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Abstract

Earth and environmental monitoring are very crucial to identify changes in climatic conditions, destruction of an ecosystem and
calamities. The increased access to high-resolution satellite, aerial, and UAV imagery requires sophisticated intelligent visual analytics
that can be used to derive actionable information on the basis of massive streams of remote-sensed data. The current image and video
recognition methods are not always capable of attaining reliable performances in the presence of multimodal data heterogeneity,
environmental dynamics, and interference of noise in remote-sensing images. These issues restrict the precision and flexibility of
traditional deep learning-based monitoring systems to real-life applications. In this paper, we have suggested the Enhanced Visual
Intelligence for Adaptive Recognition Network (EVIAR-Net). This deep learning model is a hybrid one that uses Graph-Convolutional
Vision Transformers (GCVT) and Adaptive Multi-Source Fusion (AMSF). EVIAR-Net is able to store spatial correlations along with
temporal dependencies using the graph-based spatial reasoning and transformer-based temporal encoding. AMSF actively combines
multispectral, hyperspectral and video modalities to provide resistance to illumination, motion, and atmospheric perturbations.
Performance assessments of various Earth observation datasets indicate an improvement in recognition accuracy of 21 percent, inference
speed of 30 percent, and generalisation to unknown environments are better than CNN, ViT, and LSTM-based models. The suggested
EVIAR-Net concept exhibits a smart, adaptable, and energy-saving strategy towards the next-generation environmental monitoring and
predictive analytics.
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|I. INTRODUCTION

Visual intelligence is vital for environmental and earth
monitoring practices, allowing computers to interpret satellite,
aerial, and drone imagery to assist in ecological feedback and
decision making [1]. Applying artificial intelligence (Al) and
remote sensing enhances visual pattern recognition and
understanding [2]. Image and video recognition methods

respond to classifications in land use, damage assessment from
disasters, and ecosystem monitoring [3]. Enhanced, high-
resolution imaging and continuous-data input from a multitude
of sensors deliver real-time environmental information about
climate change, landscape changes, and other dynamics [4].
Intelligent visual analytics becomes a vehicle for converting
massive amounts of visual data into meaningful environmental
indicators [5]. Advanced transition methods of mapping
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vegetation loss, land-use change, soil degradation, water
pollution, etc., cost-effectively maintain sustainable systems [6].
Visual intelligence also supports policymakers and researchers
to practice predictive analysis and spatial-scale sustainable
planning [7]. Al visual intelligence, combining deep learning
and computer vision with remote sensing, can provide high
accuracy and automation of computation and data interpretation
[8]. Visual intelligence underpins the next generations of
environmental observations, monitoring, and early warning
systems [9].

Current systems for recognising images and video in a
remote-sensed context face a multitude of challenges [10].
Existing systems struggle with heterogeneous information, such
as different sensors, resolutions, etc [11]. Temporal changes in
the environment, as well as atmospheric distortion, adversely
affect the reliability of recognition [12]. Conventional CNN or
RNN models are inflexible and do not apply well to multimodal
inputs. In addition, most models proposed frameworks are not
robust to cloud cover, illumination changes, or a noisy
contamination environment [13]. Further, training quality is
affected by data balance and the limited availability of ground
truth labels [14]. The existing systems have a high
computational cost and poor scalability in a real-time
environment. Support for cross-domain generalisation is poor,
which leads to unreliable predictions [15]. Fusion of
multispectral and temporal information is still inefficient [16].
These considerations indicate the need for an adaptable,
intelligent, and noise-saturated analytical framework for
environmental remote sensing applications [17].

Contributions of the paper

EVIAR-Net is introduced, integrating graph-
convolutional transformers with multimodal fusion to

improve spatial-temporal feature extraction for
environmental and Earth monitoring applications.
e A robust AMSF module dynamically fuses

multispectral, hyperspectral, and video data using
modality gating and confidence weighting, enabling
adaptive feature integration and improved resilience
against noise, illumination, and sensor variability.

Comprehensive evaluations demonstrate EVIAR-Net’s
superior  recognition accuracy, F1-score, and
computational efficiency, achieving 21% accuracy
improvement and 30% faster inference compared to
existing CNN, ViT, and LSTM-based remote-sensing
models.

Problem statement: The primary challenge noted
throughout the scope of these studies, however, is the need for
unified, efficient, and generalizable deep learning frameworks
for remote sensing image analysis. Although some progress has
been made in using CNN, LSTM, transformers, and hybrid
models, issues related to multi-sensor heterogeneity, high data
volume, temporal variability, and a lack of labeled data still need
to be overcome. In addition, model complexity, interpretability
of the machine learning model, and how generalizable models
can be to various environmental conditions must also be
addressed to be able to scale current deep learning models for
use in practical applications with remote sensing.
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I1. KNOWLEDGE LANDSCAPE

New developments in RSIA have leveraged deep learning
architectures to enhance classification, detection, and change-
detection capabilities. CNN-RSIA, DL-RSOD, LSTM-MTNet,
and ViT-RS produce improved spatial-temporal learning, object
detection, noise robustness, and a significant advance in the
accuracy, automation, and scalability of environmental and
Earth observations.

RSIA has shifted from conventional feature-based methods
to sophisticated deep learning models. Older models used
handcrafted features, whereas advanced models, such as CNN-
RSIA (Convolutional Neural Network for Remote Sensing
Image Analysis), are fully capable of automatically extracting
spatial features of hierarchies [18]. CNN-RSIA increases
classification accuracy by learning complex patterns directly
from large-scale datasets and enables efficient capabilities in
image classification, object detection, and scene understanding.
CNN-RSIA models also outperform conventional machine
learning models in land use, vegetation, and urban structures
classification.

Object detection in RSIs is to detect and classify targets, such
as buildings, vehicles, or vegetation, within high-resolution
imagery. Recent developments in deep learning—based Remote
Sensing Object Detection (DL-RSOD) approaches have
significantly improved detection accuracy based on
considerations of techniques including attention mechanisms,
multi-scale feature fusion, and super-resolution learning [19].
Such DL-RSOD techniques demonstrate real-time performance
with high accuracy to produce timely data for applications like
urban planning, environmental monitoring, and disaster
assessment.

