions in accuracy as the dataset 'size' 
increased and therefore, complexity increased. However, 
EVIAR-Net outperformed the models in all evaluation 
conditions while achieving 95% accuracy at 1000 images and 
91% accuracy at 5000 images. This indicates advantageous 
generalization, stability, and scalability in evaluation conditions 
regardless of data volume. 

 

Fig. 3. Recognition Accuracy (%). 

Recognition accuracy computation 𝐵𝑑  is expressed in 
equation 7 

𝐵𝑑 = (𝐸𝑄 + 𝐸𝑀) ∗
𝑈𝑄+𝑈𝑀

𝑈𝑄+𝑈𝑀+𝐸𝑄+𝐸𝑀
  × 100                      (7) 

This equation expresses the overall recognition accuracy in 
percentage. It evaluates how effectively the model identifies 
correct instances relative to all evaluated samples during 
classification or detection. 

In this equation,  𝑈𝑄  represents true positives, 𝑈𝑀 
represents true negatives, 𝐸𝑄 represents false positives, and 𝐸𝑀 
represents false negatives. 

An analysis of reduced-complexity variants was performed 
to examine whether simpler architectures with fewer 

components can approximate the performance of EVIAR-Net 
while improving deployability in constrained environments. A 
compact configuration that simplifies the multiscale spectral 
fusion and replaces the global–contextual transformer with 
lightweight attention mechanisms preserves most of the spatial 
discriminative capability, yielding competitive recognition 
performance in static and moderately noisy scenes. Further 
architectural reduction through the removal of the temporal 
encoder demonstrates that short-term spatial cues and frame-
level aggregation can sustain acceptable accuracy in scenarios 
with limited temporal variation, while reducing computational 
overhead and memory requirements. However, performance 
degradation becomes more evident in highly dynamic or cross-
domain settings, where long-term temporal modeling and global 
contextual reasoning play a critical role. 

C. F1-Score 

Fig. 4 shows the F1-score performance from 1000 to 5000 
images for CNN-RSIA, DL-RSOD, CNN-VAA, and EVIAR-
Net. While all models exhibit small reductions as dataset sizes 
increase, throughout this range, EVIAR-Net emerged as 
consistently having the best F1-Scores, ranging from 0.94 to 
0.90. This indicates EVIAR-Net has a superior precision/recall 
trade-off and robustness in very large, complex remote-sensing 
problems. The adaptive multi-source fusion of data and 
attention-based learning methods used in the modelling process 
appears to provide EVIAR-Net with a softer decline in accuracy 
and generalizability, relative to the different-sized datasets. 

 

Fig. 4. F1 Score. 

F1 score with dataset size ∆𝐸1 is expressed in equation 8, 

∆𝐸1 = (1 − 𝑀1) ∗
𝐸1,1−𝐸1,2

𝑀2−𝑀1
+ (1 − 𝐸1,2)                           (8) 

This expresses the rate of change in F1-score as dataset size 
increases. It evaluates how performance degrades with larger, 
more complex image collections. 

In this equation, F1-score decline rate, 𝐸1,1 − 𝐸1,2 are F1-

scores at dataset sizes 𝑀1 and 𝑀2 denote the respective dataset 
sizes. 

D. Intersection over Union (IoU %) 

Fig. 5 illustrates Intersection over Union (IoU) scores of 
various land-cover types in four different models, CNN-RSIA, 

https://github.com/rsdler/Remote-Sensing-Change-Detection-Dataset
https://github.com/rsdler/Remote-Sensing-Change-Detection-Dataset
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DL-RSOD, CNN-VAA, and EVIAR-Net. EVIAR-Net showed 
the highest level of IoU across all of the classes, with forest and 
agriculture maintaining an IoU of nearly 89%. The increase in 
segmentation accuracy through EVIAR-Net can be attributed to 
its ability to perform adaptive multi-source fusional processing 
and spatial-graph reasoning to predict points more accurately on 
the boundary and between wrapping context. As opposed to pre-
existing settings with other CNN models, EVIAR-Net shows 
improvements, achieving better spatial consistency and 
robustness in tackling varying land-cover classification tasks in 
the environment. 

