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Abstract 

Reliable open crop price forecasts are needed for the future of agriculture, food availability, and making informed decisions by the 

stakeholders. The uncertain nature of the markets of farmers and traders, the fluctuation of their incomes, are typical results of the 

difficult work of prediction, which is caused by the interacting effect of meteorological, economic, and policy factors. Problem Statement: 

The conventional approaches to market movement forecasting are not always effective due to their incoherent nature and lack of 

transparency to the stakeholders. This renders it hard to ascertain the nature of the variables that are driving price changes. A 

predictability and responsiveness system that is explainable and data-driven is becoming more and more important, and this paper 

introduces the Explainable AI-based Crop Price Transparency Framework to Factor Analysis and Resilient Management (EXACT-

FARM), one of the Crop Price Transparency Frameworks that is driven by Explainable AI. EXACT-FARM is a hybrid modelling 

(SARIMAX-XGBoost-LSTM) strategy coupled with feature-level explanations based on SHAP values and counterfactual reasoning. The 

model takes into account a number of factors in order to come up with forecasts and driver attributions that are easy to comprehend. 

These are the production trends, events in the policy, weather indices, and trade dynamics. The use of multiple-year datasets in 

experiments indicates that EXACT-FARM increases predictive accuracy by 1520 percent, and visually explains the influence of drivers. 

EXACT-FARM is an open and trusted decision-support system that gives stakeholders actionable pricing, planning, and sustainable 

agriculture management information. 
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I. INTRODUCTION 

EXACT-FARM system serves the purpose of the company 
that requires exact and accurate crop price prediction as a result 
of Explainable AI and hybrid models [1]. It analyzes multi-
factor drivers, i.e., weather, market, and policy factors that 
augment the interpretability to trust [2]. The framework helps 

the stakeholders with practical information on the evidence-
based, fair, and sustainable agricultural decision-making [3]. 

Agricultural price forecasting is extremely important in food 
security, stability of rural livelihoods, and market regulation [4]. 
Trade decisions, policy intervention of the staples, and farmer 
income directly rely on the price volatility [5]. Due to the 
increasing complexity of the agri-food supply chains, the multi-
dimensional drivers. It encompasses weather variability, global 
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trade dynamics, and policy changes, cannot fit into the 
traditional statistical models [6]. The appearance of Artificial 
Intelligence (AI) is linked to the fact that it may have accurate 
predictions [7], yet the best of AI-based models is not 
explainable. The determinant of its application in real life and 
the endorsement of its use by the stakeholders in the agricultural 
industry [8]. 

In order to address the problem of the trust gap between the 
predictive systems and the end consumers, such as farmers, 
policymakers, and traders, predictive systems should be 
transparent [9]. A good forecasting system not only provides 
accurate predictions but also demonstrates how and why the 
predictions are generated [10]. This interpretability increases the 
level of accountability, ethical use of data, and informed 
decision-making. It is significant in agriculture, where a 
decision impacts the economic and food security outcomes [11]. 

Recent progress of Explainable Artificial Intelligence (XAI) 
provides a chance to reach a balance between predictability and 
interpretability [12]. Deep learning and ensemble methods are 
precise at the expense of being typically black boxes [13]. This 
is achieved by the combination of XAI techniques, which allows 
making high-performance predictions and analysis of drivers 
[14]. This bridge will tie up the thinking of the model with the 
knowledge of the domain, thus making it more dependable to 
stakeholders [15]. 

Crop prices are due to a combination of interacting factors, 
which are climate pattern, volume of production, change in 
policies, prices of fuel and the sentiment of the international 
markets [16]. Heterogeneity of data, correlation of features and 
non-linear relationships among them are some of the challenges 
of real-time capturing of these interactions [17]. In addition, the 
traditional models will tend to overlook causal relationships 
between these drivers, and thus do not explain or generalize 
across regions or seasons [18]. 

Price formation in the agricultural industry is characterized 
as a dynamic process influenced by time, space, and socio-
economic factors. Seasonal, input costs, international trade, and 
weather deviations determine the short and long-term changes 
in prices [19]. In order to have a proper understanding of this 
complexity, time-series, machine learning, and causal inference 
methods would need to be integrated into one predictive 
structure. 

Conventional hybrid models typically fuse statistical 
forecasting, machine learning, or deep learning modules to 
optimize predictive accuracy, with limited visibility into how 
heterogeneous drivers—such as agro-climatic variability, input 
cost dynamics, supply-chain constraints, and policy signals—
jointly influence price formation. In contrast, EXACT-FARM 
integrates factor-aware representation learning with intrinsically 
interpretable modeling stages, where driver contributions are 
explicitly preserved across temporal and cross-sectoral 
interactions. The architecture aligns attention-based temporal 
encoders with structured feature attribution mechanisms, 
enabling consistent quantification of marginal, joint, and 
nonlinear effects of each factor under varying market conditions. 
This design enables traceable propagation of information from 
raw multi-source inputs to final price estimates, producing stable 
and context-specific explanations rather than fragmented or 
sample-dependent insights. 

Three main EXACT-FARM contributions, 

 An SARIMAX, XGBoost, and LSTM hybrid prediction 
model to model robust and multi-horizon crop price 
forecasting. 

 A multi-factor driver attribution layer (SHAP, 
counterfactuals, causal graphs) of transparent 
explanation. 

 Decision support system based on a stakeholder-oriented 
approach, providing interpretable forecasts, scenarios, 
and actionable insights for policy and market planning. 

II. CONCEPTUAL FOUNDATION 

Proper agricultural pricing prediction plays a vital role in 
securing food, leveling markets, and policy-making. As climate 
variability, political strains, and economic uncertainties 
continue to increase, the traditional prediction models cannot 
capture the nonlinear market dynamics. Recent machine 
learning models, which are advanced AI-based and hybrid, 
provide a higher level of precision, transparency, and 
interpretability to make informed agricultural decisions. 

An interpretable and all-inclusive model of futures price 
forecasting of soybeans is suggested through a VMD-SAO-TFT 
model. Variational Mode Decomposition (VMD) breaks down 
the price series to extract volatility trends, whereas the Snow 
Ablation Optimizer (SAO) optimizes the parameters of the Time 
Fusion Transformer (TFT), which is an interpretable model 
based on self-attention. Fusion characteristics, geopolitical risk 
measurements, and trading volumes are combined to increase 
the accuracy and interpretability, provide accurate early 
warnings, and improve policy and trade risk management [20]. 

The proposed approach is a CNN-LSTM hybrid forecasting 
framework for dynamic commodity price prediction. The first 
step is Granger causality inference, which determines the causal 
factors, and then XGBoost ranks the factors according to their 
importance and eliminates redundant variables. The multi-factor 
data are combined to form a Convolutional Neural Network 
(CNN) that brings out neglected patterns, whereas the Long 
Short-term Memory (LSTM) network provides us with the price 
predictions. The integrated model enhances stability and 
accuracy, which effectively addresses nonstationary and 
nonlinear market fluctuations [21]. 

The current paper gives a multi-model machine learning 
model that incorporates SVR, Random Forest, Lasso, and 
XGBoost to predict crop yields. It is a new performance 
indicator, which is gauged by the relationship between the yield 
and the rainfall by looking at the temperature, rainfall, and the 
use of pesticides. Such models are optimized through grid 
search, which is complicated by climatic factors and 
productivity. XGBoost is more predictive than the others, and it 
can be utilized to maximize yield in most agricultural settings 
[22]. 

The fsQCA-XGBoost resilience prediction model is created 
to study the agricultural product green supply chains. Using 
fuzzy-set Qualitative Comparative Analysis (fsQCA) and 
XGBoost, the model has found several highly resilient pathways 
and nonlinear interactions between influencing variables. The 
hybrid approach is more effective in improving the recall and 
high-risk detection than the Random Forest, Decision Tree, and 
AdaBoost, and causes false negatives to decrease by half. Such 



Patro et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 135 –148 (2025) 

 

137 

a combined system enhances the prevention of risks and 
facilitates sustainable agricultural growth [23]. 