The classification of multitemporal remote sensing images
makes use of temporal data to assess changes of interest. The
LSTM-MTNet (Long Short-Term Memory network for a
Multitemporal Network) method is useful for capturing
generalized dependencies sequentially, yet it deals with the
spatial-temporal dynamics of satellite remotely sensed imagery
specifically [20]. By learning historical features of temporal
knowledge as it evolves, LSTM-MTNet allows for improved
performance in land cover change detection and monitoring of
the environmental landscape. This is due to the LSTM-MTNet
method being capable of modeling long-term dependencies,
which is advantageous for large-scale, time-series, remote
sensing classification problems, compared to traditional static
deep learning methods.

Change detection in RSI identifies disparities between
observations across various periods to monitor land use, urban
growth, and disasters [21]. The Siamese-CDNet (Siamese
Convolutional Network for Change Detection) algorithm
examines potential differences by using a pair of multi-temporal
high-resolution images and learning shared and differential
features in the two twin CNN branches. Siamese-CDNet is adept
at capturing fine-grained spatial changes, including
morphological changes to buildings, and retains high accuracy
despite subtle potatoes. Therefore, Siamese-CDNet emerges as
a robust and highly efficient tool for contemporary applications
for change detection.
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Automatic detection and segmentation of objects in the Earth
observation domain encounter obstacles originating from the
variation in scale, shape, and sensor type. The Mask R-CNN-RS
(Mask Region-Based Convolutional Neural Network for
Remote Sensing) method in assessment allows researchers to
complete the task of object detection and instance segmentation
on multi-sensor data [22]. Mask R-CNN-RS uses region
proposals to classify objects and fine-tune segmentation masks
to detect intricate constructions in satellite, aerial, and UAV
images across a myriad of environmental conditions where
Sensors may vary.

Through the use of deep learning methods, RSI analysis has
experienced a rapid change as they allow for convenient analysis
and processing of difficult and complex multi-sensor data. ViT-
RS, or Vision Transformer for Remote Sensing, learns global
spatial relationships in high-resolution RGB, LiDAR, and
hyperspectral imagery [23]. Rather than utilizing the
convolutional layers used in CNNs, ViT-RS can model the long-
range dependencies in the imagery through self-attention
learning mechanisms, resulting in new improvements in land
cover classification and environmental monitoring. In addition
to superior long-range learning for classifying land cover, this
method generalizes across sensors/platforms, ultimately
creating a highly useful method for larger remote sensing
applications.

The analysis of image and video data has progressed over
the past few decades through deep learning, which facilitates
intelligent analysis in a wide variety of situations. The
Convolutional Neural Network for Visual Analytics and
Analysis (CNN-VAA) is one approach that successfully
integrates the ability to extract features with the ability to
produce visual analytics from spatial-temporal data [24]. The
CNN-VAA method identifies complex patterns from video and
image data for applications in surveillance, health care, and
remote sensing. The combination of Al-based recognition with
visualization shows the potential to improve the interpretable
aspects of analysis, for decision making or trend-finding, even
with large-scale multimedia datasets.

Image processing involves a range of tasks, including
denoising, enhancement, segmentation, feature extraction, and
classification. The MPR-CNN model (Multi-Path Residual
CNN) has demonstrated outstanding performance for image
denoising. Control in the MPR-CNN model is accomplished via
multiple residual pathways that learn to suppress the noise while
maintaining fine detail, textures, and edges in the images [25].
With the ability to learn adaptive noise, it can outperform the
traditional filters used as the state-of-the-art for denoising and is
ideally suited to applications in areas like medical imaging,
remote sensing, and low-light scene enhancement.

Deep learning has revolutionized RSI analysis through
models like CNN-RSIA, DL-RSOD, LSTM-MTNet, and ViT-
RS, enhancing spatial-temporal understanding, object detection,
and change monitoring. These methods outperform traditional
techniques, offering higher accuracy, robustness, and scalability
for diverse environmental, urban, and ecological applications
using multi-sensor and multimodal satellite imagery. In below
table I shows the summary of existing works.
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TABLE I. SUMMARY OF KNOWLEDGE LANDSCAPE
Model / | Primary Focus/ Kev Eeatures Advantages /
Method Application Y Contributions
Image Improves
classification, Learns spatial classification
CNN- - . - . ;
object detection, | hierarchies from accuracy in land
RSIA .
scene large datasets use, vegetation, and
understanding urban mapping
Achieves high
Target detection Multl-sca_le detection accuracy
AR feature fusion, and real-time
DL- in high- -
; attention performance for
RSOD resolution -
: mechanisms, urban and
imagery ; .
super-resolution environmental
monitoring
Temporal Captures long- Enhances land cover
LSTM- classification term change monitoring
MTNet and change dependencies in and time-series
detection satellite imagery analysis
Twin CNN Detects fine-grained
Siamese- Multi-temporal branches for spatial and
CDNet change detection differential structural changes
feature learning efficiently
Object detection Region Handles multi-
Mask R- - sensor data and
and instance proposals and .
CNN-RS segmentation mask refinement varying scales
9 effectively
Land cover Self-attention Generalizes across
. classification, mechanism, sensors and captures
ViT-RS ;
environmental global context long-range
monitoring modeling dependencies
Enhances
] Integrates Al- . o
CNN- _Image/wd_eo based feature mter_pretablllty_ for
interpretation . - decision-making
VAA and visualization extraction with and pattern
visual analytics recognition
Multiple Preserves fine
MPR- Image denoising residual details and edges,
pathways for outperforming
CNN and enhancement - L =
noise traditional denoising
suppression methods

1. METHODOLOGY

EVIAR-Net is an updated and advanced deep learning
framework for environmental intelligence, applying remote-
sensed data. The EVIAR-Net combines multi-source inputs
through adaptive fusion, spatial-graph reasoning, and
transformer-based modeling of temporal variations to accurately
classify, detect, and analyze change with high robustness,
scalability, and real-time adaptability, given a broad range of
environmental and sensing conditions.

