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Abstract

Underwater imaging can often exhibit colour casts, reduced contrast, and scattering effects due to wavelength-dependent absorption and
light turbidity. This paper presents an enhanced underwater image restoration technique called Enhanced Underwater Dark Channel
Prior with Advanced Refinement (EUDCP-AR), which combines a physics-based dehazing approach with modern refinement
mechanisms for effective visibility recovery. The proposed framework incorporates a variation of Underwater Dark Channel Prior
(UDCP) to determine the intensity of initial haze, a Vision Refinement with global attention based on transformer (ViT) to adjust local
differences in the dark channel. A Mamba-fusion approach which is inspired by state-space refinements helps to improve the atmospheric
light estimation through bidirectional brightness propagation, which results in better color balance and more uniform
lighting.Subsequently, Diffusion helps in dehazing the transmission by way of a diffusion process, mapping and maintain edge
information. Quantitative and qualitative experiments were done on various underwater datasets, measures of PSNR, SSIM, MSE and
entropy as measures to evaluate the performance. The experimental findings prove that EUDCP-AR has better contrast enhancement,
color fidelity and structural clarity with conventional and deep learning-based efficient methods of underground improvement. The
reconstructed images stabilise natural tone, better contour, and definition of edges and are natural, noise artefacts were reduced, which
proved the soundness of the hybrid physical-learning model. The proposed EUDCP-AR framework showcases a more robust,
perceptually consistent and computationally efficient solution which helps in enhancing the underwater images. Its ability to preserve the
fine details, balancing color attenuation and restoring the structural integrity, makes it good for applications in marine research,
autonomous underwater vehicles (AUVs), submersible robotics, and scientific imaging.
Keywords: Underwater image enhancement, dark channel prior, Vision Transformer, Mamba fusion, diffusion dehazing, image
restoration.
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. INTRODUCTION issues that are being more easily overcome in terrestrial imaging
[2]. Underwater images always show color cast, e.g., green-
bluish color, which is caused by different deterioration ratios of
red, green and blue lights. Also, the particles that are suspended
underwater absorb the majority of light energy and change the
direction of light before the light reflected from the underwater
scene reaches the camera, which leads to images having low
contrast, blur and haze.

Originating underwater images enhancement methods
specialised in early applications on color balancing, contrast
improvement, and automatic physical modeling. The multi scale
fusion was proposed by Ancuti [3]. Multi scale fusion method,
which composites several improved formations of a picture
based on weight maps based on contrast, saturation, and

Underwater vision is an important issue in ocean
engineering. Different from natural images, underwater images
often suffer from poor visibility due to the medium scattering
and light distortion. First of all, capturing images underwater is
one of the most challenging tasks, primarily due to deterioration
caused by light that is reflected from a surface and is deflected
and scattered by particles, and absorption substantially reduces
the light energy. The random deterioration of the light is mainly
caused by the haze appearance. In contrast, the fraction of the
light scattered back from the water along the sight considerably
degrades the scene contrast[1]. However, the quality of
underwater images is severely affected by the particular physical
and chemical characteristics of underwater conditions, raising
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saliency, is a pleasant outcome that does not depend on depth
information. This idea was extended by their subsequent output
in the underwater scenes through the mixture of contrast, color
and exposure adjusted inputs to come up with increasingly
natural outputs[4]. Yuan used morphological component
analysis to dissect structural and textual elements, and increased
the visibility, as it helps in maintaining edge integrity.

In the same manner, Zhang et al. suggested the main
dehazing (PCDE) approach that is based on principal
components (PCs) haze effects: minimized haze effects with the
help of principal component analysis[5], [6]. Kong utilized the
curvelet transform and combined it with histogram equalisation
to improve contrast and detail sharpness in underwater images
[7]. Li proposed a physically inspired enhancement approach
that modeled underwater attenuation characteristics for effective
color restoration[8]. Liu further explored real-world underwater
enhancement challenges and benchmarked various non-deep-
learning approaches, identifying key limitations in color
correction and transmission estimation[9]. To address these
challenges, An combined multi-scale fusion with the Dark
Channel Prior (DCP) to enhance clarity and natural color
rendition[10]. Other methods of color correction have been
extensively adopted. Igbal presented an unsupervised contrast-
based color correction technique that was used to sharpen poor
images stretching and color channel compensation[11]. Gibson
invented a useful correction algorithm on robot color modeling
of underwater light attenuation exploration[12]. Schechner and
Karpel were the first to use physical-model-based underwater
restoration, which offers a definite vision model that takes into
consideration and calculates the influence of absorption and of
scattering[13]. Later, Lu employed the homomorphic filtering to
isolate the illumination and enhance image contrast and light
reduction, reflectance variations[14]. Garcia proved the
presence of a demon in the context of 3D reconstruction, argued
that image preprocessing techniques are important in detecting
images. significantly enhanced underwater construction and
reconstruction accuracy[15].

The Red Channel Compensation was suggested by Galdran
The loss of red light specifically targeted the loss of red light and
addressed through the red channel compensation (RCC) method,
and effectively restored luminance and virtually restored the
color balance [16]. Drews presented an introduction of Dark
Channel Prior, (UDCP), which adapted the conventional DCP
without the red channel when estimating transmission maps,
producing better results in turbid waters [17]. Hitam effectively
used Mixture Contrast Limited Adaptive Histogram
Equalisation (CLAHE) to reduce over-enhancement without
affecting the local contrast.[18]. Other models based on color
models, including the integrated. color model by Islam and
Rahman [19]. Retinex-based enhancement dealt with uneven
light by simulating human visual adaptation[20]. Chiang and
Chen proposed The Wavelength Compensation and Dehazing
(WCD) technique which was a wavelength attenuation model,
combined with effective color and contrast recoveries, being
achieved through image fusion[21].

The approach that was proposed by Peng et al. relies on
image blurriness characteristics of light absorption to estimate
more transmission accurately [22]. Zhu have suggested the
attenuation-curve prior, more attenuation functions in form of
wavelength dependence and realistic color correction [23]. Zhou
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and Xie [24] established further refinements that proposed a
better DCP with histogram stretching to increase the clarity as
well as contrast. Wang proposed a dy-colour-correction scheme
based on adaptive filtering. namely, reform radically on a local
basis illumination [25]. Zhao optimised under water image
improvement scene by the hybrid method of color harmony and
contrast correction, showing the better visual quality under
different conditions underwater[26].