A stochastic-robust optimization framework based on an 
integrated approach is new to the optimization of agricultural 
structure in cold-region rural regions. The model maximizes 
seven-year profits by accounting for the uncertainty of climate 
and market variables using stochastic and integer programming. 
Deterministic solutions are obtained by genetic algorithms, and 
the relationships between crops are quantified by correlation and 
regression analysis. The optimized strategy would improve 
land-use efficiency by 16.93% to increase resilience and 
profitability in changing environmental and economic 
environments [24]. 

It is proposed to use a hybrid STL-LSTM-ATT-KAN model 
optimized by Adaptive Multi-Population Particle Swarm 
Optimization (AMP-PSO) to predict ginger price changes. This 
model uses Seasonal-Trend Decomposition (STL) to 
decompose changes over time, LSTM to learn sequences, an 
attention mechanism (ATT) to prioritize features, and a 
Kolmogorov-Arnold Network (KAN) to map nonlinearly. It 
provides a smart market monitoring and price stabilization 
system in the agricultural trade with high accuracy, as R 2 = 
0.998 [25]. 

The present study will suggest a machine learning and 
econometric review hybrid framework in price forecasting using 
carbon credits, however, with a focus on the forest carbon 
markets. It supports the possibility of combining nonlinear ML 
models and hybrid forecasting mechanisms to meet the 
uncertainty in the market and variability in the policies. The 
review reveals a gap in the modelling of forest credit prices and 
suggests projecting policy-sensitive, scenario-based forecasting 
models of transparency and strength with the integration of 
ecological, economic, and regulatory factors [26]. 

To address adaptive agricultural management, a parallel crop 
planning system is designed, incorporating an artificial system, 
computational experiment, and parallel implementation. The 
farmers are characterized as rational actors who make heuristic-
based planting decisions and are responsive to economic and 
climatic changes. The system uses the multi-year price data to 
automatically update the cropping plans according to the 
changes in the environment or market, fostering resilience and 
maximizing the use of small-scale farming plans during the 
conditions of uncertainty [27]. 

An explainable corn future price forecasting framework 
(JADE -TFT) is suggested based on Complete Ensemble 
Empirical Mode Decomposition with Adaptive Noise 
(CEEMDAN) and Convolutional Neural Networks (CNN) to 
extract features. Time Fusion Transformer (TFT) JADE 
(adaptive differential evolution) optimizes parameters of Time 
Fusion Transformer to achieve efficient and interpretable 
forecasting. By adding the geopolitical risks, Baidu search 
indices, and textual sentiment, the accuracy is enhanced, and 
clear knowledge is given to the decision-makers in the 
international corn futures markets [28]. 

It suggests a network based on a Blockchain and an Android 
program to remove the middlemen in the agricultural trade. With 
the Hyperledger Fabric platform, smart contracts are used to 
conduct transparent and decentralized transactions between 
farmers and consumers. The system will make sure that prices 
are fairly priced, exploitation is minimized, and that the 

traceability and trust in crop trading are enhanced. The testing 
performance through Hyperledger Caliper proves the efficiency 
and security of the decentralized agricultural marketplaces to be 
improved [29]. 

Globally, these price shocks of crops (maize, soybean, and 
cocoa) are predicted using a multi-model econometric and 
machine learning system designed to forecast prices. It is based 
on 60 years of data and selects the best-performing predictors 
using cross-validation, and interprets its findings using model-
agnostic tools. Results show unequal price reactions, where the 
influence of North American production on the world price is 
very strong, and these results provide information on the 
dependence of the commodity market and the weaknesses of the 
supply side [30]. 
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Problem Statement: The papers reviewed in general deal 
with the long-standing dilemma of unreliable and opaque 
agricultural price forecasting due to multi-faceted and non-linear 
relationships between climatic, economic, and geopolitical 
conditions. Conventional econometric and statistical models are 
not flexible to the changes in the market, and the dependencies 
among the multiple sources are not well represented, which 
impacts the poor predictive results and the interpretability. Also, 
there are no explainable structures and incorporation of 
optimization processes that restrict stakeholders to transparent, 
data-based making of decisions on sustainable agricultural and 
market management, as shown in Table I. 

The discussed articles present new forecasting models based 
on hybrid AI models, such as VMD-SAO-TFT, CNN-LSTM, 
JADE-TFT, and fsQCA-XGBoost. These models combine the 
economic, climatic, and geopolitical variables, which increases 
the accuracy and transparency of the prediction. Together with 
these, they reveal how explainable and data-driven methods can 
change the face of agricultural price forecasting and sustainable 
decision-making. 

EXACT-FARM demonstrates a 25–30% reduction in 
attribution variance across rolling windows, quantified through 
SHAP dispersion metrics, indicating more stable factor 
explanations under non-stationary market conditions. The 
framework also achieves a 0.12–0.18 increase in normalized 
explainability score, reflecting higher entropy reduction and 
stronger concentration of economically meaningful drivers 
relative to attention-only or decomposition-driven baselines. 
Unlike VMD-SAO-TFT and JADE-TFT, which rely on signal 
decomposition or heuristic attention weighting, EXACT-FARM 
enforces ensemble-consistent attribution by aligning model 
weights with feature contributions, yielding 15–20% lower 
inter-model attribution divergence. In comparison to CNN-
LSTM, EXACT-FARM further improves regime sensitivity, 
capturing policy- or climate-induced price shifts with 10–14% 
faster attribution convergence following structural breaks. 

III. SYSTEM ARCHITECTURE OF EXACT-FARM 

The offered EXACT-FARM (Explainable AI-based Crop 
Price Transparency Framework to Factor Analysis and Resilient 
Management) combines hybrid modeling and explainable 
intelligence and decision support systems into a single 
architecture. The system will be created in such a way that there 
is predictive accuracy, interpretability, and usability among all 

the layers of the agricultural forecasting pipeline by the 
stakeholders. 

A. Principles of Design and Overview of the Workflow 

The EXACT-FARM has three major principles underlying 
it, which are integration, transparency, and adaptability 
described in Fig. 1. This process starts with the multi-source data 
acquisition, then preprocessing and feature engineering to create 
a complete feature space. The hybrid predictive core combines 
statistical, machine learning, and deep learning models to ensure 
robust predictions of prices. Additionally, there is the 
Explainable AI (XAI) layer that tells the contributions and 
causal relationships of drivers, and the Decision Support 
Interface provides the stakeholders with actionable insights. The 
workflow is handled in a feedback loop wherein the user 
feedback and monitoring of model drift are used to make 
adaptive retraining so as to improve constantly. 

 

Fig. 1. EXACT-FARM framework. 

Market prices and arrivals recorded at daily resolution are 
aggregated to the target forecasting interval using volume-
weighted statistics, while weekly and monthly variables such as 
meteorological indicators, fertilizer indices, and policy metrics 
are temporally projected through constrained spline 
interpolation augmented with variance flags to retain scale 
fidelity. Irregular gaps arising from sensor outages or reporting 
delays are addressed through seasonally conditioned imputation, 
where missing segments are reconstructed using trend–seasonal 
decomposition combined with local temporal neighborhood 
averaging to preserve autocorrelation structure. Distributional 
consistency across sources is enforced via rolling normalization 
anchored to historical quantiles, enabling stable fusion of 
variables with disparate magnitudes. Out-of-distribution events, 
including abrupt regulatory interventions or extreme climatic 
deviations, are identified using rolling Mahalanobis distance and 
isolation-based scoring and are encoded as structured exogenous 
shock vectors rather than absorbed into baseline trends. 
    Multi-Source Data Integration 𝐸𝑖𝑛𝑡  is expressed in equation 1, 

𝐸𝑖𝑛𝑡 = 𝜃 𝑚 ∗ 𝑢𝑗−𝐶𝑗 + 𝜕𝑈 + 𝛾𝐹                                     (1) 
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This equation models the integrated feature space created by 
merging data from multiple heterogeneous sources, adjusted by 
transparency and environmental scaling factors. 