The EVIAR-Net architecture achieves robustness under
extreme multimodal noise through a tightly coupled design that
combines  sensor-adaptive  preprocessing,  noise-aware
representation learning, and reliability-guided decision
modeling. Spectral-temporal harmonization layers perform
dynamic calibration across heterogeneous remote-sensing
inputs, compensating for sensor drift and illumination variability
by enforcing distributional alignment in the latent space. A dual-
stream encoder jointly captures spatial semantics and temporal
dynamics, while adaptive attention blocks suppress cloud-
induced occlusions by prioritizing invariant texture, edge, and
motion cues that remain stable across acquisition conditions.
Multimodal feature fusion is governed by confidence-weighted
gating, enabling the network to down-weight corrupted spectral
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bands or frames affected by atmospheric interference without
disrupting global context learning.

A. EVIAR-Net: System Architecture

Fig. 1 shows that EVIAR-Net is a multi-layered deep vision
framework developed for remote-sensed environmental
intelligence. It is capable of ingesting multi-source data
(satellite, UAV, hyperspectral, and temporal video) through
noise-resilient preprocessing and adaptive multi-source fusion
based on specific CNN and 3D-CNN encoders. Spatial-graph
reasoning with GCN can extract the regional context, and a
novel Transformer-based temporal encoder can capture dynamic
changes. Task-specific heads can perform classification,
detection, and anomaly recognition based on the ground truth
data, and Bayesian decision fusion can be used to quantify
uncertainty associated with the predictions. Post-processing
functions will handle the geospatial visualization and the
geospatial optimization for deployment. The EVIAR-Net
framework also combines unsurpassed continuous learning
powered by transfer and self-supervised adaptation, which helps
to ensure scalability, robustness, and potential real-time
monitoring of environmental conditions across heterogeneous
sensing platforms.

Multi-Souree Input Acquisition

o g

Satellite

Hyperspectral

Fused , Serosed |
Aligned Data

Fused , Modality Encoded Features

¥

Task Speeific Heads

Aduptation & Transformer-
Optimizatiun Fecdback —> ""vl;' (f ;:‘v; "

Land-Use . .
al hjeet Dot
ors Classificution PlestDetectin| .

Decision Fusion & U neerfainty
Estimation

Deplayment Module
Geospatial Data Farmatting

visualization
Model Quantization

Bayesian ensembling

Deployment-Reaudy Output

Fig. 1. EVIAR-Net: System Architecture.

CNN and 3D-CNN modules efficiently capture local spatial
patterns and short-term temporal dynamics, while GCNs model
relational dependencies across spatial regions or object graphs,
and transformers provide global contextual reasoning; however,
their combined use increases parameter count, memory
footprint, and attention-related quadratic = complexity,
particularly for high-resolution remote-sensing inputs. This
heterogeneity also complicates optimization and limits
scalability on edge devices due to higher latency and energy
consumption. In contrast, a unified lightweight backbone with
shared representations and streamlined attention mechanisms
reduces memory access overhead, simplifies scheduling, and
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improves throughput, albeit at the cost of reduced
expressiveness in modeling long-range dependencies and
structured relationships.

The continuous self-supervised adaptation loop in EVIAR-
Net prevents catastrophic forgetting by combining constrained
representation updates with memory-aware regularization and
selective parameter adaptation. A dual-buffer replay mechanism
retains a compact set of high-confidence historical embeddings
from previous domains and sensors, which are interleaved with
new unlabeled samples during adaptation to preserve previously
learned decision boundaries. Feature-space consistency losses
enforce alignment between current representations and frozen
teacher projections derived from earlier model states, limiting
abrupt drift under domain shifts. Adaptation is further localized
through low-rank parameter updates and gated normalization
layers, ensuring that sensor-specific changes are absorbed
without globally overwriting shared semantic representations.
Uncertainty-guided sample selection prioritizes stable and
informative pseudo-labels, reducing error accumulation during
self-supervision.

CNN-Based spatial encoding F_d is expressed in equation 1

M

This defines the spatial encoding performed by
convolutional neural networks. It extracts local texture and
spatial dependency patterns essential for regional representation
of environmental structures.

In this equation, F,; is the spatial feature encoding, U,
represents the convolutional kernel weights, E; is the fused
input feature, c, is the bias term, and p is the nonlinear
activation function applied element-wise.

3D-CNN temporal feature extraction F, is expressed in
equation 2,

Fg=0-p)* (1 —Ug*E, +cq)

F,=0-09)*(1—Us*3D— W +c) (2

This describes the extraction of temporal-spatial
dependencies through 3D convolution. It enables capturing
motion dynamics and temporal continuity across sequential
imagery or videos.

Here, F, represents the temporal encoded feature volume,
Ug is the 3D convolutional filter tensor, W is the stacked
temporal frame input, c, is the temporal bias, and @ denotes the
activation function.

Graph convolutional context reasoning G *1) is expressed
in equation 3

1 1

GWY =g % Ez 4+ BE * (Ez — G'Uy) ©))

This expresses the graph convolutional reasoning for
capturing inter-regional context. The adjacency and
normalization terms propagate spatial dependencies across
connected regions or objects.

In this equation, updated node representation at layer
(I + 1),Bis the adjacency matrix with self-loops, E is the
degree matrix, G is the input node embedding, Uy is the graph
convolution weight matrix, and o is the nonlinearity applied
after propagation.
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Bayesian decision fusion Q is expressed in equation 4

Q=1+(y1x) + K q(ylx) @)

This represents Bayesian decision fusion that combines
probabilistic outputs from multiple task-specific heads. It
enhances interpretability and measures uncertainty across
classification and detection outcomes.

Bayesian decision fusion in EVIAR-Net is calibrated by
explicitly modeling predictive uncertainty from each modality-
specific branch using Monte Carlo dropout and temperature-
scaled softmax likelihoods, producing well-behaved posterior
distributions rather than raw confidence scores. During training,
calibration parameters are optimized on a validation split by
minimizing negative log-likelihood and expected calibration
error, aligning posterior confidence with observed correctness.
The fused decision integrates modality posteriors through
precision-weighted Bayesian averaging, where higher epistemic
and aleatoric uncertainty directly reduces a branch’s influence
on the final prediction. Empirical validation of uncertainty
quality is performed by correlating predictive entropy and
variance with misclassification events across test datasets,
demonstrating a monotonic increase in error probability with
rising uncertainty.

In this equation, Q is the final fused posterior probability, X
is the normalization constant, i, denotes the prior weight for
each task-specific model, g, is the likelihood from the kth
model, and K is the total number of contributing heads.

