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Abstract 

Pan-sharpening is now indispensable in remote-sensing computing by means of its ability to render not only high-spatial-resolution images 

but also precise spectral fidelity to the images. These features are essential for competent environmental measurement and investigation. 

The paper presents a contourlet-based pan-sharpening algorithm, which aims to combine the high spatial resolution of the panchromatic 

(PAN) images with the multispectral (MS) ones to extract high spectral resolution of the fused image. The algorithm tends to enhance the 

details of the space and reduce the spectral distortion of a multi-stage fusion procedure to some extent. The structure initiates with 

contourlet decomposition images captured by both PAN and MS, thus resembling directional and multi-scale structure. At the high-

frequency sub-bands, an anisotropic filter is used to reduce noise, leaving salient edges intact, and a maximum-absolute selection rule is 

applied iteratively to inject spatial details effectively. In order to have spectral fidelity and to maintain global contrast on low-frequency 

components, saliency maps are used in conjunction with adaptive weight maps. The sub-bands reconstructed progressively give a high-

resolution, artifact-minimal fused image. The proposed framework is validated through benchmark remote sensing datasets. The 

proposed methodology is based on objective metrics. Performance evaluation based on a benchmark remote sensing dataset demonstrates 

that the proposed methodology outperforms existing approaches in terms of sharper edges, contrast, and spectral features and offers an 

efficient solution for environmental applications. 
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I. INTRODUCTION  

Remote sensing has become one of the key technologies to 
address some of the most challenging problems faced by the 
world, such as climate change, the rapid pace of urbanization, 
and the destruction of the ecosystem. It is applied to manage the 
sustainable natural resources, to model the hazards predictively, 
and to preserve the biodiversity by non-invasive data collection 
of the surface properties of the Earth [1]. Aerial imaging and 
unmanned aerial vehicles (UAVs) combined with high-
resolution satellite imagery provide real-time remote sensing 
geospatial information of large and non-uniform environments, 
effectively overcoming the limitations of geographical and 
climatic heterogeneity [2]. Remote sensing can be used to 
monitor large and heterogeneous land scopes almost in real-time 
due to the usage of satellite imagery, aerial photography, and 
unmanned aerial vehicles (UAVs), without considering 
geographical and climatic constraints. It has a combination of 
raw imagery with sophisticated computational processes, which 

render it an action environmental intelligence and therefore an 
indispensable means of environmental monitoring and analysis 
[3]. Remote sensing is an advanced technological system that 
contributes highly to the precision, uniformity, and 
extensiveness of environmental monitoring systems. PAN and 
MS cameras, their typical resolutions and spectral ranges, and 
their practical significance in Earth observation applications 
such as urban mapping, environmental monitoring, agriculture, 
and land-use analysis.  

Representative examples from operational satellite systems 
(e.g., WorldView, Landsat, and Sentinel missions) have also 
been incorporated to ground the discussion in real-world 
contexts. Due to a high level of spatial coverage, it is capable of 
obtaining large geospatial data of large areas under one scan. 
The precise temporal coverage enabling the satellite 
constellations allows a periodic observation, which helps to 
detect a change of season and quickly evaluate a sudden 
phenomenon related to the environment, like a natural disaster. 
Moreover, being a non-invasive method of observation, remote 
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sensing does not cause ecological disturbance, and multispectral 
and hyperspectral data can be measured in the invisible spectrum 
[4]. The quality of providing a time and space consistency of the 
environmental assessment is because of the standardization and 
reproducibility of the satellite imagery. Besides these, by 
connecting remote sensing data with Geographic Information 
Systems (GIS), Artificial Intelligence (AI), and cloud-based 
environments smoothly, one can perform more complex 
analytical operations, such as predictive modelling, automated 
classification, spatiotemporal changes detection, and analytics 
about the environment at a large scale [5]. Depending on the 
sensor, platform, and wavelength applied, different techniques 
of remote sensing will benefit certain environmental monitoring 
requirements.  

Optical remote sensing identifies vegetation, land cover, and 
water resources using visible and near-infrared wavelengths. 
Thermal remote sensing detects emitted heat energy to analyse 
surface temperature patterns, urban heat islands, and volcanic 
activity. Microwave or radar sensing (SAR) operates day or 
night and through cloud cover, excelling in terrain mapping, 
flood monitoring, and soil moisture assessment. Hyperspectral 
imaging captures hundreds of narrow spectral bands to 
distinguish materials and diagnose environmental conditions. 
Lidar (Light Detection and Ranging) is a laser pulse technique 
that generates an elevation map and vegetation structure in 
detail, which is very accurate in terms of the structure. Pan-
sharpening is a very essential 2 method in remote sensing, and 
it is used to overcome the trade-off between space and spectral 
resolution in satellite imaging systems.  

PAN images contain great spatial details with little spectral 
information, and multispectral (MS) images are rich in spectral 
information but low in spatial resolution. Pan sharpening 
balances spatial and spectral resolution to create a single image 
with high spatial and spectral resolution, which is useful in 
environmental monitoring, urban planning, agriculture, 
surveillance, and medical research. However, pan-sharpening 
encounters various challenges, such as balancing spectral 
fidelity and spatial resolution, data heterogeneity because 
different sensors can have different characteristics, artifact 
prevention, and computational efficiency [6]. The conventional 
pan-sharpening techniques have tried to deal with these 
challenges by various techniques, such as Principal Component 
Analysis (PCA), Intensity-Hue-Saturation (IHS), and the 
Brovey Transform method. These techniques integrate MS data 
with spatial information provided by the PAN image [7].  

The majority of the existing methods are prone to cause 
spatial distortions to the spectral factors, or vice versa, enrich 
spectral information at the expense of spatial information 
(typically at high resolution) [8]. These techniques are 
computationally efficient, but they can generate spectral 
distortions with a wide range of sensing conditions, which 
reduces their usefulness. The recent development in deep 
learning, especially with the Convolutional Neural Networks 
(CNNs), provides potential alternatives to the conventional pan-
sharpening algorithms. CNNs are good at acquiring complex 
nonlinear correlations between PAN and MS images, enhancing 
the compromise between spatial and spectral quality [9]. 
Radiometric index maps (e.g., NDVI, SAVI) represent domain-
specific priors, which, together with sensor-oriented 
augmentation strategies, dramatically enhance fusion accuracy 

without necessarily adding a lot of model complexity [CNN 
Custom]. These developments reduce the limitations of the 
traditional and modern model-based methods, especially where 
the sensors are heterogeneous, thus increasing robustness in the 
real world.  

This paper presents efficient pan-sharpening methods that 
preserve spatial-spectral fidelity. The fact that the proposed 
method combines domain-sensitive input augmented with a 
simplified network structure effectively correcting the flaws of 
the traditional and CNN algorithms, enhancing uniform 
performance in a wide range of sensing scenarios [10]. It is 
designed to work effectively in diverse platforms; therefore, it is 
well adapted for practical monitoring of the environment where 
precision and effective fusion are required to make informed 
decisions [11].  

Chipman in 1995 proposed a wavelet-based image fusion 
method preserving the multi-resolution features effectively [12]. 
Nevertheless, the method faces the weakness of computational 
efficiency and is not robust when it comes to artifacts of 
heterogeneous sensors. Simone, in 2002, emphasized enhancing 
the spatial and spectral information of the remote sensing fused 
image. Their techniques [13] are best in certain circumstances 
but cannot generalize to the modalities and cope with high-noise 
situations. Liu in 2017 developed a deep convolutional neural 
network to implement multi-focus image fusion [14], which 
described that the method produced a high range of detail 
maintenance. Although effective, the model is computationally 
intensive, and the optimization of the model to low-light or noisy 
environments is not established, thus restricting the usefulness 
of the model in practice. The article by Alparone  in 2015 
introduced the framework of remote sensing image fusion based 
on multi-scale and pan sharpening techniques developed by the 
authors of the article-in-focus and their integration into a single 
framework. Although it is effective to solve particular remote 
sensing problems, the framework cannot easily scale to large 
arrays of multiple sensors, is sensitive to multi-sensor artifacts, 
and necessitates data- driven solutions [15]. 

II. RELATED WORK 

Pan sharpening aims to combine complementary 
information in multi-modal sources to generate an image with 
high spatial resolution and spectral fidelity, used in a wide range 
of applications, including remote sensing, medical diagnostics, 
and surveillance. Although recent fusion techniques emphasise 
detail preservation, contrast enhancement, and computational 
efficiency quantitatively assessed through metrics including 
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index 
Measure (SSIM), and Mutual Information Fusion (MIF. The 
algorithm suffers from modality-specific distortions, structural 
inconsistencies, and spectral degradation. To address these 
shortcomings, various studies have contributed diverse 
approaches. Li et al. (2013) provided a guided filtering-based 
visible infrared fusion method that employed edge preserving 
smoothing to eliminate artifacts and enhance cross-modality 
structure consistency [16]. In [17], Jie et al. designed a medical 
image fusion algorithm based on extended difference-of-
Gaussians (DoG) and anisotropic edge-preserving filters, 
achieving superior contrast and diagnostic interpretability at 
high computational cost, restricting the scalability. Meng in 
2022, proposed a vision transformer-based pan-sharpening 



Thakur et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 135 –160 (2025) 

 

137 

model, using the self-attention mechanisms to provide high 
spatial-spectral fidelity (high PSNR), but its computationally 
intensive implementation restricts its use in real-time 
applications in medical and multi-focus fusion. [18].  

In 2015, Kumar et al. implemented a cross-bilateral filter-
based visible-infrared fusion algorithm, utilizing spatial and 
intensity kernel weighting to perform robust edge preservation. 
[19]. Though the algorithm maintains edges, it has noisy scenes 
with low contrast, limiting its adaptability for medical imaging. 
Li et al. in 2018 [20] suggested a structure-aware fusion 
framework based on structural similarity measures, resulting in 
sharper and more distinct boundaries, yet lacking multiscale 
decomposition capability, thereby reducing robustness to noise. 
Zhang in 2022 employed local extreme maps to enhance multi-
modal brain image fusion, using intensity- guided weighting to 
enhance contrast, though its generalisation beyond 
neuroimaging remains limited [21]. Jie et al. in 2024 [22] 
advanced medical image fusion with multi-dictionary sparse 
coding and truncated Huber loss, improving noise robustness 
and structural consistency with high SSIM, but the predefined 
dictionaries and high complexity hinder real-time use. Sufyan in 
2022 proposed contrast and structure extraction for anatomical 
image fusion, optimizing structural 3 detail, but exhibit 
computational inefficiency under resource-constrained 
applications [23].  

Additionally, Ma et al. in 2017 developed infrared-visible 
fusion using saliency maps and weighted least squares 
optimisation, enhancing salient regions with high perceptual 
quality. However, its applicability was limited to non-medical 
and non-multi-focus imaging scenarios [24]. In 2019, Qiu et al. 
introduced guided filter-based multi-focus fusion via focus 
region detection to preserve sharp areas, yet it is ineffective for 
infrared or medical modalities [25]. Bavirisetti in 2016 proposed 
a two-scale fusion for visible-infrared images using saliency 
detection in the wavelet domain, but risked information loss in 
non-salient areas [26]. Liu in 2015 presented a multi-scale 
transform and sparse representation framework, adaptable 
across modalities, though its effectiveness is hindered by high 
computational complexity and the absence of modal-specific 
optimization [27]. Despite these technological advancements, 
current remote sensing and image fusion methodologies still 
encounter several fundamental challenges. These include 
limited scalability when extended to heterogeneous multi-sensor 
environments, poor robustness against cross-sensor 
discrepancies and radiometric distortions, and reduced 
performance under adverse imaging conditions such as high 
noise levels or low illumination.  

Furthermore, weak spatial–spectral interaction modelling, 
reliance on manual hyperparameter tuning, and absence of 
probabilistic uncertainty quantification significantly constrain 
their generalization and reliability. Such limitations emphasize 
the imperative for next-generation, data-driven, and 
optimization-oriented fusion architectures that can holistically 
reinforce structural fidelity, spectral preservation, and 
computational efficiency across diverse remote sensing 
modalities. The most current developments on the pan-
sharpening deal with spectral and spatial anomalies in the 
synthesis of high-resolution panchromatic (PAN) and low-
resolution multispectral (MS) images. Liu et al. in 2024 [38] 
address the problem of low inter-modal correlation and describe 

the injection errors together with multimodal texture correction 
(intensity, gradient, and deep A-PNN-contraband), adaptive 
degradation filtering, and edge detail fusion with high quality of 
Q-index, SAM, and ERGAS. By using a selective update block 
(SUB) with gated forgetting/filtering both in spatial-frequency 
space and frequency focal loss to restore high-frequency texture, 
Wang et al. (2025)[39] achieve state-of-the-art SSIM, UIQI, and 
LPIPS on multiple datasets. Zhang in 2025 [40] assess the 
suitability of algorithms to atmospheric, sensor, and scene 
variations, demonstrating limited spectral consistency and 
spatial fidelity under practical conditions. One can state that, 
collectively, these publications promote adaptive and distortion-
resistant fusion paradigms needed in the reliable HRMS remote 
sensing. 

III. PRELIMINARIES    

A.  Contourlet Decomposition 

The contourlet transform is a multiscale and multidirectional 
image decomposition framework designed to efficiently 
represent two-dimensional signals with smooth contours, edges, 
lines, and curvilinear structures [28]. It integrates a low-pass 
(LP) and high-pass (HP) filter for multiresolution decomposition 
with a Directional Filter Bank (DFB) to achieve anisotropic and 
highly directional sub-band decomposition, enabling sparse 
representation of images with complex geometric features [29]. 
Unlike traditional wavelet transforms, which are limited to 
isotropic scaling and limited directional selectivity, the 
contourlet transform employs non-separable filter banks that 
capture textures and edges and directional information 
effectively with fewer coefficients. This makes it especially 
convenient in image enhancement and fusion applications under 
adverse illumination, and has been demonstrated to perform 
their wavelet- based counterparts in the ability to preserve and 
enhance meaningful geometric features such as edges and 
contours[18]. Mathematically, the contourlet decomposition of 
an image f is defined as: 

𝑎𝑆[𝑝] = ⟨𝑓, 𝐿𝑆,𝑣 ⟩                                 (1) 

𝑑𝑠,𝑟
(𝑚)[𝑝] =  ⟨𝑓, 𝜌𝑠,𝑟,𝑝

(𝑚)
⟩                              (2) 

Here, f denotes the input image, while aS [p] represents the 
represent the lowpass coefficient,  𝑑𝑠,𝑟

𝑚 [𝑝] Refers to directional 

contourlet coefficients. The function LS,v is the lowpass basis at 
scale S and subband v, measuring coarse-scale intensity 

variations. In contrast, 𝑝𝑠,𝑟,𝑝
(𝑚)

 Represents the contourlet basis 

function at a given level of the decomposition m, scale s, 
direction r, and spatial position p = [p1, p2]. The operator ⟨., .⟩ 
denotes the inner product of the image, f, and the basis function, 
measuring the degree of correlation. 