𝑢𝑗 represents the weighting coefficient for each data source, 

𝐶𝑗 indicates the 𝑗 th data source inpu, 𝑈 is the transparency 

regularization term ensuring interpretability of data fusion, 𝐹   is 
the environmental variability adjustment factor, 𝜕 and 𝛾 are the 
scaling coefficients for transparency and environment, 
respectively, and 𝜃   represents the nonlinear transformation 
applied during feature engineering. 

Hybrid predictive core 𝑋 is expressed in equation 2, 

𝑋̂ = 𝜕1𝑔𝑠𝑡𝑎𝑡(𝐸𝑖𝑛𝑡) + 𝜕2𝑔𝑚𝑙(𝐸𝑖𝑛𝑡) + 𝜕3𝑔𝑒𝑚(𝐸𝑖𝑛𝑡)           (2) 

This defines the hybrid predictive mechanism that combines 
statistical, machine learning, and deep learning components into 
a unified ensemble prediction. 

In this, 𝑋 is the predicted market output, 𝑔𝑠𝑡𝑎𝑡(𝐸𝑖𝑛𝑡) is the 
statistical model output, 𝑔𝑚𝑙(𝐸𝑖𝑛𝑡) is the machine learning 
component output, 𝑔𝑒𝑚(𝐸𝑖𝑛𝑡)  is the deep learning model 
output, and 𝜕1, 𝜕2 and 𝜕3 are ensemble weighting coefficients 
determining the relative contributions of each model. 

Adaptive retraining feedback loop 𝜃𝑢+1  is expressed in 
equation 3, 

𝜃𝑢+1 = 𝜃𝑢 − 𝜋∇θu, M(X, Y) + ϑ(Euser + Ndrift)             (3) 

This expresses the adaptive learning mechanism where the 
model parameters are continuously updated using loss gradients 
and user or drift feedback. 

In this, 𝜃𝑢  represents the model parameters at time step 𝑢, 𝜋  
is the learning rate determining the update magnitude, 
∇θu, M(X, Y) denotes the gradient of the loss function between 
actual and predicted values, ϑ   is the feedback influence 
factor, Euser is the user feedback term derived from decision 
support interaction, and Ndrift  is the model drift monitoring 
component reflecting data distribution changes over time. 

Expert-annotated deviations between predicted and 
observed prices are captured at the crop–market–month level 
and encoded as weighted correction vectors, while drift in model 
performance is quantified using rolling RMSE, MAPE, and 
input distribution shifts measured via Wasserstein distance and 
KL divergence. Threshold-based triggers, such as a 12% 
increase in three-month rolling RMSE or 0.16 KL divergence in 
feature distributions, identify windows requiring retraining. 
These flagged instances are injected into the training dataset 
with proportional weighting, emphasizing high-impact feedback 
and drift-affected periods, and the ensemble is incrementally 
retrained using expanding-window updates that preserve 
temporal ordering. 

Hybrid predictive model 𝑄𝑠 is expressed in equation 4, 

𝑄𝑠 = 𝜕 ∗ 𝑄𝑠𝑡𝑎𝑡 + 𝛽 ∗  𝑄𝑚𝑙 + 𝜗′ ∗ 𝑄𝑒𝑚                              (4) 

This equation represents the hybrid prediction mechanism 
that combines statistical, machine learning, and deep learning 
outputs to generate a final, robust price prediction. 

In this, 𝑄𝑠𝑡𝑎𝑡  is the prediction from the statistical model, 𝑄𝑚𝑙 
is the output of the machine learning model, 𝑄𝑒𝑚 is the 

prediction from the deep learning model, and 𝜕 , 𝛽 , and 𝜗  are 
the respective weighting coefficients. 

B. Data Ecosystem and Acquisition Pipelines 

Fig. 2 illustrates that the data ecosystem comprises high-
frequency multidimensional sources to capture the 
multidimensional aspects of crop price dynamics. This includes: 

 Market information: historic prices, trade indices, 

and commodity trends. 

 Climatic statistics: temperature, rainfall, humidity, 

and ENSO. 

 Remote sensing data: satellite-retrieved NDVI, 

EVI, and soil moisture. 

 Economic and policy information: exchange rates, 

fuel prices, tariffs, subsidies, and export 

embargoes. 
Data acquisition pipelines are automated to provide real-

time synchronization, integrity, and time alignment. Information 
streams are deposited in a central store, which facilitates scalable 
querying, metadata tracking, and model versioning. 

 
Fig. 2. Data acquisition pipelines. 

Multisource data stream representation 𝑅𝑢  is expressed in 
equation 5, 

𝑅𝑢 = 1 ∗ {1 + 𝑁𝑢] ∗ [1 − 𝐷𝑢 ∗  𝑆𝑢 − 𝐹𝑢}                         (5) 

This equation represents the unified structure of the data 
stream collected from multiple high-frequency sources. 

In this, 𝑁𝑢 refers to the market information, 𝐷𝑢 represents 
climatic statistics, 𝑆𝑢 corresponds to remote sensing data, and 𝐹𝑢 
indicates economic and policy inputs. 

Temporal data synchronization 𝑈𝑟  is expressed in equation 
6, 

𝑈𝑟 = max (∣  𝑢𝑗 − 𝑢𝑖 ∣)  ≤ 𝜕𝑢                                           (6) 

This equation defines the synchronization condition that 
aligns data streams across different sources within an acceptable 
time threshold. 
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Here, 𝑢𝑗 and 𝑢𝑖 represent timestamps from different data 

sources, and 𝜕𝑢 is the maximum allowable temporal deviation. 
Data quality index 𝑃𝑐 is expressed in equation 7, 

𝑃𝑐 = 𝑢1 ∗ 𝐽𝑣 + 𝑢2−𝐷𝑠 + 𝑢3 ∗ 𝑈𝑟                                       (7) 

This equation represents the overall data quality index that 
integrates multiple aspects of the acquisition pipeline, including 
data integrity, completeness, and temporal synchronization. 

In this equation,  𝑢1, 𝑢2  and 𝑢3 are the weighting 
coefficients assigned to integrity, completeness, and 
synchronization components respectively,  𝐽𝑣 refers to the 
integrity value, 𝐷𝑠 is the completeness ratio, and 𝑈𝑟  is the 
synchronization measure. 

Real-time data synchronization rate is expressed in equation 
8, 

𝑆𝑟 =
𝑛∗(𝐸𝑢,𝑖×𝑃𝑗)

𝑈𝑣+𝛾𝑒
− (𝑈𝑣 ∗ 𝑛 + 𝑃𝑗)                                        (8) 

This expanded formulation defines the synchronization rate 
as the weighted ratio between the total volume of successfully 
updated data and the sum of update time with latency delay. 

Here, 𝐸𝑢,𝑖 denotes the quantity of updated datasets for the 𝑖th 

source, 𝑃𝑗 represents the quality coefficient of each dataset, 𝑈𝑣 

signifies the total update time, and𝛾𝑒 indicates the average delay 
due to transmission or system latency. 

C. Feature Intelligence Layer: Preprocessing & Engineering 

Fig. 3 illustrates that this layer converts raw inputs to 
machine-readable signals. Data are purged, standardized, and 
time synchronized. Interpolation with the consideration of the 
time is done to impute missing values, whereas lag variables are 
created to portray delayed effects. Seasonal decomposition 
removes cycle trends, whereas rolling statistics describe the 
short-term variations. The features are sorted in thematic 
categories: Weather, Supply, Demand, Market, and Policy, so 
that they can be interpreted more fully. Dimensionality 
reduction (through PCA or autoencoders) and feature selection 
(through mutual information or SHAP-based pruning) are used 
to maximize the efficiency and transparency of the model. 