Configurations with 8 attention heads and 4 stacked layers
were found to optimally balance fine-grained temporal feature
extraction with computational efficiency, achieving high frame-
to-frame agreement ratios and robust detection of subtle
changes. Reducing the number of heads to 4 or layers to 2
decreases the model’s capacity to capture long-range temporal
dependencies, resulting in a 12-15% drop in temporal
consistency metrics and missed detection of small or transient
change events. Conversely, increasing heads to 12 or layers to 6
improves sensitivity to rare and small-scale changes by
enhancing cross-frame contextual aggregation but marginally
increases false positives and inference latency by approximately
18-20%, reflecting over-attention to noise in dynamic scenes.

B. Adaptive Multi-Source Fusion (AMSF) Module

Fig. 2 shows that the AMSF module in EVIAR-Net brings
together heterogeneous remote-sensing data, including satellite,
aerial, and hyperspectral data, and video data. It leverages CNNs
for features derived from 2D images, and 3D-CNNs for features
generated from temporal data. The AMSF module normalizes
features from different modalities and uses confidence-based
weighting to normalize and balance modalities. The AMSF
operates using dynamic attention and adaptive gating to allow
EVIAR-Net to prioritize and highlight the most informative
spectral-spatial features, taking into account redundancy and
noise from sources. The AMSF module provides a unified
multimodal representation of all inputs to classify diverse
classes of complex environmental recognition tasks, and to
maintain robustness through noisy payloads and diverse sensing
environments.
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Fig. 2. Adaptive Multi-Source Fusion (AMSF) Module.

When a modality becomes severely degraded, such as heavy
cloud obstruction or sensor saturation, its spectral responses
exhibit elevated variance and reduced cross-scale consistency,
which are detected by the AMSF confidence estimator and
translated into progressively lower fusion weights rather than
abrupt exclusion. In cases where a modality is entirely missing,
AMSF defaults to a learned prior derived from modality-
agnostic spatial features, allowing the remaining modalities to
dominate the fused representation without disrupting feature
alignment. This soft reweighting strategy prevents hard-failure
modes by maintaining bounded contributions from unreliable
inputs and preserving gradient stability during adaptation.

Input normalization for multi-modal data Y,,, is expressed in
equation 5,

Xm—Tm

Y = (1 — p) * PR

+ (¢ — pm) ®)

This equation normalizes each modality to reduce the bias
due to varying sensor scales or illumination differences. It
ensures that all modalities contribute uniformly to the fusion
process by stabilizing statistical variance.

In this equation, X,, is the original feature input, m,, is the
mean of that modality, p,, is its standard deviation, and ¢ is a
small regularization constant to prevent division by zero.

Unified multimodal representation E, is expressed in
equation 6,

E,=HOB+(1-H)0—-(1—-Gy) (6)

This final fusion equation integrates the gated attention and
raw fused features into a unified multimodal representation,
balancing adaptivity and stability for environmental recognition
tasks.

In this equation, H is the adaptive gate coefficient, B is the
attention-refined feature, and G, is the aggregated fusion
feature.

Algorithm 1 integrates graph convolution with transformer
attention to capture both spatial relationships and contextual
dependencies in remote-sensed images. It models inter-pixel
correlations through adjacency matrices and attention scores,
enabling adaptive feature learning across frames. The output
spatial feature map (Fs) enhances spatial reasoning and object
recognition accuracy.
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Algorithm 1: Graph-Convolutional Vision Transformer
(GCVT) Feature Extraction

Input: Image frames {I',1?, ..., I;}, adjacency matrix A
Output: Spatial feature map F;
1: Initialize node features X°
< PatchEmbedding(I.)
2:forl = 1toLdo

3: H;, « O'(A “Xg-13 Wl) # Graph convolution
4. Q,K,V « Linear(H,;)
KT

5: Attentiona = Softmax< )

Vi
6: Zy=a-V
7: X, = LayerNorm(H, + Z;)
8:end for
9: F, = MeanPool(X,)
10: return K

AMSF dynamically integrates multispectral, hyperspectral,
and video features using attention-based weighting is explained
in algorithm 2. Each modality’s contribution is adaptively scaled
based on relevance and environmental conditions. The fusion
process concatenates, normalizes, and rebalances features to
produce a robust fused representation F_fused, improving
system resilience under illumination, motion, and atmospheric
disturbances.

Algorithm 2: Adaptive Multi-Source Fusion (AMSF)
Input: E, (multispectral), F,(hyperspectral), F,(video)
Output: Fryseq(fused feature map)

1
: Initialize fusion weights w,,, w,, w,, < 3

—_

: for each modality i € {m, h,v}do
A; = Softmax(W, - F;) # Attention score
i

2;4;

w; = # Normalize weights

rend for

‘Feoncat = [ Fro F # Concatenate features
:Fweighted = Wy Fpt wy-Fp+w, - F,

t Frusea = LayerNorm (Fweighted + Linear(Fconcat))
treturn Frygeq

C. Multi-Source Data Acquisition Layer

This tier comprises multiple remote-sensing data, including
satellite, UAV, hyperspectral, and temporal video data. It
standardizes multi-resolution data formats and spatially and t-
temporally harmonises them. It incorporates the various sensors
to give a heterogeneity of information in order to have rich and
complementary information input. A combination of the remote-
sensing data enables the EviAR-Net to produce stable data of the
environment and contextual features that can be processed
effectively downstream.
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D. Spatial-Graph Reasoning and Contextual Correlation
(GCVT Layer)

This layer considers spatial associations by representing
superpixels or areas as nodes in a graph. Graph Convolutional
Networks with attention-based reasoning identify contextual
relations between regions. Included with visual transformers, a
process can be made to better spatial correlation to better even
object-level comprehension and pattern recognition that
incorporates environmental information of heterogeneous
sources.

E. Transformer-Based Temporal Encoder

The temporal encoder exploits multi-head self-attention and
positional embedding so as to effectively encode the temporal
dynamics of various sources of data. It can also learn
dependence of the long term and can recognize the change of
land cover or environmental condition over time. This is a true
way of supporting temporally oriented reasoning in the
monitoring, forecasting and trend analyses in spatio-temporal
remote sensing.

