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Abstract

Reliable open crop price forecasts are needed for the future of agriculture, food availability, and making informed decisions by the
stakeholders. The uncertain nature of the markets of farmers and traders, the fluctuation of their incomes, are typical results of the
difficult work of prediction, which is caused by the interacting effect of meteorological, economic, and policy factors. Problem Statement:
The conventional approaches to market movement forecasting are not always effective due to their incoherent nature and lack of
transparency to the stakeholders. This renders it hard to ascertain the nature of the variables that are driving price changes. A
predictability and responsiveness system that is explainable and data-driven is becoming more and more important, and this paper
introduces the Explainable Al-based Crop Price Transparency Framework to Factor Analysis and Resilient Management (EXACT-
FARM), one of the Crop Price Transparency Frameworks that is driven by Explainable Al. EXACT-FARM is a hybrid modelling
(SARIMAX-XGBoost-LSTM) strategy coupled with feature-level explanations based on SHAP values and counterfactual reasoning. The
model takes into account a number of factors in order to come up with forecasts and driver attributions that are easy to comprehend.
These are the production trends, events in the policy, weather indices, and trade dynamics. The use of multiple-year datasets in
experiments indicates that EXACT-FARM increases predictive accuracy by 1520 percent, and visually explains the influence of drivers.
EXACT-FARM is an open and trusted decision-support system that gives stakeholders actionable pricing, planning, and sustainable
agriculture management information.

Keywords: Crop price forecasting, Explainable Al, Hybrid modelling, Transparency framework, Agricultural decision support,
SHAP analysis.
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the stakeholders with practical information on the evidence-
based, fair, and sustainable agricultural decision-making [3].

I. INTRODUCTION

EXACT-FARM system serves the purpose of the company
that requires exact and accurate crop price prediction as a result
of Explainable Al and hybrid models [1]. It analyzes multi-
factor drivers, i.e., weather, market, and policy factors that
augment the interpretability to trust [2]. The framework helps

Agricultural price forecasting is extremely important in food
security, stability of rural livelihoods, and market regulation [4].
Trade decisions, policy intervention of the staples, and farmer
income directly rely on the price volatility [5]. Due to the
increasing complexity of the agri-food supply chains, the multi-
dimensional drivers. It encompasses weather variability, global
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trade dynamics, and policy changes, cannot fit into the
traditional statistical models [6]. The appearance of Artificial
Intelligence (Al) is linked to the fact that it may have accurate
predictions [7], yet the best of Al-based models is not
explainable. The determinant of its application in real life and
the endorsement of its use by the stakeholders in the agricultural
industry [8].

In order to address the problem of the trust gap between the
predictive systems and the end consumers, such as farmers,
policymakers, and traders, predictive systems should be
transparent [9]. A good forecasting system not only provides
accurate predictions but also demonstrates how and why the
predictions are generated [10]. This interpretability increases the
level of accountability, ethical use of data, and informed
decision-making. It is significant in agriculture, where a
decision impacts the economic and food security outcomes [11].

Recent progress of Explainable Artificial Intelligence (XAl)
provides a chance to reach a balance between predictability and
interpretability [12]. Deep learning and ensemble methods are
precise at the expense of being typically black boxes [13]. This
is achieved by the combination of XAl techniques, which allows
making high-performance predictions and analysis of drivers
[14]. This bridge will tie up the thinking of the model with the
knowledge of the domain, thus making it more dependable to
stakeholders [15].

Crop prices are due to a combination of interacting factors,
which are climate pattern, volume of production, change in
policies, prices of fuel and the sentiment of the international
markets [16]. Heterogeneity of data, correlation of features and
non-linear relationships among them are some of the challenges
of real-time capturing of these interactions [17]. In addition, the
traditional models will tend to overlook causal relationships
between these drivers, and thus do not explain or generalize
across regions or seasons [18].

Price formation in the agricultural industry is characterized
as a dynamic process influenced by time, space, and socio-
economic factors. Seasonal, input costs, international trade, and
weather deviations determine the short and long-term changes
in prices [19]. In order to have a proper understanding of this
complexity, time-series, machine learning, and causal inference
methods would need to be integrated into one predictive
structure.

Conventional hybrid models typically fuse statistical
forecasting, machine learning, or deep learning modules to
optimize predictive accuracy, with limited visibility into how
heterogeneous drivers—such as agro-climatic variability, input
cost dynamics, supply-chain constraints, and policy signals—
jointly influence price formation. In contrast, EXACT-FARM
integrates factor-aware representation learning with intrinsically
interpretable modeling stages, where driver contributions are
explicitly preserved across temporal and cross-sectoral
interactions. The architecture aligns attention-based temporal
encoders with structured feature attribution mechanisms,
enabling consistent quantification of marginal, joint, and
nonlinear effects of each factor under varying market conditions.
This design enables traceable propagation of information from
raw multi-source inputs to final price estimates, producing stable
and context-specific explanations rather than fragmented or
sample-dependent insights.

Three main EXACT-FARM contributions,
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approach, providing interpretable forecasts, scenarios,
and actionable insights for policy and market planning.

I1. CONCEPTUAL FOUNDATION

Proper agricultural pricing prediction plays a vital role in
securing food, leveling markets, and policy-making. As climate
variability, political strains, and economic uncertainties
continue to increase, the traditional prediction models cannot
capture the nonlinear market dynamics. Recent machine
learning models, which are advanced Al-based and hybrid,
provide a higher level of precision, transparency, and
interpretability to make informed agricultural decisions.

An interpretable and all-inclusive model of futures price
forecasting of soybeans is suggested through a VMD-SAO-TFT
model. Variational Mode Decomposition (VMD) breaks down
the price series to extract volatility trends, whereas the Snow
Ablation Optimizer (SAO) optimizes the parameters of the Time
Fusion Transformer (TFT), which is an interpretable model
based on self-attention. Fusion characteristics, geopolitical risk
measurements, and trading volumes are combined to increase
the accuracy and interpretability, provide accurate early
warnings, and improve policy and trade risk management [20].

The proposed approach is a CNN-LSTM hybrid forecasting
framework for dynamic commodity price prediction. The first
step is Granger causality inference, which determines the causal
factors, and then XGBoost ranks the factors according to their
importance and eliminates redundant variables. The multi-factor
data are combined to form a Convolutional Neural Network
(CNN) that brings out neglected patterns, whereas the Long
Short-term Memory (LSTM) network provides us with the price
predictions. The integrated model enhances stability and
accuracy, which effectively addresses nonstationary and
nonlinear market fluctuations [21].