 
Fig. 5. Intersection over Union (IoU %). 

Fundamental IoU definition 𝐽𝑜𝑈 is expressed in equation 9, 

𝐽𝑜𝑈 = (1 − 𝐵𝑔𝑡) ∗
𝐵𝑝𝑟𝑒𝑑∩𝐵𝑔𝑡

𝐵𝑝𝑟𝑒𝑑∪𝐵𝑔𝑡
  × 100                                (9) 

This equation defines the IoU metric used to evaluate 
segmentation accuracy. It quantifies how much the predicted 
area overlaps with the ground truth area, serving as a direct 
measure of spatial precision. 

In this equation, 𝐵𝑝𝑟𝑒𝑑  is the predicted segmentation region, 

and 𝐵𝑔𝑡 is the ground truth region of the same land-cover class. 

Class imbalance is mitigated by integrating focal loss with 
dynamically adjusted class weights derived from effective 
sample frequency, which amplifies the contribution of rare and 
underrepresented change classes during optimization without 
destabilizing convergence. Small and subtle changes are 
preserved through the Adaptive Multiscale Spectral Fusion 
mechanism, which maintains high-resolution feature pathways 
and enhances sensitivity to fine-grained spatial variations that 
are typically suppressed in deeper layers. Temporal encoding 
further reinforces rare-event detection by modeling consistent 
yet low-magnitude changes across time, reducing confusion 
with transient noise such as illumination shifts or atmospheric 
artifacts. In highly skewed datasets, uncertainty-aware gating 
suppresses dominant background classes during inference, 
enabling improved recall for infrequent change events while 
maintaining precision. 

E. Inference Speed (Frames per Second) 

Fig. 6 shows the inference speed. EVIAR-Net outperforms 
other models in frame rates across all resolutions, achieving 61 
FPS at a resolution of 256×256 and 45 FPS at a full, challenging 
resolution of 1280×1280. EVIAR-Net's modular architecture 
promotes efficiencies produced by a lightweight CNN-
Transformer architecture and a multi-source efficient fusion 
mechanism. Furthermore, unlike the traditional CNN-based 
models such as CNN-RSIA, DL-RSOD, and CNN-VAA, the 
EVIAR-Net provides a trade-off between the complexity of the 
model and real-time performance; thus, the model is highly 
scalable for remote sensing tasks and high-resolution mission 
contexts. 

 
Fig. 6. Inference Speed. 

Inference speed degradation ∆𝑟𝑒𝑠  is expressed in equation 
10, 

∆𝑟𝑒𝑠= (1 − 𝑆ℎ𝑖𝑔ℎ) ∗
𝐸𝑄𝑙𝑜𝑤−𝐸𝑄ℎ𝑖𝑔ℎ

𝑆ℎ𝑖𝑔ℎ−𝑆𝑙𝑜𝑤 
+ (1 + 𝐸𝑄ℎ𝑖𝑔ℎ)        (10) 

This quantifies the decline in inference speed as input 
resolution increases, assessing scalability and real-time 
capability under diverse image sizes. 

In this equation, 𝐸𝑄𝑙𝑜𝑤   and 𝐸𝑄ℎ𝑖𝑔ℎ are frame rates at lower 

and higher resolutions, and 𝑆𝑙𝑜𝑤   and 𝑆ℎ𝑖𝑔ℎ denote the 

corresponding pixel resolutions. 

