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Abstract

Pan-sharpening is now indispensable in remote-sensing computing by means of its ability to render not only high-spatial-resolution images
but also precise spectral fidelity to the images. These features are essential for competent environmental measurement and investigation.
The paper presents a contourlet-based pan-sharpening algorithm, which aims to combine the high spatial resolution of the panchromatic
(PAN) images with the multispectral (MS) ones to extract high spectral resolution of the fused image. The algorithm tends to enhance the
details of the space and reduce the spectral distortion of a multi-stage fusion procedure to some extent. The structure initiates with
contourlet decomposition images captured by both PAN and MS, thus resembling directional and multi-scale structure. At the high-
frequency sub-bands, an anisotropic filter is used to reduce noise, leaving salient edges intact, and a maximum-absolute selection rule is
applied iteratively to inject spatial details effectively. In order to have spectral fidelity and to maintain global contrast on low-frequency
components, saliency maps are used in conjunction with adaptive weight maps. The sub-bands reconstructed progressively give a high-
resolution, artifact-minimal fused image. The proposed framework is validated through benchmark remote sensing datasets. The
proposed methodology is based on objective metrics. Performance evaluation based on a benchmark remote sensing dataset demonstrates
that the proposed methodology outperforms existing approaches in terms of sharper edges, contrast, and spectral features and offers an
efficient solution for environmental applications.

Keywords: Pan-sharpening, multi-spectral, panchromatic image, contourlets, anisotropic, fused image.

Received: October 20", 2025 / Revised: December 14™, 2025 /Accepted: December 24™, 2025 / Online: December 31%, 2025
render it an action environmental intelligence and therefore an
indispensable means of environmental monitoring and analysis

I. INTRODUCTION

Remote sensing has become one of the key technologies to
address some of the most challenging problems faced by the
world, such as climate change, the rapid pace of urbanization,
and the destruction of the ecosystem. It is applied to manage the
sustainable natural resources, to model the hazards predictively,
and to preserve the biodiversity by non-invasive data collection
of the surface properties of the Earth [1]. Aerial imaging and
unmanned aerial vehicles (UAVs) combined with high-
resolution satellite imagery provide real-time remote sensing
geospatial information of large and non-uniform environments,
effectively overcoming the limitations of geographical and
climatic heterogeneity [2]. Remote sensing can be used to
monitor large and heterogeneous land scopes almost in real-time
due to the usage of satellite imagery, aerial photography, and
unmanned aerial vehicles (UAVs), without considering
geographical and climatic constraints. It has a combination of
raw imagery with sophisticated computational processes, which

[3]. Remote sensing is an advanced technological system that
contributes highly to the precision, uniformity, and
extensiveness of environmental monitoring systems. PAN and
MS cameras, their typical resolutions and spectral ranges, and
their practical significance in Earth observation applications
such as urban mapping, environmental monitoring, agriculture,
and land-use analysis.

Representative examples from operational satellite systems
(e.g., WorldView, Landsat, and Sentinel missions) have also
been incorporated to ground the discussion in real-world
contexts. Due to a high level of spatial coverage, it is capable of
obtaining large geospatial data of large areas under one scan.
The precise temporal coverage enabling the satellite
constellations allows a periodic observation, which helps to
detect a change of season and quickly evaluate a sudden
phenomenon related to the environment, like a natural disaster.
Moreover, being a non-invasive method of observation, remote
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sensing does not cause ecological disturbance, and multispectral
and hyperspectral data can be measured in the invisible spectrum
[4]. The quality of providing a time and space consistency of the
environmental assessment is because of the standardization and
reproducibility of the satellite imagery. Besides these, by
connecting remote sensing data with Geographic Information
Systems (GIS), Artificial Intelligence (Al), and cloud-based
environments smoothly, one can perform more complex
analytical operations, such as predictive modelling, automated
classification, spatiotemporal changes detection, and analytics
about the environment at a large scale [5]. Depending on the
sensor, platform, and wavelength applied, different techniques
of remote sensing will benefit certain environmental monitoring
requirements.

Optical remote sensing identifies vegetation, land cover, and
water resources using visible and near-infrared wavelengths.
Thermal remote sensing detects emitted heat energy to analyse
surface temperature patterns, urban heat islands, and volcanic
activity. Microwave or radar sensing (SAR) operates day or
night and through cloud cover, excelling in terrain mapping,
flood monitoring, and soil moisture assessment. Hyperspectral
imaging captures hundreds of narrow spectral bands to
distinguish materials and diagnose environmental conditions.
Lidar (Light Detection and Ranging) is a laser pulse technique
that generates an elevation map and vegetation structure in
detail, which is very accurate in terms of the structure. Pan-
sharpening is a very essential 2 method in remote sensing, and
it is used to overcome the trade-off between space and spectral
resolution in satellite imaging systems.

PAN images contain great spatial details with little spectral
information, and multispectral (MS) images are rich in spectral
information but low in spatial resolution. Pan sharpening
balances spatial and spectral resolution to create a single image
with high spatial and spectral resolution, which is useful in
environmental monitoring, urban planning, agriculture,
surveillance, and medical research. However, pan-sharpening
encounters various challenges, such as balancing spectral
fidelity and spatial resolution, data heterogeneity because
different sensors can have different characteristics, artifact
prevention, and computational efficiency [6]. The conventional
pan-sharpening techniques have tried to deal with these
challenges by various techniques, such as Principal Component
Analysis (PCA), Intensity-Hue-Saturation (IHS), and the
Brovey Transform method. These techniques integrate MS data
with spatial information provided by the PAN image [7].

The majority of the existing methods are prone to cause
spatial distortions to the spectral factors, or vice versa, enrich
spectral information at the expense of spatial information
(typically at high resolution) [8]. These techniques are
computationally efficient, but they can generate spectral
distortions with a wide range of sensing conditions, which
reduces their usefulness. The recent development in deep
learning, especially with the Convolutional Neural Networks
(CNNs), provides potential alternatives to the conventional pan-
sharpening algorithms. CNNs are good at acquiring complex
nonlinear correlations between PAN and MS images, enhancing
the compromise between spatial and spectral quality [9].
Radiometric index maps (e.g., NDVI, SAVI) represent domain-
specific priors, which, together with sensor-oriented
augmentation strategies, dramatically enhance fusion accuracy
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without necessarily adding a lot of model complexity [CNN
Custom]. These developments reduce the limitations of the
traditional and modern model-based methods, especially where
the sensors are heterogeneous, thus increasing robustness in the
real world.

This paper presents efficient pan-sharpening methods that
preserve spatial-spectral fidelity. The fact that the proposed
method combines domain-sensitive input augmented with a
simplified network structure effectively correcting the flaws of
the traditional and CNN algorithms, enhancing uniform
performance in a wide range of sensing scenarios [10]. It is
designed to work effectively in diverse platforms; therefore, it is
well adapted for practical monitoring of the environment where
precision and effective fusion are required to make informed
decisions [11].

Chipman in 1995 proposed a wavelet-based image fusion
method preserving the multi-resolution features effectively [12].
Nevertheless, the method faces the weakness of computational
efficiency and is not robust when it comes to artifacts of
heterogeneous sensors. Simone, in 2002, emphasized enhancing
the spatial and spectral information of the remote sensing fused
image. Their techniques [13] are best in certain circumstances
but cannot generalize to the modalities and cope with high-noise
situations. Liu in 2017 developed a deep convolutional neural
network to implement multi-focus image fusion [14], which
described that the method produced a high range of detail
maintenance. Although effective, the model is computationally
intensive, and the optimization of the model to low-light or noisy
environments is not established, thus restricting the usefulness
of the model in practice. The article by Alparone in 2015
introduced the framework of remote sensing image fusion based
on multi-scale and pan sharpening techniques developed by the
authors of the article-in-focus and their integration into a single
framework. Although it is effective to solve particular remote
sensing problems, the framework cannot easily scale to large
arrays of multiple sensors, is sensitive to multi-sensor artifacts,
and necessitates data- driven solutions [15].

Il. RELATED WORK

Pan sharpening aims to combine complementary
information in multi-modal sources to generate an image with
high spatial resolution and spectral fidelity, used in a wide range
of applications, including remote sensing, medical diagnostics,
and surveillance. Although recent fusion techniques emphasise
detail preservation, contrast enhancement, and computational
efficiency quantitatively assessed through metrics including
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Mutual Information Fusion (MIF. The
algorithm suffers from modality-specific distortions, structural
inconsistencies, and spectral degradation. To address these
shortcomings, various studies have contributed diverse
approaches. Li et al. (2013) provided a guided filtering-based
visible infrared fusion method that employed edge preserving
smoothing to eliminate artifacts and enhance cross-modality
structure consistency [16]. In [17], Jie et al. designed a medical
image fusion algorithm based on extended difference-of-
Gaussians (DoG) and anisotropic edge-preserving filters,
achieving superior contrast and diagnostic interpretability at
high computational cost, restricting the scalability. Meng in
2022, proposed a vision transformer-based pan-sharpening
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model, using the self-attention mechanisms to provide high
spatial-spectral fidelity (high PSNR), but its computationally
intensive implementation restricts its use in real-time
applications in medical and multi-focus fusion. [18].

In 2015, Kumar et al. implemented a cross-bilateral filter-
based visible-infrared fusion algorithm, utilizing spatial and
intensity kernel weighting to perform robust edge preservation.
[19]. Though the algorithm maintains edges, it has noisy scenes
with low contrast, limiting its adaptability for medical imaging.
Li et al. in 2018 [20] suggested a structure-aware fusion
framework based on structural similarity measures, resulting in
sharper and more distinct boundaries, yet lacking multiscale
decomposition capability, thereby reducing robustness to noise.
Zhang in 2022 employed local extreme maps to enhance multi-
modal brain image fusion, using intensity- guided weighting to
enhance contrast, though its generalisation beyond
neuroimaging remains limited [21]. Jie et al. in 2024 [22]
advanced medical image fusion with multi-dictionary sparse
coding and truncated Huber loss, improving noise robustness
and structural consistency with high SSIM, but the predefined
dictionaries and high complexity hinder real-time use. Sufyan in
2022 proposed contrast and structure extraction for anatomical
image fusion, optimizing structural 3 detail, but exhibit
computational  inefficiency under  resource-constrained
applications [23].

Additionally, Ma et al. in 2017 developed infrared-visible
fusion using saliency maps and weighted least squares
optimisation, enhancing salient regions with high perceptual
quality. However, its applicability was limited to non-medical
and non-multi-focus imaging scenarios [24]. In 2019, Qiu et al.
introduced guided filter-based multi-focus fusion via focus
region detection to preserve sharp areas, yet it is ineffective for
infrared or medical modalities [25]. Bavirisetti in 2016 proposed
a two-scale fusion for visible-infrared images using saliency
detection in the wavelet domain, but risked information loss in
non-salient areas [26]. Liu in 2015 presented a multi-scale
transform and sparse representation framework, adaptable
across modalities, though its effectiveness is hindered by high
computational complexity and the absence of modal-specific
optimization [27]. Despite these technological advancements,
current remote sensing and image fusion methodologies still
encounter several fundamental challenges. These include
limited scalability when extended to heterogeneous multi-sensor
environments, poor robustness  against  cross-sensor
discrepancies and radiometric distortions, and reduced
performance under adverse imaging conditions such as high
noise levels or low illumination.

Furthermore, weak spatial-spectral interaction modelling,
reliance on manual hyperparameter tuning, and absence of
probabilistic uncertainty quantification significantly constrain
their generalization and reliability. Such limitations emphasize
the imperative for next-generation, data-driven, and
optimization-oriented fusion architectures that can holistically
reinforce structural fidelity, spectral preservation, and
computational efficiency across diverse remote sensing
modalities. The most current developments on the pan-
sharpening deal with spectral and spatial anomalies in the
synthesis of high-resolution panchromatic (PAN) and low-
resolution multispectral (MS) images. Liu et al. in 2024 [38]
address the problem of low inter-modal correlation and describe
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the injection errors together with multimodal texture correction
(intensity, gradient, and deep A-PNN-contraband), adaptive
degradation filtering, and edge detail fusion with high quality of
Q-index, SAM, and ERGAS. By using a selective update block
(SUB) with gated forgetting/filtering both in spatial-frequency
space and frequency focal loss to restore high-frequency texture,
Wang et al. (2025)[39] achieve state-of-the-art SSIM, UIQI, and
LPIPS on multiple datasets. Zhang in 2025 [40] assess the
suitability of algorithms to atmospheric, sensor, and scene
variations, demonstrating limited spectral consistency and
spatial fidelity under practical conditions. One can state that,
collectively, these publications promote adaptive and distortion-
resistant fusion paradigms needed in the reliable HRMS remote
sensing.