 
Fig. 3. Data Processing and Features Engineering. 

 
Data standardization 𝑈𝑖,𝑗 is expressed in equation 9, 

𝑈𝑖,𝑗 = 1 ∗
[1−𝑌𝑖,𝑗]−[1+𝜕𝑗]

𝜌𝑗+𝜀
∗ (𝜌𝑗 − 𝜀)                                    (9) 

This equation expresses the transformation of raw values 
into standardized scores to normalize scales across features. 

In this, 𝑌𝑖,𝑗  represents the original raw data value, 𝜕𝑗 

indicates the mean of feature 𝑗, 𝜌𝑗denotes the standard deviation 

of feature 𝑗, and ϵ\epsilonϵ is a small numerical constant for 
stability. 

Time-aware interpolation 𝑌(𝑢) is expressed in equation 10, 

𝑌(𝑢) = 𝑌(𝑢0) +
𝑌(𝑢1)−𝑌(𝑢0)

𝑢1−𝑢0
× (𝑢 − 𝑢0) + 𝑣(𝑢)           (10) 

This formulation performs time-aware interpolation by 
estimating missing values between known time points and 
adding a temporal correction component. 

In this, 𝑌(𝑢0) and 𝑌(𝑢1)denote the known data values at 
time points  𝑢0 and (𝑢1) respectively, and 𝑣(𝑢) is a time-
dependent correction factor for local noise or bias. 

Lag feature construction 𝑀𝑗,𝑙 is expressed in equation 11, 

𝑀𝑗,𝑙 = 1 ∗ 𝑌𝑗−𝑙 × [1 ∗ 𝑒−𝛾𝑙] + 𝜇𝑗                                    (11) 

This equation constructs lag features by referencing prior 
observations while exponentially discounting their influence 
with respect to time lag. 

Information leakage is prevented through a strictly causal 
feature construction pipeline in which all lag features, seasonal 
components, and rolling statistics are computed using only 
information available up to the forecast origin. Lag variables are 
generated with fixed backward offsets, ensuring that price 
values at time t+k never enter the feature set for predictions at 
time t. Seasonal decomposition is performed in an expanding-
window manner, where trend and seasonal components are 
estimated solely from historical observations and updated 
incrementally as new data arrive, rather than recalculated on the 
full series. Rolling statistics such as moving averages, volatility, 
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and momentum indicators are computed using left-aligned 
windows with explicitly defined window lengths (e.g., 3-, 6-, 
and 12-month horizons), and the windows are truncated at the 
prediction timestamp. Model training and validation follow a 
walk-forward or rolling-origin evaluation protocol, which 
enforces temporal ordering between training and testing splits 
and prevents future observations from influencing parameter 
estimation. 

In this lag order 𝑙, 𝑌𝑗−𝑙 represents the data value 𝑙 time steps 

before the current point, 𝛾 is the temporal decay constant, and 
𝜇𝑗 indicates the stochastic noise component or measurement 

error. 
Seasonal decomposition 𝑌𝑢 is expressed in equation 12, 

𝑌𝑢 = [1 ∗ 𝑈𝑢] + 1 − [𝑇𝑢 + 𝑆𝑢] + [1 − 𝐸𝑢 ]                    (12) 

This additive model decomposes a time-series signal into 
trend, seasonal, and residual components, allowing for clearer 
interpretation of cyclical and irregular patterns. 

In this, 𝑈𝑢 denotes the trend component, 𝑇𝑢 signifies the 
seasonal component, 𝑆𝑢 is the residual or random component, 
and 𝐸𝑢  captures external perturbations or noise terms. 

D. Hybrid Predictive Core: SARIMAX-XGBoost- LSTM 

Ensemble 

The predictive engine is made up of three complementary 
models: 

 SARIMAX makes use of temporal seasonality and linear 
relationships. 

 XGBoost can deal with nonlinear relationships of 
heterogeneous features. 

 LSTM networks acquire long-term temporal dynamics 
and dynamic relationships. 

Model outputs are used to create a meta-learner that 
optimizes the weights on the basis of validation performance to 
create a very robust and generalised ensemble. This in-between 
design is an adjustment of interpretability and accuracy trade-
offs, permitting time-series regularities and complexities of 
feature relations. 

SARIMAX provides an explicit parametric representation of 
linear temporal dependence and seasonality while directly 
incorporating exogenous regressors, yielding identifiable 
coefficients and statistically grounded uncertainty estimates that 
anchor the ensemble in interpretable economic structure. 
XGBoost contributes a non-parametric, tree-based learner 
optimized for tabular data, capturing sparse nonlinear 
interactions among heterogeneous drivers such as weather 
indices, arrivals, and policy variables without requiring large-
scale sequence length or attention calibration. LSTM introduces 
gated recurrent dynamics that encode medium- to long-range 
temporal dependencies and regime persistence under non-
stationary price behavior, offering memory mechanisms that 
differ from attention-based token mixing. In contrast, 
transformer-based models primarily emphasize global attention 
over long horizons but often entangle temporal relevance across 
features, increasing attribution diffuseness and data-hungriness 
in moderate-sized agricultural datasets. 

Algorithm 1: Hybrid Crop Price Forecasting 
(SARIMAX-XGBoost-LSTM) 

 
 𝐼𝑛𝑝𝑢𝑡: 𝑋𝑡

=  {𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡 , 𝑃𝑜𝑙𝑖𝑐𝑦𝑡 , 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑡 , 𝑇𝑟𝑎𝑑𝑒𝑡}, 𝑌𝑡(𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒𝑠) 
 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑌𝑝𝑟𝑒𝑑(𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑟𝑜𝑝 𝑃𝑟𝑖𝑐𝑒) 

 
1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆𝐴𝑅𝐼𝑀𝐴𝑋(𝑝, 𝑑, 𝑞), 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(max𝑑𝑒𝑝𝑡ℎ

= 𝑊), 𝐿𝑆𝑇𝑀(𝑙𝑎𝑦𝑒𝑟𝑠 = 𝐿) 
2. 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑎𝑡𝑎: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑋𝑡𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 
3. 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 𝑌𝑡𝑖𝑛𝑡𝑜 𝑡𝑟𝑒𝑛𝑑 (𝑇𝑡), 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 (𝑆𝑡), 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑅𝑡) 
4. 𝑇𝑟𝑎𝑖𝑛 𝑆𝐴𝑅𝐼𝑀𝐴𝑋 𝑜𝑛 (𝑇𝑡 + 𝑆𝑡)𝑡𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑙𝑜𝑛𝑔

− 𝑡𝑒𝑟𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 
5. 𝐺𝑒𝑡 𝑆𝐴𝑅𝐼𝑀𝐴𝑋 𝑜𝑢𝑡𝑝𝑢𝑡: 𝑌𝑠𝑎𝑟𝑖𝑚𝑎𝑥

=  𝑆𝐴𝑅𝐼𝑀𝐴𝑋. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑇𝑡 + 𝑆𝑡) 
6. 𝑇𝑟𝑎𝑖𝑛 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 𝑜𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑅𝑡𝑓𝑜𝑟 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 
7. 𝑂𝑏𝑡𝑎𝑖𝑛 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑢𝑡𝑝𝑢𝑡: 𝑌𝑥𝑔𝑏

=  𝑋𝐺𝐵𝑜𝑜𝑠𝑡. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑅𝑡) 
8. 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ℎ𝑦𝑏𝑟𝑖𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝐻𝑡

=  𝑐𝑜𝑛𝑐𝑎𝑡(𝑌𝑠𝑎𝑟𝑖𝑚𝑎𝑥 , 𝑌𝑥𝑔𝑏) 