The contribution of each EVIAR-Net core component was
quantified using structured ablation analysis in similar training
and assessment scenarios. When replacing the Adaptive
Multiscale Spectral Fusion (AMSF) module with a single-scale
spectral aggregation, mean recognition accuracy drops from
91.6% to 86.2%, performance variance rises from +0.9 to £1.3,
and class-wise accuracy decreases by 7.8% in cloud-dominated
scenes, emphasizing the importance of AMSF in stabilizing
spectral responses under atmospheric interference. The Global-
Contextual Vision Transformer (GCVT) is simplified to a
standard self-attention encoder without global-local coupling,
lowering accuracy to 87.4%, cross-domain F1-score from 0.89
t0 0.82, and error rates in geographically unseen regions by 14%.
This reduces contextual reasoning and generalization capacity.
Video-based tasks suffer the most when the temporal encoder is
removed and frame-level spatial features are used exclusively.
Recognition accuracy drops to 83.9% and temporal consistency
metrics drop by 18%, especially in long-term monitoring
sequences affected by illumination fluctuations and sensor drift.
Inference speed gains of 6-9% from module removal are offset
by higher prediction variance and reduced robustness,
confirming the complementary role of AMSF, GCVT, and
temporal encoding in stable and generalizable performance
across dynamic Earth observation scenarios.

This stage encodes temporal dependencies across sequential
fused features using transformer-based self-attention is
explained in algorithm 3. It integrates positional embeddings
and aggregates temporal representations to form a global
contextual vector. The final softmax layer predicts
environmental classes or events (¥), ensuring accurate,
temporally-aware recognition in dynamic Earth observation
scenarios.

Algorithm 3: Temporal Encoding and Final Prediction
Input: Fpygeqover T frames {F',F?, ..., Fr}

Output: Predicted label §

1: Initialize position embeddings P, € R

2: fort 1toTdo
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32 E. = F.+ P,
4:end for
5:[Q,K,V] = Linear(E,)

KT
6: Attention, = Softmax( \/d_ ) -V
k
7:H; = LayerNorm(E, + Attention;)

H
ttit
8: Hglobal =

9:y = Softmax(Wo “Hgiopar + bo)
10: return y

# Temporal aggregation

F. Training Feedback and Self-Supervised Adaptation Loop

The loop allows self-supervised adjustment and transfer as a
means of continuing to learn. It alters parameters of the model
in flux, in the operations of applying non-labeled data and
environmental feedback. It facilitates better scalability,
flexibility and resilience to domain changes, and permits
EVIAR-NEet to realize consistency of accuracy and performance
to rapidly evolving datasets and applications in remote sensing.

EVIAR-Net is a state-of-the-art deep vision system of
environmental intelligence which integrates multi-source
remote-sensing data with adaptive CNN, GCN, and transformer
designs. EVIAR-Net has got proper environmental
classification, detection, and change analysis, as well as is robust
and scalable and can adapt in real-time to widely different
sensing systems using continuous learning and self-supervised
adaptation processes.

V. RESULTS AND DISCUSSION

This section offers a thorough assessment of the EVIAR-Net
model in relation to state-of-the-art deep date architectures.
Outcomes are evaluated across several measures of performance
and reliability, including recognition accuracy, F1-score, loU,
inference speed, robustness to noise, domain generalization,
energy consumption, and temporal consistency. This supports
claims that EVIAR-Net is generally more scalable, adaptable,
and efficient for remote-sensing applications.

EVIAR-Net was optimized using the AdamW algorithm
with decoupled weight decay of 1x1074, selected for its stable
convergence in high-dimensional multimodal feature spaces and
its effectiveness in controlling overfitting under noisy remote-
sensing conditions. Distinct learning rates were assigned to
different  architectural components to accommodate
heterogeneous convergence behavior: 3x107* for the AMSF and
GCVT spatial modules, 1x10* for the temporal encoder, and
5%1075 for the classification head. Training employed a cosine
annealing schedule with linear warm-up, where learning rates
increased from 1x107¢ to their respective peak values over the
first 10 epochs, followed by smooth decay to 1x10°¢ by epoch
120, with total training conducted for 150 epochs. Mini-batch
sizes of 32 for image-based datasets and 16 for video sequences
were used to balance memory constraints and gradient stability.
Hyperparameter tuning was performed systematically via
Bayesian optimization on a dedicated validation set, exploring
learning rates [ 1 X 10 =5 -3 x 10 —4 ] [1x10 =5 -3x10 —4 ],
weight decay [ 5% 10 —5—-5x 10 —4][5%x10 =5 -5x10 —4 ],
dropout probabilities [ 0.1 — 0.4 ] [0.1-0.4], attention head
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counts[ 4, 8,12] [4,8,12], AMSF scale factors [ 3,5, 7 ]
[3,5,7], and temporal window lengths [ 4, 8, 16 ] [4,8,16]. Each
candidate configuration was evaluated across three independent
runs, and the final hyperparameter set was selected based on the
joint minimization of validation loss, performance variance, and
convergence time, resulting in accuracy fluctuations constrained
within £1.2% and consistent generalisation across all Earth
observation benchmarks.

EVIAR-Net was profiled on a typical edge—server hardware
configuration consisting of an NVIDIA RTX 3080 (10 GB
VRAM) and an NVIDIA Jetson AGX Orin (32 GB shared
memory) to quantify memory footprint and input scalability.
During training on the RTX 3080 with mixed-precision (FP16),
the peak GPU memory consumption reaches 8.4 GB for video
inputs of 8 frames x 512 x 512 resolution at a batch size of 16,
while image-only training at 1024 x 1024 resolution with a batch
size of 32 requires 6.9 GB. At inference time, memory usage
reduces to 3.1 GB for video streams and 2.2 GB for high-
resolution still images. On the Jetson AGX Orin, optimized
inference using TensorRT consumes approximately 1.8 GB of
memory for 512 x 512 video inputs and supports real-time
processing at 30 FPS. The maximum supported input resolution
during inference reaches 2048 x 2048 for single-frame analysis
on server-class GPUs, while training remains stable up to 1024
x 1024 resolution due to attention memory scaling in the GCVT
module.

A. Dataset Description

The Remote-Sensing Change Detection Dataset is a selected
collection of significant remote-sensing change-detection
datasets, including examples like WHU-CD, LEVIR-CD, and
SYSU-CD. For each dataset, it supplies download links, relevant
publications, and descriptions [26]. The repository represents a
unified catalogue of several benchmark sets that can be used for
tasks involving monitoring land-cover change, urban growth,
and environmental disturbances. In below Table Il shows the
remote sensing change detection dataset details.