The current paper gives a multi-model machine learning
model that incorporates SVR, Random Forest, Lasso, and
XGBoost to predict crop yields. It is a new performance
indicator, which is gauged by the relationship between the yield
and the rainfall by looking at the temperature, rainfall, and the
use of pesticides. Such models are optimized through grid
search, which is complicated by climatic factors and
productivity. XGBoost is more predictive than the others, and it
can be utilized to maximize yield in most agricultural settings
[22].

The fSQCA-XGBoost resilience prediction model is created
to study the agricultural product green supply chains. Using
fuzzy-set Qualitative Comparative Analysis (fSQCA) and
XGBoost, the model has found several highly resilient pathways
and nonlinear interactions between influencing variables. The
hybrid approach is more effective in improving the recall and
high-risk detection than the Random Forest, Decision Tree, and
AdaBoost, and causes false negatives to decrease by half. Such
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a combined system enhances the prevention of risks and
facilitates sustainable agricultural growth [23].

A stochastic-robust optimization framework based on an
integrated approach is new to the optimization of agricultural
structure in cold-region rural regions. The model maximizes
seven-year profits by accounting for the uncertainty of climate
and market variables using stochastic and integer programming.
Deterministic solutions are obtained by genetic algorithms, and
the relationships between crops are quantified by correlation and
regression analysis. The optimized strategy would improve
land-use efficiency by 16.93% to increase resilience and
profitability in changing environmental and economic
environments [24].

It is proposed to use a hybrid STL-LSTM-ATT-KAN model
optimized by Adaptive Multi-Population Particle Swarm
Optimization (AMP-PSO) to predict ginger price changes. This
model uses Seasonal-Trend Decomposition (STL) to
decompose changes over time, LSTM to learn sequences, an
attention mechanism (ATT) to prioritize features, and a
Kolmogorov-Arnold Network (KAN) to map nonlinearly. It
provides a smart market monitoring and price stabilization
system in the agricultural trade with high accuracy, as R 2 =
0.998 [25].

The present study will suggest a machine learning and
econometric review hybrid framework in price forecasting using
carbon credits, however, with a focus on the forest carbon
markets. It supports the possibility of combining nonlinear ML
models and hybrid forecasting mechanisms to meet the
uncertainty in the market and variability in the policies. The
review reveals a gap in the modelling of forest credit prices and
suggests projecting policy-sensitive, scenario-based forecasting
models of transparency and strength with the integration of
ecological, economic, and regulatory factors [26].

To address adaptive agricultural management, a parallel crop
planning system is designed, incorporating an artificial system,
computational experiment, and parallel implementation. The
farmers are characterized as rational actors who make heuristic-
based planting decisions and are responsive to economic and
climatic changes. The system uses the multi-year price data to
automatically update the cropping plans according to the
changes in the environment or market, fostering resilience and
maximizing the use of small-scale farming plans during the
conditions of uncertainty [27].

An explainable corn future price forecasting framework
(JADE -TFT) is suggested based on Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) and Convolutional Neural Networks (CNN) to
extract features. Time Fusion Transformer (TFT) JADE
(adaptive differential evolution) optimizes parameters of Time
Fusion Transformer to achieve efficient and interpretable
forecasting. By adding the geopolitical risks, Baidu search
indices, and textual sentiment, the accuracy is enhanced, and
clear knowledge is given to the decision-makers in the
international corn futures markets [28].

It suggests a network based on a Blockchain and an Android
program to remove the middlemen in the agricultural trade. With
the Hyperledger Fabric platform, smart contracts are used to
conduct transparent and decentralized transactions between
farmers and consumers. The system will make sure that prices
are fairly priced, exploitation is minimized, and that the
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traceability and trust in crop trading are enhanced. The testing
performance through Hyperledger Caliper proves the efficiency
and security of the decentralized agricultural marketplaces to be
improved [29].

Globally, these price shocks of crops (maize, soybean, and
cocoa) are predicted using a multi-model econometric and
machine learning system designed to forecast prices. It is based
on 60 years of data and selects the best-performing predictors
using cross-validation, and interprets its findings using model-
agnostic tools. Results show unequal price reactions, where the
influence of North American production on the world price is
very strong, and these results provide information on the
dependence of the commaodity market and the weaknesses of the
supply side [30].
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Problem Statement: The papers reviewed in general deal
with the long-standing dilemma of unreliable and opaque
agricultural price forecasting due to multi-faceted and non-linear
relationships between climatic, economic, and geopolitical
conditions. Conventional econometric and statistical models are
not flexible to the changes in the market, and the dependencies
among the multiple sources are not well represented, which
impacts the poor predictive results and the interpretability. Also,
there are no explainable structures and incorporation of
optimization processes that restrict stakeholders to transparent,
data-based making of decisions on sustainable agricultural and
market management, as shown in Table I.

The discussed articles present new forecasting models based
on hybrid Al models, such as VMD-SAO-TFT, CNN-LSTM,
JADE-TFT, and fsQCA-XGBoost. These models combine the
economic, climatic, and geopolitical variables, which increases
the accuracy and transparency of the prediction. Together with
these, they reveal how explainable and data-driven methods can
change the face of agricultural price forecasting and sustainable
decision-making.

EXACT-FARM demonstrates a 25-30% reduction in
attribution variance across rolling windows, quantified through
SHAP dispersion metrics, indicating more stable factor
explanations under non-stationary market conditions. The
framework also achieves a 0.12-0.18 increase in normalized
explainability score, reflecting higher entropy reduction and
stronger concentration of economically meaningful drivers
relative to attention-only or decomposition-driven baselines.
Unlike VMD-SAO-TFT and JADE-TFT, which rely on signal
decomposition or heuristic attention weighting, EXACT-FARM
enforces ensemble-consistent attribution by aligning model
weights with feature contributions, yielding 15-20% lower
inter-model attribution divergence. In comparison to CNN-
LSTM, EXACT-FARM further improves regime sensitivity,
capturing policy- or climate-induced price shifts with 10-14%
faster attribution convergence following structural breaks.

1. SYSTEM ARCHITECTURE OF EXACT-FARM

The offered EXACT-FARM (Explainable Al-based Crop
Price Transparency Framework to Factor Analysis and Resilient
Management) combines hybrid modeling and explainable
intelligence and decision support systems into a single
architecture. The system will be created in such a way that there
is predictive accuracy, interpretability, and usability among all
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the layers of the agricultural forecasting pipeline by the
stakeholders.