 Equation (1) provides the approximation coefficients of 
large-scale intensity variation at low frequency, and Equation 
(2) is an approximation of small-scale edges and contours of 
various orientations of the high frequency. Parameters s and r 
determine the magnitude of the resolution and the filter 
orientation, respectively, while m is the number of directional 
sub-bands, controlling the angular resolution of the 
decomposition. Figure 1, the Contourlet transform uses a 
Laplacian Pyramid (LP) framework to analyse the scale-space 
representation and the Directional Filter Bank (DFB) to extract 
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directional detail components, effectively producing bandpass 
directional sub bands with high directional sensitivity [29].  

The overall model of the coefficients, {𝑎𝑆[𝑝], 𝑑𝑠,𝑟
𝑚 [𝑝]} , 

provides a representation of an image in compact and descriptive 
terms, preserving the high-energy structural intensity with finer 
directional features. Due to this property, direction consistency 
and structural sharpness are crucial properties in image fusion, 
which makes the Contourlet Transform quite useful in image 
fusion applications. 

B. Anisotropic diffusion 

Anisotropic diffusion is a nonlinear image enhancement 
technique that models spatially variant diffusion through partial 
differential equations (PDEs) to selectively smooth images 
while preserving prominent edges and structures [30]. In 
contrast to isotropic diffusion, which performs uniform 
smoothing across the image, anisotropic diffusion enables intra-
region smoothing and suppresses inter-region blurring, thus 
maintaining edge sharpness even at coarse resolutions. This 
property makes it particularly useful for image denoising, 
enhancement, and pan sharpening tasks in remote sensing. The 
anisotropic diffusion process can be expressed as: 
 

𝑃𝑛(𝑟, 𝑠) =  𝑎𝑛𝑖𝑠𝑜’(𝐼𝑜𝑢𝑡1𝑛 (𝑟, 𝑠))                        (3) 

 
Here, 𝑃𝑛(𝑟, 𝑠)  is the anisotropically filtered output at a 

spatial point (𝑟, 𝑠)  by applying an anisotropic operator         
𝑎𝑛𝑖𝑠𝑜′(·)  on image 𝐼𝑜𝑢𝑡1𝑛(𝑟, 𝑠) . The operator tends to be 
spatially adaptive and nonlinear, regulating diffusion according 
to local gradient magnitude. Consequently, strong edges 
experience limited smoothing while homogeneous areas are 
denoised effectively [31]. 

Similarly, for a second intermediate image representation, 
the anisotropic filtering can be formulated as: 
 

𝑄𝑛(𝑖, 𝑗) =  𝑎𝑛𝑖𝑠𝑜′(𝐼𝑜𝑢𝑡2𝑛(𝑖, 𝑗))                   (4) 

 

 
Fig. 1. Contourlet Decomposition 

 

 
The equation 𝑄𝑛(𝑖, 𝑗)  =  𝑎𝑛𝑖𝑠𝑜′(𝐼𝑜𝑢𝑡2

𝑛  (𝑖, 𝑗)) has a similar 
formulation to the earlier one, except that the anisotropic. 
Operator 𝑎𝑛𝑖𝑠𝑜′(·) acts on a different intermediate 

representation 𝐼𝑜𝑢𝑡2
𝑛 (𝑖, 𝑗) . In contrast to the fact that, unlike, 

𝐼𝑜𝑢𝑡2
𝑛 (𝑖, 𝑗). The value of this component can be associated with 

a single stage, a single channel, or just a single feature map of 
the fused image. The value of 𝑄𝑛(𝑖, 𝑗) denotes an alternate or 
complementary input, possibly of a different spectral band, 
another spatial layer, or another processing path. The algorithm 
uses the same anisotropic transformation on this second input 
stream, returning us to edge-aware filtering uniformly across 
streams of data whilst adjusting itself to directional tone 
variations. The resulting coefficient 𝑄𝑛(𝑖, 𝑗)  is therefore a 
parallel structural predictor to the 𝑛(𝑖, 𝑗), and incorporates extra 
frequency or contextual data. These outputs, when combined, 
can be complementary anisotropic responses, allowing the 
image fusion process to release finer spatial structures and 
spectral integrity as well as reduce noise and redundant artifacts. 
To capture residual details, the unfiltered high-frequency 
content can be obtained as:  

 

                   𝑅𝑛 (𝑘, 𝑙) =  𝐼𝑜𝑢𝑡1𝑛(𝑘, 𝑙) − 𝑃𝑛(𝑘, 𝑙)            (5) 
 

The equation 𝑅𝑛(𝑘, 𝑙)  =  𝐼𝑜𝑢𝑡1
𝑛 (𝑘, 𝑙)  − 𝑃𝑛(𝑘, 𝑙) defines the 

residual component 𝑅𝑛(𝑘, 𝑙)  as the difference between the 
original input 𝐼𝑜𝑢𝑡1

𝑛 (𝑘, 𝑙)  and the processed output term 
𝑃𝑛(𝑘, 𝑙). If  𝑃𝑛(𝑘, 𝑙)  indeed corresponds to the anisotropically 
filtered result 𝑛(𝑘, 𝑙) from the earlier formulation (with minor 
notational variations); this subtraction effectively measures the 
portion of the signal that is not captured by the anisotropic 
transformation. Practically, this kind of residual computation is 
at the heart of an image processing code and deep learning 
architecture: it isolates details of the image, noise patterns, or 
structural inconsistency, which is left behind after the operations 
of smoothing and transformation. In the pan sharpening or 
fusion task scenario, the residual term offers a natural way to 
restore lost fine-grained spatial information or emphasize 
discrepancies to correct, thereby increasing structural and 
spectral fidelity. A similar residual formulation for the 
secondary channel is given as: 
 

𝑆𝑛(𝑣, 𝑘) =  𝐼𝑜𝑢𝑡2𝑛(𝑣, 𝑘) −  𝑄𝑛(𝑣, 𝑘)                (6) 
 

The second input channel is calculated using an equation 
known as the residual computation by 𝑆𝑛(𝑣, 𝑘) =  Iout2

n (𝑣, 𝑘) −
 Qn(𝑣, 𝑘)  The calculation is quite similar to that in the third 
equation. In this case, after the anisotropic transformation in the 
second equation, the resulting value 𝑄𝑛(𝑣, 𝑘)  The optical 
process is removed in the form of the initial input 𝐼𝑛 𝑜𝑢𝑡2(𝑣, 𝑘). 
This gives the remaining value,  𝑆𝑛(𝑣, 𝑘) , that has the 
information that is not contained in the anisotropically smoothed 
or transformed version of the second input. The wider 
framework of pan sharpening or fusion systems, that is, an 
accurate reconstruction of fine spatial details, is ensured by 
virtue of channel-specific subtleties at 𝑆𝑛(𝑣, 𝑘) and adds to the 
equal consideration of spectral and spatial features. 
 

 

C. Max-Absolute Rule 

The Max-Absolute rule is a widely adopted selection rule in 
image fusion, primarily applied on the high-frequency 
decomposition bands where edge and textural information 
dominate [32]. It operates on the principle that the coefficient 
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with the largest absolute value carries the most significant local 
detail, such as edges or texture variations. Formally, it is defined 
as: 
 

𝐹𝑘(𝑠, 𝑑) = {
𝑃𝑘(𝑠, 𝑑),   𝑖𝑓 |𝑃𝑘(𝑠, 𝑑)| ≥ 𝑀𝑘(𝑠, 𝑑)|

𝑀𝑘(𝑠, 𝑑), 𝑖𝑓   |𝑀𝑘(𝑠, 𝑑)| ≥ 𝑃𝑘(𝑠, 𝑑)|
        (7) 

 
 

In this formulation, 𝐹𝑘(𝑠, 𝑑)  denotes the fused high- 
frequency coefficient of the spatial position (s, d) for the kth 
directing sub-band of a multiscale transform. The parameters, 
𝑃𝑘(𝑠, 𝑑) and 𝑀𝑘(𝑠, 𝑑), represent the respective high-frequency 
coefficients of the panchromatic (PAN) and multispectral (MS) 
images, respectively, in the same subband and at the same 
location. The rule simply selects the coefficient with the higher 
absolute magnitude, assuming it corresponds to a region with 
stronger edge or textural information. This mechanism 
effectively enhances local contrast and edge sharpness in the 
fused image. However, since it relies solely on intensity 
magnitudes, it may occasionally preserve noise or small 
artifacts. To overcome this limitation, advanced techniques such 
as anisotropic diffusion–based residual fusion adaptively refine 
coefficient selection using local gradients and spatial 
correlation, achieving superior perceptual and structural quality. 

D.  Weight Maps 

Weight maps spatially varying structures used in image 
fusion to determine the contribution of each input image to the 
fused image at every pixel or region. Unlike the fixed weighting 
method, these maps are computed adaptively, based on local 
image properties including variance, gradient strength, contrast, 
or saliency, allowing the algorithm to dynamically identify and 
emphasize regions containing sharp edges or texturally rich 
features [33]. In multiscale decomposition-based fusion models, 
the weight maps are essential towards determining the optimal 
combination of low-frequency (structure) and high-frequency 
component (detail), ensuring that the resulting fused image 
inherits complementary spatial and spectral features of the 
source images. The weights are also normalized over all the 
sources of input so that the total of the weights adds up to unity 
over each spatial coordinate. This normalization imposes a 
balanced and unbiased contribution on each of the images, 
preventing the dominance of modalities. Consequently, weight 
maps function as a localized control mechanism, which 
prioritizes perceptually and structurally significant areas to 
enhance the overall fusion quality in terms of sharpness, 
contrast, and information content. The fused image can be 
mathematically represented as a weighted linear combination of 
the input images: 
 

𝐹 (𝑙, 𝑟) = ∑ 𝜆𝑗 (𝑙, 𝑟)  ·  𝑆𝑗  (𝑙, 𝑟)

𝑁

𝑗=1

                (8) 

 
Where F (l, r) is the fused image, intensity at spatial position 

(l, r). Sj (l, r) denotes the corresponding intensity of the jth source 
image (panchromatic or multispectral), and λj(l, r) is the adaptive 
weight map of that source image at the same spatial location. 
These weight maps are spatially variant and are adaptively 
computed using local quantities like intensity variance, gradient 
energy, edge strength, or saliency. This adaptive nature enables 
the fusion algorithm to assign higher weight to regions with 

greater structural or textural significance, ensuring that the most 
informative parts of each input are retained in the final product. 
The total number of source images combined in the fusing 
process is termed N. To avoid preference for a specific image, 
and to ensure balance in terms of effects, the weight maps are 
typically normalized at every pixel position such that the sum of 
the weight maps is equal to one:      
  

∑ 𝜆𝑗 (𝑙, 𝑟)  =  1

𝑁

𝑗=1

                            (9) 

 

Which guarantees that the total contribution of all input 
images at any spatial position remains equal to one. This 
constraint maintains radiometric balance, preventing 
disproportionate influence from any individual source and 
ensuring that the fused image exhibits consistent brightness, 
contrast, and visual coherence. In practical multiscale fusion 
pipelines, separate weight maps are typically employed for 
different frequency components. Low-frequency weight maps 
guide the integration of global structures and smooth intensity 
transitions, while high- frequency weight maps control the 
fusion of edges, textures, and fine spatial details. This 
frequency-specific weighting enables selective enhancement of 
both structural integrity and detail sharpness. Consequently, the 
fused image achieves an improved balance between spatial 
resolution enhancement and spectral fidelity preservation, 
leading to a perceptually natural and information-rich fusion 
output. 

IV. EXPERIMENTS 

This section elaborates on the details of the datasets that are 
used to validate the proposed fusion algorithm. The experiments 
are designed to confirm fairness in comparison with established 
methods, and Objective evaluation is performed using PSNR, 
SSIM, Entropy, SF, Corr, MIF, ERGAS, QABF, and LABF to 
comprehensively assess spatial, spectral fusion, as explained in 
Table I. 

 

Step 1: Preprocessing 
1. Read input PAN image A and MS image B. 

2. Convert the PAN image to grayscale if required. 

3. Resize both images to a common target size (e.g., 256 

× 256). 

4. Convert images to double precision and normalize 

intensities to [0,1]. 

5. Convert MS image B from RGB to YCbCr color space. 

6. Extract luminance Y_B and chrominance components 

Cb_B. 

Step 2: Multiscale Decomposition Parameters 

7. Set the number of pyramid levels L = 3. 

8. Initialize anisotropic diffusion parameters: number of 

iterations and gradient threshold. 

 

Step 3: Contourlet-like Multiscale Decomposition 
9. Decompose PAN image A into low and high-

frequency components. 
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10. Decompose MS luminance image Y_B into low and 

high-frequency components. 

Step 4: Low-Frequency Fusion 

11. Apply Laplacian filtering on A and Y_B. 

12. Apply Gaussian smoothing to Laplacian responses. 

13. Compute saliency maps for PAN and MS luminance. 

14. Normalize saliency maps and apply gamma correction. 

15. Construct adaptive weight maps using normalized 

saliency. 

16. Fuse low-frequency components using weighted 

averaging. 

Step 5: High-Frequency Fusion 

17. For each decomposition level l = 1 to L: 

18. Apply anisotropic diffusion at the first level. 

19. Fuse high-frequency subbands using the max-absolute 

selection rule. 

Step 6: Luminance Reconstruction 

20. Reconstruct the fused luminance image using inverse 

multiscale reconstruction. 

21. Clip reconstructed luminance to [0,1]. 

Step 7: Color Reconstruction 

22. Combine fused luminance with original chrominance 

components. 

23. Convert the fused YCbCr image to the RGB color space. 

24. Clip final RGB image to [0,1]. 

TABLE I. OBJECTIVE METRICS

Metric Description Equation Interpretation / Role 

PSNR Peak Signal-to-Noise Ratio indicates the 
quality of reconstruction of the fused image 

compared to an actual image. 

 

𝑃𝑆𝑁𝑅 =  10 𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) 

where 𝑀𝐴𝑋𝐼 The maximum pixel value and MSE is the 
mean squared error. 

An increase in PSNR means 
there is an increase in the quality 

of fusion with a reduction in 

distortion and noise. 