I1l. PRELIMINARIES

A. Contourlet Decomposition

The contourlet transform is a multiscale and multidirectional
image decomposition framework designed to efficiently
represent two-dimensional signals with smooth contours, edges,
lines, and curvilinear structures [28]. It integrates a low-pass
(LP) and high-pass (HP) filter for multiresolution decomposition
with a Directional Filter Bank (DFB) to achieve anisotropic and
highly directional sub-band decomposition, enabling sparse
representation of images with complex geometric features [29].
Unlike traditional wavelet transforms, which are limited to
isotropic scaling and limited directional selectivity, the
contourlet transform employs non-separable filter banks that
capture textures and edges and directional information
effectively with fewer coefficients. This makes it especially
convenient in image enhancement and fusion applications under
adverse illumination, and has been demonstrated to perform
their wavelet- based counterparts in the ability to preserve and
enhance meaningful geometric features such as edges and
contours[18]. Mathematically, the contourlet decomposition of
an image f is defined as:

€Y)
) @

as[p] = <f' LS,v >
a1l = (.05

Here, f denotes the input image, while as [p] represents the

represent the lowpass coefficient, df[p] Refers to directional

contourlet coefficients. The function Ls,y is the lowpass basis at

scale S and subband v, measuring coarse-scale intensity

variations. In contrast, ps(f’;_;, Represents the contourlet basis
function at a given level of the decomposition m, scale s,
direction r, and spatial position p = [p1, p2]. The operator (., .)
denotes the inner product of the image, f, and the basis function,
measuring the degree of correlation.

Equation (1) provides the approximation coefficients of
large-scale intensity variation at low frequency, and Equation
(2) is an approximation of small-scale edges and contours of
various orientations of the high frequency. Parameters s and r
determine the magnitude of the resolution and the filter
orientation, respectively, while m is the number of directional
sub-bands, controlling the angular resolution of the
decomposition. Figure 1, the Contourlet transform uses a
Laplacian Pyramid (LP) framework to analyse the scale-space
representation and the Directional Filter Bank (DFB) to extract
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directional detail components, effectively producing bandpass
directional sub bands with high directional sensitivity [29].

The overall model of the coefficients, {as[p], d55[p]} .
provides a representation of an image in compact and descriptive
terms, preserving the high-energy structural intensity with finer
directional features. Due to this property, direction consistency
and structural sharpness are crucial properties in image fusion,
which makes the Contourlet Transform quite useful in image
fusion applications.

B. Anisotropic diffusion

Anisotropic diffusion is a nonlinear image enhancement
technique that models spatially variant diffusion through partial
differential equations (PDEs) to selectively smooth images
while preserving prominent edges and structures [30]. In
contrast to isotropic diffusion, which performs uniform
smoothing across the image, anisotropic diffusion enables intra-
region smoothing and suppresses inter-region blurring, thus
maintaining edge sharpness even at coarse resolutions. This
property makes it particularly useful for image denoising,
enhancement, and pan sharpening tasks in remote sensing. The
anisotropic diffusion process can be expressed as:

P,(r,s) = aniso’(Iue1n (1, 5)) 3)

Here, Pn(r,s) is the anisotropically filtered output at a
spatial point (r,s) by applying an anisotropic operator
aniso’'(:) on image Iy, (r,s). The operator tends to be
spatially adaptive and nonlinear, regulating diffusion according
to local gradient magnitude. Consequently, strong edges
experience limited smoothing while homogeneous areas are
denoised effectively [31].

Similarly, for a second intermediate image representation,
the anisotropic filtering can be formulated as:

Qn(i,j) = aniso’(Iout2n(i,j)) 4
Directional  Low-pass(LP) _
Filter Dlrelctlonal
Bank(DFB) Filter
| Bank{DFB)
TN E T bandpass
\ ) directional
N s subbands
bandpass
Image directional
subbands
High-pass(HP)

Fig. 1. Contourlet Decomposition

The equation Qn(i,j) = aniso’'(I%,, (i,j)) has a similar
formulation to the earlier one, except that the anisotropic.
Operator aniso’(-) acts on a different intermediate
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representation 17, (i,j). In contrast to the fact that, unlike,
172 (i, j). The value of this component can be associated with
a single stage, a single channel, or just a single feature map of
the fused image. The value of Qn(i,j) denotes an alternate or
complementary input, possibly of a different spectral band,
another spatial layer, or another processing path. The algorithm
uses the same anisotropic transformation on this second input
stream, returning us to edge-aware filtering uniformly across
streams of data whilst adjusting itself to directional tone
variations. The resulting coefficient Qn(i,j) is therefore a
parallel structural predictor to the n(i, j), and incorporates extra
frequency or contextual data. These outputs, when combined,
can be complementary anisotropic responses, allowing the
image fusion process to release finer spatial structures and
spectral integrity as well as reduce noise and redundant artifacts.
To capture residual details, the unfiltered high-frequency
content can be obtained as:

R, (k1) = Toutl,(k,1) — P,(k,1) 5)

The equation R,,(k,l) = 12,:1(k,1) — B,(k,1) defines the
residual component R, (k,1) as the difference between the
original input 1},.,(k,1) and the processed output term
B, (k,1).1f B,(k,1) indeed corresponds to the anisotropically
filtered result n(k, [) from the earlier formulation (with minor
notational variations); this subtraction effectively measures the
portion of the signal that is not captured by the anisotropic
transformation. Practically, this kind of residual computation is
at the heart of an image processing code and deep learning
architecture: it isolates details of the image, noise patterns, or
structural inconsistency, which is left behind after the operations
of smoothing and transformation. In the pan sharpening or
fusion task scenario, the residual term offers a natural way to
restore lost fine-grained spatial information or emphasize
discrepancies to correct, thereby increasing structural and
spectral fidelity. A similar residual formulation for the
secondary channel is given as:

Sa(, k) = Lyyon(w, k) — Q,(v, k) (6)

The second input channel is calculated using an equation
known as the residual computation by S, (v, k) = 3,2 (v, k) —
Q. (v, k) The calculation is quite similar to that in the third
equation. In this case, after the anisotropic transformation in the
second equation, the resulting value Q,(v,k) The optical
process is removed in the form of the initial input I,, out2(v, k).
This gives the remaining value, S,(v,k), that has the
information that is not contained in the anisotropically smoothed
or transformed version of the second input. The wider
framework of pan sharpening or fusion systems, that is, an
accurate reconstruction of fine spatial details, is ensured by
virtue of channel-specific subtleties at S,, (v, k) and adds to the
equal consideration of spectral and spatial features.

C. Max-Absolute Rule

The Max-Absolute rule is a widely adopted selection rule in
image fusion, primarily applied on the high-frequency
decomposition bands where edge and textural information
dominate [32]. It operates on the principle that the coefficient
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with the largest absolute value carries the most significant local
detail, such as edges or texture variations. Formally, it is defined
as:

P (s, d),

_ if |P(s,d)| = Mi(s,d)|
Fio(s,d) = {Mk o s K

if M(s,dl 2Pl P

In this formulation, Fi(s,d) denotes the fused high-
frequency coefficient of the spatial position (s, d) for the k™
directing sub-band of a multiscale transform. The parameters,
Py (s,d) and M, (s, d), represent the respective high-frequency
coefficients of the panchromatic (PAN) and multispectral (MS)
images, respectively, in the same subband and at the same
location. The rule simply selects the coefficient with the higher
absolute magnitude, assuming it corresponds to a region with
stronger edge or textural information. This mechanism
effectively enhances local contrast and edge sharpness in the
fused image. However, since it relies solely on intensity
magnitudes, it may occasionally preserve noise or small
artifacts. To overcome this limitation, advanced techniques such
as anisotropic diffusion—based residual fusion adaptively refine
coefficient selection wusing local gradients and spatial
correlation, achieving superior perceptual and structural quality.

D. Weight Maps

Weight maps spatially varying structures used in image
fusion to determine the contribution of each input image to the
fused image at every pixel or region. Unlike the fixed weighting
method, these maps are computed adaptively, based on local
image properties including variance, gradient strength, contrast,
or saliency, allowing the algorithm to dynamically identify and
emphasize regions containing sharp edges or texturally rich
features [33]. In multiscale decomposition-based fusion models,
the weight maps are essential towards determining the optimal
combination of low-frequency (structure) and high-frequency
component (detail), ensuring that the resulting fused image
inherits complementary spatial and spectral features of the
source images. The weights are also normalized over all the
sources of input so that the total of the weights adds up to unity
over each spatial coordinate. This normalization imposes a
balanced and unbiased contribution on each of the images,
preventing the dominance of modalities. Consequently, weight
maps function as a localized control mechanism, which
prioritizes perceptually and structurally significant areas to
enhance the overall fusion quality in terms of sharpness,
contrast, and information content. The fused image can be
mathematically represented as a weighted linear combination of
the input images:

N
Fr) = Z’U W - S L) @)

Jj=1

Where F (1, r) is the fused image, intensity at spatial position
(1, r). Sj (1, r) denotes the corresponding intensity of the j" source
image (panchromatic or multispectral), and Aj(l, r) is the adaptive
weight map of that source image at the same spatial location.
These weight maps are spatially variant and are adaptively
computed using local quantities like intensity variance, gradient
energy, edge strength, or saliency. This adaptive nature enables
the fusion algorithm to assign higher weight to regions with
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greater structural or textural significance, ensuring that the most
informative parts of each input are retained in the final product.
The total number of source images combined in the fusing
process is termed N. To avoid preference for a specific image,
and to ensure balance in terms of effects, the weight maps are
typically normalized at every pixel position such that the sum of
the weight maps is equal to one:

N
2,1,- ar =1
=

Which guarantees that the total contribution of all input
images at any spatial position remains equal to one. This
constraint maintains  radiometric  balance, preventing
disproportionate influence from any individual source and
ensuring that the fused image exhibits consistent brightness,
contrast, and visual coherence. In practical multiscale fusion
pipelines, separate weight maps are typically employed for
different frequency components. Low-frequency weight maps
guide the integration of global structures and smooth intensity
transitions, while high- frequency weight maps control the
fusion of edges, textures, and fine spatial details. This
frequency-specific weighting enables selective enhancement of
both structural integrity and detail sharpness. Consequently, the
fused image achieves an improved balance between spatial
resolution enhancement and spectral fidelity preservation,
leading to a perceptually natural and information-rich fusion
output.

9

IV. EXPERIMENTS

This section elaborates on the details of the datasets that are
used to validate the proposed fusion algorithm. The experiments
are designed to confirm fairness in comparison with established
methods, and Objective evaluation is performed using PSNR,
SSIM, Entropy, SF, Corr, MIF, ERGAS, QABF, and LABF to
comprehensively assess spatial, spectral fusion, as explained in
Table I.

Step 1: Preprocessing
. Read input PAN image A and MS image B.
2.

Convert the PAN image to grayscale if required.

3. Resize both images to a common target size (e.g., 256
x 256).

4. Convert images to double precision and normalize
intensities to [0,1].

5. Convert MS image B from RGB to YCbCr color space.

6. Extract luminance Y_B and chrominance components

Cb_B.

Step 2: Multiscale Decomposition Parameters
7. Set the number of pyramid levels L = 3.
8. Initialize anisotropic diffusion parameters: number of
iterations and gradient threshold.

Step 3: Contourlet-like Multiscale Decomposition
9. Decompose PAN image A into low and high-
frequency components.
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10. Decompose MS luminance image Y_B into low and
high-frequency components.

Step 4: Low-Frequency Fusion
11. Apply Laplacian filtering on A and Y_B.
12. Apply Gaussian smoothing to Laplacian responses.
13. Compute saliency maps for PAN and MS luminance.
14,
15. Construct adaptive weight maps using normalized
saliency.
Fuse low-frequency components using weighted

averaging.

16.

Step 5: High-Frequency Fusion

Normalize saliency maps and apply gamma correction.

17. For each decomposition level I =1to L:

18. Apply anisotropic diffusion at the first level.

19. Fuse high-frequency subbands using the max-absolute
selection rule.

Step 6: Luminance Reconstruction
20. Reconstruct the fused luminance image using inverse
multiscale reconstruction.
21. Clip reconstructed luminance to [0,1].

Step 7: Color Reconstruction

22. Combine fused luminance with original chrominance
components.

23. Convert the fused YCbCr image to the RGB color space.
24. Clip final RGB image to [0,1].

TABLE I. OBJECTIVE METRICS

Metric Description Equation Interpretation / Role
PSNR Peak Signal-to-Noise Ratio indicates the An increase in PSNR means
quality of reconstruction of the fused image MAX? there is an increase in the quality
compared to an actual image. PSNR = 10 loylo(M—SE) of fusion with a reduction in
where MAX, The maximum pixel value and MSE is the distortion and noise.
mean squared error.
SSIM Structural Similarity Index is a kind of SSIM values closer to 1 indicate
perceptual similarity that is assessed with stronger structural similarity and
regard to luminance, contrast, and structure. visual fidelity.
SSIM(F,R) = EZMF#§ + C)Qopg + C;)
Wi+ pi+ C(E+ o+ Cp)

Entropy (EN) | Assesses the content of information in the Higher entropy reflects richer
combined picture by using the measurement information content in the fused
of randomness. H(F) = =21 p; log2(p;) image.

where p; Is the probability of gray level i.
SF Spatial Frequency is used to quantify the Higher SF implies better texture
amount of activity or fineness of detail in the SF = \/(RF2 + CF?) and structural detail
combined image. Where RF and CF denote row and column frequencies. preservation.

Corr The correlation coefficient is a measure used Higher correlation indicates
to determine the linear dependency between better similarity and consistency
the fused picture and the source pictures. Corr Y(F — uF)(A — p4) with source images.