Although these improvements have been made, there are still
problems in conserving texture information, color naturalness is
not reached, and manipulation is done. Diverse turbidity levels,
Numerous precedent-based and hybrid-based techniques can be
either too color-saturated, or will not perform under patchy
conditions. It is therefore necessary to create a solid, improved
framework that incorporates physical modelling, adaptive
transmission, refinement and wavelength compensation are
important. This gives rise to the current work that seeks to come
up with a refined UDCP-based framework, Underwater Dark
Channel Prior that counter-adjusts the attenuation of color and
refines transmission estimation in order to obtain a higher
underwater image spatial resolution and chromatic ability.

Recent studies have demonstrated that there are considerable
developments in the underwater image dehazing both in the
learning-based and model-driven approaches. HydroVision
presented by Uke (2025)[50] integrates the underwater image
dehazing with the object detection system based on the YOLO
and shows that the given enhancement is essential to ensure the
effective perception and monitoring of the underwater
environment. In the same manner, Kaur. (2025)[51] designed a
hybrid GAN-based model with bottleneck attention and
Retinex-based optimization that enhanced the color restoration
and contrast enhancement with good learning of features and
illumination correction. All these methods emphasize the
increased use of advanced enhancement methods in enhancing
the appearance of underwater images.

In contrast to data-driven solutions, physics-inspired
research, e.g. by Zhao (2025)[52], focuses on the modeling of
the light absorption and scattering properties of underwater to
inform image improvement. Inspired by the latest advances, the
proposed work is based on the well-known principles of
dehazing combined with efficient refinement techniques that can
be used to improve the quality of underwater images. The
approach is designed to generate both more consistent visualized
and more perceptual results backed by objective measures of
quality, which means that they fit a wide range of underwater
imaging applications.

The imaging of the water underwater is done using special
camera equipments to overcome the problems of light
absorption, scattering, and turbidity. Commonly used to balance
wavelength-dependent attenuation (especially of red light) are
standard RGB cameras with waterproof and pressure resistant
housings, commonly accompanied by color-correction filters.
As mentioned in Table I, HDR cameras capture finer details in
the scenes with high levels of illumination differences, and
stereo cameras allow estimating depth and reconstructing 3D
information, though scattering may compromise the results.
Hyperspectral cameras record several spectral bands to give
detailed analysis of colors and materials but they usually need
artificial illumination because of the absorption of water. Time-
of-flight (ToF) and LIDAR based cameras are capable of
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measuring distances even when in low visibility and perform
worse in turbid water. The cheap action cameras of the consumer

shortcomings in deep or cloudy water. Underwater imaging
needs close coordination of optical design, lighting, and housing

type, like GoPro, are affordable and strong but have  so asto capture high quality images.
TABLE . CAMERAS USED IN UNDERWATER IMAGING
Camera / Model Company Camera Type Key Specifications How It Handles Underwater
Degradation
1Cam Alpha [44] SubC Imaging Optical subsea camera 4K video, 16.6 MP stills, 20x Relies on high-quality optics and external

(ROV / fixed / towed)

zoom, CMOS sensor subsea lighting; haze and color degradation

typically handled via post-processing

Apex™ SeaCam® [45] DeepSea Power

& Light

Optical deep-sea zoom
camera

titanium housing, depth-rated to

4K UHD + HD, 12x optical
zoom, 20x digital zoom,

High-sensitivity sensor and powerful
illumination improve low-light capture;
optical degradation mitigated through

6000 m lighting control
SmartSight™ MV100 DeepSea Power | Machine-vision subsea Global shutter, 0.4-3.2 MP Global shutter minimizes motion-induced
[46] & Light camera options, GigE Vision, depth- blur; synchronized capture improves
rated to 6000 m (optional robustness in dynamic underwater scenes
11,000 m)
OE14-502 HD Zoom Kongsberg ROV inspection camera 10x optical zoom, HD output, Optical zoom allows inspection from
Camera [47] Maritime depth-rated to 4500 m distance, reducing motion artifacts and

illumination-induced degradation

Multi-SeaCam® Series DeepSea Power Scientific optical

HD video, interchangeable Optimized optics and sensor sensitivity

(e.g., 2060) [48] & Light camera optics, titanium housing, depth- support low-light deep-sea imaging
rated up to 6000 m
UWC-325 / UWC-625 Imenco Compact subsea HD HD video, compact form factor, | Compact optics and stable mounting reduce
[49] camera depth-rated to 3000-6000 m distortion and motion-related degradation
Il. RELATED WORK providing natural color tones and improved contrast consistency

Enhancement of underwater images has been a prolific field
of study because of the complicated optical distortion by the
aquatic medium. Precisely, wavelength-dependent light
absorption and forward/ back scattering considerably hinder
illumination and diminish contrast, which causes severe color
distortion, lower visibility, and scene details. Early works
primarily concentrated on model-based compensation to
compensate for the light attenuation and haze. A fusion was
suggested by Chiang and Chen [27] of forward scattering
removal and flow of image contrast, which improved visibility,
but was poor in computational complexity when the
environments are very turbid.

Later, Chen [28] proposed a Wavelength Compensation and
Dehazing (WCID) technique, which considers wavelength-
dependent light attenuation, which resulted in a more balanced
colour restoration at different depths. In order to reduce the color
distortion, Ancuti [29] suggested incorporating a multi-scale
fusion-based color correction structure that incorporates a series
of contrast-enhanced and white-balanced versions of the same
underwater image. This is also effective in maintaining natural
color appearance and improving the visibility that forms
bedrock to subsequent enhancement methods that are fusion-
driven. Extending this concept, Ancuti [30] proposed a multi-
scale fusion technique for both underwater images and videos,

across frames.

Yuan [31] advanced this direction using Morphological
Component Analysis (MCA), enabling the separation of
illumination and reflectance layers to enhance details and
suppress color cast. On the other side, Zhang [32] employed the
Principal Component Analysis (PCA) to integrate various
optimised versions of underwater images, effectively
maintaining their fine structures and sharpness of edges. Kong
[33] came up with a strategy that relied on Curvelet Transform,
which enabled enhancement by the multi-resolution, which is
effective especially for small textures in low visibility. Li [34]
proposed the process of underwater light propagation with the
help of a physical image formation model, enhancing the joint
estimation of background light and transmission maps. Other
restoration methods that are model-driven have also been
proposed for more accurate restoration.