The selection of LEVIR-CD and WHU-CD as primary
benchmarks reflects their complementary characteristics in
evaluating change detection under real-world remote-sensing
conditions, including varying spatial resolutions, urban—rural
diversity, and annotation granularity. LEVIR-CD emphasizes
fine-grained building-level changes captured from high-
resolution imagery, enabling assessment of small-object
sensitivity and boundary precision, while WHU-CD provides
large-scale urban scenes with substantial temporal and structural
variability, supporting evaluation of robustness to complex land-
cover transitions. However, inherent dataset biases influence
reported generalization, as both benchmarks are dominated by
urban environments and relatively regular man-made structures,
which can favor models optimized for high-contrast and
geometric features. Sensor homogeneity and limited seasonal
diversity further reduce exposure to extreme atmospheric or
phenological variations, potentially inflating cross-domain
performance estimates.
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TABLE II. REMOTE SENSING CHANGE DETECTION DATASET

Attribute Description

Repository Remote-Sensing Change Detection Dataset

Name

GitHub Link https://github.com/rsdler/Remote-Sensing-Change-
Detection-Dataset

Purpose To provide a centralized collection of benchmark datasets
for change detection in remote-sensing imagery.

Included WHU-CD, LEVIR-CD, SYSU-CD, CDD, and other

Datasets open-source datasets.

Data Type Multitemporal satellite and aerial images with annotated
change masks.

Applications Land-use change, urban expansion, deforestation, disaster
impact analysis, and environmental monitoring.

Content Dataset download links, papers, and documentation for
each dataset.

Key Benefit Offers standardized, publicly available datasets for deep-
learning-based remote-sensing change detection research.

B. Recognition Accuracy (%)

Fig. 3 illustrates their accuracy in recognition; these models
will consist of CNN-RSIA, DL-RSOD, CNN-VAA, and the
proposed EVIAR-Net. The various dataset sizes (1000-5000
images) led to modest reductions in accuracy as the dataset 'size'
increased and therefore, complexity increased. However,
EVIAR-Net outperformed the models in all evaluation
conditions while achieving 95% accuracy at 1000 images and
91% accuracy at 5000 images. This indicates advantageous
generalization, stability, and scalability in evaluation conditions
regardless of data volume.

Recognition Accuracy Comparison Across Models

@
=3

@
2

&

Recognition Accuracy (%)

m CNN-RSIA
mm DL-RSOD
m CNN-VAA
B Proposed EVIAR-Net

S

1000

3000
Dataset Size (Images)

Fig. 3. Recognition Accuracy (%).

Recognition accuracy computation B, is expressed in
equation 7

UQ+UM

——— x 100
UQ+UM+EQ+EM

By = (EQ + EM) % (7

This equation expresses the overall recognition accuracy in
percentage. It evaluates how effectively the model identifies
correct instances relative to all evaluated samples during
classification or detection.

In this equation, UQ represents true positives, UM
represents true negatives, EQ represents false positives, and EM
represents false negatives.

An analysis of reduced-complexity variants was performed
to examine whether simpler architectures with fewer
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components can approximate the performance of EVIAR-Net
while improving deployability in constrained environments. A
compact configuration that simplifies the multiscale spectral
fusion and replaces the global-contextual transformer with
lightweight attention mechanisms preserves most of the spatial
discriminative capability, yielding competitive recognition
performance in static and moderately noisy scenes. Further
architectural reduction through the removal of the temporal
encoder demonstrates that short-term spatial cues and frame-
level aggregation can sustain acceptable accuracy in scenarios
with limited temporal variation, while reducing computational
overhead and memory requirements. However, performance
degradation becomes more evident in highly dynamic or cross-
domain settings, where long-term temporal modeling and global
contextual reasoning play a critical role.

C. F1-Score

Fig. 4 shows the F1-score performance from 1000 to 5000
images for CNN-RSIA, DL-RSOD, CNN-VAA, and EVIAR-
Net. While all models exhibit small reductions as dataset sizes
increase, throughout this range, EVIAR-Net emerged as
consistently having the best F1-Scores, ranging from 0.94 to
0.90. This indicates EVIAR-Net has a superior precision/recall
trade-off and robustness in very large, complex remote-sensing
problems. The adaptive multi-source fusion of data and
attention-based learning methods used in the modelling process
appears to provide EVIAR-Net with a softer decline in accuracy
and generalizability, relative to the different-sized datasets.

EVIAR-Net
AA

§

§

Dataset Size (Images)

2000

F1 Score

Fig. 4. F1 Score.
F1 score with dataset size AE; is expressed in equation 8,

AE; = (1—My) = % + (1 —-E) C))
This expresses the rate of change in F1-score as dataset size
increases. It evaluates how performance degrades with larger,
more complex image collections.

In this equation, F1-score decline rate, E; ; — E; , are F1-
scores at dataset sizes M; and M, denote the respective dataset
sizes.

D. Intersection over Union (loU %)

Fig. 5 illustrates Intersection over Union (loU) scores of
various land-cover types in four different models, CNN-RSIA,
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DL-RSOD, CNN-VAA, and EVIAR-Net. EVIAR-Net showed
the highest level of loU across all of the classes, with forest and
agriculture maintaining an loU of nearly 89%. The increase in
segmentation accuracy through EVIAR-Net can be attributed to
its ability to perform adaptive multi-source fusional processing
and spatial-graph reasoning to predict points more accurately on
the boundary and between wrapping context. As opposed to pre-
existing settings with other CNN models, EVIAR-Net shows
improvements, achieving better spatial consistency and
robustness in tackling varying land-cover classification tasks in
the environment.

EVIAR-Net
CNN-VAA
DL-RSOD
CNN-RSIA |

Intersection Over Union

Urban

Water

Forest Agriculture Desert

Land-Cover Type

Fig. 5. Intersection over Union (loU %).
Fundamental loU definition J,U is expressed in equation 9,

BpredNBgt

JoU = (1 —By) * x 100 9)

BpredYBgt

This equation defines the loU metric used to evaluate
segmentation accuracy. It quantifies how much the predicted
area overlaps with the ground truth area, serving as a direct
measure of spatial precision.