JE(F — pF)?Z(A — pA)?
MIF Mutual Information Fusion is used to Higher MIF signifies effective
measure similar information between the retention of complementary
fused image and the source images. MIF = MI(F,A) + MI(F,B) information from source images.
ERGAS Relative Global Dimensional Error in Lower ERGAS values indicate
Synthesis evaluates spectral distortion in n [ RMSE? better spectral fidelity and
fused images. ERGAS = 100 7 \/;gil\il (_l) reduced distortion.
Hi
QABF Edge-based Fusion Quality Metric assessing Higher QABF indicates superior
edge information transfer from source edge preservation in the fused
images to the fused image. Qi ZQo(AF) -wy + Qy(B,F)-wpg image.
F Z(wy + wg)
LABF Loss of Edge Information: was a measure of Lower LABF values imply
the loss of structuring information during minimal edge information loss
fusion. LABF =1 — ((QABF) + (NABF)) and better fusion performance.
(edge loss component)
A. Datasets obtained from the repository “Pan sharpening by Convolutional

The proposed fusion algorithm was evaluated using publicly
open pan sharpening datasets. Dataset-A PAN-MS image pairs
obtained from the GitHub repository “Pan Sharpening Dataset”
[34]. This dataset provides highly magnified panchromatic
images  alongside their  corresponding  multispectral
counterparts, which are widely used for pan-sharpening
experiments. Dataset-B Additional PAN-MS image pairs were

140

Neural Network™ [35].

Dataset-A consists of PAN-MS image pairs obtained from
our curated collection, containing high-resolution Panchromatic
(PAN) images along with their corresponding Multispectral
(MS) counterparts, widely used for pan sharpening experiments.
Dataset-B contains more PAN- MS image pairs that represent a
variety of natural and urban settings [36] and that are suitable to
provide robustness in terms of both evaluation and
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generalization with different settings. Dataset-C entails
agricultural landscapes, thus, 6 allowing the evaluation of the
performance of pan sharpening to be applied in vegetated and
textured areas, in which spectral fidelity is essential. The urban
infrastructures in Dataset-D and high-density urban areas are the
areas of concern where spatial information can be effectively
analyzed as per the high-frequency areas, which are represented
by roads and buildings.

Dataset-E is a heterogeneous body of PAN-MS image pairs
of both natural and urban conditions. It is an effective and
extensive standard for assessing the flexibility, resilience, and
generalization of the suggested approach in a wide range of
environmental and imaging dialogs. The experiments were
conducted using contourlet-based multiscale decomposition,
anisotropic diffusion filtering, and low—high frequency fusion
operations in MATLAB. The implementation utilized the Image
Processing Toolbox for pre- processing, coefficient extraction,
and evaluation of fusion performance metrics to ensure
consistency and reproducibility.

All experiments were executed on a desktop workstation
running Windows 11 Pro (Version 23H2, OS Build 22631.4169)
with the following configuration: an Intel® Core™ i5 processor
@ 2.72 GHz, 16 GB DDR4 RAM, 64-bit operating system on
an x64-based architecture, and all computations were carried out
without GPU acceleration.

V. PROPOSED METHODOLOGY

The proposed methodology aims at merging the high-spatial
resolution data of the Panchromatic (PAN) image with the
spectral properties of the Multispectral (MS) image. The
algorithms used in the proposed method are contourlet multi-
scale decomposition, low-frequency fusion (local variance), and
high-frequency fusion (anisotropic diffusion filter) to ensure
effective details enhancement and edge preservation. The fused
luminance channel Y Is then integrated with the original
chrominance components (Cb, Cr) from the MS image to form
the final fused YCbCr image. The overall process is illustrated
in Figure 2.

A. Preprocessing

In preprocessing, a PAN image P and an MS image M are
both spatially aligned to the same size in the geometric
dimension for further fusion operations. The resizing process is
demonstrated as:

P. = resize(P,T ),M, = resize(M,T) (10)

Where T = [H, W] is the target size derived from the height
H and width W. P; and M, are the resampled versions of PAN
and MS images. The resizing is essential for performing fusion
without spatial distortion. The resampled MS image, M, is then
converted to the YCbCr colour space, which is denoted as:

Mycper = RGB2YChCr(M,) (11)

where Mycher IS the converted image with three components

stated as:

Mycbcr = {Y5,C, C } (12)
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Where Yg denotes the luminance channel, and CyC; are the
chrominance channels.

This conversion derives intensity from colour, allowing the
luminance component Y to be enhanced or fused with the high-
resolution PAN image P, for enhanced spatial detail while
preserving the spectral fidelity carried by C, and C..

B. Multiscale Decomposition

The PAN luminance, P;, and the MS luminance Yg are
decomposed using a contourlet-based multi-scale residual
pyramid to decompose the image across multiple frequency
bands. On every level of decomposition, Gaussian blurring is
used to extract the low-frequency component, and the standard
deviation of the Gaussian filter is defined as:

o = 2k (13)

This expression gives a direct dependence between the
pyramid level and the smoothing scale, stating that the lower
levels (small k) retain high-frequency detail, whereas higher
levels (large k) isolate broader structural information. By
progressively increasing o across levels, the multiscale
decomposition attains a progressive separation of high and low-
frequency data, which is crucial to integrate the PAN spatial data
into the MS spectral data, preserving edge integrity as well as
minimizing artifacts:

Ly = Go (Lg-1),Hy = Lg—q — Lyg (14)

where Lo is the input image and Hy represents the high-
frequency residual at scale k. This is repeated iteratively over K
pyramid levels.

C. Low-Frequency Component Fusion

The low-frequency bands, Lr (panchromatic image) and Ly

(multispectral luminance) are combined using a Gaussian-
smoothed, saliency-based phase weighting strategy. This
increases the local contrast, ensuring the smooth transition in the
fused outcome through incremental computation of saliency
maps, normalization and gamma correction, with derivation of
fusion weights needed further.
1) Saliency-Map Computation: In order to obtain local contrast,
both the panchromatic image, A (representing Lp), and the
multispectral luminance, Yg (representing Ly), are operated
using a Laplacian filter defined by the 3x3 kernel:

0 1 0
K=[1 -4 1
0 1 0

which is used to compute the high-frequency details as:
Lops = A * K, Lgpy, = YB * K (15)

where * denotes convolution with boundaries replication. To
suppress noise and smooth the saliency maps while preserving
contrast, a Gaussian filter (15x15 Kkernel) with standard
deviation o = 2 is applied providing sufficient spatial coverage,
noise suppression, and a balance between smoothness and detail,

improving visual quality as:
P, = Lap; * G,

P, = Lap, * G (16)

where G is the Gaussian kernel. The saliency maps are then
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obtained by taking the absolute values as:

S; = |~ (17)
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Fig. 2. Proposed Methodology Using Contourlet Decomposition and Anisotropic Diffusion.

2) Normalization and Contrast Enhancement: The saliency
maps are normalized to the range [0, 1] using the following
equation:

1 = 51
" max(§1) + €’

S2

2 " max(S2) + € (18)

where S1 and S2 represent the saliency maps of the PAN and
MS luminance images, respectively. € = 10-6 is added to
prevent division by zero in cases where a saliency map may
contain all zero values. After normalization, to enhance local
contrast and emphasize intermediate saliency values, a gamma
correction with y = 0.5 is applied as:

Sy = §P°,8, = 8¢ (19)

This ensures that the important regions in both images are
more prominent, improving the effectiveness of the fusion
process.

3) Weight Computation: The normalized, gamma-corrected
saliency maps are used to compute the fusion weights as:

B T1
TT1+T2+€

T,

X X,=—
1 2T T1+4T2+e€

(20)

142

These weights ensure that regions with higher saliency con-
tribute more prominently to the fused result.
4) Fusion: The low-frequency components Lrand Ly are resized
to match the weight map dimensions. The fused low-frequency
component Lr is computed as:

Lp = Wy - Lp + W, - Ly (21)

The weight maps W1 and W2 are generated from saliency or
local contrast measures and have the same spatial dimensions as
the original images at a given pyramid level. Since the low-
frequency components may have been obtained at a course
resolution during multiscale decomposition, resizing ensures
that the element-wise multiplication of the weight maps with the
low-frequency components are properly defined.

By resizing and performing the weighted fusion, the
structural information from both PAN and MS images is
accurately combined, while the Gaussian-smoothed weights
ensure smooth transitions across regions, preventing
misalignment or blocky artifacts in the fused image.

D. High-Frequency Fusion

For high-frequency detail enhancement, an anisotropic
diffusion filter is first applied to the input images to sharpen
edges while suppressing noise [37]. The process is controlled by
the following partial differential equation:
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= v - (c(I VI IDVI) (22)

at

where, | refer to image intensity, the diffusion time or
iteration step is denoted by t and V refers to the spatial gradient
operator. The conduction coefficient (c(||VI|[)) varies the
diffusion rate at each pixel with respect to local gradients,
preserving sharp edge while smoothing edges homogeneous
regions.

The quadratic conduction model is used to define (c(||V1][))

[1v1]

e (-1 )) @)

where, the size of the local image gradient is represented by
the magnitude of the gradient (where ||VI|| denotes the image)
and K = 2 is the gradient threshold controlling diffusion extent
such that gradient values higher than K cause less diffusion,
preserving the edges’ sharpness and suppressing noise in flatter
regions. Following the application of the anisotropic diffusion
the high-frequency sub bands in both the PAN and MS images
are merged by max-absolute selection rule stated as:

(@) (a) (a)
HY (y,5) = Hp" (), |HPa o, S)| > Hy" (7, 9)], (24)
H)('a) ,s), otherwise,

where H,E“) (v,s) and HIE“) (v,s) are the high-frequency
coefficients of the PAN and MS images, respectively, at spatial

position (y, s) and subband a, and Hé“) (y,s) is the fused
coefficient.

In the rule, at every pixel, one of the coefficients with the
largest value is picked in the fused image, indicating sharper
edges or textures while reducing noise.

E. Reconstruction

The fused luminance channel ¥ , is reconstructed by fusing
the fused low-frequency and high-frequency signals as:

A
}7=LF+ZH,?
a=1

where ¥ represents the final fused luminance channel that
will later be integrated with the original chrominance
components to form the fused YCbCr image. The term Lr
denotes the fused low-frequency component, which contains the
global structural information and smooth intensity variations

from both the PAN and MS images. The summation ¥4_, HF(“)
aggregates the fused high-frequency sub bands across all

decomposition levelsa=1, 2, .. ., A, where Héa) represents the
high-frequency coefficients at subband a obtained using the
max-absolute selection rule. The low-frequency component to
the summation of the high-frequency subbands leads to recon-
struction of the channel () that almost perfectly preserves the
total structure information along with fine details (edges and
textures) so that a sharp and coherent fused image can be
obtained.

(25)
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F. Final Image Formation

The fused luminance channel ¥ is combined with the
original chrominance components (Cyp, C;) of the multispectral
(MS) image to construct the fused YCbCr representation as:

chbcr = { ? ’ Cb: Cr } (26)

Then, an inverse colour space conversion is carried out to get
the end result RGB fused image by:

Irysea = YCbCT2RGB(Icper) 27)

This reconstruction method is designed in a way that the high
spatial resolution details extracted from the PAN image are
amalgamated with the MS image without affecting the spectral
distortion. The low-frequency, variance-based fusion maintains
global structural data and smooth intensity transition, whereas
the high-frequency fusion through anisotropic diffusion and
max-absolute selection enhances edges and fine textures. Hence,
the resulting final fused image lwused attains an optimal balance
of spatial resolution and spectral fidelity, resulting in a sharp,
visually consistent, and spectrally accurate pansharpened
output.

VI. RESULT ANALYSIS AND DISCUSSION

A. Visual result

In Dataset A as illustrated in Figure 3, the proposed
algorithm provides the most visually superior fusion output
amongst all comparative methods. The proposed methodology
demonstrates higher spatially clarity and balanced spectral
preservation than FGF-and-XDoG [17], CDIF [18] and CBF
[19] which tend to introduce color distortions or excessively
enhance local areas. The Structure-aware [20], MDHU [22],
IMA [23], and VSM-and-WLS [24] generate grayish results
with significant information loss, particularly in fine textural
regions. Though, GFDFs [25] and Two-scale [26] methods
retain spectral consistency along with some structural
information. In contrast, the proposed technique gives a more
well-balanced reconstruction, in which structural edges like
building edges and vegetation areas are enhanced to have a
sharper appearance, more natural contrast, and a better
perceptual uniformity, representing better spatial spectral

fidelity.

Structure aware

‘g!

Two scale Proposed

GFDF
Fig. 3. Fused image of Dataset A with different techniques



Thakur et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 135 =160 (2025)

In Dataset B presented in Figure 4, the proposed algorithm
proves to be obviously superior. The hybrid methods like CDIF
and CBF usually yield images that do not match the visual
perception, with either over-saturation or under- saturation in
selected regions; whereas the structure-oriented methods (e.g.,
Structure-aware, MDHU, IMA, and VSM-and- WLS) yield
images with less vivid color schemes, with most images appear
grayish and with low color maintenance. Even though LEGFF
[21] has some spectral content, as does GFDF, they bring about
blurring in the high-frequency areas. The suggested solution is
useful in the sense of combining high- frequency detail with
natural spectrum maintenance, which creates more distinct
urbanization and a better definition of vegetation textures.

CBF

VSM-and-WLS

GFDF Two scale

Proposed

Fig. 4. Fused image of Dataset B with different techniques

Figure 5 The challenge of structural clarity and spectral
naturalness. The existing techniques including CDIF and CBF
have serious color degradation and artificial improvement. The
three models, MDHU, IMA and VSM-and-WLS, are generally
producing grayscale results that have a strong loss of spectral
information. GFDF and Two-scale maintain structure though
fine details are usually blurred and the proposed method is quite
effective because it improves regions, edges and preserves the
same spectral content.