F. Model Robustness under Noise 

Fig. 7 illustrates the robustness under different noise levels, 
indicating that EVIAR-Net has better stability of accuracy, even 
dropping to 94% at 5% noise and 86% at 25% noise. The 
performance of EVIAR-Net derives from its AMSF and spectral 
normalization, which both suppress noise and focus on features 
that have higher confidence estimates. The CNN-RSIA, DL-
RSOD, and CNN-VAA had marked deteriorations in accuracy. 
This shows EVIAR-Net has more reliability and tolerance to 
noise for practical applications of remote sensing data, where the 
sensor data is flawed or uncertain. 
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Fig. 7. Model Robustness Under Noise Levels. 

Robustness studies for EVIAR-Net included adversarial 
perturbations and synthetic artifacts to replicate difficult remote-
sensing circumstances. Structured occlusions similar to cloud 
shadows, sensor-specific distortions like line dropouts and band 
misalignments, geometric transformations representing 
viewpoint shifts, and adversarial pixel-level perturbations 
generated by FGSM and PGD to target high-sensitivity feature 
regions were used The network's accuracy, F1-score, and 
temporal consistency degraded under these circumstances. 
AMSF and GCVT modules successfully suppress localized 
occlusions and misaligned spectral bands, while uncertainty-
guided gating lowers adversarially disturbed areas that affect 
fusion. Time-based encoding prevents short-term disturbances 
from affecting final predictions by requiring consistency across 
frames. 

Accuracy under noise influence 𝐵𝑚 is expressed in equation 
11, 

𝐵𝑚 = 𝐵0 × (1 − 𝛾 ∗ 𝑀) +
1

(𝑀−𝐵0 )
                                  (11) 

This expresses the reduction in model accuracy as a function 
of noise intensity. It quantifies how accuracy declines 
proportionally with increasing noise levels introduced in the 
input data. 

In this equation,  𝐵0  is the baseline accuracy without 
noise, 𝛾is the sensitivity coefficient of the model to noise, and 
𝑀is the noise percentage or intensity. 

G. Cross-Domain Generalization Accuracy (%) 

Fig. 8 shows the evaluation across different domains, 
indicating that EVIAR-Net produces the greatest generalization 
accuracy across different remote sensing platforms such as 
Sentinel-2, Landsat-8, MODIS, UAV, and Hyperspectral 
datasets, with an accuracy of over 89% despite domain shifts in 
data, indicating strong adaptability to the varying detection 
conditions. This level of performance is due to the Adaptive 
Multi-Source Fusion (AMSF) and the Transformer 
(Transformer) based temporal encoder, which jointly learn 
spectral-spatial dependencies with inter-domain patterns. 
EVIAR-Net generalizes better to unseen domains in comparison 

with CNN-RSIA, DL-RSOD, and CNN-VAA by delivering a 
scalable and real-world environmental intelligence capability. 

 
Fig. 8. Cross-Domain Generalization Accuracy (%). 

Cross-domain accuracy computation 𝐵𝑐  is expressed in 
equation 12, 

𝐵𝑐 =
𝑈𝑄𝑐+𝑈𝑀𝑐

𝑈𝑄𝑐+𝑈𝑀𝑐+𝐸𝑄𝑐+𝐸𝑀𝑐
  × 100                                       (12) 

This equation defines the generalization accuracy across a 
specific target domain. It quantifies how well the model 
maintains accurate predictions when exposed to unseen data 
from a new sensing platform. 

In this equation,  𝑈𝑄𝑐   and 𝑈𝑀𝑐 are the true positive and true 
negative predictions, while 𝐸𝑄𝑐  and 𝐸𝑀𝑐 are the false positive 
and false negative predictions within the domain 𝑐. 

H. Energy Efficiency (Watts) 

Table III shows the energy efficiency comparison, EVIAR-
Net, shows lower energy requirements in all test conditions, by 
an average of 25–30% less than traditional CNN-based models. 
The architectural hierarchies (optimized), lightweight attention-
driven fusion, and quantized inference pipeline enhance energy 
and computational efficiency when deployed at the edge and 
cloud. Even in scenarios where high-resolution images are used, 
or at the edge of a UAV, EVIAR-Net always maintained low 
energy draw and accurate results, making it suitable for 
sustainable and real-time remote sensing and environmental 
monitoring applications. 