A. Principles of Design and Overview of the Workflow

The EXACT-FARM has three major principles underlying
it, which are integration, transparency, and adaptability
described in Fig. 1. This process starts with the multi-source data
acquisition, then preprocessing and feature engineering to create
a complete feature space. The hybrid predictive core combines
statistical, machine learning, and deep learning models to ensure
robust predictions of prices. Additionally, there is the
Explainable Al (XAl) layer that tells the contributions and
causal relationships of drivers, and the Decision Support
Interface provides the stakeholders with actionable insights. The
workflow is handled in a feedback loop wherein the user
feedback and monitoring of model drift are used to make
adaptive retraining so as to improve constantly.

EXPLAINABLE Al & CAUSAL
ANALYSIS LAYER

Bl i
SHAP

Counterfactual
Reasoning

Causal

values Braph

Data Proprocessing and Foatur

Engineering
0y
7 [ [ e
BRIy

(Seasonality)
Weather

ENSEMBLE
SARMAX |oprimzarion) 5™

DErind Stakeholder

Feedback & Model
Governance

Fig. 1. EXACT-FARM framework.

Market prices and arrivals recorded at daily resolution are
aggregated to the target forecasting interval using volume-
weighted statistics, while weekly and monthly variables such as
meteorological indicators, fertilizer indices, and policy metrics
are temporally projected through constrained spline
interpolation augmented with variance flags to retain scale
fidelity. Irregular gaps arising from sensor outages or reporting
delays are addressed through seasonally conditioned imputation,
where missing segments are reconstructed using trend—seasonal
decomposition combined with local temporal neighborhood
averaging to preserve autocorrelation structure. Distributional
consistency across sources is enforced via rolling normalization
anchored to historical quantiles, enabling stable fusion of
variables with disparate magnitudes. Out-of-distribution events,
including abrupt regulatory interventions or extreme climatic
deviations, are identified using rolling Mahalanaobis distance and
isolation-based scoring and are encoded as structured exogenous
shock vectors rather than absorbed into baseline trends.

Multi-Source Data Integration E;,,; is expressed in equation 1,

Eine =0 m= w;—C; + 0U +yF 1)
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This equation models the integrated feature space created by
merging data from multiple heterogeneous sources, adjusted by
transparency and environmental scaling factors.

u; represents the weighting coefficient for each data source,
C; indicates the jth data source inpu, Uis the transparency
regularization term ensuring interpretability of data fusion, F is
the environmental variability adjustment factor, @ and y are the
scaling coefficients for transparency and environment,
respectively, and 6 represents the nonlinear transformation
applied during feature engineering.

Hybrid predictive core X is expressed in equation 2,

@

This defines the hybrid predictive mechanism that combines
statistical, machine learning, and deep learning components into
a unified ensemble prediction.

In this, X is the predicted market output, gs;q:(Eine) 1S the
statistical model output, gm,;(Ein:) iS the machine learning
component output, ge,(Eim:) is the deep learning model
output, and d,, d, and d5 are ensemble weighting coefficients
determining the relative contributions of each model.

Adaptive retraining feedback loop 6,,; is expressed in
equation 3,

X = algstat(Eint) + azgml(Eint) + a3gem(Einlt)

9u+1 = gu - ”Veu' M(X' Y) + 19(Euser + Ndrift) (3)

This expresses the adaptive learning mechanism where the
model parameters are continuously updated using loss gradients
and user or drift feedback.

Inthis, 8,, represents the model parameters at time step u,
is the learning rate determining the update magnitude,
Vouw M(X,Y) denotes the gradient of the loss function between
actual and predicted values, 9 is the feedback influence
factor, E .. iS the user feedback term derived from decision
support interaction, and Ng.s iS the model drift monitoring
component reflecting data distribution changes over time.

Expert-annotated  deviations between predicted and
observed prices are captured at the crop—market-month level
and encoded as weighted correction vectors, while drift in model
performance is quantified using rolling RMSE, MAPE, and
input distribution shifts measured via Wasserstein distance and
KL divergence. Threshold-based triggers, such as a 12%
increase in three-month rolling RMSE or 0.16 KL divergence in
feature distributions, identify windows requiring retraining.
These flagged instances are injected into the training dataset
with proportional weighting, emphasizing high-impact feedback
and drift-affected periods, and the ensemble is incrementally
retrained using expanding-window updates that preserve
temporal ordering.

Hybrid predictive model Q, is expressed in equation 4,

4)

This equation represents the hybrid prediction mechanism
that combines statistical, machine learning, and deep learning
outputs to generate a final, robust price prediction.

Inthis, Qg4 IS the prediction from the statistical model, Q,,,;
is the output of the machine learning model, Q.,, is the

Qs =0 * Qstar + B * Quy + 9" * Qe
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prediction from the deep learning model, and , 8, and 9 are
the respective weighting coefficients.

B. Data Ecosystem and Acquisition Pipelines

Fig. 2 illustrates that the data ecosystem comprises high-
frequency multidimensional sources to capture the
multidimensional aspects of crop price dynamics. This includes:
Market information: historic prices, trade indices,
and commaodity trends.

Climatic statistics: temperature, rainfall, humidity,
and ENSO.

Remote sensing data: satellite-retrieved NDVI,
EVI, and soil moisture.

Economic and policy information: exchange rates,
fuel prices, tariffs, subsidies, and export
embargoes.

Data acquisition pipelines are automated to provide real-
time synchronization, integrity, and time alignment. Information
streams are deposited in a central store, which facilitates scalable
querying, metadata tracking, and model versioning.

Data Acquistiion Layer

Multi-Source Data Ecosystem

r O 8 ﬂ
Historical & ‘ Metrological & | | Trade Reliable
| Market Prices | Remote Sensing | . Policy Data Platforms
~ .y - 7 -
e - 1=
B & & & - o &

FAQSTAT
World Bank
National
Agricultural
Databases

Rainfall, Temperature
Drought Indices
NDVL, Sail Moisture

Crop Price
Fuel Price

Traffic, Subsides
Export Regulations
Tnflation Rates
Exchange Rates

Automated Data Pipelines, Real-time Updates

Comprehensive & Synchronized
Dataset

. 4

Foundational for Robust Analysis &
Multi-factor Modeling

Fig. 2. Data acquisition pipelines.

Multisource data stream representation R, is expressed in
equation 5,

R,=1x{1+N,]*[1—Dy* S, —FE} )

This equation represents the unified structure of the data
stream collected from multiple high-frequency sources.

In this, N, refers to the market information, D,, represents
climatic statistics, S,, corresponds to remote sensing data, and F,
indicates economic and policy inputs.