"1!

)
B0 w,c
”“%M%

CDIF

Proposed

Fig. 5. Fused image of Dataset C with different techniques

In Dataset D of Figure6, with fine linear features like edges
heterogenous structures, regions; the vast majority of hybrid
approaches do not balance out. FGF-and-XDoG, CDIF, and
CBF are distorting spectral content, whereas Structure-aware
and MDHU are overdoing edges, making them look unnatural.
IMA and VSM-and-WLS have spectrally lost outputs of lower
quality. The edges river boundaries are not represented in GFDF
and Two-scale. The proposed approach offers a natural
appearance of water areas with distinct edges and clear vege-
tation textures, which is the most realistic of all approaches.

GFDF Two scale Proposed

Fig. 6. Fused image of Dataset D with different techniques

Dataset E in Figure7 shows that the proposed algorithm is
effective in Dataset E as is evidenced by Figure3. Competing
fusion algorithms have several weaknesses - such algorithms as
FGF-and-XDoG, CDIF and CBF will tend to generate
unnaturally enhanced contrast, the algorithms like Structure-
aware, MDHU, IMA and VSM-and-WLS are not able to
reproduce colors correctly and the spectral distortion becomes
apparent. LEGFF, as well as GFDF can preserve partial high-
frequency detail, but with low global sharpness and Two-scale
method results in blurred fine details because of inadequate edge

reinforcement. -
—~ ?}i .< 25

MDHU IMA VSM-and-WLS

GFDF Two scale

Proposed

Fig. 7. Fused image of Dataset E with different techniques
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Conversely, the proposed algorithm is also able to maintain
spectral fidelity as well as spatial sharpness and produce a fused
output, which is visually balanced and natural. The different
features like road networks, vegetation textures, man-made
structures are also highly maintained with few artifacts, which
reflects the efficiency and flexibility of the method applied in
challenging scenes.

B. Objective Results

As a way to thoroughly evaluate the fusion performance in
Table 11, various objective measurements were compared among
various hybrid approaches including FGF-and-XDoG, CDIF,
CBF, Structure-aware, LEGFF, MDHU, and IMA as well as
VVSM-and-WLS, GFDF, Two-scale, and the proposed one. The
findings categorically show that the approach has better results

in terms of the structural preservation, as the highest QABF
score (0.6868) reflects. That proves its ability to preserve edges
and fine details of the structure. The competitive performance in
PSNR (22.91 dB) and SSIM (0.6995) is also shown by the
method, indicating an equal trade-off of spatial fidelity and
perceptual quality. CBF had the best PSNR (26.56 dB), SSIM
(0.881) but it has a poorer QABF (0.5135), indicating that it has
the propensity to over smooth edges at the expense of edge
clarity. Equally, Structure-aware and VSM-and-WLS methods
were relatively high (25.60 dB and 25.89 dB, respectively) but
the QABF scores (0.5155 and 0.5212, respectively) were
significantly lower than in the proposed method. Information-
theoretically, the given methodology delivered a competitive
entropy (7.2397) and an average MIF score (1.4878), which
means that enough informational richness was not discarded.

TABLE Il. COMPARISON OF DIFFERENT METHODS ON DATASET A

Metric FGF- CDIF CBF Structure- | LEGFF | MDHU IMA VSM- GFDF Two- Proposed
and- [24] [25] aware [27] [28] [29] and- [31] scale
XDoG [26] WLS [32]
[23] [30]
PSNR 22.471 | 10.5557 | 26.5626 | 25.6 19.2802 | 19.045 21.6114 | 25.8953 | 23.8754 | 26.5642 | 22.9102
SSIM 0.7981 | 0.7386 | 0.881 0.8677 0.6738 | 0.5987 | 0.6332 | 0.8676 | 0.7718 | 0.8742 | 0.6995
Entropy | 7.453 7.4427 7.2244 7.1398 7.6103 7.2424 7.1916 7.14 7.243 7.164 7.2397
SF 0.1489 | 0.1492 | 0.1146 | 0.0948 0.2119 | 0.1445 | 0.1019 | 0.0978 | 0.1191 | 0.0968 | 0.0355
Corr 0.9179 | 0.9769 | 0.9608 | 0.9432 0.9025 | 0.7343 | 0.8684 | 0.9423 | 0.91 0.9548 | 0.8915
MIF 2.1528 | 0.6586 | 0.6481 | 2.2624 2.0055 | 2.0917 | 1.839 2.3459 | 2.2989 | 2.3035 | 1.4878
ERGAS | 20.185 | 20.2828 | 3.2901 | 14.0833 28.3771 | 29.438 | 23.3795 | 3.4023 | 17.1724 | 12.6015 | 19.9439
QABF | 0.4666 | 04744 | 0.5135 | 0.5155 0.5047 0.669 0.3162 | 0.5212 | 0.3929 | 0.5759 | 0.6868
LABF | 0.5334 | 0.5168 | 0.4785 | 0.4754 0.4953 | 0.331 0.6838 | 0.4788 | 0.6071 | 0.4241 | 0.3132

Despite the fact that other approaches like GFDF and CBF
performed better in terms of ERGAS (12.60 and 3.29,
respectively), the proposed approach showed a high level of
robustness in a broader range of metrics, especially the feature-
based ones (QABF, LABF) whereby perceptual sharpness and
structural consistency are the most important. On the whole, the
experimental data supports the idea that the proposed method
has an optimal balance in spectral fidelity, enhancement of
spatial detail, and preservation of edges.

The approach shows excellent results on both quantitative
and perceptual visual quality by effectively incorporating high-
frequency spatial information with uniform spectral properties
as compared to the current hybrid approaches. Objective
measurements were analyzed in FGF-and- XDoG, CDIF, CBF,
Structure-aware, LEGFF, MDHU, IMA, VSM-and-WLS,
GFDF, Two-scale, and the proposed approach using the
quantitative assessment of the shown performance in Table I11.

The findings point to the fact that the suggested method
achieves significant gains in mutual information retention, and
the highest MIF index (1.6952) is reached. This indicates its
good capability of maintaining complementary information of
source images. Moreover, the approach displays an equal
structural consistency, as the score of QABF is 0.5009, which is

145

higher than a variety of more advanced options like LEGFF
(0.2044) and GFDF (0.1232). To ensure preservation of details,
the CBF algorithm pro- vided the best PSNR (18.89 dB) and
SSIM (0.8729), which shows that all the edges are preserved and
the structure is similar. Nevertheless, the relatively low values
of the MIF and QABF indicate a balance between the spatial
sharpness and the general structure of information. The same
trend was noted in Structure-aware fusion approach, which
presented significantly less good QABF results (0.4747) but
much better PSNR (13.10 dB), indicating that the structural
details were preserved, whereas the perceptual and spectral
fidelity was less than ideal.

Comparatively, the proposed algorithm has provided a less
competitive PSNR (13.07 dB) but with stronger information-
theoretic and edge-based metrics. Entropy analysis also points
to the fact that the proposed scheme (6.6539) has retained the
higher informational content than CDIF (5.1806) and LEGFF
(6.2467), yet this is closely related to IMA (7.0732), which
returned the highest entropy. Even though the ERGAS values
indicate that CBF (5.97) and VSM-and-WLS (12.52) were
superior in spectral distortion, the suggested technique shows
better performance on feature-sensitive ones (MIF, QABF),
which are essential to retain perceptual sharpness.
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TABLE Ill.  CoMPARISON OF DIFFERENT METHODS ON DATASET B
Metric FGF- CDIF CBF Structure- | LEGFF MDHU IMA VSM- GFDF Two Proposed
and- aware and- scale
XDoG WLS
PSNR 9.7821 7.8872 18.8974 131 10.3835 | 8.5178 12.9253 13.096 7.1954 12.4779 13.0793
SSIM 0.4085 0.7737 0.8729 0.6121 0.2896 0.2461 0.6028 0.6121 0.2105 0.5607 0.5834
Entropy | 6.3929 5.1806 6.9538 6.4678 6.2467 6.9516 7.0732 6.4668 6.9885 6.4843 6.6539
SF 0.3748 0.2962 0.2826 0.2117 0.4577 0.3889 0.2628 0.2116 0.3557 0.2415 0.1066
Corr 0.7198 0.8815 0.9502 0.7738 0.7372 0.3793 0.8063 0.7738 0.176 0.7739 0.8466
MIF 1.1183 0.3693 0.6699 1.4055 0.9857 0.9656 1.3303 1.3887 1.1128 1.4615 1.6952
ERGAS | 73351 | 23.0681 | 59741 50.0874 68.3918 | 84.847 47.5272 12.5214 98.8008 53.7816 50.8013
QABF | 0.1404 | 0.3771 0.456 0.4747 0.2044 | 0.2217 0.5992 0.2252 0.1232 0.1464 0.5009
LABF | 0.8596 | 0.6136 0.5359 0.518 0.7956 | 0.7783 0.4008 0.7748 0.8768 0.8536 0.4991

On the whole, the comparative analysis proves that the
suggested approach can guarantee an efficient trade-off between
spectral fidelity, preservation of structural detail, and the
preservation of mutual information, thus proving the reliability
of this approach as a powerful fusion strategy in a variety of
evaluation measures.

The comparative findings in Table IV offer a thorough
evaluation of various fusion methods in terms of structural,

spectral and information-theoretic measures. The GFDF method
had the highest performance in all comparative methods of
edges preservation, with the highest score of 0.9426 in QABF,
indicating its high performance in terms of retaining all the
structural information and preserving all structural edges. It also
achieved the highest Mutual Information (MIF = 4.3397), which
is effective in retaining complementary and informative material
between images.

TABLE IV: COMPARISON OF DIFFERENT METHODS ON DATASET C

Metric FGF- CDIF CBF Structure- LEGFF MDHU IMA VSM- GFDF Two Proposed
and- aware and- scale
XDoG WLS

PSNR | 16.897 8.7071 18.238 17.4 16.7675 15.253 12.9253 17.4087 19.8215 18.2746 14.5665
SSIM 0.7348 0.7284 0.7205 0.6635 0.6453 0.5444 0.6028 0.6604 0.8638 0.715 0.5466
Entropy | 7.5983 6.5278 7.4268 7.3086 7.7232 7.6553 7.0732 7.3158 7.5376 7.3858 7.7423
SF 0.1154 0.096 0.1089 0.0694 0.1354 0.1445 0.2628 0.0679 0.1095 0.0821 0.1522
Corr 0.7996 0.9173 0.7946 0.7665 0.7729 0.6332 0.8063 0.7657 0.8663 0.7985 0.6316
MIF 1.2208 0.2775 0.7153 0.8658 0.9274 1.4679 1.3303 0.8721 4.3397 1.5048 1.0584

ERGAS | 28.708 21.2809 6.263 27.1042 29.5858 34.729 47.5272 6.7659 20.4998 24.4963 38.4077
QABF | 0.8436 0.46 0.5231 0.56 0.7857 0.7548 0.5992 0.7322 0.9426 0.7949 0.2871
LABF | 0.1564 0.5208 0.4575 0.4211 0.2143 0.2453 0.4008 0.2678 0.0574 0.2051 0.7129

Nevertheless, along with such merits, GFDF showed
moderate PSNR (19.82 dB) and rather high ERGAS (20.49)
implying shortcomings in spectral fidelity. However, CBF
ensured the balance of high PSNR (18.23 dB) with high SSIM
(0.7205), as well as competitive entropy (7.4268), showing good
noise suppression and spectral consistency.

LEGFF and MDHU achieved rather high entropy (7.7423
and 7.65, respectively), yet their SSIM score (0.6453 and
0.5444) was significantly smaller, which implies less accurate
perceptual similarity. Nevertheless, the proposed approach was
not the best in PSNR (14.56 dB) and SSIM (0.5466) but showed
a high level of entropy (7.7423) and spatial frequency (0.1522),
which allows to infer a Nevertheless, the value of its QABF was
rather low (0.2871) indicating that edge preservation was
weakly better than in the case of GFDF and LEGFF. On the

whole, Dataset C indicates the trade-offs of various fusion
strategies. Whereas GDDF has an edge in edge-based and
information-preservation measures, CBF and Structure-aware
have a more balanced fidelity in PSNR and SSIM. The
suggested approach focuses on the increase of entropy and
detail, which possess mutually complementary advantages in
situations where the value of information is valued more highly
than the edge-based quality.

The evaluation presented in Table V highlights the relative
performance of competing fusion methods across multiple
metrics. The proposed approach attains a PSNR of 18.9827,
which is comparable to GFDF (18.5479) and IMA (19.6891),
and notably superior to methods such as CBF (14.6687) and
MDHU (14.3530). However, Structure-aware fusion achieves
the highest PSNR of 29.1947, setting a strong upper bound on
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reconstruction fidelity. In terms of structural similarity, the
proposed method reaches an SSIM of 0.7349, outperforming
most conventional baselines such as CBF (0.3656) and MDHU
(0.2972). Only LEGFF (0.9740) and Structure-aware (0.6146)
demonstrate stronger structural preservation. Entropy analysis

indicates that the proposed technique (7.8488) effectively
preserves information content, second only to MDHU (7.8677),
and higher than most alternatives, including Structure-aware
(7.6018).