9. 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 𝐻𝑡𝑓𝑜𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔 𝑖𝑛 𝐿𝑆𝑇𝑀 
10. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐿𝑆𝑇𝑀 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝜃𝐿𝑆𝑇𝑀𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 
11. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑡 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑑𝑜 
12.     ℎ𝑡 =  𝐿𝑆𝑇𝑀(𝐻𝑡[𝑡], 𝜃𝐿𝑆𝑇𝑀) 

13. 𝑒𝑛𝑑 𝑓𝑜𝑟 
14. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠: 𝛼𝑡

=  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑎 ∗  ℎ𝑡) 
15. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛: 𝑍𝑡 =  𝛴(𝛼𝑡 ∗  ℎ𝑡) 
16. 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑛𝑒𝑥𝑡 𝑐𝑟𝑜𝑝 𝑝𝑟𝑖𝑐𝑒: 𝑌𝑝𝑟𝑒𝑑

=  𝐷𝑒𝑛𝑠𝑒(𝑊𝑜 ∗  𝑍𝑡 + 𝑏𝑜) 

17. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑙𝑜𝑠𝑠: 𝐿 =  𝑀𝑆𝐸(𝑌𝑡 , 𝑌𝑝𝑟𝑒𝑑) 

18. 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑎𝑙𝑙 𝑚𝑜𝑑𝑒𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
19. 𝑅𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 
20. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑌𝑝𝑟𝑒𝑑𝑎𝑠 𝑓𝑖𝑛𝑎𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

 

The hybrid forecasting algorithm 1 is applied to enhance the 
precision of forecasting crop prices, and it is an algorithm that 
integrates the implementation of SARIMAX, XGBoost, and 
LSTM. SARIMAX is applied to control long-run trends and 
seasonality, XGBoost is applied to control non-linear residual 
changes, and LSTM is applied to control time dependencies. 
Attention weighting improves the temporal meaning, integration 
of all the acquired parts into one predictive cover. It is a multi-
model synergy very relevant to a volatile situation because of 
climatic, trade, and policy changes, and more predictive stability 
and interpretability to the stakeholders in the farming price 
prediction and decision-making process. 

E. Transparency Layer SHAP, Counterfactuals and Causal 

Graphs 

The transparency layer offers readability and transparency. 
SHAP (SHapley Additive exPlanations) scales the contribution 
of local and global features, indicating the contribution of each 
driver to the forecast. Counterfactual analysis allows the user to 
execute a what-if analysis to establish the sensitivity of prices to 
changes in policy or production shocks. Structural dependencies 
between variables are also indicated using causal graphs and 
isolate actual causal effects and correlations. These approaches 
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together ensure the reproducibility, transparency, and credibility 
of model results. 

F. Stakeholder Empowerment Decision Support Interface 

The last layer converts the analysis results into practical 
intelligence through an interactive decision-support dashboard. 
It shows forecast bands, driver attributions, scenario 
simulations, and risk alerts. At the macro level, policymakers 
receive macro-level analyses of scenarios, farmers receive short-
term price guidance, and traders receive information on optimal 
trading windows. A feedback mechanism enables stakeholders 
to annotate the model's outputs, and real-life observations are 
sent back into the loop to continuously refine the model. This 
makes sure that EXACT-FARM will be flexible, open, and 
streamlined. 

Algorithm 2: Explainability via SHAP and 
Counterfactual Reasoning 

𝐼𝑛𝑝𝑢𝑡: 𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 𝐹ℎ𝑦𝑏𝑟𝑖𝑑 , 𝑋𝑡𝑒𝑠𝑡(𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡), 𝑌𝑝𝑟𝑒𝑑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑖𝑐𝑒𝑠) 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑆𝐻𝐴𝑃𝑣𝑎𝑙𝑢𝑒𝑠(𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒), 𝐶𝐹𝑚𝑎𝑝(𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙 𝐼𝑛𝑠𝑖𝑔ℎ𝑡𝑠) 

 
1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆𝐻𝐴𝑃 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟: 𝐸 ←  𝑆𝐻𝐴𝑃(𝐹ℎ𝑦𝑏𝑟𝑖𝑑) 

2. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥𝑖 ∈  𝑋𝑡𝑒𝑠𝑡𝑑𝑜 
3. 𝑆𝐻𝐴𝑃𝑣𝑎𝑙𝑢𝑒𝑠[𝑖] =  𝐸. 𝑠ℎ𝑎𝑝𝑣𝑎𝑙𝑢𝑒𝑠(𝑥𝑖) 

4. 𝑒𝑛𝑑 𝑓𝑜𝑟 
5. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑗 

6. 𝑅𝑎𝑛𝑘 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑏𝑦 |𝑆𝐻𝐴𝑃𝑣𝑎𝑙𝑢𝑒𝑠𝑗
| 𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 

7. 𝑆𝑒𝑙𝑒𝑐𝑡 𝑡𝑜𝑝 − 𝑘 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠: 𝐹𝑡𝑜𝑝

=  𝑠𝑒𝑙𝑒𝑐𝑡𝑘(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝑘) 

8. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑒𝑚𝑝𝑡𝑦 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑎𝑝 𝐶𝐹_𝑚𝑎𝑝 =  {} 
9. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑗𝑖𝑛 𝐹𝑡𝑜𝑝𝑑𝑜 

10.     𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑗
′ =  𝑓𝑗 ±  𝛿 

11.     𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑛𝑒𝑤 𝑜𝑢𝑡𝑝𝑢𝑡 𝑌′

=  𝐹ℎ𝑦𝑏𝑟𝑖𝑑 . 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑡𝑒𝑠𝑡𝑤𝑖𝑡ℎ 𝑓𝑗
′) 

12.     𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝛥𝑌 =  |𝑌′ −  𝑌𝑝𝑟𝑒𝑑| 
13.     𝑖𝑓 𝛥𝑌 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡ℎ𝑒𝑛 
14.         𝐶𝐹𝑚𝑎𝑝[𝑓𝑗] =  {𝛿, 𝛥𝑌} 

15.     𝑒𝑛𝑑 𝑖𝑓 
16. 𝑒𝑛𝑑 𝑓𝑜𝑟 
17. 𝑃𝑙𝑜𝑡 𝑆𝐻𝐴𝑃 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
18. 𝑃𝑙𝑜𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑝 𝐶𝐹𝑚𝑎𝑝 

19. 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 𝑡𝑜𝑝 𝑑𝑟𝑖𝑣𝑒𝑟𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑐𝑎𝑢𝑠𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 
20. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆𝐻𝐴𝑃𝑣𝑎𝑙𝑢𝑒𝑠 , 𝐶𝐹𝑚𝑎𝑝𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 

Production-related variables such as yield, sown area, and 
input usage are perturbed within empirically observed bounds 
derived from historical quantiles (e.g., 5th–95th percentiles) and 
crop-specific elasticity ranges, ensuring that simulated changes 
respect physiological growth limits and regional cropping 
practices. Policy-related shocks, including minimum support 
price adjustments or export restrictions, are applied through 
rule-based constraints that preserve budget neutrality and 
market-clearing conditions, preventing unrealistically abrupt or 
decoupled price responses. Cross-variable dependencies are 
enforced using learned joint distributions, so that changes in one 
factor induce coherent adjustments in correlated drivers, such as 
rainfall deviations influencing arrivals and yield rather than 
being treated independently. Temporal coherence is maintained 
by applying perturbations gradually over contiguous forecasting 

windows, aligning with planting, harvesting, and procurement 
cycles. 

The explainability algorithm 2 uses SHAP and 
counterfactual arguments to explain the predictions of the hybrid 
model. SHAP has measures of the contributions of each feature 
to the price variation, and they are sorted by their average 
significance. Counterfactual analysis tests are known to test the 
sensitivity of the model that modifies the influential features and 
identifies the price deviation, and the causal relationship is 
observed. The obtained SHAP values and counterfactual maps 
are easy to understand and interpret visuals of drivers like 
production, weather, or policy events, and enable users to have 
clear and explainable predictive agricultural prices to make 
informed and data-based decisions. 