Temporal data synchronization U, is expressed in equation
61

U =max(l uj—u; ) <9, (6)
This equation defines the synchronization condition that

aligns data streams across different sources within an acceptable
time threshold.
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Here, u; and u; represent timestamps from different data
sources, and d,, is the maximum allowable temporal deviation.
Data quality index P, is expressed in equation 7,

Pc ul*]v+u2_Ds+u3*Ur

= )

This equation represents the overall data quality index that
integrates multiple aspects of the acquisition pipeline, including
data integrity, completeness, and temporal synchronization.

In this equation, wu,;,u, and usare the weighting
coefficients assigned to integrity, completeness, and
synchronization components respectively, J, refers to the
integrity value, D is the completeness ratio, and U, is the
synchronization measure.

Real-time data synchronization rate is expressed in equation
8,

This expanded formulation defines the synchronization rate
as the weighted ratio between the total volume of successfully
updated data and the sum of update time with latency delay.

Here, E,, ; denotes the quantity of updated datasets for the ith
source, P; represents the quality coefficient of each dataset, U,
signifies the total update time, andy, indicates the average delay
due to transmission or system latency.

C. Feature Intelligence Layer: Preprocessing & Engineering

Fig. 3 illustrates that this layer converts raw inputs to
machine-readable signals. Data are purged, standardized, and
time synchronized. Interpolation with the consideration of the
time is done to impute missing values, whereas lag variables are
created to portray delayed effects. Seasonal decomposition
removes cycle trends, whereas rolling statistics describe the
short-term variations. The features are sorted in thematic
categories: Weather, Supply, Demand, Market, and Policy, so
that they can be interpreted more fully. Dimensionality

nx(Eqy i XP ) f _
Sy = T Uotre =~ Uy *n+ P) ) reduction (through PCA or autoencoders) and feature selection
(through mutual information or SHAP-based pruning) are used
to maximize the efficiency and transparency of the model.
Data Preprocessing and Featurg Engineering
StructéL &
Raw Data Inputs | Data Cleaning Time Alinement Advanced Feature Dimenstiony Enriched
é @y » Inconsistencies Lag Creation Extractions Reduction & | Datasel
v 0 andle Missing | Seasonalt : Categorym J | /% [
4 ¥ - |_ L [
Weather C!"”F @? 4) Dependencies| | Decompondation m ﬂpﬂp QEH [ ) el
Records Prices T .
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Fig. 3. Data Processing and Features Engineering.

Data standardization U; ; is expressed in equation 9,

1-Y; i]—-[140;
o LYijl-(1+051
p]-+£

U, =1

i = (pj—¢€) 9)

This equation expresses the transformation of raw values
into standardized scores to normalize scales across features.

In this, Y;; represents the original raw data value, 9;
indicates the mean of feature j, p;denotes the standard deviation
of feature j, and e\epsilone is a small numerical constant for
stability.

Time-aware interpolation Y (u) is expressed in equation 10,

Y

Y(u) =Y(uy) + w X (u —ug) +vu) (10)

This formulation performs time-aware interpolation by
estimating missing values between known time points and
adding a temporal correction component.
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In this, Y (u,) and Y (u,)denote the known data values at
time points uy and (u,) respectively, and v(u) is a time-
dependent correction factor for local noise or bias.

Lag feature construction M;; is expressed in equation 11,

My =1xY_ x[1xe"]+y; (11)

This equation constructs lag features by referencing prior
observations while exponentially discounting their influence
with respect to time lag.

Information leakage is prevented through a strictly causal
feature construction pipeline in which all lag features, seasonal
components, and rolling statistics are computed using only
information available up to the forecast origin. Lag variables are
generated with fixed backward offsets, ensuring that price
values at time t+k never enter the feature set for predictions at
time t. Seasonal decomposition is performed in an expanding-
window manner, where trend and seasonal components are
estimated solely from historical observations and updated
incrementally as new data arrive, rather than recalculated on the
full series. Rolling statistics such as moving averages, volatility,
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and momentum indicators are computed using left-aligned
windows with explicitly defined window lengths (e.g., 3-, 6-,
and 12-month horizons), and the windows are truncated at the
prediction timestamp. Model training and validation follow a
walk-forward or rolling-origin evaluation protocol, which
enforces temporal ordering between training and testing splits
and prevents future observations from influencing parameter
estimation.

In this lag order [, Y;_, represents the data value [ time steps
before the current point, y is the temporal decay constant, and
u; indicates the stochastic noise component or measurement
error.

Seasonal decomposition Y, is expressed in equation 12,

Yy =[1+U,]+1—[T,+S,]+[1—Ey (12)

This additive model decomposes a time-series signal into
trend, seasonal, and residual components, allowing for clearer
interpretation of cyclical and irregular patterns.

In this, U, denotes the trend component, T, signifies the
seasonal component, S, is the residual or random component,
and E,, captures external perturbations or noise terms.

D. Hybrid Predictive Core: SARIMAX-XGBoost- LSTM
Ensemble

The predictive engine is made up of three complementary
models:

e  SARIMAX makes use of temporal seasonality and linear

relationships.

XGBoost can deal with nonlinear relationships of
heterogeneous features.

LSTM networks acquire long-term temporal dynamics
and dynamic relationships.

Model outputs are used to create a meta-learner that
optimizes the weights on the basis of validation performance to
create a very robust and generalised ensemble. This in-between
design is an adjustment of interpretability and accuracy trade-
offs, permitting time-series regularities and complexities of
feature relations.

SARIMAX provides an explicit parametric representation of
linear temporal dependence and seasonality while directly
incorporating exogenous regressors, Yyielding identifiable
coefficients and statistically grounded uncertainty estimates that
anchor the ensemble in interpretable economic structure.
XGBoost contributes a non-parametric, tree-based learner
optimized for tabular data, capturing sparse nonlinear
interactions among heterogeneous drivers such as weather
indices, arrivals, and policy variables without requiring large-
scale sequence length or attention calibration. LSTM introduces
gated recurrent dynamics that encode medium- to long-range
temporal dependencies and regime persistence under non-
stationary price behavior, offering memory mechanisms that
differ from attention-based token mixing. In contrast,
transformer-based models primarily emphasize global attention
over long horizons but often entangle temporal relevance across
features, increasing attribution diffuseness and data-hungriness
in moderate-sized agricultural datasets.
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Algorithm 1: Hybrid Crop Price
(SARIMAX-XGBoost-LSTM)

Forecasting

Input: X;
= {Production,, Policy,, Weather,, Trade.}, Y.(Historicc
Output: Yy,.q(Final Predicted Crop Price)