TABLE V. COMPARISON OF DIFFERENT METHODS ON DATASET D
Metric FGF- CDIF CBF Structure- LEGFF MDHU IMA VSM- GFDF Two Proposed
and- aware and- scale
XDoG WLS
PSNR 14.216 7.3865 14.6687 19.69 29.1947 14.353 14.2398 19.6891 13.6682 18.5479 18.9827
SSIM 0.388 0.7153 0.3656 0.6146 0.974 0.2972 0.3452 0.6146 0.3007 0.6019 0.7349
Entropy | 7.7323 5.8041 7.8222 7.702 7.6018 7.7617 7.8677 7.7123 7.6033 7.6649 7.8488
SF 0.1463 0.0862 0.1307 0.0855 0.081 0.155 0.1367 0.0855 0.1433 0.0911 0.0659
Corr 0.7263 0.876 0.6918 0.8847 0.9994 0.6665 0.6834 0.8847 0.612 0.8578 0.8788
MIF 0.8576 0.1922 0.0766 1.4933 4.7855 0.7027 0.8503 1.4848 0.6092 1.4532 1.6489
ERGAS | 39.035 20.9846 9.086 20.7866 7.0666 38.422 38.149 5.1965 41,5733 23.7046 22.1051
QABF 0.1194 0.5451 0.6667 0.6778 0.9229 0.0696 0.0643 0.2809 0.0525 0.2249 0.5754
LABF 0.8806 0.4432 0.322 0.3113 0.0771 0.9305 0.9357 0.7191 0.9475 0.7751 0.4246

The comparison in Table VI shows the comparative
performance of competing fusion strategies on various metrics.
The proposed method achieves a PSNR of 18.9827 that is
similar to GFDF (18.5479) and IMA (19.6891), but significantly
higher than other methods, e.g., CBF (14.6687) and MDHU
(14.3530). Nevertheless, Structure-aware fusion obtains the best
PSNR of 29.1947 which is a powerful upper limit of
reconstruction fidelity. The proposed method achieves a
structural similarity of 0.7349, compared to most of the
conventional baselines, e.g. CBF (0.3656) and MDHU (0.2972).
It is only LEGFF (0.9740), and Structure-aware (0.6146) that
exhibit more structural preservation. The entropy analysis has
shown that the proposed method (7.8488) is effective in terms
of information content (only MDHU (7.8677) does better) and
better than most other methods, including Structure-aware
(7.6018). The indicators of sharpness and the activity level show
otherwise. Spatial frequency (SF) of the suggested technique is
0.0659, which is less than such techniques as MDHU (0.1550)
and GFDF (0.1433), indicating that edge sharpness is not
excessive. Equally, the correlation coefficient (0.8788) is also
competitive, with its value just below LEGFF (4.7855), but
much higher than standard baselines, including CBF (0.0766)
and MDHU (0.7027). Mutual information analysis (MIF)
indicates that the method proposed is 1.6489, which is very high,
compared to the traditional baselines, including CBF (0.0766)
and MDHU (0.7027). These results are further contextualized
by the ERGAS of 22.1051, which is better spectral fidelity than
other high-error methods such as the GFDF (41.5733) and
MDHU (38.4220), but also IMA (5.1965) and LEGFF (7.0666)
are even stronger. The given method shows the QABF score of
0.5754, which proves the obvious benefits when compared to
the weak performers like MDHU (0.0643) and GFDF (0.0525).
However, Structure-aware (0.9229) provides much higher
boundary fidelity. The LABF of 0.4246 proves a medium-level
stability to retain local edge structures, and the stability is lower
than both GFDF (0.7751) and IMA (0.7191).However, the
overall performance in Dataset D shows that the proposed
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method is a balance between similarity in structures and content
as well as the moderate level of correlation and boundary
fidelity, but it is outperformed by the dominant methods
(LEGFF and Structure-aware).

Table VI summarize the comparative manner in which
fusion algorithms behave under Dataset E. The given algorithm
scores 24.9394 in PSNR, which is one of the more successful
algorithms and surpasses the results of FGF-and-XDoG
(24.3650), LEGFF (18.1240), and IMA (21.3798). However, the
greatest PSNR values are achieved through GFDF (40.6560),
MDHU (29.3050) and CBF (26.8643) that means that they are
more effective in terms of structural preservation compared to
IMA (0.5257) and LEGFF (0.6163). Structural similarity
SSISM (0.7209) shows that the proposed approach preserves the
structure moderately, better than IMA (0.5257) and LEGFF (0.
The values of entropy indicate that the proposed technique
(6.7194) has similar levels of information richness as CBF
(6.7278) and Structure-aware (6.6890), but lower as compared
to CDIF (7.3855) and LEGFF (7.5712).

As demonstrated in Table VI, the SF of the proposed method
(0.0291) is much lower than other techniques like LEGFF
(0.2502), CDIF (0.1841), and GFDF (0.1218) showing
relatively weak edges and details. The same observation can be
made on the correlation coefficient where the proposed method
performs at 0.8798, which is satisfactory yet not as high as high
performing baselines as GFDF (0.9971), CDIF (0.9778) and
MDHU (0.9589). Mutual information analysis indicates
moderate performance with the proposed method recording
1.3471, which is lower compared to CBF (0.6076) and LEGFF
(1.7909). ERGAS Score of 15.9246 shows that spectral fidelity
is acceptable, which is better than other methods with high errors
(LEGFF (33.2816) and IMA (23.8915)) but worse than methods
with high performance (GFDF (0.8880), VSM-and- WLS
(3.1720), and CBF (3.1792)).

The proposed method features a QABF of 0.5820, which is
better than IMA (0.15 The results of the LABF score (0.4180)
indicates moderate local boundary fidelity, which is equal to
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Structure-aware (0.4775) and CBF (0.4786), and worse than
IMA (0.8459).In general, Dataset E results demonstrate that the
proposed algorithm provides a balanced trade-off, preserving

competitive PSNR, entropy, and edge fidelity scores, but has
lower sharpness, correlation, and mutual information values
than the hybrid baselines, such as GFDF and MDHU.

TABLE VL. COMPARISON OF DIFFERENT METHODS ON DATASET E
Metric FGF- CDIF CBF Structure- LEGFF MDHU IMA VSM- GFDF Two Proposed
and- aware and- scale
XDoG WLS
PSNR 24.365 10.9817 26.8643 26.77 18.124 29.305 21.3798 26.7781 40.656 27.0353 24.9394
SSIM 0.8762 0.7683 0.8622 0.8485 0.6163 0.9107 0.5257 0.8485 0.9913 0.8535 0.7209
Entropy | 7.1667 7.3855 6.7278 6.689 7.5712 6.8367 6.8537 6.7027 6.8938 6.708 6.7194
SF 0.144 0.1841 0.0967 0.0932 0.2502 0.1145 0.1148 0.0928 0.1218 0.0938 0.0291
Corr 0.932 0.9778 0.9378 0.9274 0.8677 0.9589 0.7507 0.9274 0.9971 0.9316 0.8798
MIF 2.1115 0.6385 0.6076 1.957 1.7909 3.5275 1.4354 2.0011 5.986 1.9913 1.3471
ERGAS | 16.751 19.7583 3.1792 12.6928 33.2816 9.4842 23.8915 3.172 2.5671 12.3165 15.9246
QABF 0.6525 0.4859 0.5113 0.5125 0.5365 0.782 0.1541 0.5117 0.888 0.544 0.582
LABF 0.3475 0.5043 0.4786 0.4775 0.4635 0.218 0.8459 0.4883 0.112 0.456 0.418

VII. OPTIMIZATION OF PROPOSED ALGORITHM

For all optimization experiments of Dataset A , each image
was decomposed into three pyramid levels which were similar
to the contourlet structure. In the case of anisotropic diffusion,
gradient threshold was (aniso_grad) set to 2. The guided filtering
stage base layer radius (rl_default) was kept constant at 45
whereas regularization parameter (epsl) was established at 0.3.
These parameter parameters were fixed so that they provided
consistency over all optimization runs.
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=

(aniso_iter =36) (aniso_iter = 37)
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Fig. 8. Fusion quality variation across anisotropic diffusion iterations (Dataset
A).

Anisotropic diffusion iteration count (aniso_iter) was
analyzed to determine the effect of anisotropic diffusion on
fusion quality in Dataset A in a systematic manner in terms of
the QABF measure. The values of QABF grow steadily as
0.5231 at aniso_iter = 1 and high as 0.6868 at aniso_iter = 35,
with an absolute change of 0.1637 (= 31.3%). This steady rise
indicates that increasing the number of iterations improves the
level of structural preservation because QABF lays stress on the
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quality of fine details and retention of edges as shown in Table
VII and graphically in Figure 9.
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Fig. 9. Fusion quality variation across anisotropic diffusion iterations (Dataset
A).

Nonetheless, there is a visual discrepancy between the metric
performance and the quality of perception. The peak QABF
occurs at an iterative value of aniso_iter = 35 and thereafter, the
fused image has slight over accentuation of edges and halo
artifacts which are not desired when considering the perceptual
view point. However, the lower values of iteration like
aniso_iter = 10 (QABF = 0.6595) or aniso_iter = 15 (QABF =
0.6698) produce much more natural and balanced images
although they have slightly lower values of the QABF. This
demonstrates that the structure-oriented QABF metric can
effectively capture and quantify stronger edge contrast, even in
scenarios where slight compromises in visual fidelity occur.

It is found that a useful trade-off to be explored is at
aniso_iter values of 25 to 30 whereby QABF can be as large as
possible (0.6796-0.6860) and the reconstructions are artifact free
and appealing. Thus, we choose aniso30 as the most appropriate
setting for this work that offers the combination of both
objective preservation of edges and subjective picture quality. In
all the optimized experiments of Dataset B as indicated in Figure
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10, a multi-scale analysis using nine pyramid levels was used,
based on a contourlet-based framework.

TABLE VII. OPTIMIZED OBJECTIVE RESULTS OF DATASET A PENDING
Metri | (aniso_ite | (aniso_it | (aniso_iter | (aniso_iter | (aniso_iter | (aniso_iter | (aniso_iter | (aniso_iter | (aniso_iter | (aniso_iter
c r=1) er= =10) =15) =20) =25) =30) =35) =36) =37)
5)
PSNR | 23.498 23.4056 23.1625 23.0467 22.9798 22.9439 22.9208 22.9102 22.909 22.9081
SSIM | 0.8131 0.7608 0.7278 0.714 0.7068 0.703 0.7007 0.6995 0.6993 0.6991
Entro | 7.4465 7.3524 7.3067 7.2818 7.2657 7.2544 7.2461 7.2397 7.2385 7.2373
py
SF 0.0723 0.0496 0.0425 0.0394 0.0378 0.0367 0.036 0.0355 0.0354 0.0353
Corr | 0.9238 0.9116 0.9023 0.8977 0.895 0.8933 0.8922 0.8915 0.8914 0.8913
MIF | 1.8254 1.6399 1.5613 1.5233 1.5071 1.4981 1.4901 1.4878 1.4873 1.4852
ERG | 18.6292 18.8361 19.3719 19.6323 19.7843 19.8666 19.9195 19.9439 19.9467 19.9487
AS
QAB | 0.5231 0.5805 0.6595 0.6698 0.6668 0.6796 0.686 0.6868 0.6845 0.6852
F
LABF | 0.4769 0.4195 0.3405 0.3302 0.3332 0.3204 0.314 0.3132 0.3155 0.3148
0.52 QABEF vs Aniso?ropic lterations
Smoothed QABF curve
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Fig. 10. Fusion quality variation across anisotropic diffusion iterations (Dataset
B).

A gradient threshold of 10 was used to control the
anisotropic diffusion process (computer (aniso_grad)). The
guided filtering phase had a base layer radius, which was set at
45 (r1_default) and the regularization term, which was kept at
0.3 (epsl). These parameter choices were consistently applied
across all optimization trials to ensure fair comparison. The
effect of anisotropic diffusion iteration count (aniso_iter) on
fusion quality in Dataset B shown in Table VIII was also
analyzed using the QABF metric.

As shown in Figure 11 also, QABF values decrease slightly
from 0.5009 at aniso_iter = 1 to 0.4921 at aniso_iter = 2 and
0.4827 at aniso_iter = 3. Although the highest QABF is obtained
at aniso_iter = 1, the fused image appears relatively noisy and
lacks smoothness in homogeneous regions. The parameter
selections were uniformly used in all optimization experiments,
so that the effect of anisotropic diffusion by iteration count on
fusion quality inside Dataset B that is presented in Table VIII
could be analyzed with the help of the QABF measure. As
Figure 11 below also demonstrates, values of QABF change
slightly with an increase of 0.5009 at the beginning of the
iteration process (that is at aniso_iter = 1) to 0.4921 at the end
of the iteration process aniso_iter = 2 and 0.4827 at the end of
the iteration process aniso_iter = 3. The optimal QABF is
achieved at an aniso before the value of aniso iter reaches 1 but
the fused image is rather noisy and does not have smoothness in
homogeneous areas.

149

Max QABF = 0.5009 |
Iter =1

0.48 !
1 2

Anisotropic Iterations

Fig. 11. Fusion quality variation across anisotropic diffusion iterations (Dataset
B).

After increasing the number of iterations, the QABF score
goes down slightly, but the visual quality is enhanced by the fact
that noise is suppressed and the natural textures are better
preserved.