TABLE III.  ENERGY EFFICIENCY. 

Test Condition / 

Environment 

CNN-

RSIA 

DL-

RSOD 

CNN-

VAA 

EVIAR-

Net 

Low-Resolution Input 

(256×256) 

115 108 104 82 

Medium-Resolution 

Input (512×512) 

120 112 108 86 

High-Resolution Input 

(1024×1024) 

127 119 114 91 

UAV Edge Deployment 110 105 101 79 

Cloud Server Inference 
(Batch Mode) 

118 111 106 84 

 
Energy efficiency gain 𝐻𝑒𝑓𝑓 is expressed in equation 13, 
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𝐻𝑒𝑓𝑓 = (1 + 𝐹𝑏𝑎𝑠𝑒) ∗
𝐹𝑏𝑎𝑠𝑒−𝐹𝑚𝑜𝑑𝑒𝑙

𝐹𝑏𝑎𝑠𝑒
  × 100                     (13) 

This quantifies the relative energy efficiency gain of the 
proposed model compared to a baseline, showing the 
improvement achieved in energy conservation. 

In this equation, 𝐹𝑏𝑎𝑠𝑒 is the baseline energy consumption, 
and 𝐹𝑚𝑜𝑑𝑒𝑙  is the energy consumption of the evaluated model. 

I. Temporal Consistency and Change Detection Sensitivity 

(%) 

Table IV shows that the findings indicate that EVIAR-Net 
demonstrates the highest temporal consistency and change 
detection sensitivity throughout all time steps (t₁—t₅), rated 
above 89%. The temporal encoder based on the Transformer and 
the graph-convolutional reasoning facilitates consistent tracking 
of spatio-temporal patterns and small environmental changes. 
As opposed to the traditional CNN architecture, EVIAR-Net 
maintains continuity of the feature space over time while 
mitigating drift and noise. This contributes to the reliable 
detection of dynamic changes in land cover, vegetation, or 
human-made structures using changing remote-sensing data. 

TABLE IV. TEMPORAL CONSISTENCY AND CHANGE DETECTION SENSITIVITY 

(%) 

Time Step (t₁–

t₅) 

CNN-

RSIA 

DL-

RSOD 

CNN-

VAA 

EVIAR-

Net 

t₁ 80 83 85 93 

t₂ 79 82 84 92 

t₃ 78 81 83 91 

t₄ 76 80 82 90 

t₅ 75 79 81 89 

 
To enforce temporal consistency, a sliding-window 

majority-vote filter across consecutive frames was applied, 
smoothing sporadic false positives and ensuring that detected 
changes persisted consistently over time. Metrics such as F1-
score, precision, recall, and Intersection-over-Union (IoU) were 
calculated on these post-processed binary maps, with true 
positives defined by pixel-level overlap with ground-truth 
change annotations. Additionally, temporal consistency was 
quantified using the frame-to-frame agreement ratio, measuring 
the proportion of pixels with consistent labels across adjacent 
frames. 

Temporal consistency index 𝑈𝐶𝑗  is expressed in equation 

14, 

𝑈𝐶𝑗 = 1 −
𝑄𝑢−𝑄𝑢−1

𝑄𝑢+𝑄𝑢−1 
∗ (1 − 𝑄𝑢−1)                                   (14) 

This equation measures how consistent the model’s 
predictions remain across consecutive temporal frames. Higher 
values indicate more stable recognition of unchanged regions 
over time. 

In this equation, 𝑄𝑢 is the prediction probability at time 𝑢, 
and 𝑄𝑢−1 is the prediction probability at the previous time step. 

Intersection over Union (IoU) for change detection 𝑃𝑏  is 
expressed in equation 15, 

𝑃𝑏 =
𝑈𝑄+𝑈𝑀

𝑈𝑄+𝑈𝑀+𝐸𝑄+𝐸𝑀
                                                       (15) 

The Intersection over Union (IoU) equation quantifies the 
spatial overlap between the predicted change map and the 
ground truth reference. 