1.Initialize SARIMAX (p, d, q), XGBoost(maX gep¢n
=W),LSTM (layers = L)
2. Preprocess data: normalize X.and remove missing v
3.Decompose Y;into trend (T;), seasonal (S;), residual (
4.Train SARIMAX on (T; + S;)to predict long
— term components
5.Get SARIMAX output: Ysgrimax
= SARIMAX.predict(T, + S;)
6.Train XGBoost on residual component R, for nonline:
7.0btain nonlinear output: Y, g
= XGBoost.predict(R;)
8. Concatenate hybrid features: H,
= Concat(ysarimax' ngb)
9.Reshape H.for sequence modeling in LSTM
10. Initialize LSTM weights 8, ¢y randomly
11. for each timestep t in sequence do
12.  h; = LSTM(Hy, 0157m)
13.end for
14. Compute attention weights: a,
softmax(W, = h;)
15.Weighted aggregation: Z, = X(a; * h;)
16. Predict next crop price: Ypyeq
= Dense(W, « Z, + b,)
17.Compute loss: L = MSE(Y,,Yyreq)
18. Backpropagate and update all model parameters
19. Repeat until convergence or minimum validation ei
20. Return Yy,.qas final forecast

The hybrid forecasting algorithm 1 is applied to enhance the
precision of forecasting crop prices, and it is an algorithm that
integrates the implementation of SARIMAX, XGBoost, and
LSTM. SARIMAX is applied to control long-run trends and
seasonality, XGBoost is applied to control non-linear residual
changes, and LSTM is applied to control time dependencies.
Attention weighting improves the temporal meaning, integration
of all the acquired parts into one predictive cover. It is a multi-
model synergy very relevant to a volatile situation because of
climatic, trade, and policy changes, and more predictive stability
and interpretability to the stakeholders in the farming price
prediction and decision-making process.

E. Transparency Layer SHAP, Counterfactuals and Causal
Graphs

The transparency layer offers readability and transparency.
SHAP (SHapley Additive exPlanations) scales the contribution
of local and global features, indicating the contribution of each
driver to the forecast. Counterfactual analysis allows the user to
execute a what-if analysis to establish the sensitivity of prices to
changes in policy or production shocks. Structural dependencies
between variables are also indicated using causal graphs and
isolate actual causal effects and correlations. These approaches
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together ensure the reproducibility, transparency, and credibility
of model results.

F. Stakeholder Empowerment Decision Support Interface

The last layer converts the analysis results into practical
intelligence through an interactive decision-support dashboard.
It shows forecast bands, driver attributions, scenario
simulations, and risk alerts. At the macro level, policymakers
receive macro-level analyses of scenarios, farmers receive short-
term price guidance, and traders receive information on optimal
trading windows. A feedback mechanism enables stakeholders
to annotate the model's outputs, and real-life observations are
sent back into the loop to continuously refine the model. This
makes sure that EXACT-FARM will be flexible, open, and
streamlined.

Algorithm  2:  Explainability
Counterfactual Reasoning

Input: Trained model Fpypiq, Xees (Feature Set), Yp,eq (F
Output: SHAP,q 105 (Feature Importance), C Fpqp, (Count:

via SHAP and

1.Initialize SHAP Explainer: E « SHAP(Fpypria)

2. for each sample x; € X;p5:do

3-‘S‘I-IAPvallws[i] = E. Shapvalues(xi)

4.end for

5. Compute mean absolute contribution for each featu

6.Rank features by |SHAP,,aluesj
7.Select top — k influential factors: Fy,

= SEIeCtk(features,k)
8. Initialize empty counterfactual map CF_map = {}
9.for each fjin F.,do

in descending order

10. Generate perturbed values fj = fj £ 6
11. Compute new output Y’

= Fuyprig- predict(Xeswith f]’)
12. Calculate deviation AY = |V’ — Y04
13. if AY > threshold then
14. CFmap[f]-] = {6,4Y}
15. end if
16.end for

17.Plot SHAP summary for all features

18. Plot counterfactual sensitivity map CFpq,

19. Interpret top drivers and their causal ef fects

20. Return SHAP g1y e5) CFap f 0T transparent decision s

Production-related variables such as yield, sown area, and
input usage are perturbed within empirically observed bounds
derived from historical quantiles (e.g., 5th-95th percentiles) and
crop-specific elasticity ranges, ensuring that simulated changes
respect physiological growth limits and regional cropping
practices. Policy-related shocks, including minimum support
price adjustments or export restrictions, are applied through
rule-based constraints that preserve budget neutrality and
market-clearing conditions, preventing unrealistically abrupt or
decoupled price responses. Cross-variable dependencies are
enforced using learned joint distributions, so that changes in one
factor induce coherent adjustments in correlated drivers, such as
rainfall deviations influencing arrivals and yield rather than
being treated independently. Temporal coherence is maintained
by applying perturbations gradually over contiguous forecasting
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windows, aligning with planting, harvesting, and procurement
cycles.

The explainability algorithm 2 wuses SHAP and
counterfactual arguments to explain the predictions of the hybrid
model. SHAP has measures of the contributions of each feature
to the price variation, and they are sorted by their average
significance. Counterfactual analysis tests are known to test the
sensitivity of the model that modifies the influential features and
identifies the price deviation, and the causal relationship is
observed. The obtained SHAP values and counterfactual maps
are easy to understand and interpret visuals of drivers like
production, weather, or policy events, and enable users to have
clear and explainable predictive agricultural prices to make
informed and data-based decisions.

V.

The assessment of crop price forecasting models must
include a comprehensive evaluation of predictive accuracy,
model efficiency, and interpretability. The section compares the
proposed EXACT-FARM framework with current approaches,
VMD-SAO-TFT, CNN-LSTM, fsQCA, and STL-LSTM-ATT-
KAN, using eight overall performance and explainability
measures.

For SARIMAX, the autoregressive (p) and moving-average
(q) orders are explored in the range p € [0,5], d € [0,2], g € [0,5],
while seasonal orders (P,D,Q,s) cover P,Q € [0,2], D € [0,1],
and s = 12 for monthly seasonality; optimal parameters are
selected by minimizing AIC with convergence defined as
change < 0.01 between successive iterations. XGBoost
hyperparameters are tuned over n_estimators € [100,1000],
max_depth € [3,12], learning_rate € [0.01,0.3], subsample €
[0.6,1.0], and colsample_bytree € [0.6,1.0], using a combination
of randomized search and early stopping on validation RMSE
with a patience of 50 rounds to determine convergence. LSTM
architectures explore 1-3 stacked layers, hidden units €
[32,256], dropout € [0.1,0.5], and learning rates € [1e-4,1e-2],
optimized with Adam over 100-200 epochs and early stopping
triggered when validation loss does not improve by more than
le-4 over 15 epochs.