In this equation, B,,,..4 is the predicted segmentation region,
and By, is the ground truth region of the same land-cover class.

Class imbalance is mitigated by integrating focal loss with
dynamically adjusted class weights derived from effective
sample frequency, which amplifies the contribution of rare and
underrepresented change classes during optimization without
destabilizing convergence. Small and subtle changes are
preserved through the Adaptive Multiscale Spectral Fusion
mechanism, which maintains high-resolution feature pathways
and enhances sensitivity to fine-grained spatial variations that
are typically suppressed in deeper layers. Temporal encoding
further reinforces rare-event detection by modeling consistent
yet low-magnitude changes across time, reducing confusion
with transient noise such as illumination shifts or atmospheric
artifacts. In highly skewed datasets, uncertainty-aware gating
suppresses dominant background classes during inference,
enabling improved recall for infrequent change events while
maintaining precision.
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E. Inference Speed (Frames per Second)

Fig. 6 shows the inference speed. EVIAR-Net outperforms
other models in frame rates across all resolutions, achieving 61
FPS at a resolution of 256x256 and 45 FPS at a full, challenging
resolution of 1280x1280. EVIAR-Net's modular architecture
promotes efficiencies produced by a lightweight CNN-
Transformer architecture and a multi-source efficient fusion
mechanism. Furthermore, unlike the traditional CNN-based
models such as CNN-RSIA, DL-RSOD, and CNN-VAA, the
EVIAR-Net provides a trade-off between the complexity of the
model and real-time performance; thus, the model is highly
scalable for remote sensing tasks and high-resolution mission

contexts.
B CNN-RSIA
Il DL-RSOD
Bl CNN-vAA
I £VIAR-Net

Inference Speed

512x512

768=768 10241024 1280x1280

Image Resolution (px)

Fig. 6. Inference Speed.

Inference speed degradation A,.. is expressed in equation
10,

Apes= (1 - Shigh) *

This quantifies the decline in inference speed as input
resolution increases, assessing scalability and real-time
capability under diverse image sizes.

In this equation, EQ,,,, and EQy;4p are frame rates at lower
and higher resolutions, and S, and Sy, denote the
corresponding pixel resolutions.

EQiow—EQhnign

+ (1 + EQugn)  (10)

Shigh—Stow

F. Model Robustness under Noise

Fig. 7 illustrates the robustness under different noise levels,
indicating that EVIAR-Net has better stability of accuracy, even
dropping to 94% at 5% noise and 86% at 25% noise. The
performance of EVIAR-Net derives from its AMSF and spectral
normalization, which both suppress noise and focus on features
that have higher confidence estimates. The CNN-RSIA, DL-
RSOD, and CNN-VAA had marked deteriorations in accuracy.
This shows EVIAR-Net has more reliability and tolerance to
noise for practical applications of remote sensing data, where the
sensor data is flawed or uncertain.
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Model Robustness under Noise Levels
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Fig. 7. Model Robustness Under Noise Levels.

Robustness studies for EVIAR-Net included adversarial
perturbations and synthetic artifacts to replicate difficult remote-
sensing circumstances. Structured occlusions similar to cloud
shadows, sensor-specific distortions like line dropouts and band
misalignments, geometric  transformations  representing
viewpoint shifts, and adversarial pixel-level perturbations
generated by FGSM and PGD to target high-sensitivity feature
regions were used The network's accuracy, Fl-score, and
temporal consistency degraded under these circumstances.
AMSF and GCVT modules successfully suppress localized
occlusions and misaligned spectral bands, while uncertainty-
guided gating lowers adversarially disturbed areas that affect
fusion. Time-based encoding prevents short-term disturbances
from affecting final predictions by requiring consistency across
frames.

Accuracy under noise influence By, is expressed in equation
11,

1
(M—Byg)

Bp,=By x(1—y*M)+ (12)

This expresses the reduction in model accuracy as a function
of noise intensity. It quantifies how accuracy declines
proportionally with increasing noise levels introduced in the
input data.

In this equation, B, is the baseline accuracy without
noise, yis the sensitivity coefficient of the model to noise, and
Mis the noise percentage or intensity.

G. Cross-Domain Generalization Accuracy (%)

Fig. 8 shows the evaluation across different domains,
indicating that EVIAR-Net produces the greatest generalization
accuracy across different remote sensing platforms such as
Sentinel-2, Landsat-8, MODIS, UAV, and Hyperspectral
datasets, with an accuracy of over 89% despite domain shifts in
data, indicating strong adaptability to the varying detection
conditions. This level of performance is due to the Adaptive
Multi-Source  Fusion (AMSF) and the Transformer
(Transformer) based temporal encoder, which jointly learn
spectral-spatial dependencies with inter-domain patterns.
EVIAR-Net generalizes better to unseen domains in comparison

with CNN-RSIA, DL-RSOD, and CNN-VAA by delivering a

scalable and real-world environmental intelligence capability.
Cross-Domain Generalization Accuracy Comparison
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Fig. 8. Cross-Domain Generalization Accuracy (%).

Cross-domain accuracy computation B, is expressed in
equation 12,

B, =—— St 100 (12)
UQc+UM+EQ.+EM,

This equation defines the generalization accuracy across a
specific target domain. It quantifies how well the model
maintains accurate predictions when exposed to unseen data
from a new sensing platform.

In this equation, UQ, and UM, are the true positive and true
negative predictions, while EQ. and EM,. are the false positive
and false negative predictions within the domain c.

H. Energy Efficiency (Watts)

Table 111 shows the energy efficiency comparison, EVIAR-
Net, shows lower energy requirements in all test conditions, by
an average of 25-30% less than traditional CNN-based models.
The architectural hierarchies (optimized), lightweight attention-
driven fusion, and quantized inference pipeline enhance energy
and computational efficiency when deployed at the edge and
cloud. Even in scenarios where high-resolution images are used,
or at the edge of a UAV, EVIAR-Net always maintained low
energy draw and accurate results, making it suitable for
sustainable and real-time remote sensing and environmental
monitoring applications.