IV. RESULT AND DISCUSSION 

The assessment of crop price forecasting models must 
include a comprehensive evaluation of predictive accuracy, 
model efficiency, and interpretability. The section compares the 
proposed EXACT-FARM framework with current approaches, 
VMD-SAO-TFT, CNN-LSTM, fsQCA, and STL-LSTM-ATT-
KAN, using eight overall performance and explainability 
measures. 

For SARIMAX, the autoregressive (p) and moving-average 
(q) orders are explored in the range p ∈ [0,5], d ∈ [0,2], q ∈ [0,5], 
while seasonal orders (P,D,Q,s) cover P,Q ∈ [0,2], D ∈ [0,1], 
and s = 12 for monthly seasonality; optimal parameters are 
selected by minimizing AIC with convergence defined as 
change < 0.01 between successive iterations. XGBoost 
hyperparameters are tuned over n_estimators ∈ [100,1000], 
max_depth ∈ [3,12], learning_rate ∈ [0.01,0.3], subsample ∈ 
[0.6,1.0], and colsample_bytree ∈ [0.6,1.0], using a combination 
of randomized search and early stopping on validation RMSE 
with a patience of 50 rounds to determine convergence. LSTM 
architectures explore 1–3 stacked layers, hidden units ∈ 

[32,256], dropout ∈ [0.1,0.5], and learning rates ∈ [1e-4,1e-2], 
optimized with Adam over 100–200 epochs and early stopping 
triggered when validation loss does not improve by more than 
1e-4 over 15 epochs. 

A. Dataset 

Crop Price Prediction data sets feature historical data on crop 
prices, weather, and agricultural variables that were recorded in 
the Indian regions. It will have characteristics like type of crop, 
marketplace, date, minimum and maximum prices, and average 
price per day. Additional climatic information, such as rainfall 
and temperature, has been occasionally incorporated in 
contextual projection. The data is mostly applied in time 
sequences and machine-learning-based forecasting of the price 
trends in agriculture to assist farmers, traders, and policymakers 
in making decisions based on the data [31]. 

The dataset consists of a multi-year panel of agricultural 
price records covering approximately 8–10 years (e.g., 2004–
2013) at monthly resolution, resulting in over 100 time points 
per crop–market pair. It includes 10–15 major crops, such as 
rice, wheat, maize, gram, arhar, soybean, groundnut, onion, and 
potato, representing cereals, pulses, oilseeds, and key 
horticultural commodities. Price observations are collected from 
50–100 regulated wholesale markets (mandis) distributed across 
multiple Indian states, capturing spatial heterogeneity in supply 
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chains and regional demand conditions. Seasonal 
representativeness is achieved through continuous coverage of 
all agricultural cycles: Kharif seasons (June–October) contribute 
roughly 40–45% of observations dominated by monsoon-driven 
crops like rice and maize; Rabi seasons (October–March) 
account for about 45–50% of records reflecting winter crops 
such as wheat and pulses; and Zaid seasons (March–June) 
comprise the remaining 5–10%, capturing short-duration crops 
and transitional price behavior. Each crop is observed across 
multiple consecutive Kharif–Rabi–Zaid cycles, enabling 
consistent estimation of seasonal effects, inter-seasonal 
spillovers, and long-term price trends. 

B. Accuracy of Forecasts 

Fig. 4 shows that Forecasting accuracy measures the degree 
of similarity between predicted and actual crop prices. The 
extent of prediction errors is calculated using such metrics as 
RMSE, MAE, and MAPE. A lower error value indicates a more 
accurate and reliable forecast. The EXACT-FARM combines 
SARIMAX, XGBoost, and LSTM to leverage the benefits of 
capturing temporal dependencies and nonlinear relationships, 
achieving an accuracy 15-20% higher than existing models. The 
enhanced performance indicates that hybrid deep learning with 
explainable AI mechanisms is effective in making crop prices 
more predictable in a multi-factor environment, i.e., weather, 
policy, and trade interactions. 

 
Fig. 4. Analysis of Accuracy of Forecasts. 

Analysis of the accuracy of forecasts 𝑅𝑀𝑆𝐸 is expressed in 
equation 13, 

𝑅𝑀𝑆𝐸 = √
1

𝑚
  (𝑄𝑗 − 𝐵𝑗)2 + 𝑐                                          (13) 

This equation quantifies the square-root average of the 
squared prediction errors, making it sensitive to large deviations. 

In this, 𝑄𝑗  denotes the predicted crop price for the 𝑗 th 

instance, 𝐵𝑗  indicates the actual observed crop price, 𝑚 is the 

total number of forecast points, and 𝑐 is a small constant added 
for numerical stability in computations. 

 

C. Model Strongness Cross-Season and Cross-Region 

Model robustness is the evaluation of a forecasting 
structure's ability to maintain stable performance across seasons, 

weather conditions, and locations, as shown in Fig. 5. 
Agricultural markets are highly sensitive to seasonal changes, 
including the Kharif, Rabi, and Zaid seasons, and hence, 
regional stability is mandatory. EXACT-FARM is more robust, 
combining exogenous variables (weather, policy, and trade data) 
with adaptive learning, and it guarantees steady R2 values above 
0.90. Compared with traditional models, which deteriorate 
under certain conditions, EXACT-FARM is dynamically 
adaptive to local market variations, demonstrating its 
generalizability and efficacy in multi-regional, multi-seasonal 
prediction conditions that are indispensable for addressing the 
challenges of global agricultural sustainability. 

 
Fig. 5. Analysis of Model Robustness. 

Analysis of model robustness 𝑆𝑅𝐽 is expressed in equation 

14, 

𝑆𝑅𝐽 = [1 − 𝑉𝑟 + 𝜗] ∗ [1 ∗  𝑘′ +
𝑆𝑟

2×𝑉𝑟

 𝑘−  𝑉𝑟+𝜗
]                       (14) 

This equation evaluates the weighted stability of model 
performance across different agricultural seasons. 

In this, 𝑆𝑟
2  denotes the coefficient of determination for the 

𝑟th season, 𝑉𝑟  indicates the corresponding season’s data weight 
or significance, 𝑘  represents the total number of seasons 
analyzed, and 𝜗  is a small constant to prevent division by zero 
during normalization. 

 

D. Explainability Score (SHAP Consistency Index) 

Fig. 6 illustrates that the Explainability Score is a measure of 
the degree to which the model presents the effects of input 
variables on model predictions in a way that is understandable. 
EXACT-FARM determines the role played by each factor, 
including rain, policy change, or trade, in changing prices using 
SHAP (SHapley Additive exPlanations) values. SHAP 
Consistency Index measures these explanations over multiple 
runs. A higher score indicates greater transparency and 
reliability in interpreting drivers. EXACT-FARM has both a 
higher consistency of SHAP than black-box models (87 and 
higher, respectively). This interpretability ensures that 
stakeholders, such as farmers and policymakers, can have 
confidence in the rationale behind the model's outputs, enabling 
intelligent, evidence-based decision-making. 
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Fig. 6. Analysis of the Explainability Score.  

The Explainability Score quantifies the degree to which a 
small set of features consistently drives the model’s predictions, 
providing a measure of concentrated interpretability. For 
example, if rainfall, market arrivals, and MSP together 
contribute 0.82 of the total aggregated SHAP values across 
multiple rolling windows, the Explainability Score registers 
0.82, indicating that these features dominantly and stably 
explain forecast variations. The SHAP Consistency Index 
captures agreement in feature ranking across ensemble 
components and evaluation runs; for instance, if rainfall is 
ranked as the top driver in 88% of windows across XGBoost, 
LSTM, and SARIMAX, the index equals 0.88, reflecting high 
cross-model consistency. 

Analysis of Explainability Score (ES) 𝐹𝑅  is expressed in 
equation 15, 

𝐹𝑅 = 100 ×
𝑚(𝑢𝑗.𝜋𝑗)

𝑢𝑗.(𝜋𝑗+𝜌𝑗)+𝑘 
                                                 (15) 

This composite score quantifies the overall strength of 
attributions while penalizing dispersion across runs, producing 
a bounded interpretability index. 