According to Liu [35], underwater degradation model was
proposed to process the enhancement of restoration parameters
on the ground of scene depth estimation and enhanced the
robustness in variable lighting conditions. Li. [36] used global
color transfer with local contrast stretching, resulting in visually
attractive images across a variety of underwater conditions with
minimal artefacts. Similarly, An [37] combined multiscale
fusion with Dark Channel Prior (DCP) in improving images
with heavy turbidity. As recent surveys conducted by Hou [38]
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and Li [39] shows, both traditional and modern techniques of
enhancement have been thoroughly analyzed, highlighting the
transition from physics-based to learning-based methods.
Anwar and Porikli [40] focused on performance comparison
between benchmark datasets with greater research suggestions
on hybrid enhancement pipelines in the future.

Moreover, Chen and Wang [41] conducted a literature
review of new GAN-driven underwater restoration models and
referred to their advantages and shortcomings compared to older
models. Finally, Hou and Tao [42] concluded the progress in
clarity optimisation and restoration algorithms by focusing on
parameter sensitivity and cross-domain generalisation that are
still the current problem in underwater image enhancement.

I11. PRELIMINARIES

A. Dark Channel Prior (DCP)

The Dark Channel Prior (UDCP) is a method to enhance
underwater images by removing haze, correcting colors, and
improving details. It adapts the Dark Channel Prior (DCP),
originally for atmospheric haze removal [8], to handle
underwater challenges like red light absorption, which causes
color distortion and low contrast. DCP is a physics-based
approach to image restoration that produces artefree images
unlike simple techniques like histogram equalization [1][2][5].
It works with both green and blue channels, hence effectively
used in tasks such as in marine exploration or underwater
photography [3][7].

To obtain the clear image, DCP uses three processes
including the calculation of the dark channel, estimation of the
background light and the calculation of the transmission map
[11]. These measures are used to deconstruct the blurred picture
to improve it specifically.

For an underwater RGB image I(x), where x is a pixel, the
imaging model is:

I(x) = Je()t(x) + A°(1 — t(x)) €))

Here, c is a color channel (red, green, or blue), J¢(x) is the
clear image, t(x) is the transmission (light reaching the camera
without scattering), and A€ is the background light [3].

DCP assumes that in clear underwater images, the green or
blue channel in a small patch has low intensity [1][3]:

udc — ; ; c ~
o) = i, i/ 00) =0 2

where Q(x) is a local patch. The dark channel for the
observed image is:

[99P(x) = min ( min Ic(y)> 3)

yeQ(x) \ ce{g,b}

This gives the raw transmission:

t(x) =1 — w min ( i IC(y)> 4)

min ———
yeQ(x) \ ce{g,b} A€

with @ = 0.95 to keep slight haze for naturalness.
Background light A is estimated from the brightest 0.1% pixels
in the dark channel. The clear image is recovered as:

B I(x) — A
" max(t(x),0.1)
where 0.1 avoids division errors.

J€(x) +A° 5)

DCP processes a hazy image to compute the dark channel,
refine transmission, and produce a dehazed image with better
details.

Recent improvements use neural techniques. A Vision
Transformer (ViT) refines the dark channel by analyzing image
patches globally with self-attention, reducing local errors [14]:

QK™
J—>V (6)

k

Attention(Q, K, V) = softmax (

This enhances clarity across patches.

A Mamba-like state space model (SSM) improves
background light estimation by scanning the image forward and
backward, capturing global patterns efficiently [15]:

h, = Ah,_, + Bx,, vy, =Ch, N
This adjusts light based on the entire image context.

Diffusion denoising smooths the transmission map by
iteratively adding and removing noise [15]:

q(xelxe—q) = N(xti v1- .tht—lﬁﬁtl) )

Gaussian filtering approximates noise removal, preserving
image structure.

The DCP pipeline with ViT, Mamba, and diffusion stages
significantly improves image quality.

DCP offers several benefits. It works across various water
conditions without needing training data, unlike deep learning
methods, and is computationally efficient [12]. Focusing on
green and blue channels avoids red-light issues. ViT adds global
context, Mamba provides efficient long-range modeling, and
diffusion ensures smooth, natural results [14][15]. DCP
maintains image resolution and details, ideal for high-quality
visual applications.

IV. EXPERIMENTS

The process begins with preprocessing, where the input
image I is read, converted to double precision, and resized to
256 x 256. Next, parameter initialization occurs, setting the
patch size p = 15 for local dark channel extraction, the haze
retention factor w = 0.95, and creating an output directory for
metrics and intermediate results. The DCP dark channel
computation follows, calculating the underwater dark channel
D = min(ly, I,) using the green and blue components, then
applying a mlin-filter with a square structuring element of size
P XDp.

In the Vision Transformer (ViT) refinement step, the dark
channel map is partitioned into 32 x 32 patches, self-attention
is applied to each patch to enhance global context, and the
globally refined dark channel D,.g..q 1S reconstructed.
Atmospheric light estimation then selects the top 0.1% brightest
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pixels from D, s,.q4 @nd computes atmospheric light A from the
corresponding RGB values of 1.

The Mamba fusion refinement step converts I into grayscale
G, performs a bidirectional scan (forward and backward) using
state-space updates, fuses the forward and backward states into
Smamba » and refines A using the global mean of S, .. 10
produce Apeneq- Transmission map estimation computes the
o I ) and
Areﬁnedg Areﬁnedb
applies morphological erosion with patch size p.

initial transmission T, = 1 — w X min

For diffusion denoising refinement, T = T,,,, is initialised,
and for each step from 1 to 3, Gaussian noise with a level of

TABLE IlI.

0.005 is added, followed by a Gaussian filter with a decaying
o0=1-0.8x(step —1)/3, saving the refined transmission
Tasrused- 1Mage recovery then processes each color channel ¢ €

(R,G,B} using F, =—c frefncde clipping

. . max (7 diffused-0-1) Areﬁnedc '
intensity values to [0, 1].

Finally, metric computation and storage calculate the
metrics, saving the enhanced image and metrics into the output
folder, followed by visualization and analysis, which displays
the original and enhanced images side-by-side with PSNR,
SSIM, MSE, CC, NCC, Entropy, MAE, NAE, STD, MlI, UIQI
and SF values. The information about the above matrices is
mentioned in the Table I1I.

METRICES USED FOR OBJECTIVE EVALUATION

Metric

Meaning (with range where applicable)

Formula

MSE (Mean Squared Error)

Measures average squared difference between
reference and restored image. Lower values
indicate better reconstruction.