SSIM Structural Similarity Index is a kind of 
perceptual similarity that is assessed with 

regard to luminance, contrast, and structure. 

 
 

 

𝑆𝑆𝐼𝑀(𝐹, 𝑅) =
(2𝜇𝐹𝜇𝑅  + 𝐶1)(2𝜎𝐹𝑅  + 𝐶2)

(𝜇𝐹
2 +  𝜇𝑅

2 +  𝐶1)(𝜎𝐹
2 + 𝜎𝑅

2 + 𝐶2)
 

SSIM values closer to 1 indicate 
stronger structural similarity and 

visual fidelity. 

Entropy (EN) Assesses the content of information in the 

combined picture by using the measurement 

of randomness. 

 

 

𝐻(𝐹) =  − 𝛴𝑖=0
𝐿−1 𝑝𝑖  𝑙𝑜𝑔2(𝑝𝑖) 

where 𝑝𝑖 Is the probability of gray level 𝑖. 

Higher entropy reflects richer 

information content in the fused 

image. 

SF Spatial Frequency is used to quantify the 
amount of activity or fineness of detail in the 

combined image. 

 

𝑆𝐹 =  √(𝑅𝐹² +  𝐶𝐹²) 
Where RF and CF denote row and column frequencies. 

Higher SF implies better texture 
and structural detail 

preservation. 

Corr The correlation coefficient is a measure used 

to determine the linear dependency between 

the fused picture and the source pictures. 

 

 

𝐶𝑜𝑟𝑟 =
𝛴(𝐹 −  𝜇𝐹)(𝐴 −  𝜇𝐴)

 √𝛴(𝐹 −  𝜇𝐹)2𝛴(𝐴 −  𝜇𝐴)2
 

Higher correlation indicates 

better similarity and consistency 

with source images. 

MIF Mutual Information Fusion is used to 
measure similar information between the 

fused image and the source images. 

 
 

𝑀𝐼𝐹 =  𝑀𝐼(𝐹, 𝐴)  +  𝑀𝐼(𝐹, 𝐵) 

Higher MIF signifies effective 
retention of complementary 

information from source images. 

ERGAS Relative Global Dimensional Error in 

Synthesis evaluates spectral distortion in 

fused images. 

 

𝐸𝑅𝐺𝐴𝑆 =  100 ·
ℎ

𝑙
   √

1

𝑁
𝛴𝑖=1

𝑁 (
𝑅𝑀𝑆𝐸𝑖

𝜇𝑖

)
2

 

Lower ERGAS values indicate 

better spectral fidelity and 

reduced distortion. 

QABF Edge-based Fusion Quality Metric assessing 

edge information transfer from source 

images to the fused image. 

 

 
𝑄𝐴𝐵

𝐹
=

𝛴𝑄0(𝐴, 𝐹) · 𝑤𝐴  + 𝑄0(𝐵, 𝐹) · 𝑤𝐵

𝛴(𝑤𝐴  + 𝑤𝐵)
 

Higher QABF indicates superior 

edge preservation in the fused 

image. 

LABF Loss of Edge Information: was a measure of 

the loss of structuring information during 

fusion. 

 

 

𝐿𝐴𝐵𝐹 =  1 − ((𝑄𝐴𝐵𝐹) + (𝑁𝐴𝐵𝐹)) 

(edge loss component) 

Lower LABF values imply 

minimal edge information loss 

and better fusion performance. 

  A. Datasets 
The proposed fusion algorithm was evaluated using publicly 

open pan sharpening datasets. Dataset-A PAN–MS image pairs 
obtained from the GitHub repository “Pan Sharpening Dataset” 
[34]. This dataset provides highly magnified panchromatic 
images alongside their corresponding multispectral 
counterparts, which are widely used for pan-sharpening 
experiments. Dataset-B Additional PAN–MS image pairs were 

obtained from the repository “Pan sharpening by Convolutional 
Neural Network” [35].  

Dataset-A consists of PAN–MS image pairs obtained from 
our curated collection, containing high-resolution Panchromatic 
(PAN) images along with their corresponding Multispectral 
(MS) counterparts, widely used for pan sharpening experiments. 
Dataset-B contains more PAN- MS image pairs that represent a 
variety of natural and urban settings [36] and that are suitable to 
provide robustness in terms of both evaluation and 
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generalization with different settings. Dataset-C entails 
agricultural landscapes, thus, 6 allowing the evaluation of the 
performance of pan sharpening to be applied in vegetated and 
textured areas, in which spectral fidelity is essential. The urban 
infrastructures in Dataset-D and high-density urban areas are the 
areas of concern where spatial information can be effectively 
analyzed as per the high-frequency areas, which are represented 
by roads and buildings.  

Dataset-E is a heterogeneous body of PAN-MS image pairs 
of both natural and urban conditions. It is an effective and 
extensive standard for assessing the flexibility, resilience, and 
generalization of the suggested approach in a wide range of 
environmental and imaging dialogs. The experiments were 
conducted using contourlet-based multiscale decomposition, 
anisotropic diffusion filtering, and low–high frequency fusion 
operations in MATLAB. The implementation utilized the Image 
Processing Toolbox for pre- processing, coefficient extraction, 
and evaluation of fusion performance metrics to ensure 
consistency and reproducibility.  

All experiments were executed on a desktop workstation 
running Windows 11 Pro (Version 23H2, OS Build 22631.4169) 
with the following configuration: an Intel® Core™ i5 processor 
@ 2.72 GHz, 16 GB DDR4 RAM, 64-bit operating system on 
an x64-based architecture, and all computations were carried out 
without GPU acceleration. 
 

V. PROPOSED METHODOLOGY 

The proposed methodology aims at merging the high-spatial 
resolution data of the Panchromatic (PAN) image with the 
spectral properties of the Multispectral (MS) image. The 
algorithms used in the proposed method are contourlet multi- 
scale decomposition, low-frequency fusion (local variance), and 
high-frequency fusion (anisotropic diffusion filter) to ensure 
effective details enhancement and edge preservation. The fused 

luminance channel 𝑌̂  Is then integrated with the original 
chrominance components (Cb, Cr) from the MS image to form 
the final fused YCbCr image. The overall process is illustrated 
in Figure 2. 

A. Preprocessing 

In preprocessing, a PAN image P and an MS image M are 
both spatially aligned to the same size in the geometric 
dimension for further fusion operations. The resizing process is 
demonstrated as: 
 

𝑃𝑟  =  𝑟𝑒𝑠𝑖𝑧𝑒(𝑃, 𝑇 ), 𝑀𝑟  =  𝑟𝑒𝑠𝑖𝑧𝑒(𝑀, 𝑇 )               (10) 
 

Where T = [H, W] is the target size derived from the height 
H and width W. Pr and Mr are the resampled versions of PAN 
and MS images. The resizing is essential for performing fusion 
without spatial distortion. The resampled MS image, Mr, is then 
converted to the YCbCr colour space, which is denoted as: 
 

                               𝑀𝑦𝑐𝑏𝑐𝑟  =  𝑅𝐺𝐵2𝑌𝐶𝑏𝐶𝑟(𝑀𝑟)  (11) 

where Mycbcr is the converted image with three components 
stated as: 

𝑀𝑦𝑐𝑏𝑐𝑟  =  {𝑌𝐵  , 𝐶𝑏 , 𝐶𝑟 }                   (12) 

 

Where YB denotes the luminance channel, and CbCr are the 
chrominance channels. 

This conversion derives intensity from colour, allowing the 
luminance component YB to be enhanced or fused with the high-
resolution PAN image Pr for enhanced spatial detail while 
preserving the spectral fidelity carried by Cb and Cr. 

B. Multiscale Decomposition 

The PAN luminance, Pr, and the MS luminance YB are 
decomposed using a contourlet-based multi-scale residual 
pyramid to decompose the image across multiple frequency 
bands. On every level of decomposition, Gaussian blurring is 
used to extract the low-frequency component, and the standard 
deviation of the Gaussian filter is defined as: 
 

𝜎 =  2𝑘                     (13) 
 

This expression gives a direct dependence between the 
pyramid level and the smoothing scale, stating that the lower 
levels (small k) retain high-frequency detail, whereas higher 
levels (large k) isolate broader structural information. By 
progressively increasing σ across levels, the multiscale 
decomposition attains a progressive separation of high and low-
frequency data, which is crucial to integrate the PAN spatial data 
into the MS spectral data, preserving edge integrity as well as 
minimizing artifacts: 
 

 𝐿𝑘  =  𝐺𝜎 (𝐿𝑘−1), 𝐻𝑘  =  𝐿𝑘−1  −  𝐿𝑘               (14) 
 

where L0 is the input image and Hk represents the high- 
frequency residual at scale k. This is repeated iteratively over K 
pyramid levels. 

C. Low-Frequency Component Fusion 

The low-frequency bands, LP (panchromatic image) and LY 
(multispectral luminance) are combined using a Gaussian-
smoothed, saliency-based phase weighting strategy. This 
increases the local contrast, ensuring the smooth transition in the 
fused outcome through incremental computation of saliency 
maps, normalization and gamma correction, with derivation of 
fusion weights needed further. 
1) Saliency-Map Computation: In order to obtain local contrast, 
both the panchromatic image, A (representing LP), and the 
multispectral luminance, YB (representing LY), are operated 
using a Laplacian filter defined by the 3x3 kernel: 
 

𝐾 = [
0 1 0
1 −4 1
0 1 0

] 

 

which is used to compute the high-frequency details as: 
  

𝐿𝑎𝑝1  =  𝐴 ∗  𝐾, 𝐿𝑎𝑝2  =  𝑌𝐵 ∗  𝐾                (15) 
 

where ∗ denotes convolution with boundaries replication. To 
suppress noise and smooth the saliency maps while preserving 
contrast, a Gaussian filter (15x15 kernel) with standard 
deviation σ = 2 is applied providing sufficient spatial coverage, 
noise suppression, and a balance between smoothness and detail, 
improving visual quality as: 
 

𝑃1  =  𝐿𝑎𝑝1  ∗  𝐺, 𝑃2  =  𝐿𝑎𝑝2  ∗  𝐺                 (16) 

 
where G is the Gaussian kernel. The saliency maps are then 
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obtained by taking the absolute values as: 

 

𝑆1  =  |𝑃1|,          𝑆2  =  |𝑃2|                        (17) 

 

 

 

 

Fig. 2. Proposed Methodology Using Contourlet Decomposition and Anisotropic Diffusion.

2) Normalization and Contrast Enhancement: The saliency 
maps are normalized to the range [0, 1] using the following 

equation: 

 

         𝑆1 =
𝑆1

max(𝑆1) +  𝜖 
,    𝑆2 =

𝑆2

𝑚𝑎𝑥(𝑆2)  +  𝜖
           (18) 

 
where S1 and S2 represent the saliency maps of the PAN and 

MS luminance images, respectively. ϵ = 10−6 is added to 
prevent division by zero in cases where a saliency map may 
contain all zero values. After normalization, to enhance local 
contrast and emphasize intermediate saliency values, a gamma 
correction with γ = 0.5 is applied as: 
 

𝑆1  =  𝑆1
0.5 , 𝑆2  =  𝑆2

0.5                  (19) 
 

This ensures that the important regions in both images are 
more prominent, improving the effectiveness of the fusion 

process. 

 
3) Weight Computation: The normalized, gamma-corrected 
saliency maps are used to compute the fusion weights as: 
 

𝑋1 =
𝑇1

𝑇1 + 𝑇2 + 𝜖
,   𝑋2 =

𝑇2

𝑇1 + 𝑇2 + 𝜖
            (20) 

 

These weights ensure that regions with higher saliency con- 
tribute more prominently to the fused result. 
4) Fusion: The low-frequency components LP and LY are resized 
to match the weight map dimensions. The fused low-frequency 
component LF is computed as: 
 

𝐿𝐹  =  𝑊1  ·  𝐿𝑃  +  𝑊2  ·  𝐿𝑌                  (21) 
The weight maps W1 and W2 are generated from saliency or 

local contrast measures and have the same spatial dimensions as 
the original images at a given pyramid level. Since the low-
frequency components may have been obtained at a course 
resolution during multiscale decomposition, resizing ensures 
that the element-wise multiplication of the weight maps with the 
low-frequency components are properly defined. 

By resizing and performing the weighted fusion, the 
structural information from both PAN and MS images is 
accurately combined, while the Gaussian-smoothed weights 
ensure smooth transitions across regions, preventing 
misalignment or blocky artifacts in the fused image. 

D. High-Frequency Fusion 

For high-frequency detail enhancement, an anisotropic 
diffusion filter is first applied to the input images to sharpen 
edges while suppressing noise [37]. The process is controlled by 
the following partial differential equation: 
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𝜕𝐼

𝜕𝑡
 =  𝛻 ·  (𝑐(∥ 𝛻𝐼 ∥)𝛻𝐼)                                    (22) 

 

where, I refer to image intensity, the diffusion time or 
iteration step is denoted by t and ∇ refers to the spatial gradient 
operator. The conduction coefficient (c(||∇I||)) varies the 
diffusion rate at each pixel with respect to local gradients, 
preserving sharp edge while smoothing edges homogeneous 
regions. 

The quadratic conduction model is used to define (c(||∇I||)) 
as: 

𝑐(||𝛻||) = exp (− (
||∇||

K
)

2

)                         (23) 

where, the size of the local image gradient is represented by 
the magnitude of the gradient (where ||∇I|| denotes the image) 
and K = 2 is the gradient threshold controlling diffusion extent 
such that gradient values higher than K cause less diffusion, 
preserving the edges’ sharpness and suppressing noise in flatter 
regions. Following the application of the anisotropic diffusion 
the high-frequency sub bands in both the PAN and MS images 
are merged by max-absolute selection rule stated as: 
 

𝐻𝐹
(𝑎)

 (𝑦, 𝑠) = {
𝐻𝑃

(𝑎)
(𝑦, 𝑠),    |𝐻𝑃

(𝑎)(𝑦, 𝑠)| > 𝐻𝑌
(𝑎)

(𝑦, 𝑠)|,

𝐻𝑌
(𝑎)(𝑦, 𝑠),          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

     (24) 

 

where 𝐻𝑃
(𝑎)

 (𝑦, 𝑠)  and 𝐻𝑌
(𝑎)

 (𝑦, 𝑠)  are the high-frequency 
coefficients of the PAN and MS images, respectively, at spatial 

position (y, s) and subband a, and 𝐻𝐹
(𝑎)

  (𝑦, 𝑠 ) is the fused 

coefficient. 
In the rule, at every pixel, one of the coefficients with the 

largest value is picked in the fused image, indicating sharper 
edges or textures while reducing noise. 