In this, 𝑚 is the number of features, 𝑢𝑗 denotes the weight or 

importance assigned to feature 𝑗, 𝜋𝑗 is the mean SHAP value for 

feature 𝑗 averaged across instances and runs, 𝜌𝑗 is the standard 

deviation of SHAP values for feature 𝑗 across runs, and 𝑘 is a 
small stabilization constant to avoid division by zero. 

E. Causal Attribution and Importance of Features 

Features and causal attribution represent the significance of 
the variables that influence crop price changes the most in Fig.7. 
The explainable artificial intelligence functions applied by 
EXACT-FARM are SHAP values and counterfactual analysis to 
determine causal relationships between temperature, rainfall, 
production, and global trade indices. The framework presents 
direct evidence-based data on drivers of the market through 
quantifying the contribution of each of the factors. The multi-
factor analysis enhances interpretability as well as validates the 
understanding of the model of the complex agricultural systems. 
The driver attributions of EXACT-FARM demonstrate to the 
policymakers and the farmers how the high-impact variables to 
cause price changes can be identified to enable them to make 

adaptive plans and manage risks instead of using opaque 
models. 

 

Fig. 7. Analysis of Causal Attribution and the importance of features. 

SHAP values are computed independently for each base 
learner (SARIMAX exogenous block, XGBoost, and LSTM) 
across multiple rolling-origin evaluation runs, producing a 
three-dimensional attribution tensor indexed by feature, time 
window, and model instance. For each run, absolute SHAP 
values are first normalized by the sum of attributions to obtain 
relative contribution ratios that are invariant to prediction scale. 
These normalized attributions are then temporally aggregated 
using an exponentially decayed average to emphasize stable 
drivers while attenuating transient shocks. Cross-model 
aggregation is performed through ensemble-weighted 
averaging, where the same reliability weights used in the 
forecasting ensemble are applied to the corresponding SHAP 
vectors, yielding a unified attribution profile per feature. The 
Explainability Score is computed as the normalized entropy-
reduction index of this aggregated SHAP distribution, capturing 
both sparsity and stability of factor contributions across runs. 
Empirically, scores above 0.70 indicate high interpretability 
with consistent dominant drivers, values in the 0.55–0.70 range 
reflect moderate but actionable interpretability, and scores 
below 0.55 signal diffuse or unstable attributions, prompting 
feature regrouping or temporal re-alignment. 

Analysis of causal attribution 𝐺𝐹𝐴 is expressed in equation 
16, 

𝐺𝐹𝐴 = 100 × 1 −
(∅𝑗

(𝑠)
−∅𝑗)2

𝑆×𝑛 ∅𝑗
2+𝛿

                                             (16) 

This index assesses the stability of feature attributions across 
multiple retraining cycles, ensuring robustness of causal 
interpretation. 

In this, 𝑆 represents the total number of repeated training 

runs or bootstraps, 𝑛 is the number of features, ∅𝑗
(𝑠)

 is the SHAP 

value for feature 𝑗 in run 𝑠, ∅𝑗 is the average SHAP value of 

feature iii across all runs, and 𝛿 is a small normalization constant 
for scale adjustment. 

F. Decision Impact Index 

Fig. 8 describes the Decision Impact Index quantifies the 
effectiveness of the model outputs in enhancing stakeholders' 
decision-making. It measures the percentage change in accuracy 
of planning, trading or policy formulation when instructed by 
the model forecasts and explanations. EXACT-FARM has the 
largest Decision Impact Index among the models because it 
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provides stakeholders, such as farmers, traders, and 
policymakers, with actionable information. The data disclosures 
provided by SHAP-based explanations help users understand 
cause-and-effect relationships, thereby increasing their trust in 
data-driven approaches. This metric demonstrates the practical 
use of EXACT-FARM, which helps bridge the gap between 
sophisticated AI output and its practical application in decision-
making in agriculture toward sustainable and inclusive 
development. 

 
Fig. 8. Analysis of Decision Impact Index. 

A 10% simulated increase in MSP for wheat is propagated 
through the price forecasting ensemble, and the resulting shift in 
predicted arrivals, market prices, and profit margins is 
quantified using the index, producing a value of 0.78, indicating 
high actionable impact. Similarly, export restriction scenarios or 
irrigation shortfall events are modeled to evaluate how ensemble 
predictions guide trader stocking strategies and farmer sowing 
choices, with index values ranging from 0.65 to 0.81 across 
scenarios. 

Decision impact index 𝐶11 is expressed in equation 17, 

𝐶11 =
(𝐵𝑤𝑖𝑡ℎ−𝐵𝑤𝑖𝑡ℎ𝑜𝑢𝑡)

𝐵𝑤𝑖𝑡ℎ𝑜𝑢𝑡+𝜖
× 100                                          (17) 

This equation quantifies the percentage improvement in 
decision accuracy achieved when stakeholders use model-
informed strategies compared to when they rely on traditional. 

In this,  𝐵𝑤𝑖𝑡ℎ represents the accuracy of stakeholder 
decisions when supported by model forecasts and explanations, 
𝐵𝑤𝑖𝑡ℎ𝑜𝑢𝑡 indicates the baseline decision accuracy without AI 
support, and 𝜖 is a small constant to prevent division by zero 
during normalization. 

G. Scalability and Efficiency in Computations 

Computational efficiency is assessed by measuring the speed 
and efficiency of a model applied to extensive, heterogeneous 
agricultural data in Fig. 9. Scalability is the property of the 
model to accommodate growing volumes of data without 
affecting performance. EXACT-FARM maximizes training and 
inference time with hybrid networks (SARIMAX trend 
modeling, XGBoost feature learning, and LSTM time-series 
modeling). It does this by simplifying data preprocessing and 
parallel training. EXACT-FARM, unlike traditional AI models, 
has a 20-30% shorter training time, and it can integrate multi-
source data. This makes it applicable to large-scale agricultural 

surveillance, real-time prediction, and policy simulations across 
various crops, regions, and data modalities. 
 

 
Fig. 9. Analysis of Scalability and Efficiency in Computations. 

Analysis of scalability and Computational efficiency ratio 
𝐶𝐸𝑅 is expressed in equation 18, 

𝐶𝐸𝑅 =
𝑈𝑏𝑎𝑠𝑒−𝑈𝑚𝑜𝑑𝑒𝑙

𝑈𝑏𝑎𝑠𝑒+𝜃
 × 100                                              (18) 

This ratio quantifies the improvement in computational 
efficiency of the model compared with a conventional baseline. 

In this, 𝑈𝑏𝑎𝑠𝑒  denotes the total computational time (training 
and inference) of the baseline or traditional AI model, 𝑈𝑚𝑜𝑑𝑒𝑙 
indicates the total computational time required by the EXACT-
FARM system, and 𝜃 is a small stabilizing constant to prevent 
division by zero during normalization. 

H. Temporal Stability of Forecasts 

Temporal stability assesses how well the model performs 
over time, independent of climatic conditions, economic policy 
changes, or trade fluctuations. It makes forecasts stable even at 
turbulent times. EXACT-FARM attains low forecast deviation 
(approximately 8 percent) on multi-year datasets obtained by 
combining time-series decomposition and adaptive ensemble 
learning. Exogenous and dynamic indicators of policies 
incorporated into the model enable it to respond to unexpected 
shocks. In contrast to classical models, which become inaccurate 
over time, EXACT-FARM has historical resilience, making it 
reliable for long-term agricultural planning, crop insurance 
design, and sustainable food security policy frameworks, as 
shown in Table II. 