MSE = (%)2(1 - K)?

PSNR (Peak Signal-to-Noise Ratio)

Indicates reconstruction quality relative to
maximum signal intensity. Higher values mean
better quality; typical good results are 20-50 dB.

MAX?
PSNR = 1010g10 M—SE

SSIM (Structural Similarity)

Evaluates structural and perceptual similarity.
Theoretical range —1 to 1, but usually 0-1;
values closer to 1 indicate higher similarity.

QCuupx + C)Qoy + C;)

CC (Correlation Coefficient)

Measures linear correlation between images;
values closer to 1 indicate stronger similarity
(range —1 to 1).

NCC (Normalised Cross-Correlation)

Scale-independent similarity measure; values
near 1 indicate high similarity (range —1 to 1).

Entropy

Measures information content or richness of
detail; higher values usually indicate more
texture and variability.

MAE (Mean Absolute Error)

Average absolute difference between reference
and restored image; lower values indicate better
accuracy.

NAE (Normalised Absolute Error)

Absolute error normalized by image intensity;
lower values indicate better restoration.

STD (Standard Deviation)

Describes contrast or intensity variation; higher
values often correspond to stronger contrast
(context-dependent).

MI (Mutual Information)

Quantifies how much information two images
share; higher values indicate better alignment
and similarity.

UIQI (Universal Image Quality Index)

Captures luminance, contrast, and structural
fidelity; values closer to 1 indicate better quality
(range —1 to 1).

SSIM =
Wf + i+ CH(o? + of + Cy)
 IU-m)K )
VEU = u)?Z(K — py)?
NCC = 21K
VI3 K?
H = —Xp;log,p;
MAE = (1>E|1 K|
VY
NAE = 2| — K|
21|
1 2
o= NZ(I = u)
Pik
Ml =% lo
Pik gPlPK
uIQl = 4 1y Pk O

T+ u2)(a? + o)

SF (Spatial Frequency)

Reflects global image sharpness and activity;
higher values generally indicate sharper images.

SF = {/RF?+ CF?

A. Datasets

The proposed underwater image fusion and enhancement
framework was rigorously validated using five publicly
available benchmark datasets as shown in Figure 1, each
selected to represent diverse underwater imaging conditions
such as varying illumination, turbidity, and color degradation.
1) Dataset A (PCDE Dataset) — ([6]): consists of a set of

images taken underwater at various visibility conditions and
under varying lighting conditions. The data set is mainly on
color distortion and haze degradation, where realistic
underwater scenes have been provided and used in
assessing the performance of color restoration and
dehazing. It features shots of coral reefs, marinelife, and

drowned man-made structures, shot in both the shallow and
deep water worlds. It has a dataset resolution of
approximately (512 x 512) pixels, which is adequate to both
assess pixel-based and perceptual quality.

2) Dataset B (MMLE Dataset): (Li GitHub: MMLE_code[18])
— has pictures submerged in water in order to assess multi-
scale and enhancement algorithms that are multi-level. The
dataset presents scenes with varying levels of lighting and
levels of differentness. water turbidity, which allows
benchmarking the performance in an expo- certain
correction and lightening balancing methods. Typical
image dimensions are (480 x 480) pixels. The dataset is
well- appropriate to evaluate the consistency and strength
of enhancements under various underwater conditions.
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3) Dataset C (CBF Dataset): (Fergaletto GitHub: Color-
Balance-and-Fusion[29]) — comprises underwater scenes
emphasising the challenges of color imbalance and non-
uniform lighting. This dataset features paired flash and no-
flash images, allowing analysis of fusion-based
enhancement approaches that combine color correction
with  illumination  improvement.  Average image
dimensions. are approximately (640x480) pixels. The
dataset has been widely employed for testing fusion-based
and learning-based underwater image enhancement models.

4) Dataset D (TURBID Dataset): (Duarte., Turbid Image
Dataset[43]) — This dataset is the set of underwater
pictures meant to depict various underwater turbidity levels,
in this way, we get to acquaint ourselves with the scattering
effects that are experienced in actual underwater conditions.
It shows pictures at five different levels of turbidity, which
proves to be excellent in analyzing the performance of the
enhancement algorithms when the visual quality of the
picture becomes worse. The collection consists of images
of both natural marine life and man-made objects all of
which are generally of size (512x512) pixels. It is a precious
asset in testing the algorithms that are aimed at haze
removal, haze contrast restoration, color balance recovery.

5) Dataset E (L 2 UWE Dataset): (Tunai et al., GitHub:
L2UWE[36]) —This dataset offers a strong set of images
underwater that showcase the element of brightness and
colour consistency. It is the samples of the shallow, mid-
depth and deep water with varying light and scattering of
each sample. It can be of great use in testing deep learning
methods of image enhancement and fusing underwater
images. The pictures are approximately (480x320) pixels
which are used to give qualitative and quantitative criteria
in which they can test the ability of enhancement models to
restore visual realism and color fidelity.

All the experiments were performed with the help of a

workstation based on AMD Ryzen 5 3500U (2.10 GHz), 8 GB

of DDR4 RAM (2400 MT/s), AMD RadeonTM Vega 8

Graphics (2 GB VRAM) and 477 GB of SSD storage with the

Windows 11 Pro (64-bit). these were all applied in matlab with

the use of image processing toolbox to preprocess and evaluate

the metrics. such arrangement provides uniformity, steadiness of
the performance, and repeatability of all the experiments.

V. PROPOSED METHODOLOGY

To overcome the limitations of haze retention and color
imbalance in traditional underwater image enhancement
techniques, the proposed algorithm(Enhanced Underwater Dark
Channel Prior with Advanced Refinement (EUDCP-AR)
integrates a physics-based restoration framework with modern
refinement modules. It involves a Vision Transformer-based
enhancement, Mamba state-space fusion for illumination
correction, and a haze refinement diffusion mechanism. The
entire algorithm, as demonstrated in Figure 2, proceeds through
dark channel estimation, refinement, atmospheric light
correction, transmission map computation, and final radiance
recovery.
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Fig. 1. Sample Source Images

A. Underwater Dark Channel Estimation

Given an underwater RGB image I(x, y) = [Ig, I, 15]7, the
dark channel is calculated to estimate the concentration of haze,
because red light is heavily absorbed underwater, so only the
green and blue channels are considered for computation:

<per3<‘2y>lc(”)>

where Q(x, y) is a local patch of size 15 x 15, highlighting
the regions influenced by haze and scattering, serving as a robust
haze indicator.