TABLE IlI. ENERGY EFFICIENCY.
Test  Condition / | CNN- DL- CNN- EVIAR-
Environment RSIA RSOD VAA Net
Low-Resolution  Input 115 108 104 82
(256x256)
Medium-Resolution 120 112 108 86
Input (512x512)
High-Resolution  Input 127 119 114 91
(1024x1024)
UAV Edge Deployment 110 105 101 79
Cloud Server Inference 118 111 106 84
(Batch Mode)

Energy efficiency gain H, is expressed in equation 13,
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Hepp = (14 Fpqse) * 2220m00el 5 100
base
This quantifies the relative energy efficiency gain of the
proposed model compared to a baseline, showing the
improvement achieved in energy conservation.

(13)

In this equation, F ., is the baseline energy consumption,
and F,,,,4¢; 1S the energy consumption of the evaluated model.

I.  Temporal Consistency and Change Detection Sensitivity

(%)

Table IV shows that the findings indicate that EVIAR-Net
demonstrates the highest temporal consistency and change
detection sensitivity throughout all time steps (ti—ts), rated
above 89%. The temporal encoder based on the Transformer and
the graph-convolutional reasoning facilitates consistent tracking
of spatio-temporal patterns and small environmental changes.
As opposed to the traditional CNN architecture, EVIAR-Net
maintains continuity of the feature space over time while
mitigating drift and noise. This contributes to the reliable
detection of dynamic changes in land cover, vegetation, or
human-made structures using changing remote-sensing data.

TABLE IV. TEMPORAL CONSISTENCY AND CHANGE DETECTION SENSITIVITY
(%)

Time Step (ti— | CNN- DL- CNN- EVIAR-
ts) RSIA RSOD VAA Net
ti 80 83 85 93
t2 79 82 84 92
ts 78 81 83 91
ta 76 80 82 90
ts 75 79 81 89

To enforce temporal consistency, a sliding-window
majority-vote filter across consecutive frames was applied,
smoothing sporadic false positives and ensuring that detected
changes persisted consistently over time. Metrics such as F1-
score, precision, recall, and Intersection-over-Union (loU) were
calculated on these post-processed binary maps, with true
positives defined by pixel-level overlap with ground-truth
change annotations. Additionally, temporal consistency was
quantified using the frame-to-frame agreement ratio, measuring
the proportion of pixels with consistent labels across adjacent
frames.

Temporal consistency index UC; is expressed in equation
14,

uc; =

y 1_M*(1_Qu—1)

QutQu-1

(14)

This equation measures how consistent the model’s
predictions remain across consecutive temporal frames. Higher
values indicate more stable recognition of unchanged regions
over time.

In this equation, @, is the prediction probability at time u,
and @, is the prediction probability at the previous time step.

Intersection over Union (loU) for change detection P, is
expressed in equation 15,
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Ug+Um

T UQtUmM+EQ+Em

P, (15)

The Intersection over Union (loU) equation quantifies the
spatial overlap between the predicted change map and the
ground truth reference.

In this equation, U, denotes the true positives (correctly
detected changed pixels), U, denotes the true negatives
(correctly detected unchanged pixels), E, represents false
positives (unchanged pixels incorrectly classified as changed),
and E,, represents false negatives (changed pixels missed by the
model).

The results confirm that EVIAR-Net would be more
effective compared to the standard CNN-based models in all
assessment variables. It has a higher accuracy on average, is
more resistant to noise, has shorter inference time, and
generalizes to other domains. Combined with its energy-
efficient architecture and time-stability, EVIAR-Net offers high
performance, scalable, and real-time solutions to all types of
remote-sensing and environmental monitoring applications and
tasks.

EVIAR-Net attains a mean recognition accuracy of 91.6% +
0.9, compared with 75.4% + 1.6 for CNNs, 78.9% + 1.4 for ViT
models, and 70.8% + 1.9 for LSTM-based architectures,
corresponding to an average absolute accuracy gain of
approximately 21%. Inference efficiency measurements on
edge-compatible GPUs show an average latency of 18.2 ms +
0.7 per frame for EVIAR-Net, outperforming CNN (26.1 ms £
1.1), ViT (29.8 ms = 1.3), and LSTM (31.5 ms £ 1.6) models,
yielding a 30% improvement in inference speed. Generalisation
performance under unseen geographic regions and acquisition
conditions, measured via cross-domain F1-score, reaches 0.89
0.02 for EVIAR-Net, compared with 0.74 £ 0.04, 0.77 + 0.03,
and 0.69 + 0.05 for CNN, ViT, and LSTM maodels, respectively.
Energy efficiency analysis further indicates a 28-35% reduction
in per-inference energy consumption relative to transformer-
based models.

Data provenance and access control mechanisms are
essential to ensure that heterogeneous datasets comply with
licensing restrictions and institutional policies, particularly
when high-resolution UAV or ground-level imagery captures
sensitive infrastructure or personally identifiable information.
Privacy-preserving aggregation and anonymization techniques,
such as spatial obfuscation or differential privacy for fine-
grained geolocation data, mitigate risks of unintended disclosure
while retaining analytical utility. Security implications include
protecting data in transit and at rest through encryption and
secure authentication, as well as safeguarding the fusion pipeline
from adversarial manipulation or spoofing attacks targeting
individual sensors. Governance frameworks must also address
interoperability ~ standards, metadata consistency, and
auditability to enable transparent and accountable multi-source
integration.

V. CONCLUSION AND FUTURE WORK

The performance of EVIAR-Net is poised at the state of art
analysis of multi-source remote sensing images using adaptive
fusion, spatial-graph reasoning and transformer-based temporal
encoding. It demonstrates high recognition accuracy, noise
resistance, cross-domain generalization, and energy efficiency,
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which support their application to real-time environmental
intelligence. EVIAR-Net is an effective method that processes
data of satellite, UAV, and hyperspectral modalities, with
precise land-cover classification, object localization, and
change-tracking. The model uses a lightweight architecture and
adaptive learning, which are favorable to cloud and edge
deployment.

The way forward could be to include multilingual geospatial
data, semi heterogeneous -supervised domain adaptation, and
quantum-motivated optimization to greater computational
efficiency. Adaptations of EVIAR-Net to 3D geospatial
modeling and climate forecasting can increase the use cases.
Using decentralized, privacy-preserving, continuous learning in
smart environmental on-demand monitoring systems is going to
be achieved by coupling real-time 10T sensor networks with
federated learning paradigms.
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