TABLE VIIl.  OPTIMIZED OBJECTIVE RESULTS OF DATASET B
Metric (aniso_iter =1) (aniso_iter =2) (aniso_iter = 3)
PSNR 13.0793 13.1571 13.1785
SSIM 0.5834 0.5808 0.5729

Entropy 6.6539 6.6786 6.683

SF 0.1066 0.0887 0.0806

Corr 0.8466 0.8479 0.8474

MIF 1.6952 1.7012 1.7019
ERGAS 50.8013 50.3478 50.2236
QABF 0.5009 0.4921 0.4827
LABF 0.4991 0.5079 0.5173
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This once again demonstrates the difference between
quantitative evaluation and perceptual one: although in QABF
higher contrast of edges is desirable, noise or exaggerated
textures are not graded. In this data set, there is a useful
compromise at aniso_iter = 2 or 3 that generate more pleasing
and balanced images even though they have lower scores on
QABF.

The Dataset C results in Figure 12 one can be optimized
experiments, the two-level pyramid decomposition used in the
fusion was contourlet-based designed.
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Fig. 12. Fusion quality variation across anisotropic diffusion iterations (Dataset
C).

With a fairly low gradient threshold (computing: aniso_grad
= 0.2), anisotropic diffusion was used, which put an emphasis
on fine detail keeping. In the case of guided filtering, the radius
of the base layer (rl_default) was fixed at 45 and the
regularization parameter (epsl) was fixed to 0.3. With these
constant settings, the results of the optimization could be directly
compared between all the trials presented in Table VIII.

The effect of anisotropic diffusion iteration count

(aniso_iter) on fusion quality in Dataset C was further examined
using the QABF metric. As shown in Figure 13, QABF values
decrease consistently from 0.2871 at aniso_iter = 1 to 0.2691 at
aniso_iter = 2 and 0.2589 at aniso_iter = 3. Although the highest
QABF is observed at aniso_iter = 1, the corresponding fused
image suffers from noise and lacks smoothness in homogeneous
regions.
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Fig. 13. Fusion quality variation across anisotropic diffusion iterations (Dataset
C).

The impact of the number of counts of anisotropic diffusion
iteration on the quality of fusion of Dataset C was also
investigated aided by the concept of the QABF. Figure 13 of the
appendix shows that QABFs drop steadily with an increase in
aniso_iter, e.g., 0.2871 at aniso_iter = 1, 0.2691 at aniso_iter =
2 and 0.2589 at aniso_iter = 3. Even though the maximization of
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QABF occurs at a value of aniso_iter = 1, the resultant fused
image has noise and is not smooth in homogeneous areas.

As the number of iterations increases, the QABF score
reduces a little, but there is an increase in perceptual quality of
the images as noise is reduced and the aesthetic look of the
images becomes more ordinary. This again illustrates the
difference between the quantitative assessment and the human
eye view: on the one hand, QABF is concerned with edge
retention, whereas on the other hand, it is not sufficient to
represent the degradation due to noise. Hence in this dataset, the
value of aniso_iter = 2 or 3 has a more perceptually acceptable
result although it has smaller value of QABF. In the optimized
experiments of Dataset D reported in Figure 14 Table 1X, the
contourlet-like structure was adhered to and a six- level pyramid
decomposition was used.

TABLE IX. OPTIMIZED OBJECTIVE RESULTS OF DATASET C.

Metric A (anislc;_iter = B (aniszo)_iter = Cc (anis30)_iter =
PSNR 14.5665 14.6693 14.7223
SSIM 0.5466 0.5276 0.5085
Entropy 7.7423 7.7088 7.6811

SF 0.1522 0.1276 0.112
Corr 0.6316 0.6226 0.6144
MIF 1.0584 1.0347 1.0173
ERGAS 38.4077 37.9539 37.722
QABF 0.2871 0.2691 0.2589
LABF 0.7129 0.7309 0.7411

(aniso_i[t)er =15) (aniso_i%er =17) (aniso_i':er =18)

Fig. 14. Fusion quality variation across anisotropic diffusion iterations (Dataset
D).

A gradient threshold of 2 (aniso_grad = 2) was used to
represent the level of anisotropic diffusion, which offers the
desired edge saving and noise reduction. At the guided filtering
phase, the following parameters were defined based on the low-
frequency soettings of the GFF approach; the base layer radius
was kept to 45; in ther words, the parameter (r1_default) was
default, and the regularization term was (epsl) regularization of
0.3. The consistency of these parameter values allowed the
optimization results across all of the runs to be stable and
reproducible.
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Anisotropic diffusion iteration count (aniso_iter) affects
fusion quality in Dataset D was also explored on the basis of the
measurement of Quality of BFS (QABF) measure. Figure 14
indicates that the values of QABF rise significantly with the
increase in 0.2747 at aniso_iter = 1 to a nabf value 0.4774 at
aniso_iter =5 and the value goes on increasing to 0.5466 at aniso
iter = 10. It has its highest at the first instance of aniso_iter = 16
and QABF = 0.5800, then slightly decreasing to 0.5777 at
aniso_iter = 17. The fact that this enhancement with additional
iterations shows that anisotropic diffusion will work well in
maintaining edges and structure to a specific extent.
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Fig. 15. Fusion quality variation across anisotropic diffusion iterations (Dataset
D).

But on visual examination as depicted in Fig 15, one finds
that the highest QABF is reached when the value of aniso_iter is
set to 16, but one sees that there is a slight over-enhancing of
edge in the fused image. Middle values, like aniso_iter = 10 or
15 of 1 /T/aniso (QABF = 0.5466 and 0.5754) have more
visually balanced results with less artifacts, though. This once
again illustrates the tradeoff between objective measures and
perceived quality, where this time, with an aniso_iter = 15 gives
a viable tradeoff between almost highest QABF and high visual
quality. Dataset E In the optimized experiments in Figure 16, the
input images were uniformly resized. It was decomposed into a
two-level pyramid, which was based on a contourlet-like
representation.
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Fig. 16. Fusion quality variation across anisotropic diffusion iterations (Dataset
E).

Anisotropic diffusion process controlled by a gradient
threshold of 2 (aniso_grad = 2) was used to prevent the loss of

structural detail but reduce excessive over-smoothing as in
Table X. In the guided filtering step, the parameter radius of the
base layer (which is set as r1 default comes out as 45 by default),
and the optimized parameter (which is set as eps1 remains at 0.3
by default) were kept constant. Such parameter adjustments
gave a uniform experimental starting point to assessing fusion
performance as indicated in Table XI.
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Fig. 17. Fusion quality variation across anisotropic diffusion iterations (Dataset
E).

The anisotropic diffusion iteration count (aniso_iter) was
empirically studied on the effect of fusion quality of Dataset E
with the metric of QABF. Figure 17 indicates that QABF values
are 0.4771 at a value of aniso_iter = 1 to 0.5322 at aniso_iter =
5 and 0.5514 at aniso_iter = 10.

The values keep on improving to 0.5779 at aniso_iter = 20
and serving its highest point to 0.5820 at aniso_iter = 35. The
metric no longer changes at this step and at the following two
steps, namely, at aniso_iter = 36 (0.5808) and aniso_iter = 37
(0.5817). This is a pointer that the more the iterations, the better
the structural preservation, as represented by QABF until
convergence is reached at about 30-35 iterations.

However, it is observed under the naked eye that the
maximum QABF is achieved at aniso_iter = 35, however, in the
fused image, the edges are over-enhanced slightly. However, the
middle values like the aniso_iter = 20 or 25 (QABF = 0.5779
and 0.5788, respectively) produce images with the almost
maximum QABF, but more natural look. Hence, it is possible to
regard the practical optimum of the parameter aniso_iter = 25—
30 the value offering the compromise between objective edge
preservation and subjective visual quality.

VIII.STATISTICAL RESULTS

The results of the mean intensity values achieved on the
fused images with the various fusion techniques in datasets A-E
are reported in Table XII. When the mean is high, this would
mean brighter fused images whereas values below the mean
would make the images darker. Among the compared
approaches, CDIF always has the largest mean values, which is
an indication of its propensity to boost the overall image
brightness and intensity representation. Conversely, the IMA,
Structure-aware and VSM-and-WLS methods have a relatively
lower mean value, revealing that it conserves the intensity. The
Proposed method is balanced and the mean values are in-
between extremes thus avoiding over brightness and having
adequate levels of intensity. According to this balance, the
offered approach successfully maintains image information
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without excessive enhancement, and it is applicable to the
creation of visually natural fusion products.

TABLE X.  OPTIMIZED OBJECTIVE RESULTS OF DATASET D
Metric A (aniso_iter = 1) B (aniso_iter = 5) C (aniso_iter =10) | D (aniso_iter =15) | E (aniso_iter = 16) F (aniso_iter =17)
PSNR 16.9135 18.4104 18.7958 18.9827 19.0381 19.0632
SSIM 0.656 0.7315 0.7348 0.7349 0.7353 0.7355
Entropy 7.9106 7.8872 7.8647 7.8488 7.844 7.842
SF 0.1356 0.0842 0.0712 0.0659 0.0645 0.064
Corr 0.8467 0.8736 0.8771 0.8788 0.8793 0.8796
MIF 1.6002 1.6798 1.6675 1.6489 1.6509 1.6497
ERGAS 28.035 23.6049 22.5843 22.1051 21.9649 21.9018
QABF 0.2747 0.4774 0.5466 0.5754 0.58 0.5777
LABF 0.7253 0.5226 0.4534 0.4246 0.42 0.4223
TABLE XI. OPTIMIZED OBJECTIVE RESULTS ACROSS DIFFERENT ANISOTROPIC ITERATIONS ON DATASET E

Metric (an?so_ B (aniso_ C (arliso_ D (arliso_ E (arliso_ F (an_iso_ G (arliso_ H (arliso_ I (an_iso_ J (an_iso_

iter =1) iter =5) iter =10) iter =15) iter =20) iter =25) iter =30) iter =35) iter =36) iter =37)
PSNR 25.3778 25.651 25.3219 25.1328 25.0358 24.9849 24.9561 24.9394 24.937 24.9349
SSIM 0.8151 0.7898 0.7549 0.7378 0.7294 0.7249 0.7224 0.7209 0.7207 0.7205
Entropy 6.9582 6.8523 6.7993 6.7695 6.7509 6.7373 6.7272 6.7194 6.718 6.7166
SF 0.0638 0.0429 0.0358 0.0328 0.0312 0.0302 0.0295 0.0291 0.029 0.0289
Corr 0.9087 0.9036 0.8925 0.8864 0.8831 0.8814 0.8804 0.8798 0.8797 0.8796
MIF 1.6088 1.4815 1.4091 1.375 1.3619 1.3544 1.3469 1.3471 1.3458 1.345
ERGAS 15.1409 14.672 15.2387 15.574 15.749 15.8416 15.8942 15.9246 15.9292 15.9331
QABF 04771 0.5322 0.5514 0.5507 0.5779 0.5788 0.5819 0.582 0.5808 0.5817
LABF 0.5229 0.4678 0.4486 0.4493 0.4221 0.4212 0.4181 0.418 0.4192 0.4183

Table XIII have the median intensity values of the fused
images of dataset A-E. The median gives a good indication of
central tendency, which is not as dependent on the exceptions as
the mean, and therefore indicates the average intensity
distribution of each fusion outcome.

Once again, CDIF has the highest median values of all the
datasets, which implies that it has a steady tendency to shift the
pixel intensity distribution towards brightness. Techniques like
IMA, Structure-aware, and VSM-and-WLS however have
relatively lower medians in common with the fact that they tend

to maintain darker intensity ranges.

TABLE XII. MEAN

Technique A B C D E
FGF-and-XDoG 101.8403 195.398 143.6299 150.4669 99.3771
CDIF 162.3344 203.4378 198.341 197.2284 157.9517
CBF 95.1402 136.4477 125.34 135.316 91.4348
Structure-aware 94.3523 142.2347 118.0005 130.9456 91.4022
LEGFF 98.502 193.2469 135.1212 127.2103 93.5756
MDHU 96.431 138.5512 121.9779 135.0653 92.1582
IMA 94.667 109.2937 116.7261 134.443 92.0464
VSM-and-WLS 94.1461 142.2892 117.7992 130.7454 91.316
GFDF 94.9752 151.2894 128.1592 135.7974 92.1704
Two scale 95.0264 163.5962 126.8719 135.944 91.6496
Proposed 100.4821 177.4762 118.9874 130.9038 86.0702
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The Proposed method performs in the middle performing
web where median values are neither too high nor too small.
This implies that the resulting approach ensures that there is a
balanced intensity distribution thus avoiding excessive
brightening and at the same time creates adequate contrast. This
nature is especially beneficial with image fusion, where visual
naturalness and structural information should be maintained.

The values of mode of pixel intensities of datasets A through
E are provided in Table 1X of the appendix. The most common

pixel value is the mode and therefore shows the dominant
intensity level in the fused outputs. One can see a definite pattern
that some of the methods, such as CDIF, LEGFF, MDHU,
GFDF, and the Proposed method often obtain the maximum
value (255) in at least one of the datasets, indicating saturation
at the brightest intensity levels. This means that these techniques
focus on high frequency details or exaggerate bright areas and
this may result in the loss of subtle variations of intensity.