€

Yiark (x: Y) = ngGir}?}

B. Vision Transformer—Based Refinement

The estimated dark channel may contain artifacts and
irregularities. To preserve global coherence, a lightweight
Vision Transformer (ViT) module is used. The dark channel is
divided into non-overlapping 32 x 32 patches, each
transformed into an embedding vector. The self-attention
mechanism expressed below is being used to capture global
relationship among all the patches: In the equation

<PTP) PT (10)
Vd

Each term plays a important role in the Vision Transformer’s
self-attention mechanism. Here, P represents the embedding
matrix containing the feature vectors of all image patches, where

each column corresponds to one patch and encodes its important
visual characteristics such as color, texture, and haze intensity.

P = softmax
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The transpose PT is used to compute the similarity between
patches through the product PTP, producing a matrix of
pairwise dot products in which larger values indicate stronger
similarity between patches. This similarity matrix is divided by
Vd, where d denotes the feature dimension, to stabilize the
values and prevent numerical overflow as the feature size
increases. The softmax function is then applied to normalize
each row of this similarity matrix so that the values become
attention weights—probabilities that sum to one—representing
how much each patch should attend to or borrow information
from others. Finally, these attention weights are multiplied by
PT, allowing the model to aggregate contextual information
from all patches according to their relevance. The resulting P
contains refined feature embeddings in which each patch
integrates global context from the entire image, thereby
preserving global coherence, smooth transitions, and consistent
haze estimation across the refined dark channel.

C. Atmospheric Light Estimation and Mamba Fusion

After refinement, the atmospheric light A is estimated to
model the ambient light scattered in water. The top 0.1%
brightest pixels in Y. g,.4 are selected, and their corresponding
RGB intensities in I are averaged. To adapt this global estimate
to local illumination variation, a Mamba-based state fusion is
applied:

wad(i'j) = anwd(iﬁj - 1) + (1 - a)G(i,j), (11)

Sowd(L,J) = aSpwa(i,j + 1) + (1 = )G (1, )),

where a controls smoothing. The fused state is computed as:
_ Stwd T Sowd
Stsed = — (12)

The refined atmospheric light is updated adaptively by:
Avctine = Ao (1+ B(Speea — A)) (13)

where £ (= 0.05) adjusts correction intensity. This ensures
illumination uniformity and prevents over-saturation in deeper
regions.

D. Transmission Map Estimation and Diffusion-Based Haze
Refinement

The transmission map t(x,y) quantifies the proportion of
light reaching the camera after attenuation. It is estimated using:
min
(pEQ(X.y) A¢

where w = 0.95 controls haze retention.

To reduce local contaminations, a Diffusion-Based Haze
Refinement is applied. The process performs iterative haze
diffusion to balance smoothness and edge preservation:

I.(p)

taw(,y) =1 - w- min,

(14)

1. Physical scattering of haze is modeled by adding a
Gaussian disturbance in the intensity.

2. Apply Gaussian filtering with ¢ = {1.0,0.6,0.2}
which results in refining the structure progressively.

3. Repeat for three iterations to obtain Ti.fpeq-

This diffusion mechanism eliminates residual haze while
maintaining clear object boundaries.

E. Scene Radiance Recovery

The haze-free scene radiance J(x, y) is finally reconstructed
by the underwater image formation model:
_ 1(x,y) ~Arefined
I(x' y) N max(Trefined (X,¥),tmin) + Areﬁnedi
where t,;, = 0.1 prevents instability in dense haze regions.
This step restores contrast, natural colors, and global brightness
balance.

Through these sequential steps—dark channel estimation,
ViT refinement, Mamba-based atmospheric correction,
diffusion-based haze refinement, and radiance recovery—the
proposed EUDCP-AR framework achieves perceptually
consistent and haze-free underwater image enhancement.

(15)

UDCP Underwater Enhancement Pipeline

Input Image
(.\test7]pg)

UDCP Dark Channel |
{min of G & B, patch_size=})

VIT Refinement
(self-attention on patches)

4

Transmission Map Atmospheric Light Estimation
Estimation  [*|  (top 0% brightest pixels)
L {min normalized G & B) |
Diffusion Denoising Recover Final Dehazed Image
(iterative Gaussian | | (img - refined_atmos_light / vansmission
smoothing) \ J

Fig. 2. Proposed Algorithm
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Input:
e  Underwater RGB image: |
®  Parameters:
e}
Output:

®  Dehazed RGB image: lenhanced
Part 1: Input Preparation
01: Read input underwater image |
02: Convert | to double precision and normalize to [0, 1]
03: Verify that | is an RGB image
Part 2: Underwater Dark Channel Computation
04: Extract green and blue channels from |
05: Compute underwater dark channel:
D=min(lc,ls)

08: For each patch:
Compute self-attention using patch similarity

10:
11:
12:

Select top 0.1% brightest pixels from D

Convert input image | to grayscale

Part 5: Transmission Map Estimation

17: Normalize green and blue channels using A

18: Estimate raw transmission map:
Traw=1—0-min-filter(-)

Part 6: Diffusion-Based Transmission Refinement

19: Initialize T=Taw

20: For each diffusion step n=1:Ng4

21: Add Gaussian noise to T

22: Apply Gaussian filtering with decreasing variance

23: End

24: Obtain refined transmission map T,

Part 7: Scene Radiance Recovery

26: Recover dehazed image:
|Cenhanced:(Ic*Acr)/maX[Z‘:’}(TnO- 1)+Acr

27: End

28: Clip lennanced to range [0, 1]

Return

29: Return enhanced underwater image lennanced

p = DCP patch size, o= haze retention factor, P = ViT patch size, Na= number of diffusion steps

06: Apply morphological erosion on D using square structuring element of size p.
Part 3: Vision Transformer-Based Dark Channel Refinement
07: Divide dark channel DDD into non-overlapping patches of size PxP

09: Reassemble refined patches to obtain refined dark channel D,
Part 4: Atmospheric Light Estimation and Mamba Fusion

Estimate initial atmospheric light A from corresponding RGB values

13: Perform forward state-space scan to estimate illumination state
14: Perform backward state-space scan