E. Reconstruction 

The fused luminance channel 𝑌̂ , is reconstructed by fusing 

the fused low-frequency and high-frequency signals as: 
  

𝑌̂ = 𝐿𝐹 + ∑ 𝐻𝐹
𝑎  

𝐴

𝑎=1

                         (25) 

 

where 𝑌̂ represents the final fused luminance channel that 
will later be integrated with the original chrominance 
components to form the fused YCbCr image. The term LF 
denotes the fused low-frequency component, which contains the 
global structural information and smooth intensity variations 

from both the PAN and MS images. The summation ∑  𝐻𝐹
(𝑎)𝐴

𝑎=1  

aggregates the fused high-frequency sub bands across all 

decomposition levels a = 1, 2, . . ., A, where 𝐻𝐹
(𝑎)

 represents the 

high-frequency coefficients at subband a obtained using the 
max-absolute selection rule. The low-frequency component to 
the summation of the high-frequency subbands leads to recon- 
struction of the channel (Y) that almost perfectly preserves the 
total structure information along with fine details (edges and 
textures) so that a sharp and coherent fused image can be 
obtained. 

F. Final Image Formation 

The fused luminance channel 𝑌̂  is combined with the 
original chrominance components (Cb, Cr) of the multispectral 
(MS) image to construct the fused YCbCr representation as: 
 

𝐼𝑦𝑐𝑏𝑐𝑟  =  { 𝑌̂ , 𝐶𝑏 , 𝐶𝑟 }                                 (26) 
 

Then, an inverse colour space conversion is carried out to get 
the end result RGB fused image by: 
 

𝐼𝑓𝑢𝑠𝑒𝑑  =  𝑌𝐶𝑏𝐶𝑟2𝑅𝐺𝐵(𝐼𝑦𝑐𝑏𝑐𝑟)                      (27) 
 

This reconstruction method is designed in a way that the high 
spatial resolution details extracted from the PAN image are 
amalgamated with the MS image without affecting the spectral 
distortion. The low-frequency, variance-based fusion maintains 
global structural data and smooth intensity transition, whereas 
the high-frequency fusion through anisotropic diffusion and 
max-absolute selection enhances edges and fine textures. Hence, 
the resulting final fused image Ifused attains an optimal balance 
of spatial resolution and spectral fidelity, resulting in a sharp, 
visually consistent, and spectrally accurate pansharpened 
output. 

VI. RESULT ANALYSIS AND DISCUSSION 

A. Visual result 

In Dataset A as illustrated in Figure 3, the proposed 
algorithm provides the most visually superior fusion output 
amongst all comparative methods. The proposed methodology 
demonstrates higher spatially clarity and balanced spectral 
preservation than FGF-and-XDoG [17], CDIF [18] and CBF 
[19] which tend to introduce color distortions or excessively 
enhance local areas. The Structure-aware [20], MDHU [22], 
IMA [23], and VSM-and-WLS [24] generate grayish results 
with significant information loss, particularly in fine textural 
regions. Though, GFDFs [25] and Two-scale [26] methods 
retain spectral consistency along with some structural 
information. In contrast, the proposed technique gives a more 
well-balanced reconstruction, in which structural edges like 
building edges and vegetation areas are enhanced to have a 
sharper appearance, more natural contrast, and a better 
perceptual uniformity, representing better spatial spectral 
fidelity. 

 
Fig. 3. Fused image of Dataset A with different techniques 
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In Dataset B presented in Figure 4, the proposed algorithm 
proves to be obviously superior. The hybrid methods like CDIF 
and CBF usually yield images that do not match the visual 
perception, with either over-saturation or under- saturation in 
selected regions; whereas the structure-oriented methods (e.g., 
Structure-aware, MDHU, IMA, and VSM-and- WLS) yield 
images with less vivid color schemes, with most images appear 
grayish and with low color maintenance. Even though LEGFF 
[21] has some spectral content, as does GFDF, they bring about 
blurring in the high-frequency areas. The suggested solution is 
useful in the sense of combining high- frequency detail with 
natural spectrum maintenance, which creates more distinct 
urbanization and a better definition of vegetation textures. 
 

 
Fig. 4. Fused image of Dataset B with different techniques 

Figure 5 The challenge of structural clarity and spectral 
naturalness. The existing techniques including CDIF and CBF 
have serious color degradation and artificial improvement. The 
three models, MDHU, IMA and VSM-and-WLS, are generally 
producing grayscale results that have a strong loss of spectral 
information. GFDF and Two-scale maintain structure though 
fine details are usually blurred and the proposed method is quite 
effective because it improves regions, edges and preserves the 
same spectral content. 
 

 

Fig. 5. Fused image of Dataset C with different techniques 

In Dataset D of Figure6, with fine linear features like edges 
heterogenous structures, regions; the vast majority of hybrid 
approaches do not balance out. FGF-and-XDoG, CDIF, and 
CBF are distorting spectral content, whereas Structure-aware 
and MDHU are overdoing edges, making them look unnatural. 
IMA and VSM-and-WLS have spectrally lost outputs of lower 
quality. The edges river boundaries are not represented in GFDF 
and Two-scale. The proposed approach offers a natural 
appearance of water areas with distinct edges and clear vege- 
tation textures, which is the most realistic of all approaches. 
 

 
Fig. 6. Fused image of Dataset D with different techniques 

Dataset E in Figure7 shows that the proposed algorithm is 
effective in Dataset E as is evidenced by Figure3. Competing 
fusion algorithms have several weaknesses - such algorithms as 
FGF-and-XDoG, CDIF and CBF will tend to generate 
unnaturally enhanced contrast, the algorithms like Structure- 
aware, MDHU, IMA and VSM-and-WLS are not able to 
reproduce colors correctly and the spectral distortion becomes 
apparent. LEGFF, as well as GFDF can preserve partial high- 
frequency detail, but with low global sharpness and Two-scale 
method results in blurred fine details because of inadequate edge 
reinforcement.  

 

Fig. 7. Fused image of Dataset E with different techniques 
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Conversely, the proposed algorithm is also able to maintain 
spectral fidelity as well as spatial sharpness and produce a fused 
output, which is visually balanced and natural. The different 
features like road networks, vegetation textures, man-made 
structures are also highly maintained with few artifacts, which 
reflects the efficiency and flexibility of the method applied in 
challenging scenes.  
 

B. Objective Results 

As a way to thoroughly evaluate the fusion performance in 
Table II, various objective measurements were compared among 
various hybrid approaches including FGF-and-XDoG, CDIF, 
CBF, Structure-aware, LEGFF, MDHU, and IMA as well as 
VSM-and-WLS, GFDF, Two-scale, and the proposed one. The 
findings categorically show that the approach has better results 

in terms of the structural preservation, as the highest QABF 
score (0.6868) reflects. That proves its ability to preserve edges 
and fine details of the structure. The competitive performance in 
PSNR (22.91 dB) and SSIM (0.6995) is also shown by the 
method, indicating an equal trade-off of spatial fidelity and 
perceptual quality. CBF had the best PSNR (26.56 dB), SSIM 
(0.881) but it has a poorer QABF (0.5135), indicating that it has 
the propensity to over smooth edges at the expense of edge 
clarity. Equally, Structure-aware and VSM-and-WLS methods 
were relatively high (25.60 dB and 25.89 dB, respectively) but 
the QABF scores (0.5155 and 0.5212, respectively) were 
significantly lower than in the proposed method. Information- 
theoretically, the given methodology delivered a competitive 
entropy (7.2397) and an average MIF score (1.4878), which 
means that enough informational richness was not discarded. 

TABLE II.   COMPARISON OF DIFFERENT METHODS ON DATASET A 

Metric FGF-

and-

XDoG 

[23] 

CDIF 

[24] 

CBF 

[25] 

Structure-

aware 

[26] 

LEGFF 

[27] 

MDHU 

[28] 

IMA 

[29] 

VSM-

and-

WLS 

[30] 

GFDF 

[31] 

Two-

scale 

[32] 

Proposed 

PSNR 22.471 10.5557 26.5626 25.6 19.2802 19.045 21.6114 25.8953 23.8754 26.5642 22.9102 

SSIM 0.7981 0.7386 0.881 0.8677 0.6738 0.5987 0.6332 0.8676 0.7718 0.8742 0.6995 

Entropy 7.453 7.4427 7.2244 7.1398 7.6103 7.2424 7.1916 7.14 7.243 7.164 7.2397 

SF 0.1489 0.1492 0.1146 0.0948 0.2119 0.1445 0.1019 0.0978 0.1191 0.0968 0.0355 

Corr 0.9179 0.9769 0.9608 0.9432 0.9025 0.7343 0.8684 0.9423 0.91 0.9548 0.8915 

MIF 2.1528 0.6586 0.6481 2.2624 2.0055 2.0917 1.839 2.3459 2.2989 2.3035 1.4878 

ERGAS 20.185 20.2828 3.2901 14.0833 28.3771 29.438 23.3795 3.4023 17.1724 12.6015 19.9439 

QABF 0.4666 0.4744 0.5135 0.5155 0.5047 0.669 0.3162 0.5212 0.3929 0.5759 0.6868 

LABF 0.5334 0.5168 0.4785 0.4754 0.4953 0.331 0.6838 0.4788 0.6071 0.4241 0.3132 

Despite the fact that other approaches like GFDF and CBF 
performed better in terms of ERGAS (12.60 and 3.29, 
respectively), the proposed approach showed a high level of 
robustness in a broader range of metrics, especially the feature- 
based ones (QABF, LABF) whereby perceptual sharpness and 
structural consistency are the most important. On the whole, the 
experimental data supports the idea that the proposed method 
has an optimal balance in spectral fidelity, enhancement of 
spatial detail, and preservation of edges.  

The approach shows excellent results on both quantitative 
and perceptual visual quality by effectively incorporating high-
frequency spatial information with uniform spectral properties 
as compared to the current hybrid approaches. Objective 
measurements were analyzed in FGF-and- XDoG, CDIF, CBF, 
Structure-aware, LEGFF, MDHU, IMA, VSM-and-WLS, 
GFDF, Two-scale, and the proposed approach using the 
quantitative assessment of the shown performance in Table III.  

The findings point to the fact that the suggested method 
achieves significant gains in mutual information retention, and 
the highest MIF index (1.6952) is reached. This indicates its 
good capability of maintaining complementary information of 
source images. Moreover, the approach displays an equal 
structural consistency, as the score of QABF is 0.5009, which is 

higher than a variety of more advanced options like LEGFF 
(0.2044) and GFDF (0.1232). To ensure preservation of details, 
the CBF algorithm pro- vided the best PSNR (18.89 dB) and 
SSIM (0.8729), which shows that all the edges are preserved and 
the structure is similar. Nevertheless, the relatively low values 
of the MIF and QABF indicate a balance between the spatial 
sharpness and the general structure of information. The same 
trend was noted in Structure-aware fusion approach, which 
presented significantly less good QABF results (0.4747) but 
much better PSNR (13.10 dB), indicating that the structural 
details were preserved, whereas the perceptual and spectral 
fidelity was less than ideal.  

Comparatively, the proposed algorithm has provided a less 
competitive PSNR (13.07 dB) but with stronger information- 
theoretic and edge-based metrics. Entropy analysis also points 
to the fact that the proposed scheme (6.6539) has retained the 
higher informational content than CDIF (5.1806) and LEGFF 
(6.2467), yet this is closely related to IMA (7.0732), which 
returned the highest entropy. Even though the ERGAS values 
indicate that CBF (5.97) and VSM-and-WLS (12.52) were 
superior in spectral distortion, the suggested technique shows 
better performance on feature-sensitive ones (MIF, QABF), 
which are essential to retain perceptual sharpness.
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TABLE III.     COMPARISON OF DIFFERENT METHODS ON DATASET B 

Metric FGF-

and-

XDoG 

CDIF CBF Structure-

aware 

LEGFF MDHU IMA VSM-

and-

WLS 

GFDF Two 

scale 

Proposed 

PSNR 9.7821 7.8872 18.8974 13.1 10.3835 8.5178 12.9253 13.096 7.1954 12.4779 13.0793 

SSIM 0.4085 0.7737 0.8729 0.6121 0.2896 0.2461 0.6028 0.6121 0.2105 0.5607 0.5834 

Entropy 6.3929 5.1806 6.9538 6.4678 6.2467 6.9516 7.0732 6.4668 6.9885 6.4843 6.6539 

SF 0.3748 0.2962 0.2826 0.2117 0.4577 0.3889 0.2628 0.2116 0.3557 0.2415 0.1066 

Corr 0.7198 0.8815 0.9502 0.7738 0.7372 0.3793 0.8063 0.7738 0.176 0.7739 0.8466 

MIF 1.1183 0.3693 0.6699 1.4055 0.9857 0.9656 1.3303 1.3887 1.1128 1.4615 1.6952 

ERGAS 73.351 23.0681 5.9741 50.0874 68.3918 84.847 47.5272 12.5214 98.8008 53.7816 50.8013 

QABF 0.1404 0.3771 0.456 0.4747 0.2044 0.2217 0.5992 0.2252 0.1232 0.1464 0.5009 

LABF 0.8596 0.6136 0.5359 0.518 0.7956 0.7783 0.4008 0.7748 0.8768 0.8536 0.4991 

On the whole, the comparative analysis proves that the 
suggested approach can guarantee an efficient trade-off between 
spectral fidelity, preservation of structural detail, and the 
preservation of mutual information, thus proving the reliability 
of this approach as a powerful fusion strategy in a variety of 
evaluation measures.  

The comparative findings in Table IV offer a thorough 
evaluation of various fusion methods in terms of structural, 

spectral and information-theoretic measures. The GFDF method 
had the highest performance in all comparative methods of 
edges preservation, with the highest score of 0.9426 in QABF, 
indicating its high performance in terms of retaining all the 
structural information and preserving all structural edges. It also 
achieved the highest Mutual Information (MIF = 4.3397), which 
is effective in retaining complementary and informative material 
between images. 