A. Dataset

Crop Price Prediction data sets feature historical data on crop
prices, weather, and agricultural variables that were recorded in
the Indian regions. It will have characteristics like type of crop,
marketplace, date, minimum and maximum prices, and average
price per day. Additional climatic information, such as rainfall
and temperature, has been occasionally incorporated in
contextual projection. The data is mostly applied in time
sequences and machine-learning-based forecasting of the price
trends in agriculture to assist farmers, traders, and policymakers
in making decisions based on the data [31].

The dataset consists of a multi-year panel of agricultural
price records covering approximately 8-10 years (e.g., 2004—
2013) at monthly resolution, resulting in over 100 time points
per crop—market pair. It includes 10-15 major crops, such as
rice, wheat, maize, gram, arhar, soybean, groundnut, onion, and
potato, representing cereals, pulses, oilseeds, and key
horticultural commodities. Price observations are collected from
50-100 regulated wholesale markets (mandis) distributed across
multiple Indian states, capturing spatial heterogeneity in supply

RESULT AND DISCUSSION
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chains and regional demand conditions. Seasonal
representativeness is achieved through continuous coverage of
all agricultural cycles: Kharif seasons (June—October) contribute
roughly 40-45% of observations dominated by monsoon-driven
crops like rice and maize; Rabi seasons (October—March)
account for about 45-50% of records reflecting winter crops
such as wheat and pulses; and Zaid seasons (March-June)
comprise the remaining 5-10%, capturing short-duration crops
and transitional price behavior. Each crop is observed across
multiple consecutive Kharif-Rabi-Zaid cycles, enabling
consistent estimation of seasonal effects, inter-seasonal
spillovers, and long-term price trends.

B. Accuracy of Forecasts

Fig. 4 shows that Forecasting accuracy measures the degree
of similarity between predicted and actual crop prices. The
extent of prediction errors is calculated using such metrics as
RMSE, MAE, and MAPE. A lower error value indicates a more
accurate and reliable forecast. The EXACT-FARM combines
SARIMAX, XGBoost, and LSTM to leverage the benefits of
capturing temporal dependencies and nonlinear relationships,
achieving an accuracy 15-20% higher than existing models. The
enhanced performance indicates that hybrid deep learning with
explainable Al mechanisms is effective in making crop prices
more predictable in a multi-factor environment, i.e., weather,
policy, and trade interactions.

Forecast Accuracy Comparison
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Fig. 4. Analysis of Accuracy of Forecasts.

g9

Analysis of the accuracy of forecasts RMgj is expressed in
equation 13,

1
This equation quantifies the square-root average of the
squared prediction errors, making it sensitive to large deviations.
In this, Q; denotes the predicted crop price for the jth
instance, B; indicates the actual observed crop price, m is the

total number of forecast points, and c is a small constant added
for numerical stability in computations.

C. Model Strongness Cross-Season and Cross-Region

Model robustness is the evaluation of a forecasting
structure's ability to maintain stable performance across seasons,
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weather conditions, and locations, as shown in Fig. 5.
Agricultural markets are highly sensitive to seasonal changes,
including the Kharif, Rabi, and Zaid seasons, and hence,
regional stability is mandatory. EXACT-FARM is more robust,
combining exogenous variables (weather, policy, and trade data)
with adaptive learning, and it guarantees steady R2 values above
0.90. Compared with traditional models, which deteriorate
under certain conditions, EXACT-FARM is dynamically
adaptive to local market variations, demonstrating its
generalizability and efficacy in multi-regional, multi-seasonal
prediction conditions that are indispensable for addressing the
challenges of global agricultural sustainability.

Model Robustness Across Seasons (R? Score: )
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Fig. 5. Analysis of Model Robustness.

Analysis of model robustness SR; is expressed in equation
14,

SEXVy
|

SRy =[1-V, +9]*[1% k’+k_Vr+19

(14)

This equation evaluates the weighted stability of model
performance across different agricultural seasons.

In this, S? denotes the coefficient of determination for the
rth season, V. indicates the corresponding season’s data weight
or significance, k represents the total number of seasons
analyzed, and 9 is a small constant to prevent division by zero
during normalization.

D. Explainability Score (SHAP Consistency Index)

Fig. 6 illustrates that the Explainability Score is a measure of
the degree to which the model presents the effects of input
variables on model predictions in a way that is understandable.
EXACT-FARM determines the role played by each factor,
including rain, policy change, or trade, in changing prices using
SHAP (SHapley Additive exPlanations) values. SHAP
Consistency Index measures these explanations over multiple
runs. A higher score indicates greater transparency and
reliability in interpreting drivers. EXACT-FARM has both a
higher consistency of SHAP than black-box models (87 and
higher, respectively). This interpretability ensures that
stakeholders, such as farmers and policymakers, can have
confidence in the rationale behind the model's outputs, enabling
intelligent, evidence-based decision-making.
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Explainability Comparison Across Data Scenarios (SHAP Consistency Index % 1)
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Fig. 6. Analysis of the Explainability Score.

The Explainability Score quantifies the degree to which a
small set of features consistently drives the model’s predictions,
providing a measure of concentrated interpretability. For
example, if rainfall, market arrivals, and MSP together
contribute 0.82 of the total aggregated SHAP values across
multiple rolling windows, the Explainability Score registers
0.82, indicating that these features dominantly and stably
explain forecast variations. The SHAP Consistency Index
captures agreement in feature ranking across ensemble
components and evaluation runs; for instance, if rainfall is
ranked as the top driver in 88% of windows across XGBoost,
LSTM, and SARIMAX; the index equals 0.88, reflecting high
cross-model consistency.

Analysis of Explainability Score (ES) Fg is expressed in
equation 15,

FR:lOOXW

(15)

This composite score quantifies the overall strength of
attributions while penalizing dispersion across runs, producing
a bounded interpretability index.

In this, m is the number of features, u; denotes the weight or
importance assigned to feature j, 7r; is the mean SHAP value for
feature j averaged across instances and runs, p; is the standard
deviation of SHAP values for feature j across runs, and k is a
small stabilization constant to avoid division by zero.