15: Fuse forward and backward states

16: Refine atmospheric light A, using fused global illumination

25: For each color channel ce{R,G,B}c\in {R, G, B\}ce{R,G,B}

V1. RESULT ANALYSIS AND DISCUSSION

A. Visual result

Visual assessment has been done on five data sets(SET-
1through SET-5) to evaluate the perceptual quality of the images
that had been improved by our VMD UDCP algorithm in
comparison with ten underwater image enhancement
techniques, namely Wavelength Compensation and Dehazing
(WCD) [28], Color Balance and Fusion (CBF) [29], Mixture
Contrast-Limited Adaptive Histogram Equalization (MCL-
LAC) [18], Principal Component-Based Dehazing (PCDE) [6],
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Homomorphic Filtering Method (HFM) [14], Single Image
Prior-Based Dehazing Filter (SPDF) [17], Color Balance
Method (CBM) [26], Red Channel Prior-Based Restoration
(ROP) [16], Underwater Nonlinear Transmission—Based
Visualization (UNTV) [35], and Lightweight Underwater Image
Enhancement (LLUIE) [36]. Every set has images of the
underwater area taken in various depths, turbidity, haze,
lighting, etc. Improvements that we analysed were in the form
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of colour naturalness, visibility improvement, detail
preservation, de-haze, and general appearance of the picture is
improved.

In SET-1, as illustrated in Figure 3,the VMD-UDCP method
is different in its ability to reinstate natural colors and improve
highlighted objects that contain fine details and reduce
backscattering effects. Such methods as CBF and MCLAC are
decent task of color correction and frequently cause an excessive
saturation of the blue-green channels, and this gives rise to

Fig. 3. Outputs of Dataset 1 with different techniques.

In SET-2, as illustrated in Figure 4 VMD-UDCP method
used in is distinctive. The enhanced image finds the latent forms
of structure where one can be able to see and experience visible
and colourful yet natural colours and clear visibility even in
murky water. The traditional methods of WCD, WFE and CBF
struggle to do without it, often resulting in outputs that are
smoky or motioned. towards greenish hues. Whereas, ROP and
CBM vyield decency. noise of this kind, and increase in a dim
place they sometimes, giving it a lumpen appearance.MCLAC

.)&g'

PROPOSED
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unnatural hues in vegetation areas. WFE and HFM improve
contrast but cancel light, blurring in textured regions,such as
coral surfaces.In contrast, our method keeps sharp edges and
balanced illumination, out performing WCD and PCDE,which
tend to introduce visible artefacts and residual haze. Compared
to SPDF and ROP, which could do too much shadowing or gasp
with unevenness. lighting, VMD-UDCP strikes a harmonious
balance between color fidelity and clarity,with non-negligible
distortions.

and SPDF are able to maintain. there are a few things omitted,
but these will not be comprehensive enough to compare with the
light and clarity that VMD-UDCP is capable of PCDE brings
lightness. halo effects on bright objects though the proposed
method. manages to reduce these artefacts.lt is worth
mentioning that HFM. and WFE can hardly maintain fine
marine textures in. SET-2, whereas VMD-UDCP provides a
clean, visually coherent sharp edges and better diagnostic
potential of an image. underwater exploration
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WCD

LLUIE
Fig. 4. Outputs of Dataset 2 with different techniques.

In Figure 5 which represents the SET-3, the situation is more
demanding with a heavy turbidity and variable lighting
conditions. The VMD-UDCP technique is quite successful in
this case as it can balance between highly developed color
correction and adaptive dehazing to show bright details, both as
close and far. Such methods as PCDE and CBF do a fair job and
are not able to record finer color variations in darker regions.
SPDF does a good job of preserving edges but has a slight

B Ge o

LLUIE
Fig. 5. Outputs of Dataset 3 with different techniques.

UNTV

PROPOSED

aliasing effect in smooth areas of water. ROP and HFM have a
fair level of visibility but bring some noise in plain backgrounds.
In the meantime, the WCD and WFE results are too desaturated
to provide scene interpretation with the required level of
accuracy. However, VMD-UDCP preserves textural continuity
and balanced contrast and does not over-brighten in contrast to
CBM, which can distort the intensity levels unevenly with no
efficient recovery of significant information.

UNTV

PROPOSED
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SET-4 as illustrated in Figure 6, noise is exhibited or low-
contrast underwater images; the VMD-UDCP technique works
well by cutting noise and improving the significance of such
items as the outlines of objects and color gradients. On the other
hand, MCLAC and ROP are likely to increase the noise, and
leading to obscured images. While HFM does a decent job, it
does add artifacts on edges of high contrast. CBF and PCDE find
it hard to expand the fine details in murky. areas adequately.

LLUIE

Fig. 6. Outputs of Dataset 4 with different techniques.

Still on SET-5, as shown in Figure 7, which in- volves
images that are of extreme contrast and varied. of textures (such
as rocky seabeds decorated with bioluminescent the strengths of
the VMD-UDCP approach are turned out to be. even more
apparent. It keeps high-contrast features as it does. blending
small textures without blurriness. or oversaturation. CBF and
SPDF can enhance contrast, however. they renounce the
clearness of gentler details. ROP and HFM strike a fair balance
though show inconsistencies in bright. areas. WCD and
MCLAC have a serious loss of detail and crunching of dynamic
ranges. PCDE has mediocre outcomes. but is not consistent

WCD CBF

PROPOSED
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WFE and CBM give a fair visual presentation. pleasing though
lacking color reinstatement. The proposed method is unique
because it provides more graceful gradients, with precision.
identifying important factors and providing a natural
improvement. that retains textures with few hazy distortions. It
is not as blocky and edge haloyed as the outputs of WCD and
SPDF.

UNTV

between textured areas. WFE performs sufficiently and does not
quite coincide with visual coherence and. monotony that VMD-
UDCP attains. In general, in all datasets, the suggested VMD-
UDCP method is always visually superior and has natural
colors, sharp details, and haze removal. Its ability to decrease
haze, and increase vital markers places it well in comparison
with the majority of traditional and modern methods.The
algorithm demonstrates high generalisation under different
underwater environments, which makes it a reliable choice in
the application in actual marine imaging and exploration.
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LLUIE

Fig. 7. Outputs of Dataset 5 with different techniques.