TABLE II.  ANALYSIS OF TEMPORAL STABILITY OF FORECASTS  

Year VMD-

SAO-

TFT 

CNN-

LSTM 

fsQCA STL-LSTM-

ATT-KAN 

EXACT-

FARM 

2018 12.4 11.6 14.8 10.9 8.2 

2019 13.1 12.0 15.2 11.3 8.4 

2020 12.7 11.9 14.9 11.1 8.1 

2021 13.3 12.2 15.3 11.5 8.5 

2022 12.9 11.8 14.7 11.0 8.0 

 

Temporal stability index 𝑆𝑇𝐽 is expressed in equation 19, 

𝑆𝑇𝐽 = 1 −
1

𝑈−1
∗  

𝑋𝑢−𝑋𝑢−1

𝑋𝑢−1+𝜖
                                                (19) 
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This equation measures the consistency of forecasted values 
over consecutive time intervals. It captures the degree to which 
predictions fluctuate and produces steady and temporally 
coherent forecasts. 

In this, 𝑈  represents the total number of time steps in the 
forecast horizon,  𝑋𝑢 indicates the forecasted crop price (or 
output variable) at time 𝑢, 𝑋𝑢−1  represents the forecasted value 
from the previous time step, and ϵ\epsilonϵ is a small constant 
added to prevent division by zero. 

I. Trust and Usability Evaluation 

Trust and usability assessments determine stakeholders' 
perceptions of the model's interpretability, reliability, 
transparency, and ease of use. The factors above determine 
whether the system's insights can be put into practice and 
understood by non-technical users. The explainable AI interface 
of EXACT-FARM has the highest scores because it displays 
SHAP-based feature contributions and counterfactual what-if 
analyses, which are easily comprehensible. This builds trust 
among farmers, policymakers, and market analysts by providing 
clear explanations and intuitive dashboards. This promotes more 
successful integration and application of AI in agricultural 
ecosystems, converting predictive products into transparent, 
stakeholder-accessible decision-making and price-management 
instruments, as shown in Table III. 

TABLE III.  ANALYSIS OF TRUST AND USABILITY EVALUATION 

Evaluation 

Criteria 

VMD-

SAO-

TFT 

CNN-

LSTM 

fsQCA STL-

LSTM-

ATT-

KAN 

EXACT-

FARM 

Interpretability 7.1 7.4 6.5 7.8 9.2 

Transparency 6.8 7.1 6.0 7.6 9.0 

Reliability 7.3 7.5 6.7 7.9 9.3 

Usability 7.0 7.3 6.4 7.7 9.1 

Overall 
Satisfaction 

7.2 7.5 6.6 7.8 9.2 

 
Adoption likelihood with trust–usability interaction 𝐵𝑀  is 

expressed in equation 20, 

𝐵𝑀 = 𝜕 𝛽0 + 𝛽1 
𝐶𝑇

100
+ 𝛽2

𝑈𝐸

100
+ 𝛽3

𝐷𝑇

100
.

𝑈𝐹

100
+ 𝑐              (20) 

This logistic-style formulation models the probability that 
stakeholders will adopt the system, incorporating both trust and 
usability as main effects and their interaction. 

In this, 𝐵𝑀  denotes the estimated Adoption Likelihood 
(probability between 0 and 1), 𝜕   is the logistic sigmoid 
function. 𝛽0  is the intercept,  𝛽1, 𝛽2, 𝛽3 are regression 
coefficients for the normalized Composite Trust Score, the 
normalized Usability Effectiveness Index, and their interaction 
term respectively. 𝐷𝑇 is the composite trust score (percent), 𝑈𝐹 
is the Usability Effectiveness Index (percent), and 𝑐   is an error 
term or additional covariate aggregate. 

The comparative analysis shows that EXACT-FARM is 
much better than the current models in all assessment 
parameters. It has greater predictive accuracy, executes faster, is 
more interpretable, and is more helpful to stakeholders. These 
findings confirm that EXACT-FARM can combine explainable 

AI with hybrid modeling, making it a strong, transparent 
decision-support system for forecasting agricultural prices. 

For a given forecasting window, assume raw price 
predictions of ₹1820 (SARIMAX), ₹1950 (XGBoost), and 
₹2010 (LSTM), with a rolling mean of ₹1900 and standard 
deviation of ₹100 computed from recent training data. Z-score 
normalization transforms these outputs to −0.80, 0.50, and 1.10, 
respectively. Model reliability weights are then estimated using 
exponentially decayed RMSE over the last validation horizon, 
for example 0.12 (SARIMAX), 0.08 (XGBoost), and 0.06 
(LSTM). Inverse-error weighting followed by soft 
normalization yields convex weights of 0.25, 0.35, and 0.40. The 
ensemble prediction is computed as a weighted aggregation of 
normalized outputs: (0.25×−0.80) + (0.35×0.50) + (0.40×1.10) 
= 0.41. This aggregated score is then inverse-transformed to the 
original price scale, resulting in a final forecast of approximately 
₹1941. 

Classical models such as SARIMAX and ARIMA with 
exogenous regressors serve as non-hybrid baselines, providing 
interpretable references for linear and seasonal dependencies, 
while standalone XGBoost and linear regression with SHAP 
attribution represent simpler XAI baselines. Compared with 
ARIMA, EXACT-FARM achieves an RMSE reduction of 
approximately 12%, while the Explainability Score rises to 0.72 
from 0.58 in single-model SHAP, indicating more concentrated 
and stable factor contributions. Similarly, cross-model 
attribution consistency improves by 15% relative to XGBoost 
SHAP alone. 

Causal graphs are derived through a hybrid approach 
combining domain-informed structure specification with data-
driven refinement. Initial adjacency matrices encode agronomic 
and supply-chain knowledge, linking rainfall and temperature to 
crop yield, yield to market arrivals and prices, and policy 
instruments such as MSP or export controls as exogenous nodes. 
These candidate structures are refined using conditional 
independence tests, partial correlation analysis, and Granger 
causality applied to the time-series panel, identifying 
statistically supported edges while preserving temporal 
ordering. Cross-validation against expert knowledge from 
agricultural economists and market analysts confirms that the 
retained edges reflect realistic causal mechanisms, including 
seasonal planting–harvest cycles, regional trade flows, and 
policy intervention pathways. 

V.  CONCLUSION 

 This paper proposed a multi-model, which combined VMD-
SAO-TFT, CNN-LSTM, fsQCA, STL-LSTM-ATT-KAN, and 
the proposed EXACT-FARM model to boost the accuracy of 
decision-making in smart agricultural ecosystems. The results of 
the experiments involving a variety of datasets proved that 
EXACT-FARM was always more effective than traditional 
models in terms of improving the accuracy of the stakeholders 
and the efficiency and speed of the computations. Adaptive 
optimization, fusion of hybrid features, and context-aware 
learning mechanisms have enabled the model to produce greater 
impacts on the stakeholders, reduce the training time, and 
increase the reliability of the decisions made. 

The future directions include the extension of EXACT-
FARM by edge-intelligent deployment to support real-time 
inference, explainable AI modules to achieve transparency, and 
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federated learning to improve privacy on distributed datasets. 
This can be enhanced by the addition of multi-modal data, 
including satellite images, IoT sensor feeds, and climate 
forecasts, to enhance accuracy. Also, feedback loops of 
stakeholders and a decision optimization mechanism based on 
reinforcements will be examined to adopt adaptive and 
sustainable agricultural intelligence systems. 

Climatic anomalies influence production volumes and 
quality, which in turn affect export–import balances and may 
trigger policy responses such as procurement adjustments or 
trade restrictions, creating feedback loops that are difficult to 
fully disentangle in observational data. Although the attribution 
framework conditions on multiple exogenous variables, 
correlated shocks can lead to shared variance being distributed 
across factors in the explanation graphs, blurring strict causal 
separation. Temporal aggregation further amplifies this effect 
when policy actions lag or coincide with weather-driven supply 
shifts, causing attribution weights to reflect combined rather 
than isolated influences. 
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