TABLE IV: COMPARISON OF DIFFERENT METHODS ON DATASET C 

Metric FGF-

and-

XDoG 

CDIF CBF Structure-

aware 

LEGFF MDHU IMA VSM-

and-

WLS 

GFDF Two 

scale 

Proposed 

PSNR 16.897 8.7071 18.238 17.4 16.7675 15.253 12.9253 17.4087 19.8215 18.2746 14.5665 

SSIM 0.7348 0.7284 0.7205 0.6635 0.6453 0.5444 0.6028 0.6604 0.8638 0.715 0.5466 

Entropy 7.5983 6.5278 7.4268 7.3086 7.7232 7.6553 7.0732 7.3158 7.5376 7.3858 7.7423 

SF 0.1154 0.096 0.1089 0.0694 0.1354 0.1445 0.2628 0.0679 0.1095 0.0821 0.1522 

Corr 0.7996 0.9173 0.7946 0.7665 0.7729 0.6332 0.8063 0.7657 0.8663 0.7985 0.6316 

MIF 1.2208 0.2775 0.7153 0.8658 0.9274 1.4679 1.3303 0.8721 4.3397 1.5048 1.0584 

ERGAS 28.708 21.2809 6.263 27.1042 29.5858 34.729 47.5272 6.7659 20.4998 24.4963 38.4077 

QABF 0.8436 0.46 0.5231 0.56 0.7857 0.7548 0.5992 0.7322 0.9426 0.7949 0.2871 

LABF 0.1564 0.5208 0.4575 0.4211 0.2143 0.2453 0.4008 0.2678 0.0574 0.2051 0.7129 

Nevertheless, along with such merits, GFDF showed 
moderate PSNR (19.82 dB) and rather high ERGAS (20.49) 
implying shortcomings in spectral fidelity. However, CBF 
ensured the balance of high PSNR (18.23 dB) with high SSIM 
(0.7205), as well as competitive entropy (7.4268), showing good 
noise suppression and spectral consistency.  

LEGFF and MDHU achieved rather high entropy (7.7423 
and 7.65, respectively), yet their SSIM score (0.6453 and 
0.5444) was significantly smaller, which implies less accurate 
perceptual similarity. Nevertheless, the proposed approach was 
not the best in PSNR (14.56 dB) and SSIM (0.5466) but showed 
a high level of entropy (7.7423) and spatial frequency (0.1522), 
which allows to infer a Nevertheless, the value of its QABF was 
rather low (0.2871) indicating that edge preservation was 
weakly better than in the case of GFDF and LEGFF. On the 

whole, Dataset C indicates the trade-offs of various fusion 
strategies. Whereas GDDF has an edge in edge-based and 
information-preservation measures, CBF and Structure-aware 
have a more balanced fidelity in PSNR and SSIM. The 
suggested approach focuses on the increase of entropy and 
detail, which possess mutually complementary advantages in 
situations where the value of information is valued more highly 
than the edge-based quality. 

The evaluation presented in Table V highlights the relative 
performance of competing fusion methods across multiple 
metrics. The proposed approach attains a PSNR of 18.9827, 
which is comparable to GFDF (18.5479) and IMA (19.6891), 
and notably superior to methods such as CBF (14.6687) and 
MDHU (14.3530). However, Structure-aware fusion achieves 
the highest PSNR of 29.1947, setting a strong upper bound on 
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reconstruction fidelity. In terms of structural similarity, the 
proposed method reaches an SSIM of 0.7349, outperforming 
most conventional baselines such as CBF (0.3656) and MDHU 
(0.2972). Only LEGFF (0.9740) and Structure-aware (0.6146) 
demonstrate stronger structural preservation. Entropy analysis 

indicates that the proposed technique (7.8488) effectively 
preserves information content, second only to MDHU (7.8677), 
and higher than most alternatives, including Structure-aware 
(7.6018).

TABLE V.              COMPARISON OF DIFFERENT METHODS ON DATASET D  

Metric FGF-

and-

XDoG 

CDIF CBF Structure-

aware 

LEGFF MDHU IMA VSM-

and-

WLS 

GFDF Two 

scale 

Proposed 

PSNR 14.216 7.3865 14.6687 19.69 29.1947 14.353 14.2398 19.6891 13.6682 18.5479 18.9827 

SSIM 0.388 0.7153 0.3656 0.6146 0.974 0.2972 0.3452 0.6146 0.3007 0.6019 0.7349 

Entropy 7.7323 5.8041 7.8222 7.702 7.6018 7.7617 7.8677 7.7123 7.6033 7.6649 7.8488 

SF 0.1463 0.0862 0.1307 0.0855 0.081 0.155 0.1367 0.0855 0.1433 0.0911 0.0659 

Corr 0.7263 0.876 0.6918 0.8847 0.9994 0.6665 0.6834 0.8847 0.612 0.8578 0.8788 

MIF 0.8576 0.1922 0.0766 1.4933 4.7855 0.7027 0.8503 1.4848 0.6092 1.4532 1.6489 

ERGAS 39.035 20.9846 9.086 20.7866 7.0666 38.422 38.149 5.1965 41.5733 23.7046 22.1051 

QABF 0.1194 0.5451 0.6667 0.6778 0.9229 0.0696 0.0643 0.2809 0.0525 0.2249 0.5754 

LABF 0.8806 0.4432 0.322 0.3113 0.0771 0.9305 0.9357 0.7191 0.9475 0.7751 0.4246 

The comparison in Table VI shows the comparative 
performance of competing fusion strategies on various metrics. 
The proposed method achieves a PSNR of 18.9827 that is 
similar to GFDF (18.5479) and IMA (19.6891), but significantly 
higher than other methods, e.g., CBF (14.6687) and MDHU 
(14.3530). Nevertheless, Structure-aware fusion obtains the best 
PSNR of 29.1947 which is a powerful upper limit of 
reconstruction fidelity. The proposed method achieves a 
structural similarity of 0.7349, compared to most of the 
conventional baselines, e.g. CBF (0.3656) and MDHU (0.2972). 
It is only LEGFF (0.9740), and Structure-aware (0.6146) that 
exhibit more structural preservation. The entropy analysis has 
shown that the proposed method (7.8488) is effective in terms 
of information content (only MDHU (7.8677) does better) and 
better than most other methods, including Structure-aware 
(7.6018). The indicators of sharpness and the activity level show 
otherwise. Spatial frequency (SF) of the suggested technique is 
0.0659, which is less than such techniques as MDHU (0.1550) 
and GFDF (0.1433), indicating that edge sharpness is not 
excessive. Equally, the correlation coefficient (0.8788) is also 
competitive, with its value just below LEGFF (4.7855), but 
much higher than standard baselines, including CBF (0.0766) 
and MDHU (0.7027). Mutual information analysis (MIF) 
indicates that the method proposed is 1.6489, which is very high, 
compared to the traditional baselines, including CBF (0.0766) 
and MDHU (0.7027). These results are further contextualized 
by the ERGAS of 22.1051, which is better spectral fidelity than 
other high-error methods such as the GFDF (41.5733) and 
MDHU (38.4220), but also IMA (5.1965) and LEGFF (7.0666) 
are even stronger. The given method shows the QABF score of 
0.5754, which proves the obvious benefits when compared to 
the weak performers like MDHU (0.0643) and GFDF (0.0525). 
However, Structure-aware (0.9229) provides much higher 
boundary fidelity. The LABF of 0.4246 proves a medium-level 
stability to retain local edge structures, and the stability is lower 
than both GFDF (0.7751) and IMA (0.7191).However, the 
overall performance in Dataset D shows that the proposed 

method is a balance between similarity in structures and content 
as well as the moderate level of correlation and boundary 
fidelity, but it is outperformed by the dominant methods 
(LEGFF and Structure-aware). 

Table VI summarize the comparative manner in which 
fusion algorithms behave under Dataset E. The given algorithm 
scores 24.9394 in PSNR, which is one of the more successful 
algorithms and surpasses the results of FGF-and-XDoG 
(24.3650), LEGFF (18.1240), and IMA (21.3798). However, the 
greatest PSNR values are achieved through GFDF (40.6560), 
MDHU (29.3050) and CBF (26.8643) that means that they are 
more effective in terms of structural preservation compared to 
IMA (0.5257) and LEGFF (0.6163). Structural similarity 
SSISM (0.7209) shows that the proposed approach preserves the 
structure moderately, better than IMA (0.5257) and LEGFF (0. 
The values of entropy indicate that the proposed technique 
(6.7194) has similar levels of information richness as CBF 
(6.7278) and Structure-aware (6.6890), but lower as compared 
to CDIF (7.3855) and LEGFF (7.5712). 

As demonstrated in Table VI, the SF of the proposed method 
(0.0291) is much lower than other techniques like LEGFF 
(0.2502), CDIF (0.1841), and GFDF (0.1218) showing 
relatively weak edges and details. The same observation can be 
made on the correlation coefficient where the proposed method 
performs at 0.8798, which is satisfactory yet not as high as high 
performing baselines as GFDF (0.9971), CDIF (0.9778) and 
MDHU (0.9589). Mutual information analysis indicates 
moderate performance with the proposed method recording 
1.3471, which is lower compared to CBF (0.6076) and LEGFF 
(1.7909). ERGAS Score of 15.9246 shows that spectral fidelity 
is acceptable, which is better than other methods with high errors 
(LEGFF (33.2816) and IMA (23.8915)) but worse than methods 
with high performance (GFDF (0.8880), VSM-and- WLS 
(3.1720), and CBF (3.1792)).  

The proposed method features a QABF of 0.5820, which is 
better than IMA (0.15 The results of the LABF score (0.4180) 
indicates moderate local boundary fidelity, which is equal to 
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Structure-aware (0.4775) and CBF (0.4786), and worse than 
IMA (0.8459).In general, Dataset E results demonstrate that the 
proposed algorithm provides a balanced trade-off, preserving 

competitive PSNR, entropy, and edge fidelity scores, but has 
lower sharpness, correlation, and mutual information values 
than the hybrid baselines, such as GFDF and MDHU.

TABLE VI.              COMPARISON OF DIFFERENT METHODS ON DATASET E 

[ 

VII. OPTIMIZATION OF PROPOSED ALGORITHM 

For all optimization experiments of Dataset A , each image 
was decomposed into three pyramid levels which were similar 
to the contourlet structure. In the case of anisotropic diffusion, 
gradient threshold was (aniso_grad) set to 2. The guided filtering 
stage base layer radius (r1_default) was kept constant at 45 
whereas regularization parameter (eps1) was established at 0.3. 
These parameter parameters were fixed so that they provided 
consistency over all optimization runs. 

 
Fig. 8. Fusion quality variation across anisotropic diffusion iterations (Dataset 

A).  

Anisotropic diffusion iteration count (aniso_iter) was 
analyzed to determine the effect of anisotropic diffusion on 
fusion quality in Dataset A in a systematic manner in terms of 
the QABF measure. The values of QABF grow steadily as 
0.5231 at aniso_iter = 1 and high as 0.6868 at aniso_iter = 35, 
with an absolute change of 0.1637 (≈ 31.3%). This steady rise 
indicates that increasing the number of iterations improves the 
level of structural preservation because QABF lays stress on the 

quality of fine details and retention of edges as shown in Table 
VII and graphically in Figure 9. 
 

 
Fig. 9. Fusion quality variation across anisotropic diffusion iterations (Dataset 

A).  

Nonetheless, there is a visual discrepancy between the metric 
performance and the quality of perception. The peak QABF 
occurs at an iterative value of aniso_iter = 35 and thereafter, the 
fused image has slight over accentuation of edges and halo 
artifacts which are not desired when considering the perceptual 
view point. However, the lower values of iteration like 
aniso_iter = 10 (QABF = 0.6595) or aniso_iter = 15 (QABF = 
0.6698) produce much more natural and balanced images 
although they have slightly lower values of the QABF. This 
demonstrates that the structure-oriented QABF metric can 
effectively capture and quantify stronger edge contrast, even in 
scenarios where slight compromises in visual fidelity occur.  

It is found that a useful trade-off to be explored is at 
aniso_iter values of 25 to 30 whereby QABF can be as large as 
possible (0.6796-0.6860) and the reconstructions are artifact free 
and appealing. Thus, we choose aniso30 as the most appropriate 
setting for this work that offers the combination of both 
objective preservation of edges and subjective picture quality. In 
all the optimized experiments of Dataset B as indicated in Figure 

Metric FGF-

and-

XDoG 

CDIF CBF Structure-

aware 

LEGFF MDHU IMA VSM-

and-

WLS 

GFDF Two 

scale 

Proposed 

PSNR 24.365 10.9817 26.8643 26.77 18.124 29.305 21.3798 26.7781 40.656 27.0353 24.9394 

SSIM 0.8762 0.7683 0.8622 0.8485 0.6163 0.9107 0.5257 0.8485 0.9913 0.8535 0.7209 

Entropy 7.1667 7.3855 6.7278 6.689 7.5712 6.8367 6.8537 6.7027 6.8938 6.708 6.7194 

SF 0.144 0.1841 0.0967 0.0932 0.2502 0.1145 0.1148 0.0928 0.1218 0.0938 0.0291 

Corr 0.932 0.9778 0.9378 0.9274 0.8677 0.9589 0.7507 0.9274 0.9971 0.9316 0.8798 

MIF 2.1115 0.6385 0.6076 1.957 1.7909 3.5275 1.4354 2.0011 5.986 1.9913 1.3471 

ERGAS 16.751 19.7583 3.1792 12.6928 33.2816 9.4842 23.8915 3.172 2.5671 12.3165 15.9246 

QABF 0.6525 0.4859 0.5113 0.5125 0.5365 0.782 0.1541 0.5117 0.888 0.544 0.582 

LABF 0.3475 0.5043 0.4786 0.4775 0.4635 0.218 0.8459 0.4883 0.112 0.456 0.418 
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10, a multi-scale analysis using nine pyramid levels was used, 
based on a contourlet-based framework.

TABLE VII.            OPTIMIZED OBJECTIVE RESULTS OF DATASET A PENDING 

Metri

c 

(aniso_ite

r=1) 

(aniso_it

er= 

5) 

(aniso_iter

=10) 

(aniso_iter

=15) 

(aniso_iter

=20) 

(aniso_iter

=25) 

(aniso_iter

=30) 

(aniso_iter

=35) 

(aniso_iter

=36) 

(aniso_iter

=37) 

PSNR 23.498 23.4056 23.1625 23.0467 22.9798 22.9439 22.9208 22.9102 22.909 22.9081 

SSIM 0.8131 0.7608 0.7278 0.714 0.7068 0.703 0.7007 0.6995 0.6993 0.6991 

Entro

py 

7.4465 7.3524 7.3067 7.2818 7.2657 7.2544 7.2461 7.2397 7.2385 7.2373 

SF 0.0723 0.0496 0.0425 0.0394 0.0378 0.0367 0.036 0.0355 0.0354 0.0353 

Corr 0.9238 0.9116 0.9023 0.8977 0.895 0.8933 0.8922 0.8915 0.8914 0.8913 

MIF 1.8254 1.6399 1.5613 1.5233 1.5071 1.4981 1.4901 1.4878 1.4873 1.4852 

ERG

AS 

18.6292 18.8361 19.3719 19.6323 19.7843 19.8666 19.9195 19.9439 19.9467 19.9487 

QAB

F 

0.5231 0.5805 0.6595 0.6698 0.6668 0.6796 0.686 0.6868 0.6845 0.6852 

LABF 0.4769 0.4195 0.3405 0.3302 0.3332 0.3204 0.314 0.3132 0.3155 0.3148 

 

 
Fig. 10. Fusion quality variation across anisotropic diffusion iterations (Dataset 

B). 