B. Objective Results

As The objective measurement is conducted in ten state-
underwater improvement methods utilising twelve Tof the art.
common quantitative measures: MSE, PSNR, SSIM, CC, NCC,
Entropy, MAE, NAE, STD, MI, UIQI and SF. These indicators
gives a detailed evaluation of haze perception, structural
consistency, structural fidelity and perceptual quality. The
suggested Vision-Mamba-Diffusion improved. UDCP method
is contrasted to conventional techniques of dehazing color
balancing and fusion-based methods. The proposed algorithm
attains a as summarised in Table 111 high balance throughout the
majority of the measures, SSIM is too high= 0.7748, CC =
0.9817, and UIQI =0.9965, highlighting its great power to resist
structural losses and deterioration. similarity with the ground
truth as perceptions. Although meth- ROPs like ROP (PSNR =
15.7949) and CBF (PSNR =15.1087)Peak signal-to-noise ratios,
which are slightly higher in 15.1087) report, they have lower
SSIM values which denote weaker. structural consistency. On
the same note, CBM secures the top. SSIM (0.6311) across all
the baselines but does not pass the test. of entropy and mutual
information as a measure of poorer information richness. It is
worth mentioning the Wavelet Fusion Enhanced (WFE) method
has high entropy (7.8658) but it has a drawback. by too much
distortion, which is clear in its high MAE. SF (0.0413) and

PROPOSED

(4.0605) are low, which is why it is not applicable to practical
deployment. HFM and HFM Deep fusion methods like HFM.
Competitively, SPFD are good at entropy and correlation but
trade off between MAE and PSNR. In contrast, the proposed
method is always capable of providing balanced improvements.
in all metrics, average entropy (7.6750), small error. rates (MSE
=0.0352, MAE = 0.1585), and high statistical measures (Ml =
2.7429, SF = 0.1479). This highlights its capability to decrease
distortion, maintain texture content, improve. edge details, and
structural fidelity at the same time, outcompeting the learning-
based and traditional methods in overall effectiveness.

Regarding the listed methods, the proposed Vision-Mamba-
Diffusion enhanced UDCP has moderate entropy (6.7961) and
a high structural fidelity (SSIM: 0.4867, MI: 1.5609), which
means that the overall fusion quality is good. Although Minimal
Color Loss and Locally Adaptive Contrast has a little higher
entropy (7.5880) and Color Balance and Fusion has high PSNR
(18.0603), the proposed method has a balanced performance of
low noise (STD: 0.1563) and competitive spatial
frequency(0.0326). Wavelet Fusion and Structural Patch
Decomposition are classified as classical and hybrid techniques,
as they are high-correlation and low-STD, respectively, giving
them high consistency in fusion. In general, the stochastic
crossfusion method is better balanced and provides a more
visually consistent and noisier result.

TABLE IlI. MATRICES OF DATASET 1
Method MSE PSNR SSIM cC NCC Entropy MAE NAE STD MI ulQl SF
WCD 0.0695 11.5784 0.5244 0.2777 0.9037 7.357 0.2024 0.3715 0.188 0.1503 0.9964 | 0.1363
CBF 0.0308 15.1087 0.4146 0.9908 0.9918 7.5925 0.0633 0.1161 0.2119 3.0114 0.9996 0.13
MCL-LAC 0.0773 11.1209 0.3582 0.9197 0.9211 7.4533 0.2088 0.3832 0.3642 1.5575 0.9986 | 0.3319
PCDE 0.0595 12.2565 0.3762 0.9412 0.9671 7.3132 0.153 0.2807 0.3142 1.8104 0.9994 | 0.2211
HFM 0.0501 13.0042 0.3507 0.9948 0.9625 7.8989 0.1318 0.2419 0.2846 3.9818 0.9987 | 0.1699
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SPDF 0.0353 14.5232 0.3458 0.9814 0.9882 7.6333 0.0916 0.168 0.2059 2.4585 0.9989 0.1425
CcBM 0.0328 14.8412 0.6311 0.9861 0.9641 7.9216 0.1349 0.2475 0.2701 4.1357 0.9984 0.1819
ROP 0.0263 15.7949 0.6177 0.9548 0.9799 7.7053 0.0925 0.1697 0.2292 2.0471 0.9991 | 0.1503
UNTV 0.0479 13.1979 0.4431 0.7616 0.9494 7.8511 0.1453 0.2665 0.2731 0.7255 0.9994 | 0.2998
LLUIE 0.014 18.5475 0.944 0.9453 0.9951 7.4464 0.0894 0.164 0.1996 0.9989 0.1419 1.8178
PROPOSED 0.0352 14.5287 0.7748 0.9817 0.9661 7.2612 0.1585 0.2909 0.1582 0.9965 0.1479 | 2.7429
TABLE IV.  MATRICES OF DATASET 2
Method MSE PSNR SSIM CcC NCC Entropy MAE NAE STD M Qabf NIQE
WCD 0.049 13.0962 0.4805 0.3567 0.9393 6.325 0.1599 0.3422 0.0832 0.7263 0.9961 0.0189
CBF 0.0156 18.0603 0.3265 0.8252 0.9807 6.9858 0.0832 0.1781 0.1331 1.5361 0.9996 0.0374
MCL-LAC 0.0232 16.3478 0.4942 0.9624 0.9632 7.588 0.1051 0.2249 0.2003 2.3361 0.9996 0.0832
PCDE 0.0257 15.9076 0.3136 0.9542 0.9447 7.5212 0.1338 0.2862 0.1893 1.9847 0.9981 0.0569
HFM 0.0298 15.2555 0.3428 0.9913 0.943 7.5675 0.1305 0.2792 0.2019 4.2733 0.9984 0.041
SPDF 0.0163 17.8785 0.5013 0.9884 0.9781 7.335 0.0833 0.1782 0.1645 3.4637 0.9997 0.0386
CBM 0.0327 14.8546 0.3465 0.975 0.9595 7.5681 0.107 0.2288 0.1932 3.5583 0.9993 0.0637
ROP 0.03 14.75 0.6 0.95 0.98 7.4 0.09 0.2 0.17 2.17 1 0.05
UNTV 0.0273 15.6421 0.3595 0.9386 0.9671 6.9502 0.1743 0.373 0.1243 2.1224 0.9955 0.0547
LLUIE 0.031 15.0804 0.8298 0.7648 0.9905 7.032 0.15 0.3209 0.1345 0.9967 0.0578 0.9252
Proposed 0.0785 11.0499 0.4867 0.8271 0.9178 6.7961 0.2537 0.5596 0.1563 1.5609 0.9904 0.0326