TABLE XIIl. MEDIAN

Technique A B C D E

FGF-and-XDoG 98 215 143 155 96
CDIF 161 228 212 208 153
CBF 92 141 123 141 89
Structure-aware 92 153 117 130 88
LEGFF 94 216 134 114 85
MDHU 93 132 119 140 89
IMA 91 111 115 140 89
VSM-and-WLS 91 153 117 129 88
GFDF 91 160 124 142 89
Two scale 92 174 128 136 89
Proposed 96 175 115 131 81

On the other hand, methods like CBF, Structure-aware, and
VSM-and-WLS have a more moderate mode value as they are
more natural in the intensity distribution. Interestingly, IMA
shows a significantly different behavior, which IMA mode
values can be as low as 1 in dataset B, which underlines the
possibility of IMA bias to darker intensities in particular cases.
In general, the Proposed technique is a compromise: even
though it sometimes touches 255 in the bright areas, it does not
have serious inconsistencies such as in IMA, so the balance of
the level of intensity is balanced across the datasets.

The standard deviation (SD) values of all techniques in
datasets A-E are provided in Table XV, as a statistical indicator
of contrast variation in the fused images as well as intensity
variation. An increased SD value represents more variation in
pixel intensities, which is usually due to increased details and
sharper contrasts, whereas a smaller SD value represents
smoother and less contrasted results. CDIF and LEGFF are the
two most successful in obtaining higher values of SD (e.g.,
96.67 and 98.29 in dataset B), which confirms the fact that these
two approaches do not lose or deteriorate the local features.

TABLE XIV. MODE

Technique A B C D E
FGF-and-XDoG 87 255 255 255 82
CDIF 255 255 255 255 255

CBF 95 162 104 141 85
Structure-aware 90 163 106 147 82
LEGFF 78 255 255 255 50
MDHU 84 255 82 255 82
IMA 83 1 110 145 79
VSM-and-WLS 85 167 111 125 82
GFDF 83 255 80 255 77
Two scale 99 209 162 132 81
Proposed 89 255 255 255 68

Compared to it, other methods such as Structure-aware,
VSM-and-WLS and Two scale have comparatively lower SD
values implying smoother outputs with lower variability, but
potentially compromising sharpness but more preferable to
noise suppression. The SD values in the Proposed method are

fairly high in all the datasets with SD of 58.14 in dataset C and
67.59 in dataset D which indicates a balanced performance that
adds contrast to the data but does not add too much variations.
This trade-off is especially important since an excessively high
SD (as with LEGFF) can cause visual artifacts, whereas

153



Thakur et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 135 =160 (2025)

excessively low SD can cause the loss of small details. On the
whole, the Proposed method exhibits a regulated improvement

technique, which guarantees both the quality of perception and
perspective of various datasets.

TABLE XV. STANDARD DEVIATION

Technique A B C D E
FGF-and-XDoG 45.061 94,5673 50.8681 61.4592 36.4615
CDIF 58.1626 96.6743 56.7094 57.3685 44,8635
CBF 37.7442 69.9226 43.0426 58.5484 27.0831
g\fvr;‘rcet“re' 35.3045 65.2266 39.797 52.9944 26.6951
LEGFF 53.5333 98.2925 56.0973 56.1303 51.6542
MDHU 38.4557 80.6694 50.6629 61.9297 29.2299
IMA 36.5095 61.9164 405135 62.4378 29.5838
VSM-and-WLS 35.1459 65.1748 39.7728 53.0151 26.7289
GFDF 38.8145 83.8269 49.882 62.4989 30.2229
Two scale 35.8177 75.6769 421295 51.6926 26.82
Proposed 41.9983 82.3467 58.1391 67.5879 34.2811

The values of the variance of the pixel intensities of various
image fusion methods in test cases A-E are illustrated in table
XVI below.

Variance is a measure of the distribution of intensities values
with a larger value of variance indicating a high degree of
contrast and the ability to represent details. LEGFF and MDHU
demonstrate the largest variance values of the methods
evaluated in a number of situations implying the great
enhancement of local details, but in some instances, at the
expense of increased noise. On the other hand, Structure- aware
and VSM-and-WLS have lower variance, which means less
variations in the outputs with lower intensity variation.

The Proposed method has shown competitive variance level
in the cases C and D when it has been shown to have obtained
values similar or better than the state-of-the-art techniques. This
balance indicates the efficiency of the offered method towards
increasing image detail without changing the intensity
distribution in various situations.

IX. CHI-SQUARE TEST

In order to statistically confirm the consistency of the scores
of the observed fusion qualities with ideal values, a Chi- Square.
The Goodness-of-Fit test is carried out in the QAB/F metric of
all the 11 methods (10 existing methods and 1 proposed
method). Each method has an expected value Ei which is defined
to be 1, the perfect score.

The Chi-Square test value is calculated. using:

n

x2=z

i=1

(0; — Ep)?

E; (28)

154

where O; is the observed QAB/F score of method i, and m =
11 is the number of methods. The degrees of freedom
(DOF) are calculated as:
DOF m-1=11 -1

10

= (29)
The test is evaluated at a significance threshold of a = 0.05,
with the corresponding critical value (10,0.05) =18.307:

X2, = 18307 (30)

A Chi-Square value which is lower than this value will mean
that the null hypothesis is accepted implying that there is no
statistical significance in deviations to the expected value. Table
XVII shows the Chi-Square analysis of Dataset-A in which the
analysis of various fusion algorithms was tested with respect to
the anticipated value. O (observed) is the results which the
methods give and the expected value (E) was always 1 to make
comparisons. The deviation of each technique to the expected
result is measured by the difference between O and E, its squared
form and the contribution to the Chi-Square.

The Proposed algorithm had the lowest Chi-Square
contribution (0.09809) which means that it was nearest to the
expected value among all the methods. Conversely, other
approaches including IMA (0.46758) and GFDF (0.36857) had
quite high deviations. The Chi-Square statistic of Dataset-A was
2.7304 which was the overall measure of the divergence
between all techniques. This discussion shows that the Proposed
algorithms are better in terms of stability and performance than
the current methods. The computed Chi-Square value (y* =
2.7304) is notably lower than the critical value of 18.307 for 10
degrees of freedom. Hence, the null hypothesis (Ho)—stating
that there is no statistically significant difference between the
observed and expected values.
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TABLE XVI.  VARIANCE

Technique A B C D E
FGF-and-XDoG 1988.803 3779.956 2587.412 3777.251 1329.444
CDIF 3381.596 3834.419 3215.975 3291.155 2012.733
CBF 1424.623 2616.466 1852.674 3427.015 733.4955
Structure-aware 1246.405 1592.914 1583.81 2808.418 712.6264
LEGFF 2727.472 4302.255 3144.529 3150.626 2633.7
MDHU 1475.762 4204.075 2555.712 3701.157 854.3853
IMA 1331.235 2848.272 1641.301 3768.231 875.2034
VSM-and-WLS 1235.231 1562.33 1581.885 2810.608 714.4359
GFDF 1505.722 4297.957 2488.226 3750.666 913.426
Two scale 128291 2195.087 1774.903 2672.138 719.3132
Proposed 1763.349 2621.866 3376.203 4473.839 1175.194

Table XVIII indicates the Chi-Square of Dataset-B. The
expected value was again to be 1 in all the methods. The
Proposed method had a Chi-Square contribution of 0.2491,
which is less than most other methods meaning that it remains
relatively close to the expected value. Conversely, wrong or
ineffective methods like FGF-and-XDoG (0.73891) and GFDF
(0.76878) have bigger deviations, which means that the methods
do not align. The general Chi-Square statistic of Dataset-2 is
5.4450, which is indicative of more penetration of performance
over methods. Such findings indicate that some assessment
measures are not stable and similar in different scenarios;
whereas the Proposed approach shows a greater level of
consistency and stability, regardless of the assessment it is
undergoing. The computed Chi-Square value (y® = 5.445) is
notably lower than the critical value of 18.307 for 10 degrees of
freedom. Hence, the null hypothesis (Ho)—stating that there is
no statistically significant difference between the observed and
expected values.

Table XIV Chi-Square analysis of Dataset-C, respectively.
In this case, the Proposed method has a bigger contribution
(0.50823) than some other methods, however, the overall Chi-
Square value is comparatively low at 1.6291. This shows that in
the majority of the methods, the differences deviating the
anticipated value are lower than in the previous data sets.
Strategies like GFDF (0.003295) and LEGFF (0.045924) are
also very close to the expected result though the Proposed
method is also performing rather well within reasonable mar-
gins. In general, Dataset-C indicates more consistency in the
results of the methods, and smaller variation in techniques.

The computed Chi-Square value (¥ = 1.6291) is notably
lower than the critical value of 18.307 for 10 degrees of freedom.
Hence, the null hypothesis (Ho)—stating that there is no
statistically significant difference between the observed and
expected value.

TABLE XVII.  CHI-SQUARE CALCULATION FOR DATASET-A
Technique Observed (O) Expected (E) O-E (O-E)2 Chi-Square Contribution
FGF-and-XDoG 0.4666 1 -0.5334 0.28452 0.28452
CDIF 0.4744 1 -0.5256 0.27626 0.27626
CBF 0.5135 1 -0.4865 0.23668 0.23668
Structure-aware 0.5155 1 -0.4845 0.23474 0.23474
LEGFF 0.5047 1 -0.4953 0.24532 0.24532
MDHU 0.669 1 -0.331 0.10956 0.10956
IMA 0.3162 1 -0.6838 0.46758 0.46758
VSM-and-WLS 0.5212 1 -0.4788 0.22925 0.22925
GFDF 0.3929 1 -0.6071 0.36857 0.36857
Two scale 0.5759 1 -0.4241 0.17986 0.17986
Proposed 0.6868 1 -0.3132 0.09809 0.09809
Total Chi-Square Statistic 2.7304
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TABLE XVIII.  CHI-SQUARE CALCULATION FOR DATASET-B

Technique Observed (O) | Expected(E) | O-E | (O-E)?2 | Chi-Square Contribution
FGF-and-XDoG 0.1404 1 -0.8596 | 0.73891 0.73891
CDIF 0.3771 1 -0.6229 0.388 0.388
CBF 0.456 1 -0.544 | 0.29594 0.29594
Structure-aware 0.4747 1 -0.5253 | 0.27594 0.27594
LEGFF 0.2044 1 -0.7956 | 0.63298 0.63298
MDHU 0.2217 1 -0.7783 | 0.60575 0.60575
IMA 0.5992 1 -0.4008 | 0.16064 0.16064
VSM-and-WLS 0.2252 1 -0.7748 | 0.60032 0.60032
GFDF 0.1232 1 -0.8768 | 0.76878 0.76878
Two scale 0.1464 1 -0.8536 | 0.72863 0.72863
Proposed 0.5009 1 -0.4991 0.2491 0.2491
Total Chi-Square Statistic 5.445

Table XX shows the Chi-Square analysis of Dataset-D. In
the present case, a number of approaches, including MDHU
(0.86564) and GFDF (0.89776), have a rather large variance
around the expected value. The Proposed method, on the other
hand, adds only 0.18029 to the Chi-Square statistic, which is

more consistent. The computed Chi-Square value (y* =5.1403)
is notably lower than the critical value of 18.307 for 10 degrees
of freedom. Hence, the null hypothesis (Ho)—stating that there
is no statistically significant difference between the observed
and expected values.

TABLE XIX. CHI-SQUARE CALCULATION FOR DATASET-C

Technique Observed (O) | Expected (E) | O-E | (O-E)2 | Chi-Square Contribution
FGF-and-XDoG 0.8436 1 -0.1564 | 0.02446 0.02446
CDIF 0.46 1 -0.54 0.2916 0.2916
CBF 0.5231 1 -0.4769 | 0.22743 0.22743
Structure-aware 0.56 1 -0.44 0.1936 0.1936
LEGFF 0.7857 1 -0.2143 | 0.04592 0.04592
MDHU 0.7548 1 -0.2452 | 0.06012 0.06012
IMA 0.5992 1 -0.4008 | 0.16064 0.16064
VSM-and-WLS 0.7322 1 -0.2678 | 0.07172 0.07172
GFDF 0.9426 1 -0.0574 | 0.0033 0.0033
Two scale 0.7949 1 -0.2051 | 0.04207 0.04207
Proposed 0.2871 1 -0.7129 | 0.50823 0.50823
Total Chi-Square Statistic 1.6291
TABLE XX.  CHI-SQUARE CALCULATION FOR DATASET-D
Technique Observed (O) | Expected (E) O-E (O-E)? | Chi-Square Contribution
FGF-and-XDoG 0.1194 1 -0.8806 | 0.77546 0.77546
CDIF 0.5451 1 -0.4549 | 0.20693 0.20693
CBF 0.6667 1 -0.3333 | 0.11109 0.11109
Structure-aware 0.6778 1 -0.3222 | 0.10381 0.10381
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LEGFF 0.9229 1 -0.0771 | 0.00594 0.00594
MDHU 0.0696 1 -0.9304 | 0.86564 0.86564
IMA 0.0643 1 -0.9357 | 0.87553 0.87553
VSM-and-WLS 0.2809 1 -0.7191 | 05171 0.5171
GFDF 0.0525 1 -0.9475 | 0.89776 0.89776
Two scale 0.2249 1 -0.7751 | 0.60078 0.60078
Proposed 0.5754 1 -0.4246 | 0.18029 0.18029
Total Chi-Square Statistic 5.1403

Table XXI offers the results of Dataset-E. The Proposed
approach has a Chi-Square contribution of 0.17472 which is one
of the smallest ones when compared with other methods. IMA
(0.71555) and CDIF (0.2643), however, have more deviations
thus indicating their inconsistency. The Chi-Square statistic of
Dataset-5 equals 2.4731 in total which indicates the moderate
level of variability of techniques used. These findings once
again support the relative soundness of the Proposed approach
which always appears to be nearer to the desired performance
benchmark. The computed Chi-Square value (x> = 2.4731) is
notably lower than the critical value of 18.307 for 10 degrees of
freedom. Hence, the null hypothesis (Ho)—stating that there is
no statistically significant difference between the observed and
expected values.