A gradient threshold of 10 was used to control the 
anisotropic diffusion process (computer (aniso_grad)). The 
guided filtering phase had a base layer radius, which was set at 
45 (r1_default) and the regularization term, which was kept at 
0.3 (eps1). These parameter choices were consistently applied 
across all optimization trials to ensure fair comparison. The 
effect of anisotropic diffusion iteration count (aniso_iter) on 
fusion quality in Dataset B shown in Table VIII was also 
analyzed using the QABF metric.  

As shown in Figure 11 also, QABF values decrease slightly 
from 0.5009 at aniso_iter = 1 to 0.4921 at aniso_iter = 2 and 
0.4827 at aniso_iter = 3. Although the highest QABF is obtained 
at aniso_iter = 1, the fused image appears relatively noisy and 
lacks smoothness in homogeneous regions. The parameter 
selections were uniformly used in all optimization experiments, 
so that the effect of anisotropic diffusion by iteration count on 
fusion quality inside Dataset B that is presented in Table VIII 
could be analyzed with the help of the QABF measure. As 
Figure 11 below also demonstrates, values of QABF change 
slightly with an increase of 0.5009 at the beginning of the 
iteration process (that is at aniso_iter = 1) to 0.4921 at the end 
of the iteration process aniso_iter = 2 and 0.4827 at the end of 
the iteration process aniso_iter = 3. The optimal QABF is 
achieved at an aniso before the value of aniso iter reaches 1 but 
the fused image is rather noisy and does not have smoothness in 
homogeneous areas. 

 

 
Fig. 11. Fusion quality variation across anisotropic diffusion iterations (Dataset 

B). 

After increasing the number of iterations, the QABF score 
goes down slightly, but the visual quality is enhanced by the fact 
that noise is suppressed and the natural textures are better 
preserved. 

TABLE VIII.        OPTIMIZED OBJECTIVE RESULTS OF DATASET B  

Metric (aniso_iter = 1) (aniso_iter = 2) (aniso_iter = 3) 

PSNR 13.0793 13.1571 13.1785 

SSIM 0.5834 0.5808 0.5729 

Entropy 6.6539 6.6786 6.683 

SF 0.1066 0.0887 0.0806 

Corr 0.8466 0.8479 0.8474 

MIF 1.6952 1.7012 1.7019 

ERGAS 50.8013 50.3478 50.2236 

QABF 0.5009 0.4921 0.4827 

LABF 0.4991 0.5079 0.5173 
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This once again demonstrates the difference between 
quantitative evaluation and perceptual one: although in QABF 
higher contrast of edges is desirable, noise or exaggerated 
textures are not graded. In this data set, there is a useful 
compromise at aniso_iter = 2 or 3 that generate more pleasing 
and balanced images even though they have lower scores on 
QABF. 

The Dataset C results in Figure 12 one can be optimized 
experiments, the two-level pyramid decomposition used in the 
fusion was contourlet-based designed. 
 

 
Fig. 12. Fusion quality variation across anisotropic diffusion iterations (Dataset 

C). 

With a fairly low gradient threshold (computing: aniso_grad 
= 0.2), anisotropic diffusion was used, which put an emphasis 
on fine detail keeping. In the case of guided filtering, the radius 
of the base layer (r1_default) was fixed at 45 and the 
regularization parameter (eps1) was fixed to 0.3. With these 
constant settings, the results of the optimization could be directly 
compared between all the trials presented in Table VIII. 

The effect of anisotropic diffusion iteration count 
(aniso_iter) on fusion quality in Dataset C was further examined 
using the QABF metric. As shown in Figure 13, QABF values 
decrease consistently from 0.2871 at aniso_iter = 1 to 0.2691 at 
aniso_iter = 2 and 0.2589 at aniso_iter = 3. Although the highest 
QABF is observed at aniso_iter = 1, the corresponding fused 
image suffers from noise and lacks smoothness in homogeneous 
regions. 

 
Fig. 13. Fusion quality variation across anisotropic diffusion iterations (Dataset 

C). 

The impact of the number of counts of anisotropic diffusion 
iteration on the quality of fusion of Dataset C was also 
investigated aided by the concept of the QABF. Figure 13 of the 
appendix shows that QABFs drop steadily with an increase in 
aniso_iter, e.g., 0.2871 at aniso_iter = 1, 0.2691 at aniso_iter = 
2 and 0.2589 at aniso_iter = 3. Even though the maximization of 

QABF occurs at a value of aniso_iter = 1, the resultant fused 
image has noise and is not smooth in homogeneous areas.  

As the number of iterations increases, the QABF score 
reduces a little, but there is an increase in perceptual quality of 
the images as noise is reduced and the aesthetic look of the 
images becomes more ordinary. This again illustrates the 
difference between the quantitative assessment and the human 
eye view: on the one hand, QABF is concerned with edge 
retention, whereas on the other hand, it is not sufficient to 
represent the degradation due to noise. Hence in this dataset, the 
value of aniso_iter = 2 or 3 has a more perceptually acceptable 
result although it has smaller value of QABF. In the optimized 
experiments of Dataset D reported in Figure 14 Table IX, the 
contourlet-like structure was adhered to and a six- level pyramid 
decomposition was used. 

TABLE IX.      OPTIMIZED OBJECTIVE RESULTS OF DATASET C. 

Metric 
A (aniso_iter = 

1) 

B (aniso_iter = 

2) 

C (aniso_iter = 

3) 

PSNR 14.5665 14.6693 14.7223 

SSIM 0.5466 0.5276 0.5085 

Entropy 7.7423 7.7088 7.6811 

SF 0.1522 0.1276 0.112 

Corr 0.6316 0.6226 0.6144 

MIF 1.0584 1.0347 1.0173 

ERGAS 38.4077 37.9539 37.722 

QABF 0.2871 0.2691 0.2589 

LABF 0.7129 0.7309 0.7411 

 
Fig. 14. Fusion quality variation across anisotropic diffusion iterations (Dataset 

D). 

A gradient threshold of 2 (aniso_grad = 2) was used to 
represent the level of anisotropic diffusion, which offers the 
desired edge saving and noise reduction. At the guided filtering 
phase, the following parameters were defined based on the low-
frequency soettings of the GFF approach; the base layer radius 
was kept to 45; in ther words, the parameter (r1_default) was 
default, and the regularization term was (eps1) regularization of 
0.3. The consistency of these parameter values allowed the 
optimization results across all of the runs to be stable and 
reproducible. 
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Anisotropic diffusion iteration count (aniso_iter) affects 
fusion quality in Dataset D was also explored on the basis of the 
measurement of Quality of BFS (QABF) measure. Figure 14 
indicates that the values of QABF rise significantly with the 
increase in 0.2747 at aniso_iter = 1 to a nabf value 0.4774 at 
aniso_iter = 5 and the value goes on increasing to 0.5466 at aniso 
iter = 10. It has its highest at the first instance of aniso_iter = 16 
and QABF = 0.5800, then slightly decreasing to 0.5777 at 
aniso_iter = 17. The fact that this enhancement with additional 
iterations shows that anisotropic diffusion will work well in 
maintaining edges and structure to a specific extent. 

 
Fig. 15. Fusion quality variation across anisotropic diffusion iterations (Dataset 

D). 

But on visual examination as depicted in Fig 15, one finds 
that the highest QABF is reached when the value of aniso_iter is 
set to 16, but one sees that there is a slight over-enhancing of 
edge in the fused image. Middle values, like aniso_iter = 10 or 
15 of 1 /T/aniso (QABF = 0.5466 and 0.5754) have more 
visually balanced results with less artifacts, though. This once 
again illustrates the tradeoff between objective measures and 
perceived quality, where this time, with an aniso_iter = 15 gives 
a viable tradeoff between almost highest QABF and high visual 
quality. Dataset E In the optimized experiments in Figure 16, the 
input images were uniformly resized. It was decomposed into a 
two-level pyramid, which was based on a contourlet-like 
representation. 

 
Fig. 16. Fusion quality variation across anisotropic diffusion iterations (Dataset 
E). 

Anisotropic diffusion process controlled by a gradient 
threshold of 2 (aniso_grad = 2) was used to prevent the loss of 

structural detail but reduce excessive over-smoothing as in 
Table X. In the guided filtering step, the parameter radius of the 
base layer (which is set as r1 default comes out as 45 by default), 
and the optimized parameter (which is set as eps1 remains at 0.3 
by default) were kept constant. Such parameter adjustments 
gave a uniform experimental starting point to assessing fusion 
performance as indicated in Table XI. 

 

 
Fig. 17. Fusion quality variation across anisotropic diffusion iterations (Dataset 

E). 

The anisotropic diffusion iteration count (aniso_iter) was 
empirically studied on the effect of fusion quality of Dataset E 
with the metric of QABF. Figure 17 indicates that QABF values 
are 0.4771 at a value of aniso_iter = 1 to 0.5322 at aniso_iter = 
5 and 0.5514 at aniso_iter = 10. 

The values keep on improving to 0.5779 at aniso_iter = 20 
and serving its highest point to 0.5820 at aniso_iter = 35. The 
metric no longer changes at this step and at the following two 
steps, namely, at aniso_iter = 36 (0.5808) and aniso_iter = 37 
(0.5817). This is a pointer that the more the iterations, the better 
the structural preservation, as represented by QABF until 
convergence is reached at about 30-35 iterations. 

However, it is observed under the naked eye that the 
maximum QABF is achieved at aniso_iter = 35, however, in the 
fused image, the edges are over-enhanced slightly. However, the 
middle values like the aniso_iter = 20 or 25 (QABF = 0.5779 
and 0.5788, respectively) produce images with the almost 
maximum QABF, but more natural look. Hence, it is possible to 
regard the practical optimum of the parameter aniso_iter = 25–
30 the value offering the compromise between objective edge 
preservation and subjective visual quality. 

VIII. STATISTICAL RESULTS 

The results of the mean intensity values achieved on the 
fused images with the various fusion techniques in datasets A-E 
are reported in Table XII. When the mean is high, this would 
mean brighter fused images whereas values below the mean 
would make the images darker. Among the compared 
approaches, CDIF always has the largest mean values, which is 
an indication of its propensity to boost the overall image 
brightness and intensity representation. Conversely, the IMA, 
Structure-aware and VSM-and-WLS methods have a relatively 
lower mean value, revealing that it conserves the intensity. The 
Proposed method is balanced and the mean values are in-
between extremes thus avoiding over brightness and having 
adequate levels of intensity. According to this balance, the 
offered approach successfully maintains image information 
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without excessive enhancement, and it is applicable to the 
creation of visually natural fusion products. 

TABLE X.       OPTIMIZED OBJECTIVE RESULTS OF DATASET D 

Metric A (aniso_iter = 1) B (aniso_iter = 5) C (aniso_iter = 10) D (aniso_iter = 15) E (aniso_iter = 16) F (aniso_iter = 17) 

PSNR 16.9135 18.4104 18.7958 18.9827 19.0381 19.0632 

SSIM 0.656 0.7315 0.7348 0.7349 0.7353 0.7355 

Entropy 7.9106 7.8872 7.8647 7.8488 7.844 7.842 

SF 0.1356 0.0842 0.0712 0.0659 0.0645 0.064 

Corr 0.8467 0.8736 0.8771 0.8788 0.8793 0.8796 

MIF 1.6002 1.6798 1.6675 1.6489 1.6509 1.6497 

ERGAS 28.035 23.6049 22.5843 22.1051 21.9649 21.9018 

QABF 0.2747 0.4774 0.5466 0.5754 0.58 0.5777 

LABF 0.7253 0.5226 0.4534 0.4246 0.42 0.4223 

TABLE XI. OPTIMIZED OBJECTIVE RESULTS ACROSS DIFFERENT ANISOTROPIC ITERATIONS ON DATASET E 

Metric 

A 

(aniso_ 

iter =1) 

B (aniso_ 

iter =5) 

C (aniso_ 

iter =10) 

D (aniso_ 

iter =15) 

E (aniso_ 

iter =20) 

F (aniso_ 

iter =25) 

G (aniso_ 

iter =30) 

H (aniso_ 

iter =35) 

I (aniso_ 

iter =36) 

J (aniso_ 

iter =37) 

PSNR 25.3778 25.651 25.3219 25.1328 25.0358 24.9849 24.9561 24.9394 24.937 24.9349 

SSIM 0.8151 0.7898 0.7549 0.7378 0.7294 0.7249 0.7224 0.7209 0.7207 0.7205 

Entropy 6.9582 6.8523 6.7993 6.7695 6.7509 6.7373 6.7272 6.7194 6.718 6.7166 

SF 0.0638 0.0429 0.0358 0.0328 0.0312 0.0302 0.0295 0.0291 0.029 0.0289 

Corr 0.9087 0.9036 0.8925 0.8864 0.8831 0.8814 0.8804 0.8798 0.8797 0.8796 

MIF 1.6088 1.4815 1.4091 1.375 1.3619 1.3544 1.3469 1.3471 1.3458 1.345 

ERGAS 15.1409 14.672 15.2387 15.574 15.749 15.8416 15.8942 15.9246 15.9292 15.9331 

QABF 0.4771 0.5322 0.5514 0.5507 0.5779 0.5788 0.5819 0.582 0.5808 0.5817 

LABF 0.5229 0.4678 0.4486 0.4493 0.4221 0.4212 0.4181 0.418 0.4192 0.4183 

Table XIII have the median intensity values of the fused 
images of dataset A-E. The median gives a good indication of 
central tendency, which is not as dependent on the exceptions as 
the mean, and therefore indicates the average intensity 
distribution of each fusion outcome. 

Once again, CDIF has the highest median values of all the 
datasets, which implies that it has a steady tendency to shift the 
pixel intensity distribution towards brightness. Techniques like 
IMA, Structure-aware, and VSM-and-WLS however have 
relatively lower medians in common with the fact that they tend 
to maintain darker intensity ranges.