E. Causal Attribution and Importance of Features

Features and causal attribution represent the significance of
the variables that influence crop price changes the most in Fig.7.
The explainable artificial intelligence functions applied by
EXACT-FARM are SHAP values and counterfactual analysis to
determine causal relationships between temperature, rainfall,
production, and global trade indices. The framework presents
direct evidence-based data on drivers of the market through
quantifying the contribution of each of the factors. The multi-
factor analysis enhances interpretability as well as validates the
understanding of the model of the complex agricultural systems.
The driver attributions of EXACT-FARM demonstrate to the
policymakers and the farmers how the high-impact variables to
cause price changes can be identified to enable them to make
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adaptive plans and manage risks instead of using opaque
models.

Feature Importance and Causal atrinution (Mean SHAP Value 1)

Fig. 7. Analysis of Causal Attribution and the importance of features.

SHAP values are computed independently for each base
learner (SARIMAX exogenous block, XGBoost, and LSTM)
across multiple rolling-origin evaluation runs, producing a
three-dimensional attribution tensor indexed by feature, time
window, and model instance. For each run, absolute SHAP
values are first normalized by the sum of attributions to obtain
relative contribution ratios that are invariant to prediction scale.
These normalized attributions are then temporally aggregated
using an exponentially decayed average to emphasize stable
drivers while attenuating transient shocks. Cross-model
aggregation is performed through ensemble-weighted
averaging, where the same reliability weights used in the
forecasting ensemble are applied to the corresponding SHAP
vectors, yielding a unified attribution profile per feature. The
Explainability Score is computed as the normalized entropy-
reduction index of this aggregated SHAP distribution, capturing
both sparsity and stability of factor contributions across runs.
Empirically, scores above 0.70 indicate high interpretability
with consistent dominant drivers, values in the 0.55-0.70 range
reflect moderate but actionable interpretability, and scores
below 0.55 signal diffuse or unstable attributions, prompting
feature regrouping or temporal re-alignment.

Analysis of causal attribution G, is expressed in equation
16,

((235-5)—(31')2

Gra =100 %1 - an¢]2-+8

(16)

This index assesses the stability of feature attributions across
multiple retraining cycles, ensuring robustness of causal
interpretation.

In this, S represents the total number of repeated training

runs or bootstraps, n is the number of features, (Z)J@ is the SHAP
value for feature j in run s, @; is the average SHAP value of

feature iii across all runs, and 6 is a small normalization constant
for scale adjustment.

F. Decision Impact Index

Fig. 8 describes the Decision Impact Index quantifies the
effectiveness of the model outputs in enhancing stakeholders'
decision-making. It measures the percentage change in accuracy
of planning, trading or policy formulation when instructed by
the model forecasts and explanations. EXACT-FARM has the
largest Decision Impact Index among the models because it
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provides stakeholders, such as farmers, traders, and
policymakers, with actionable information. The data disclosures
provided by SHAP-based explanations help users understand
cause-and-effect relationships, thereby increasing their trust in
data-driven approaches. This metric demonstrates the practical
use of EXACT-FARM, which helps bridge the gap between
sophisticated Al output and its practical application in decision-
making in agriculture toward sustainable and inclusive
development.

Decision Impact Index
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Fig. 8. Analysis of Decision Impact Index.

A 10% simulated increase in MSP for wheat is propagated
through the price forecasting ensemble, and the resulting shift in
predicted arrivals, market prices, and profit margins is
quantified using the index, producing a value of 0.78, indicating
high actionable impact. Similarly, export restriction scenarios or
irrigation shortfall events are modeled to evaluate how ensemble
predictions guide trader stocking strategies and farmer sowing
choices, with index values ranging from 0.65 to 0.81 across
scenarios.

Decision impact index C;, is expressed in equation 17,

C11 — (Bwith—Bwithout) X 100 (17)
Bwithout+€
This equation quantifies the percentage improvement in
decision accuracy achieved when stakeholders use model-
informed strategies compared to when they rely on traditional.
In this, B,y represents the accuracy of stakeholder
decisions when supported by model forecasts and explanations,
Bithout INdicates the baseline decision accuracy without Al
support, and € is a small constant to prevent division by zero
during normalization.

G. Scalability and Efficiency in Computations

Computational efficiency is assessed by measuring the speed
and efficiency of a model applied to extensive, heterogeneous
agricultural data in Fig. 9. Scalability is the property of the
model to accommodate growing volumes of data without
affecting performance. EXACT-FARM maximizes training and
inference time with hybrid networks (SARIMAX trend
modeling, XGBoost feature learning, and LSTM time-series
modeling). It does this by simplifying data preprocessing and
parallel training. EXACT-FARM, unlike traditional Al models,
has a 20-30% shorter training time, and it can integrate multi-
source data. This makes it applicable to large-scale agricultural
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surveillance, real-time prediction, and policy simulations across
various crops, regions, and data modalities.

Computational Efficiency (Training Time in Secands 1)
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Fig. 9. Analysis of Scalability and Efficiency in Computations.

Analysis of scalability and Computational efficiency ratio
Cgr is expressed in equation 18,

U -U
CER — Zbase”Ymodel x 100

Upase+t (18)

This ratio quantifies the improvement in computational
efficiency of the model compared with a conventional baseline.

In this, U4, denotes the total computational time (training
and inference) of the baseline or traditional Al model, U,y qe:
indicates the total computational time required by the EXACT-
FARM system, and @ is a small stabilizing constant to prevent
division by zero during normalization.

H. Temporal Stability of Forecasts

Temporal stability assesses how well the model performs
over time, independent of climatic conditions, economic policy
changes, or trade fluctuations. It makes forecasts stable even at
turbulent times. EXACT-FARM attains low forecast deviation
(approximately 8 percent) on multi-year datasets obtained by
combining time-series decomposition and adaptive ensemble
learning. Exogenous and dynamic indicators of policies
incorporated into the model enable it to respond to unexpected
shocks. In contrast to classical models, which become inaccurate
over time, EXACT-FARM has historical resilience, making it
reliable for long-term agricultural planning, crop insurance
design, and sustainable food security policy frameworks, as
shown in Table II.

TABLE II. ANALYSIS OF TEMPORAL STABILITY OF FORECASTS

Year VMD- CNN- fsSQCA | STL-LSTM- EXACT-
SAO- LSTM ATT-KAN FARM
TFT

2018 12.4 11.6 14.8 10.9 8.2

2019 13.1 12.0 15.2 11.3 8.4

2020 12.7 11.9 14.9 111 8.1

2021 13.3 12.2 15.3 11.5 8.5

2022 12.9 11.8 14.7 11.0 8.0

Temporal stability index ST; is expressed in equation 19,

Xyu—Xy-1
Xy—1te€

1
STy =1-——+x

(19)
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This equation measures the consistency of forecasted values
over consecutive time intervals. It captures the degree to which
predictions fluctuate and produces steady and temporally
coherent forecasts.