X. TIME COMPLEXITY ANALYSIS

To obtain a global picture of the computational effectiveness
of the suggested technique and the 10 base techniques, we used
stacked bar chart to visualize the elapsed time in five conditions
of experiments (A, B, C, D and E) as presented in Table XXII.

This graph uses a logarithmic y- axis because the elapsed time
range of the data used, is quite big, with the lowest and highest
times being 0.024 seconds (LEGFF in condition A) and 1.3966
seconds (IMA in condition B) respectively.

The log scale is suitable at compressing large outliers (e.g.,
1.1182s and 1.3966s of IMA in condition A and B, respectively;
0.8588s of GFDF in condition E) and at the same time has clear
resolution to small values (barely 0.024the 0.1 seconds). In
Dataset C the representation of each of the 11 techniques is a
single bar with stacked segments corresponding to the elapsed
times of conditions A-E represented by different colours (blue,
red, teal, orange and purple, respectively). Custom ticks (0.01,
0.02,0.05,0.1, 0.2, 05, 1, 2, 5, 10 seconds) have been used on
the y-axis to make readings easy, even in a log scale. This design
uses the minimum number of visual cues, whereas a grouped bar
chart uses 55 bars to display the data, whereas appearance and
instead allows both the relative total cost of computation and the
contribution of each condition to each technique to be displayed
in Figure 18.

TABLE XXI.  CHI-SQUARE CALCULATION FOR DATASET-E
Technique Observed (O) | Expected (E) | O—-E | (O-E)?2 | Chi-Square Contribution
FGF-and-XDoG 0.6525 1 -0.3475 | 0.12076 0.12076
CDIF 0.4859 1 -0.5141 0.2643 0.2643
CBF 0.5113 1 -0.4887 | 0.23883 0.23883
Structure-aware 0.5125 1 —0.4875 | 0.23766 0.23766
LEGFF 0.5365 1 -0.4635 | 0.21483 0.21483
MDHU 0.782 1 -0.2180 | 0.04752 0.04752
IMA 0.1541 1 -0.8459 | 0.71555 0.71555
VSM-and-WLS 0.5117 1 -0.4883 | 0.23844 0.23844
GFDF 0.888 1 -0.1120 | 0.01254 0.01254
Two scale 0.544 1 -0.4560 | 0.20794 0.20794
Proposed 0.582 1 —0.4180 | 0.17472 0.17472
Total Chi-Square Statistic 24731
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TABLE XXII. ELAPSED TIME (SECONDS) FOR DIFFERENT TECHNIQUES
ACROSS DATASETS A-E

Technique A B C D E

FGF-and-XDoG | 0.0443 | 0.0499 | 0.0442 | 0.0379 | 0.0646
CDIF 0.0884 | 0.0561 | 0.0424 | 0.0432 | 0.0542
CBF 0.0334 | 0.0305 | 0.0294 | 0.035 | 0.0359
Structure-aware | 0.046 | 0.0282 | 0.0341 | 0.026 0.032
LEGFF 0.024 | 0.0315 | 0.0349 | 0.0367 | 0.1986
MDHU 0.0514 | 0.053 | 0.0347 | 0.0514 | 0.0419
IMA 1.1182 | 1.3966 | 0.4685 | 0.5224 | 0.0499
VSM-and-WLS | 0.0402 | 0.0276 | 0.0351 | 0.0342 | 0.0459
GFDF 0.0548 | 0.0391 | 0.0347 | 0.0371 | 0.8588
Two scale 0.0441 | 0.0497 | 0.0448 | 0.0856 | 0.0436
Proposed 0.0393 | 0.0289 | 0.0394 | 0.0321 | 0.0306

Total Elapsed Time by Technique (Stacked, Log Scale)

Total Elapsed Time (seconds)

&
& &
K

)
&

Technique

Fig. 18. Time Complexity

The tallest bar, which belongs to IMA, has the total elapsed
time of about 3.56 seconds, most of which is contributed with
large values of conditions A (1.1182s) and B (1.3966s), which
implies that the computational overhead is very high and may
become a limiting factor in time-sensitive applications. Equally,
the length of the bar of GFDF in case E (0.8588s) is considerably
longer, which points to input-related inefficiencies. By contrast,
a technique CBF and Structure-aware have consistently short
bars with a total time of between 0.16 seconds indicating their
efficacy under all climatic conditions. The most feature of the
proposed technique is that it has the smallest bar (61 seconds on
average), and it shows the best and consistent performance due
to the contribution of each condition being between 0.0289
seconds (condition B) and 0.0394 seconds (condition C).

It is worth noting that the chart shows condition-specific
trends. E.g., in condition B, VSM-and-WLS was the fastest
(0.0276s) and IMA the slowest (1.3966s), whereas fluctuation is
apparent in condition E, in which LEGFF (0.1986s) and GFDF
(0.8588s) record spiking errors compared to their mean speeds.
These findings highlight the competitive advantage of the
proposed technique since the size of the segments across all
conditions is uniform (unless in techniques with sharp
variability) with LEGFF and Two scale. The following

158

visualization will be a complement to the highly detailed
quantitative findings in Table 1 by providing a succinct and
intuitive overview of computational efficiency. The fact that the
stacked bar chart sums times through conditions that are shared
by any given technique into a single bar makes this chart
especially useful in terms of comparing overall performance and
still adding the insight of contribution by individual condition.
To analyze them further in the future, it may be applied to other
metrics, for example, such as the use of memory or energy to
explain further the trade-offs between techniques of processing
images.

Xl. FUTURE CHALLENGES

Although effective, the proposed framework has a number
of weaknesses. The experimental assessment process was
restricted to benchmark datasets, and this aspect can be a
limitation to the applicability to heterogeneous real-world data.
Computational complexity, despite analysis, was defined at a
controlled hardware condition and might change depending on
system setups. Moreover, the evaluation was mostly based on
chi-square performance and elapsed time; these measures, even
though productive, do not provide full coverage of the quality of
perception and application needed.

The direction of the future work will include making the

evaluation applicable to large- scale and high-resolution datasets
to enhance the robustness analysis. In addition, alternative
fusion and decomposition techniques, including shift-invariant
and directional approaches such as D-SHIFT and related
multiscale representations, are explicitly proposed as potential
extensions to further enhance spatial detail preservation and
reduce artifacts.
To reduce the computation overhead, algorithmic optimisation
will be sought after to ensure that the quality is not
compromised. The use of more objective measures, such as
perceptual quality indices, and subjective assessments will
further increase the validity of the performance assessment. In
addition, their focus will be on changing the framework to be
deployed in real-time and look into the domain-specific
applications, such as remote sensing, medical imaging, and
autonomous navigation.

XIl. ABLATION STUDY

To analyze the importance of each and every constituent of
the proposed pan-sharpening framework, an ablation study was
thoroughly done by systematically altering the important
parameters of the algorithmic strategies and fusion, and holding
the rest of the pipeline constant. Objective quantitative findings
that were reported in Tables VI-VIII and matching visual
observations, as discussed in the experimental discussions, form
the cornerstone of the analysis. Anisotropic diffusion iteration
count was examined initially, as it is the parameter that dictates
the trade-off between maintaining edge and reducing noise in
high-frequency sub-bands. In Dataset A, the aniso_iter was
changed to 1-37 with aniso_grad kept constant at aniso-grad =
2, pyr-levels kept constant at 3, and guided filtering parameters
radius r= 45 and regularization 0.3.

A greater number of iterations led to a continuous increase
in the structural preservation, where the QABF measure ranged
from 0.5231 at aniso_iter= 1 to the maximum of 0.6868 at
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aniso_iter= 35, as it was reported in Table VI. This is a relative
improvement of about 31.3, and that concludes the fact that
iterative anisotropic diffusion improves edge continuity and
structural visibility. But the gains dwindled further, and the eye
could see slight over-accentuation of ends. Thus, the most
appropriate settings of Dataset A were chosen to be aniso_iter =
35, which offers a trade-off between edging objectives and the
perceptions. In Dataset B, two tests were investigated; namely,
the effect of anisotropic diffusion with a smaller iteration range
(aniso_iter = 13) but the same guided filtering parameters (r =
45, ¢ = 0.3) with a larger gradient threshold to make sure higher
noise levels were also taken into account.

Table VII presents the optimum value of QABF (0.5009) at
anisoiter =1. Nevertheless, the homogeneous regions had
unresolved noise in the corresponding fused images. When the
iteration number was increased to 2 or 3, it had a small negative
effect on QABF (0.4921 and 0.4827, respectively) but a large
positive effect on perceptual smoothness and texture continuity.
This fact causes the weakness of the edge-based metrics only
and suggests that aniso is better to be chosen as 2-3 as a
perceptual optimum configuration of Dataset B.

The same tendency is traced in Dataset C, in which the
number of iterations of anisotropic diffusion was once again
changed to 1-3, with the gradient threshold being low
(aniso_grad = 0.2) to focus on preserving the fine details. Table
IX indicates that the maximum QABF value was 0.2871 at aniso
iter = 1, but this gave a significant noise artifact in the resultant
image. More and more increases in the iteration number
minimised QABF to 0.2691 and 0.2589 with aniso iteration of 2
and 3, respectively, and enhanced visual smoothness and noise
amplification. These findings validate that the diffusion number
will bring higher quality perceptual results at the expense of a
minor drop in quantitative edge-based measures.

The interaction of the depth of multiscale decomposition was
also analysed in all the datasets. In the majority of experiments,
a contourlet pyramid of pyr_levels = 3 was used because it was
effective in separating between global and fine-spatial
luminance information. Empirical tracking showed that the
number of levels of decomposition led to a lack of sufficient
space detailing abduction, and that deeper pyramids led to a
greater cost of computation and slight ring artifacts without
much metric enhancements. Thus, pyr levels 3 have been used
as a powerful and efficient setup in computation. It was
demonstrated that saliency-guided low-frequency fusion played
an important role in comparison with uniform averaging.

In this approach, Laplacian-based saliency extraction is
used, then, with Gaussian smoothing of 15 x 15 and standard
deviation, ions s =2 with gamma correction ( gamma =0.5).
These parameters remained constant in all datasets so that they
could behave the same way. Adaptive weighting technique
performed far better in terms of entropy and mutual information
values indicated in Tables VI, V, and V does not create rough
transitions between intensities and also does not exhibit
luminance biases, which were observed when plain averaging
was applied.

Lastly, the max-absolute selection measure was evaluated on
high-frequency coefficient integration. In all datasets, the
application of this rule was substituted by the use of coefficient
averaging that led to a decrease in spatial frequency and edges.
The max-absolute rule was always more effective in raising the
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sharpness of the boundary and structurization, especially with
anisotropic diffusion. The positive interaction is manifested in
better values of QABF and LABF, as described in Tables VI
through V111, which supports the idea that the rule is effective in
retaining major spatial patterns and diffusion in eliminating
noise.

Altogether, the ablation experiment that was facilitated by
Table VI8 shows that every component and parameter option in
the suggested framework has a significant impact on the final
quality of the fusion. The choice of parameter values, pyr levels
= 3, aniso = 2, aniso-iter = 30-35 (depending on the dataset)
approximate and balanced between spatial quality, spectral
fidelity and perceptual naturalness, the Gaussian kernel size of
15 times 15 with s = 2, gamma = 0.5, and guided filtering
parameters of, r = 45, epsilon = 0.3.

By eliminating or under-mishandling any of these factors,
significant deteriorations in the fusion performance are
observable, justifying the jointness of the offered approach.

XI111.CONCLUSION

This paper presented a Contourlet-based pan-sharpening
model designed for remote sensing, especially in the area of
environmental analysis and monitoring. The proposed approach
integrates the high spatial, high-resolution content of
panchromatic images with the spectral richness of multispectral
images, thereby suppressing spectral distortion and fusion
artifacts.

The proposed method utilises simple averaging to preserve
low-frequency components, and Laplacian-based saliency
weighting to inject high-frequency details in order to maintain a
balance between spatial fidelity and spectral integrity.
Comprehensive experiments conducted on multiple benchmark
datasets demonstrated that the proposed method consistently
outperforms the compared algorithms. Visual analysis ensured
that the fused images preserve sharper edges, enhanced contrast,
and better depiction of the environmental features like
vegetation, water bodies, and urban buildings.

Furthermore, quantitative evaluation with metrics such as
PSNR, SSIM, ERGAS, and QABF states the capability of the
proposed method to achieve high-quality fusion with minimal
spectral distortion. Moreover, the Computational analysis also
states that the proposed method is efficient, making it suitable
for large-scale real-world applications.

In summary, the proposed framework provides an effective
and interpretable solution for high-fidelity pan sharpening,
advancing the field of remote-sensed image fusion. It enhances
the precision of environmental surveillance and supports
informed decision-making in domains such as land-use
management, resource planning, and disaster assessment. Future
work will focus on integrating adaptive parameter tuning and
using deep learning-based feature extraction modules to
improve the performance, robustness, and make it applicable to
hyperspectral and real-time satellite imaging systems.
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