TABLE XII. MEAN 

Technique A B C D E 

FGF-and-XDoG 101.8403 195.398 143.6299 150.4669 99.3771 

CDIF 162.3344 203.4378 198.341 197.2284 157.9517 

CBF 95.1402 136.4477 125.34 135.316 91.4348 

Structure-aware 94.3523 142.2347 118.0005 130.9456 91.4022 

LEGFF 98.502 193.2469 135.1212 127.2103 93.5756 

MDHU 96.431 138.5512 121.9779 135.0653 92.1582 

IMA 94.667 109.2937 116.7261 134.443 92.0464 

VSM-and-WLS 94.1461 142.2892 117.7992 130.7454 91.316 

GFDF 94.9752 151.2894 128.1592 135.7974 92.1704 

Two scale 95.0264 163.5962 126.8719 135.944 91.6496 

Proposed 100.4821 177.4762 118.9874 130.9038 86.0702 
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The Proposed method performs in the middle performing 
web where median values are neither too high nor too small. 
This implies that the resulting approach ensures that there is a 
balanced intensity distribution thus avoiding excessive 
brightening and at the same time creates adequate contrast. This 
nature is especially beneficial with image fusion, where visual 
naturalness and structural information should be maintained. 

The values of mode of pixel intensities of datasets A through 
E are provided in Table IX of the appendix. The most common 

pixel value is the mode and therefore shows the dominant 
intensity level in the fused outputs. One can see a definite pattern 
that some of the methods, such as CDIF, LEGFF, MDHU, 
GFDF, and the Proposed method often obtain the maximum 
value (255) in at least one of the datasets, indicating saturation 
at the brightest intensity levels. This means that these techniques 
focus on high frequency details or exaggerate bright areas and 
this may result in the loss of subtle variations of intensity. 

TABLE XIII.     MEDIAN 

Technique A B C D E 

FGF-and-XDoG 98 215 143 155 96 

CDIF 161 228 212 208 153 

CBF 92 141 123 141 89 

Structure-aware 92 153 117 130 88 

LEGFF 94 216 134 114 85 

MDHU 93 132 119 140 89 

IMA 91 111 115 140 89 

VSM-and-WLS 91 153 117 129 88 

GFDF 91 160 124 142 89 

Two scale 92 174 128 136 89 

Proposed 96 175 115 131 81 

  
On the other hand, methods like CBF, Structure-aware, and 

VSM-and-WLS have a more moderate mode value as they are 
more natural in the intensity distribution. Interestingly, IMA 
shows a significantly different behavior, which IMA mode 
values can be as low as 1 in dataset B, which underlines the 
possibility of IMA bias to darker intensities in particular cases. 
In general, the Proposed technique is a compromise: even 
though it sometimes touches 255 in the bright areas, it does not 
have serious inconsistencies such as in IMA, so the balance of 
the level of intensity is balanced across the datasets.  

The standard deviation (SD) values of all techniques in 
datasets A-E are provided in Table XV, as a statistical indicator 
of contrast variation in the fused images as well as intensity 
variation. An increased SD value represents more variation in 
pixel intensities, which is usually due to increased details and 
sharper contrasts, whereas a smaller SD value represents 
smoother and less contrasted results. CDIF and LEGFF are the 
two most successful in obtaining higher values of SD (e.g., 
96.67 and 98.29 in dataset B), which confirms the fact that these 
two approaches do not lose or deteriorate the local features.

TABLE XIV. MODE 

Technique A B C D E 

FGF-and-XDoG 87 255 255 255 82 

CDIF 255 255 255 255 255 

CBF 95 162 104 141 85 

Structure-aware 90 163 106 147 82 

LEGFF 78 255 255 255 50 

MDHU 84 255 82 255 82 

IMA 83 1 110 145 79 

VSM-and-WLS 85 167 111 125 82 

GFDF 83 255 80 255 77 

Two scale 99 209 162 132 81 

Proposed 89 255 255 255 68 

  
Compared to it, other methods such as Structure-aware, 

VSM-and-WLS and Two scale have comparatively lower SD 
values implying smoother outputs with lower variability, but 
potentially compromising sharpness but more preferable to 
noise suppression. The SD values in the Proposed method are 

fairly high in all the datasets with SD of 58.14 in dataset C and 
67.59 in dataset D which indicates a balanced performance that 
adds contrast to the data but does not add too much variations. 
This trade-off is especially important since an excessively high 
SD (as with LEGFF) can cause visual artifacts, whereas 
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excessively low SD can cause the loss of small details. On the 
whole, the Proposed method exhibits a regulated improvement 

technique, which guarantees both the quality of perception and 
perspective of various datasets. 

TABLE XV.     STANDARD DEVIATION 

Technique A B C D E 

FGF-and-XDoG 45.061 94.5673 50.8681 61.4592 36.4615 

CDIF 58.1626 96.6743 56.7094 57.3685 44.8635 

CBF 37.7442 69.9226 43.0426 58.5484 27.0831 

Structure-

aware 
35.3045 65.2266 39.797 52.9944 26.6951 

LEGFF 53.5333 98.2925 56.0973 56.1303 51.6542 

MDHU 38.4557 80.6694 50.6629 61.9297 29.2299 

IMA 36.5095 61.9164 40.5135 62.4378 29.5838 

VSM-and-WLS 35.1459 65.1748 39.7728 53.0151 26.7289 

GFDF 38.8145 83.8269 49.882 62.4989 30.2229 

Two scale 35.8177 75.6769 42.1295 51.6926 26.82 

Proposed 41.9983 82.3467 58.1391 67.5879 34.2811 

 
The values of the variance of the pixel intensities of various 

image fusion methods in test cases A-E are illustrated in table 
XVI below.  

Variance is a measure of the distribution of intensities values 
with a larger value of variance indicating a high degree of 
contrast and the ability to represent details. LEGFF and MDHU 
demonstrate the largest variance values of the methods 
evaluated in a number of situations implying the great 
enhancement of local details, but in some instances, at the 
expense of increased noise. On the other hand, Structure- aware 
and VSM-and-WLS have lower variance, which means less 
variations in the outputs with lower intensity variation.  

The Proposed method has shown competitive variance level 
in the cases C and D when it has been shown to have obtained 
values similar or better than the state-of-the-art techniques. This 
balance indicates the efficiency of the offered method towards 
increasing image detail without changing the intensity 
distribution in various situations. 

IX. CHI-SQUARE TEST 

In order to statistically confirm the consistency of the scores 
of the observed fusion qualities with ideal values, a Chi- Square. 
The Goodness-of-Fit test is carried out in the QAB/F metric of 
all the 11 methods (10 existing methods and 1 proposed 
method). Each method has an expected value Ei which is defined 
to be 1, the perfect score. 
 

The Chi-Square test value is calculated. using: 
 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

                                 (28) 

 

where Oi is the observed QAB/F score of method i, and m = 
11 is the number of methods. The degrees of freedom 
(DOF) are calculated as: 

𝐷𝑂𝐹 =  𝑚 −  1 =  11 −  1 =  10             (29) 

 
The test is evaluated at a significance threshold of α = 0.05, 

with the corresponding critical value (10,0.05) =18.307: 
 

𝑋𝑐𝑟𝑖𝑡
2  =  18.307                         (30) 

 
A Chi-Square value which is lower than this value will mean 

that the null hypothesis is accepted implying that there is no 
statistical significance in deviations to the expected value. Table 
XVII shows the Chi-Square analysis of Dataset-A in which the 
analysis of various fusion algorithms was tested with respect to 
the anticipated value. O (observed) is the results which the 
methods give and the expected value (E) was always 1 to make 
comparisons. The deviation of each technique to the expected 
result is measured by the difference between O and E, its squared 
form and the contribution to the Chi-Square. 

The Proposed algorithm had the lowest Chi-Square 
contribution (0.09809) which means that it was nearest to the 
expected value among all the methods. Conversely, other 
approaches including IMA (0.46758) and GFDF (0.36857) had 
quite high deviations. The Chi-Square statistic of Dataset-A was 
2.7304 which was the overall measure of the divergence 
between all techniques. This discussion shows that the Proposed 
algorithms are better in terms of stability and performance than 
the current methods. The computed Chi-Square value (χ² = 
2.7304) is notably lower than the critical value of 18.307 for 10 
degrees of freedom. Hence, the null hypothesis (H₀)—stating 
that there is no statistically significant difference between the 
observed and expected values. 
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TABLE XVI.        VARIANCE 

Technique A B C D E 

FGF-and-XDoG 1988.803 3779.956 2587.412 3777.251 1329.444 

CDIF 3381.596 3834.419 3215.975 3291.155 2012.733 

CBF 1424.623 2616.466 1852.674 3427.015 733.4955 

Structure-aware 1246.405 1592.914 1583.81 2808.418 712.6264 

LEGFF 2727.472 4302.255 3144.529 3150.626 2633.7 

MDHU 1475.762 4204.075 2555.712 3701.157 854.3853 

IMA 1331.235 2848.272 1641.301 3768.231 875.2034 

VSM-and-WLS 1235.231 1562.33 1581.885 2810.608 714.4359 

GFDF 1505.722 4297.957 2488.226 3750.666 913.426 

Two scale 1282.91 2195.087 1774.903 2672.138 719.3132 

Proposed 1763.349 2621.866 3376.203 4473.839 1175.194 

Table XVIII indicates the Chi-Square of Dataset-B. The 
expected value was again to be 1 in all the methods. The 
Proposed method had a Chi-Square contribution of 0.2491, 
which is less than most other methods meaning that it remains 
relatively close to the expected value. Conversely, wrong or 
ineffective methods like FGF-and-XDoG (0.73891) and GFDF 
(0.76878) have bigger deviations, which means that the methods 
do not align. The general Chi-Square statistic of Dataset-2 is 
5.4450, which is indicative of more penetration of performance 
over methods. Such findings indicate that some assessment 
measures are not stable and similar in different scenarios; 
whereas the Proposed approach shows a greater level of 
consistency and stability, regardless of the assessment it is 
undergoing. The computed Chi-Square value (χ² = 5.445) is 
notably lower than the critical value of 18.307 for 10 degrees of 
freedom. Hence, the null hypothesis (H₀)—stating that there is 
no statistically significant difference between the observed and 
expected values. 

Table XIV Chi-Square analysis of Dataset-C, respectively. 
In this case, the Proposed method has a bigger contribution 
(0.50823) than some other methods, however, the overall Chi- 
Square value is comparatively low at 1.6291. This shows that in 
the majority of the methods, the differences deviating the 
anticipated value are lower than in the previous data sets. 
Strategies like GFDF (0.003295) and LEGFF (0.045924) are 
also very close to the expected result though the Proposed 
method is also performing rather well within reasonable mar- 
gins. In general, Dataset-C indicates more consistency in the 
results of the methods, and smaller variation in techniques. 

The computed Chi-Square value (χ² = 1.6291) is notably 
lower than the critical value of 18.307 for 10 degrees of freedom. 
Hence, the null hypothesis (H₀)—stating that there is no 
statistically significant difference between the observed and 
expected value.

TABLE XVII.       CHI-SQUARE CALCULATION FOR DATASET-A 

Technique Observed (O) Expected (E) O - E (O - E) ² Chi-Square Contribution 

FGF-and-XDoG 0.4666 1 -0.5334 0.28452 0.28452 

CDIF 0.4744 1 -0.5256 0.27626 0.27626 

CBF 0.5135 1 -0.4865 0.23668 0.23668 

Structure-aware 0.5155 1 -0.4845 0.23474 0.23474 

LEGFF 0.5047 1 -0.4953 0.24532 0.24532 

MDHU 0.669 1 -0.331 0.10956 0.10956 

IMA 0.3162 1 -0.6838 0.46758 0.46758 

VSM-and-WLS 0.5212 1 -0.4788 0.22925 0.22925 

GFDF 0.3929 1 -0.6071 0.36857 0.36857 

Two scale 0.5759 1 -0.4241 0.17986 0.17986 

Proposed 0.6868 1 -0.3132 0.09809 0.09809 

Total Chi-Square Statistic     2.7304 
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TABLE XVIII.       CHI-SQUARE CALCULATION FOR DATASET-B 

Technique Observed (O) Expected (E) O – E (O – E) ² Chi-Square Contribution 

FGF-and-XDoG 0.1404 1 -0.8596 0.73891 0.73891 

CDIF 0.3771 1 -0.6229 0.388 0.388 

CBF 0.456 1 -0.544 0.29594 0.29594 

Structure-aware 0.4747 1 -0.5253 0.27594 0.27594 

LEGFF 0.2044 1 -0.7956 0.63298 0.63298 

MDHU 0.2217 1 -0.7783 0.60575 0.60575 

IMA 0.5992 1 -0.4008 0.16064 0.16064 

VSM-and-WLS 0.2252 1 -0.7748 0.60032 0.60032 

GFDF 0.1232 1 -0.8768 0.76878 0.76878 

Two scale 0.1464 1 -0.8536 0.72863 0.72863 

Proposed 0.5009 1 -0.4991 0.2491 0.2491 

Total Chi-Square Statistic     5.445 

 

Table XX shows the Chi-Square analysis of Dataset-D. In 
the present case, a number of approaches, including MDHU 
(0.86564) and GFDF (0.89776), have a rather large variance 
around the expected value. The Proposed method, on the other 
hand, adds only 0.18029 to the Chi-Square statistic, which is 

more consistent. The computed Chi-Square value (χ² =5.1403) 
is notably lower than the critical value of 18.307 for 10 degrees 
of freedom. Hence, the null hypothesis (H₀)—stating that there 
is no statistically significant difference between the observed 
and expected values.