In this, U represents the total number of time steps in the
forecast horizon, X, indicates the forecasted crop price (or
output variable) at time u, X,,_; represents the forecasted value
from the previous time step, and €\epsilone is a small constant
added to prevent division by zero.

I.  Trust and Usability Evaluation

Trust and usability assessments determine stakeholders'
perceptions of the model's interpretability, reliability,
transparency, and ease of use. The factors above determine
whether the system's insights can be put into practice and
understood by non-technical users. The explainable Al interface
of EXACT-FARM has the highest scores because it displays
SHAP-based feature contributions and counterfactual what-if
analyses, which are easily comprehensible. This builds trust
among farmers, policymakers, and market analysts by providing
clear explanations and intuitive dashboards. This promotes more
successful integration and application of Al in agricultural
ecosystems, converting predictive products into transparent,
stakeholder-accessible decision-making and price-management
instruments, as shown in Table I1I.

TABLE IlI. ANALYSIS OF TRUST AND USABILITY EVALUATION
Evaluation VMD- CNN- | fsQCA STL- EXACT-
Criteria SAO- LSTM LSTM- FARM
TFT ATT-
KAN
Interpretability 7.1 7.4 6.5 7.8 9.2
Transparency 6.8 7.1 6.0 7.6 9.0
Reliability 7.3 75 6.7 7.9 9.3
Usability 7.0 7.3 6.4 7.7 9.1
Overall 7.2 7.5 6.6 7.8 9.2
Satisfaction

Adoption likelihood with trust-usability interaction By, is
expressed in equation 20,

DT UF

—.—+c
100 100

CcT UE
BM=630+.81E+.825+33 (20)
This logistic-style formulation models the probability that
stakeholders will adopt the system, incorporating both trust and

usability as main effects and their interaction.

In this, B,, denotes the estimated Adoption Likelihood
(probability between 0 and 1), @ is the logistic sigmoid
function. B, is the intercept, f;,[B,, [s are regression
coefficients for the normalized Composite Trust Score, the
normalized Usability Effectiveness Index, and their interaction
term respectively. DT is the composite trust score (percent), UF
is the Usability Effectiveness Index (percent), and ¢ is an error
term or additional covariate aggregate.

The comparative analysis shows that EXACT-FARM is
much better than the current models in all assessment
parameters. It has greater predictive accuracy, executes faster, is
more interpretable, and is more helpful to stakeholders. These
findings confirm that EXACT-FARM can combine explainable
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Al with hybrid modeling, making it a strong, transparent
decision-support system for forecasting agricultural prices.

For a given forecasting window, assume raw price
predictions of 1820 (SARIMAX), %1950 (XGBoost), and
%2010 (LSTM), with a rolling mean of ¥1900 and standard
deviation of *100 computed from recent training data. Z-score
normalization transforms these outputs to —0.80, 0.50, and 1.10,
respectively. Model reliability weights are then estimated using
exponentially decayed RMSE over the last validation horizon,
for example 0.12 (SARIMAX), 0.08 (XGBoost), and 0.06
(LSTM). Inverse-error  weighting followed by soft
normalization yields convex weights of 0.25, 0.35, and 0.40. The
ensemble prediction is computed as a weighted aggregation of
normalized outputs: (0.25%-0.80) + (0.35%0.50) + (0.40%1.10)
= 0.41. This aggregated score is then inverse-transformed to the
original price scale, resulting in a final forecast of approximately
31941.

Classical models such as SARIMAX and ARIMA with
exogenous regressors serve as non-hybrid baselines, providing
interpretable references for linear and seasonal dependencies,
while standalone XGBoost and linear regression with SHAP
attribution represent simpler XAl baselines. Compared with
ARIMA, EXACT-FARM achieves an RMSE reduction of
approximately 12%, while the Explainability Score rises to 0.72
from 0.58 in single-model SHAP, indicating more concentrated
and stable factor contributions. Similarly, cross-model
attribution consistency improves by 15% relative to XGBoost
SHAP alone.

Causal graphs are derived through a hybrid approach
combining domain-informed structure specification with data-
driven refinement. Initial adjacency matrices encode agronomic
and supply-chain knowledge, linking rainfall and temperature to
crop vyield, yield to market arrivals and prices, and policy
instruments such as MSP or export controls as exogenous nodes.
These candidate structures are refined using conditional
independence tests, partial correlation analysis, and Granger
causality applied to the time-series panel, identifying
statistically supported edges while preserving temporal
ordering. Cross-validation against expert knowledge from
agricultural economists and market analysts confirms that the
retained edges reflect realistic causal mechanisms, including
seasonal planting—harvest cycles, regional trade flows, and
policy intervention pathways.

V. CONCLUSION

This paper proposed a multi-model, which combined VMD-
SAO-TFT, CNN-LSTM, fsQCA, STL-LSTM-ATT-KAN, and
the proposed EXACT-FARM model to boost the accuracy of
decision-making in smart agricultural ecosystems. The results of
the experiments involving a variety of datasets proved that
EXACT-FARM was always more effective than traditional
models in terms of improving the accuracy of the stakeholders
and the efficiency and speed of the computations. Adaptive
optimization, fusion of hybrid features, and context-aware
learning mechanisms have enabled the model to produce greater
impacts on the stakeholders, reduce the training time, and
increase the reliability of the decisions made.

The future directions include the extension of EXACT-
FARM by edge-intelligent deployment to support real-time
inference, explainable Al modules to achieve transparency, and
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federated learning to improve privacy on distributed datasets.
This can be enhanced by the addition of multi-modal data,
including satellite images, loT sensor feeds, and climate
forecasts, to enhance accuracy. Also, feedback loops of
stakeholders and a decision optimization mechanism based on
reinforcements will be examined to adopt adaptive and
sustainable agricultural intelligence systems.

Climatic anomalies influence production volumes and
quality, which in turn affect export—import balances and may
trigger policy responses such as procurement adjustments or
trade restrictions, creating feedback loops that are difficult to
fully disentangle in observational data. Although the attribution
framework conditions on multiple exogenous variables,
correlated shocks can lead to shared variance being distributed
across factors in the explanation graphs, blurring strict causal
separation. Temporal aggregation further amplifies this effect
when policy actions lag or coincide with weather-driven supply
shifts, causing attribution weights to reflect combined rather
than isolated influences.
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