In this equation, 𝑈𝑄  denotes the true positives (correctly 

detected changed pixels), 𝑈𝑀  denotes the true negatives 
(correctly detected unchanged pixels), 𝐸𝑄  represents false 

positives (unchanged pixels incorrectly classified as changed), 
and 𝐸𝑀 represents false negatives (changed pixels missed by the 
model). 

The results confirm that EVIAR-Net would be more 
effective compared to the standard CNN-based models in all 
assessment variables. It has a higher accuracy on average, is 
more resistant to noise, has shorter inference time, and 
generalizes to other domains. Combined with its energy-
efficient architecture and time-stability, EVIAR-Net offers high 
performance, scalable, and real-time solutions to all types of 
remote-sensing and environmental monitoring applications and 
tasks. 

EVIAR-Net attains a mean recognition accuracy of 91.6% ± 
0.9, compared with 75.4% ± 1.6 for CNNs, 78.9% ± 1.4 for ViT 
models, and 70.8% ± 1.9 for LSTM-based architectures, 
corresponding to an average absolute accuracy gain of 
approximately 21%. Inference efficiency measurements on 
edge-compatible GPUs show an average latency of 18.2 ms ± 
0.7 per frame for EVIAR-Net, outperforming CNN (26.1 ms ± 
1.1), ViT (29.8 ms ± 1.3), and LSTM (31.5 ms ± 1.6) models, 
yielding a 30% improvement in inference speed. Generalisation 
performance under unseen geographic regions and acquisition 
conditions, measured via cross-domain F1-score, reaches 0.89 ± 
0.02 for EVIAR-Net, compared with 0.74 ± 0.04, 0.77 ± 0.03, 
and 0.69 ± 0.05 for CNN, ViT, and LSTM models, respectively. 
Energy efficiency analysis further indicates a 28–35% reduction 
in per-inference energy consumption relative to transformer-
based models. 

Data provenance and access control mechanisms are 
essential to ensure that heterogeneous datasets comply with 
licensing restrictions and institutional policies, particularly 
when high-resolution UAV or ground-level imagery captures 
sensitive infrastructure or personally identifiable information. 
Privacy-preserving aggregation and anonymization techniques, 
such as spatial obfuscation or differential privacy for fine-
grained geolocation data, mitigate risks of unintended disclosure 
while retaining analytical utility. Security implications include 
protecting data in transit and at rest through encryption and 
secure authentication, as well as safeguarding the fusion pipeline 
from adversarial manipulation or spoofing attacks targeting 
individual sensors. Governance frameworks must also address 
interoperability standards, metadata consistency, and 
auditability to enable transparent and accountable multi-source 
integration. 

V.  CONCLUSION AND FUTURE WORK 

The performance of EVIAR-Net is poised at the state of art 
analysis of multi-source remote sensing images using adaptive 
fusion, spatial-graph reasoning and transformer-based temporal 
encoding. It demonstrates high recognition accuracy, noise 
resistance, cross-domain generalization, and energy efficiency, 
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which support their application to real-time environmental 
intelligence. EVIAR-Net is an effective method that processes 
data of satellite, UAV, and hyperspectral modalities, with 
precise land-cover classification, object localization, and 
change-tracking. The model uses a lightweight architecture and 
adaptive learning, which are favorable to cloud and edge 
deployment. 

The way forward could be to include multilingual geospatial 
data, semi heterogeneous -supervised domain adaptation, and 
quantum-motivated optimization to greater computational 
efficiency. Adaptations of EVIAR-Net to 3D geospatial 
modeling and climate forecasting can increase the use cases. 
Using decentralized, privacy-preserving, continuous learning in 
smart environmental on-demand monitoring systems is going to 
be achieved by coupling real-time IoT sensor networks with 
federated learning paradigms. 
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