TABLE XIX.         CHI-SQUARE CALCULATION FOR DATASET-C 

Technique Observed (O) Expected (E) O – E (O – E) ² Chi-Square Contribution 

FGF-and-XDoG 0.8436 1 -0.1564 0.02446 0.02446 

CDIF 0.46 1 -0.54 0.2916 0.2916 

CBF 0.5231 1 -0.4769 0.22743 0.22743 

Structure-aware 0.56 1 -0.44 0.1936 0.1936 

LEGFF 0.7857 1 -0.2143 0.04592 0.04592 

MDHU 0.7548 1 -0.2452 0.06012 0.06012 

IMA 0.5992 1 -0.4008 0.16064 0.16064 

VSM-and-WLS 0.7322 1 -0.2678 0.07172 0.07172 

GFDF 0.9426 1 -0.0574 0.0033 0.0033 

Two scale 0.7949 1 -0.2051 0.04207 0.04207 

Proposed 0.2871 1 -0.7129 0.50823 0.50823 

Total Chi-Square Statistic     1.6291 

TABLE XX.        CHI-SQUARE CALCULATION FOR DATASET-D 

Technique Observed (O) Expected (E) O – E (O – E) ² Chi-Square Contribution 

FGF-and-XDoG 0.1194 1 -0.8806 0.77546 0.77546 

CDIF 0.5451 1 -0.4549 0.20693 0.20693 

CBF 0.6667 1 -0.3333 0.11109 0.11109 

Structure-aware 0.6778 1 -0.3222 0.10381 0.10381 
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LEGFF 0.9229 1 -0.0771 0.00594 0.00594 

MDHU 0.0696 1 -0.9304 0.86564 0.86564 

IMA 0.0643 1 -0.9357 0.87553 0.87553 

VSM-and-WLS 0.2809 1 -0.7191 0.5171 0.5171 

GFDF 0.0525 1 -0.9475 0.89776 0.89776 

Two scale 0.2249 1 -0.7751 0.60078 0.60078 

Proposed 0.5754 1 -0.4246 0.18029 0.18029 

Total Chi-Square Statistic     5.1403 

 
Table XXI offers the results of Dataset-E. The Proposed 

approach has a Chi-Square contribution of 0.17472 which is one 
of the smallest ones when compared with other methods. IMA 
(0.71555) and CDIF (0.2643), however, have more deviations 
thus indicating their inconsistency. The Chi-Square statistic of 
Dataset-5 equals 2.4731 in total which indicates the moderate 
level of variability of techniques used. These findings once 
again support the relative soundness of the Proposed approach 
which always appears to be nearer to the desired performance 

benchmark. The computed Chi-Square value (χ² = 2.4731) is 
notably lower than the critical value of 18.307 for 10 degrees of 
freedom. Hence, the null hypothesis (H₀)—stating that there is 
no statistically significant difference between the observed and 
expected values.  

X. TIME COMPLEXITY ANALYSIS 

To obtain a global picture of the computational effectiveness 
of the suggested technique and the 10 base techniques, we used 
stacked bar chart to visualize the elapsed time in five conditions 
of experiments (A, B, C, D and E) as presented in Table XXII. 

This graph uses a logarithmic y- axis because the elapsed time 
range of the data used, is quite big, with the lowest and highest 
times being 0.024 seconds (LEGFF in condition A) and 1.3966 
seconds (IMA in condition B) respectively. 

 
The log scale is suitable at compressing large outliers (e.g., 

1.1182s and 1.3966s of IMA in condition A and B, respectively; 
0.8588s of GFDF in condition E) and at the same time has clear 
resolution to small values (barely 0.024the 0.1 seconds). In 
Dataset C the representation of each of the 11 techniques is a 
single bar with stacked segments corresponding to the elapsed 
times of conditions A-E represented by different colours (blue, 
red, teal, orange and purple, respectively). Custom ticks (0.01, 
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) have been used on 
the y-axis to make readings easy, even in a log scale. This design 
uses the minimum number of visual cues, whereas a grouped bar 
chart uses 55 bars to display the data, whereas appearance and 
instead allows both the relative total cost of computation and the 
contribution of each condition to each technique to be displayed 
in Figure 18.

TABLE XXI.       CHI-SQUARE CALCULATION FOR DATASET-E 

Technique Observed (O) Expected (E) O – E (O – E) ² Chi-Square Contribution 

FGF-and-XDoG 0.6525 1 –0.3475 0.12076 0.12076 

CDIF 0.4859 1 –0.5141 0.2643 0.2643 

CBF 0.5113 1 –0.4887 0.23883 0.23883 

Structure-aware 0.5125 1 –0.4875 0.23766 0.23766 

LEGFF 0.5365 1 –0.4635 0.21483 0.21483 

MDHU 0.782 1 –0.2180 0.04752 0.04752 

IMA 0.1541 1 –0.8459 0.71555 0.71555 

VSM-and-WLS 0.5117 1 –0.4883 0.23844 0.23844 

GFDF 0.888 1 –0.1120 0.01254 0.01254 

Two scale 0.544 1 –0.4560 0.20794 0.20794 

Proposed 0.582 1 –0.4180 0.17472 0.17472 

Total Chi-Square Statistic     2.4731 

 

 

 

 

 

 



Thakur et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 135 –160 (2025) 

 

158 

TABLE XXII.   ELAPSED TIME (SECONDS) FOR DIFFERENT TECHNIQUES 

ACROSS DATASETS A–E 

Technique A B C D E 

FGF-and-XDoG 0.0443 0.0499 0.0442 0.0379 0.0646 

CDIF 0.0884 0.0561 0.0424 0.0432 0.0542 

CBF 0.0334 0.0305 0.0294 0.035 0.0359 

Structure-aware 0.046 0.0282 0.0341 0.026 0.032 

LEGFF 0.024 0.0315 0.0349 0.0367 0.1986 

MDHU 0.0514 0.053 0.0347 0.0514 0.0419 

IMA 1.1182 1.3966 0.4685 0.5224 0.0499 

VSM-and-WLS 0.0402 0.0276 0.0351 0.0342 0.0459 

GFDF 0.0548 0.0391 0.0347 0.0371 0.8588 

Two scale 0.0441 0.0497 0.0448 0.0856 0.0436 

Proposed 0.0393 0.0289 0.0394 0.0321 0.0306 

 

 
Fig. 18. Time Complexity 

The tallest bar, which belongs to IMA, has the total elapsed 
time of about 3.56 seconds, most of which is contributed with 
large values of conditions A (1.1182s) and B (1.3966s), which 
implies that the computational overhead is very high and may 
become a limiting factor in time-sensitive applications. Equally, 
the length of the bar of GFDF in case E (0.8588s) is considerably 
longer, which points to input-related inefficiencies. By contrast, 
a technique CBF and Structure-aware have consistently short 
bars with a total time of between 0.16 seconds indicating their 
efficacy under all climatic conditions. The most feature of the 
proposed technique is that it has the smallest bar (61 seconds on 
average), and it shows the best and consistent performance due 
to the contribution of each condition being between 0.0289 
seconds (condition B) and 0.0394 seconds (condition C). 

It is worth noting that the chart shows condition-specific 
trends. E.g., in condition B, VSM-and-WLS was the fastest 
(0.0276s) and IMA the slowest (1.3966s), whereas fluctuation is 
apparent in condition E, in which LEGFF (0.1986s) and GFDF 
(0.8588s) record spiking errors compared to their mean speeds. 
These findings highlight the competitive advantage of the 
proposed technique since the size of the segments across all 
conditions is uniform (unless in techniques with sharp 
variability) with LEGFF and Two scale. The following 

visualization will be a complement to the highly detailed 
quantitative findings in Table 1 by providing a succinct and 
intuitive overview of computational efficiency. The fact that the 
stacked bar chart sums times through conditions that are shared 
by any given technique into a single bar makes this chart 
especially useful in terms of comparing overall performance and 
still adding the insight of contribution by individual condition. 
To analyze them further in the future, it may be applied to other 
metrics, for example, such as the use of memory or energy to 
explain further the trade-offs between techniques of processing 
images. 

XI. FUTURE CHALLENGES 

Although effective, the proposed framework has a number 
of weaknesses. The experimental assessment process was 
restricted to benchmark datasets, and this aspect can be a 
limitation to the applicability to heterogeneous real-world data. 
Computational complexity, despite analysis, was defined at a 
controlled hardware condition and might change depending on 
system setups. Moreover, the evaluation was mostly based on 
chi-square performance and elapsed time; these measures, even 
though productive, do not provide full coverage of the quality of 
perception and application needed.  

The direction of the future work will include making the 
evaluation applicable to large- scale and high-resolution datasets 
to enhance the robustness analysis. In addition, alternative 
fusion and decomposition techniques, including shift-invariant 
and directional approaches such as D-SHIFT and related 
multiscale representations, are explicitly proposed as potential 
extensions to further enhance spatial detail preservation and 

reduce artifacts.  
To reduce the computation overhead, algorithmic optimisation 

will be sought after to ensure that the quality is not 

compromised. The use of more objective measures, such as 

perceptual quality indices, and subjective assessments will 

further increase the validity of the performance assessment. In 

addition, their focus will be on changing the framework to be 

deployed in real-time and look into the domain-specific 

applications, such as remote sensing, medical imaging, and 

autonomous navigation.  

XII. ABLATION STUDY 

To analyze the importance of each and every constituent of 
the proposed pan-sharpening framework, an ablation study was 
thoroughly done by systematically altering the important 
parameters of the algorithmic strategies and fusion, and holding 
the rest of the pipeline constant. Objective quantitative findings 
that were reported in Tables VI-VIII and matching visual 
observations, as discussed in the experimental discussions, form 
the cornerstone of the analysis. Anisotropic diffusion iteration 
count was examined initially, as it is the parameter that dictates 
the trade-off between maintaining edge and reducing noise in 
high-frequency sub-bands. In Dataset A, the aniso_iter was 
changed to 1-37 with aniso_grad kept constant at aniso-grad = 
2, pyr-levels kept constant at 3, and guided filtering parameters 
radius r= 45 and regularization 0.3.  

A greater number of iterations led to a continuous increase 
in the structural preservation, where the QABF measure ranged 
from 0.5231 at aniso_iter= 1 to the maximum of 0.6868 at 
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aniso_iter= 35, as it was reported in Table VI. This is a relative 
improvement of about 31.3, and that concludes the fact that 
iterative anisotropic diffusion improves edge continuity and 
structural visibility. But the gains dwindled further, and the eye 
could see slight over-accentuation of ends. Thus, the most 
appropriate settings of Dataset A were chosen to be aniso_iter = 
35, which offers a trade-off between edging objectives and the 
perceptions. In Dataset B, two tests were investigated; namely, 
the effect of anisotropic diffusion with a smaller iteration range 
(aniso_iter = 13) but the same guided filtering parameters (r = 
45, ε = 0.3) with a larger gradient threshold to make sure higher 
noise levels were also taken into account.  

Table VII presents the optimum value of QABF (0.5009) at 
anisoiter =1. Nevertheless, the homogeneous regions had 
unresolved noise in the corresponding fused images. When the 
iteration number was increased to 2 or 3, it had a small negative 
effect on QABF (0.4921 and 0.4827, respectively) but a large 
positive effect on perceptual smoothness and texture continuity. 
This fact causes the weakness of the edge-based metrics only 
and suggests that aniso is better to be chosen as 2-3 as a 
perceptual optimum configuration of Dataset B. 

The same tendency is traced in Dataset C, in which the 
number of iterations of anisotropic diffusion was once again 
changed to 1-3, with the gradient threshold being low 
(aniso_grad = 0.2) to focus on preserving the fine details. Table 
IX indicates that the maximum QABF value was 0.2871 at aniso 
iter = 1, but this gave a significant noise artifact in the resultant 
image. More and more increases in the iteration number 
minimised QABF to 0.2691 and 0.2589 with aniso iteration of 2 
and 3, respectively, and enhanced visual smoothness and noise 
amplification. These findings validate that the diffusion number 
will bring higher quality perceptual results at the expense of a 
minor drop in quantitative edge-based measures.  

The interaction of the depth of multiscale decomposition was 
also analysed in all the datasets. In the majority of experiments, 
a contourlet pyramid of pyr_levels = 3 was used because it was 
effective in separating between global and fine-spatial 
luminance information. Empirical tracking showed that the 
number of levels of decomposition led to a lack of sufficient 
space detailing abduction, and that deeper pyramids led to a 
greater cost of computation and slight ring artifacts without 
much metric enhancements. Thus, pyr levels 3 have been used 
as a powerful and efficient setup in computation. It was 
demonstrated that saliency-guided low-frequency fusion played 
an important role in comparison with uniform averaging.  

In this approach, Laplacian-based saliency extraction is 
used, then, with Gaussian smoothing of 15 x 15 and standard 
deviation, ions s =2 with gamma correction ( gamma =0.5). 
These parameters remained constant in all datasets so that they 
could behave the same way. Adaptive weighting technique 
performed far better in terms of entropy and mutual information 
values indicated in Tables VI, V, and V does not create rough 
transitions between intensities and also does not exhibit 
luminance biases, which were observed when plain averaging 
was applied.  

Lastly, the max-absolute selection measure was evaluated on 
high-frequency coefficient integration. In all datasets, the 
application of this rule was substituted by the use of coefficient 
averaging that led to a decrease in spatial frequency and edges. 
The max-absolute rule was always more effective in raising the 

sharpness of the boundary and structurization, especially with 
anisotropic diffusion. The positive interaction is manifested in 
better values of QABF and LABF, as described in Tables VI 
through VIII, which supports the idea that the rule is effective in 
retaining major spatial patterns and diffusion in eliminating 
noise.  

Altogether, the ablation experiment that was facilitated by 
Table VI8 shows that every component and parameter option in 
the suggested framework has a significant impact on the final 
quality of the fusion. The choice of parameter values, pyr levels 
= 3, aniso = 2, aniso-iter = 30-35 (depending on the dataset) 
approximate and balanced between spatial quality, spectral 
fidelity and perceptual naturalness, the Gaussian kernel size of 
15 times 15 with s = 2, gamma = 0.5, and guided filtering 
parameters of, r = 45, epsilon = 0.3.  

By eliminating or under-mishandling any of these factors, 
significant deteriorations in the fusion performance are 
observable, justifying the jointness of the offered approach. 

XIII. CONCLUSION 

This paper presented a Contourlet-based pan-sharpening 
model designed for remote sensing, especially in the area of 
environmental analysis and monitoring. The proposed approach 
integrates the high spatial, high-resolution content of 
panchromatic images with the spectral richness of multispectral 
images, thereby suppressing spectral distortion and fusion 
artifacts.  

The proposed method utilises simple averaging to preserve 
low-frequency components, and Laplacian-based saliency 
weighting to inject high-frequency details in order to maintain a 
balance between spatial fidelity and spectral integrity. 
Comprehensive experiments conducted on multiple benchmark 
datasets demonstrated that the proposed method consistently 
outperforms the compared algorithms. Visual analysis ensured 
that the fused images preserve sharper edges, enhanced contrast, 
and better depiction of the environmental features like 
vegetation, water bodies, and urban buildings.  

Furthermore, quantitative evaluation with metrics such as 
PSNR, SSIM, ERGAS, and QABF states the capability of the 
proposed method to achieve high-quality fusion with minimal 
spectral distortion. Moreover, the Computational analysis also 
states that the proposed method is efficient, making it suitable 
for large-scale real-world applications.  

In summary, the proposed framework provides an effective 
and interpretable solution for high-fidelity pan sharpening, 
advancing the field of remote-sensed image fusion. It enhances 
the precision of environmental surveillance and supports 
informed decision-making in domains such as land-use 
management, resource planning, and disaster assessment. Future 
work will focus on integrating adaptive parameter tuning and 
using deep learning-based feature extraction modules to 
improve the performance, robustness, and make it applicable to 
hyperspectral and real-time satellite imaging systems. 
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