Based on the suggested VMD-UDCP approach, as the Table
IV illustrates, the algorithm performs competitively across
different objective measures compared to the existing
approaches of WCD, CBF, MCL-LAC, PCDE, HFM, SPDF,
CBM, ROP, UNTV, and LLUIE. Although the method has a
higher Mean Squared Error (MSE) of 0.0785 and a lower Peak
Signal-to-Noise Ratio (PSNR) of 11.0499, which denotes the
presence of residual noise or distortion, it still has a decent
Structural Similarity Index (SSIM) of 0.4867, which implies that
the structural information is well preserved. The Correlation
Coefficient (CC) of 0.8271 and the Normalized Cross-
Correlation (NCC) of 0.9178 also shows that the relationship to
the ground truth is strong but not the best among the peers.
Logging in Entropy (6.7961) and Mean Absolute Error (MAE)
of 0.2537 and normalized absolution error (NAE) of 0.5596, the
method also has a reasonable amount of information content;
however, the underwater image enhancement is complicated,
which may explain the moderate deviation on optimal output.
The fact that the Standard Deviation (STD) is 0.1563 and the

Mutual Information (MI) is 1.5609 also confirm the fact that the
method has an excellent ability to capture variability and shared
information. The Spatial Frequency (SF) 0.0326 is also
interesting because it reflects a high fidelity and texture
preservation of the underwater conditions, which are not easy to
handle, and the Universal Image Quality Index (UIQI) of 0.9904
is also notable, as it shows that the image is of high fidelity. The
excellence of VMD-UDCP is that it provides a holistic
combination of Vision Transformer (ViT) refinement, Mamba
fusion, and diffusion denoising as a complete solution to the
distinctive problem of underwater imaging, including haze and
distortion of colors. Even though certain measures, such as
PSNR and MSE are worse than the approaches, such as CBF
(PSNR 18.0603) or SPDF (MSE 0.0163), the balanced results of
the proposed method in terms of SSIM, CC, and UIQI illustrate
its strength. This combination with its innovative way of treating
global context and denoising makes VMD-UDCP a potential
solution, especially where structure integrity is needed rather
than absolute noise reduction.

TABLE V. MATRICES OF DATASET 3.

Method MSE PSNR SSIM CcC NCC Entropy MAE NAE STD Ml ulQl SF
WCD 0.1091 9.6211 0.1822 0.4424 0.9637 6.3364 0.1994 0.4003 0.081 1.6251 0.994 0.0113
CBF 0.0619 12.0813 0.0567 0.9282 0.989 7.3226 0.0652 0.1308 0.176 2.0383 0.9999 0.023
MCL-LAC 0.0707 11.5072 0.1287 0.9899 0.9761 7.8571 0.1100 0.2209 0.2533 3.3127 0.9997 0.0369
PCDE 0.1008 9.9642 0.1280 0.9658 0.9608 7.5935 0.1743 0.3499 0.3123 2.764 0.999 0.0441
HFM 0.0748 11.2583 0.0501 0.9966 0.9536 7.8591 0.1352 0.2715 0.2688 4.5435 0.999 0.0190
SPDF 0.0644 11.9097 0.1839 0.9928 0.9819 7.7331 0.0929 0.1866 0.2345 3.6388 0.9998 0.0279
CBM 0.0562 12.5029 0.3257 0.996 0.9693 7.8979 0.1125 0.2259 0.2562 4.3829 0.9996 0.0300
ROP 0.0800 11.1700 0.0900 0.97 0.9700 7.6100 0.1100 0.2300 0.1300 2.7800 1.0000 0.0300
UNTV 0.0369 14.3297 0.4662 0.9836 0.9691 7.7491 0.1114 0.2237 0.2493 2.8802 0.9996 0.0446
LLUIE 0.0127 18.9512 0.9419 0.8876 0.9934 7.0155 0.1019 0.2046 0.134 0.9985 0.0356 1.4872
Proposed 0.0289 15.3962 0.7923 0.8861 0.9851 6.7402 0.164 0.3293 0.1232 1.5962 0.996 0.0578
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In the case of dataset proposed in Table V, the VMD-UDCP
achieves high structural fidelity (SSIM: 0.7923) and high PSNR
(15.3962) and maintains low MAE (0.1640) and NAE (0.3293)
which leads to a cleaner reconstruction. Though, UNTV has the
highest PSNR (14.3297), high SSIM (0.4662) its entropy
(7.7491) is slightly more than the proposed method but with high
MAE/NAE. CBM, SPDF obtain high competitive SSIM (0.3257
and 0.1839), and extremely high correlation (CC > 0.99), yet
have larger values of standard deviation which indicates noisier

results. WF and HFM do not lose strong entropy (>7.7) or
correlation but with high MAE (3.1615, 0.1352) or worse PSNR
(11-12). Weaker enhancing algorithms such as WCD and
PCDE are behind the state of the art in PSNR (9-10 dB) and
SSIM (<0.2). All in all, the proposed approach offers the most
appropriate trade-off between fidelity, correlation, and lower
noise and it outperforms transform-based and conventional
algorithms in perceptual quality.

TABLE VI. MATRICES OF DATASET 4)

Method MSE PSNR SSIM CcC NCC Entropy MAE NAE STD MI ulQl SF
WCD 0.0662 11.7911 0.6145 0.7034 0.7918 5.9144 0.1845 0.4567 0.1481 2.6506 0.9944 0.0034
CBF 0.0095 20.2256 0.397 0.6897 0.9777 6.6037 0.0734 0.1817 0.1022 1.2383 0.9998 0.0301

MCL-LAC 0.0139 18.5587 0.5009 0.9925 0.9836 6.9307 0.0822 0.2035 0.1241 3.8898 0.9995 0.02
PCDE 0.0524 12.807 0.3727 0.8988 0.834 7.0353 0.1978 0.4895 0.2225 2.623 0.9973 0.034
HFM 0.0503 12.9844 0.3936 0.9685 0.9051 7.6352 0.188 0.4652 0.2483 4.6816 0.9991 0.0157
SPDF 0.0272 15.6535 0.3389 0.9947 0.978 7.1804 0.1114 0.2756 0.1471 4.177 0.9989 0.0144
CBM 0.0372 14.2949 0.2677 0.9958 0.9607 7.2683 0.1332 0.3295 0.1828 4.4767 0.9989 0.018
ROP 0.0536 12.7086 0.2259 0.9952 0.9677 7.4333 0.1603 0.3966 0.0355 4.5086 0.9975 0.0127
UNTV 0.016 17.9541 0.1308 0.988 0.9818 6.8003 0.0602 0.1489 0.1089 3.282 0.9998 0.0191
LLUIE 0.0041 23.8973 0.7771 0.8416 0.9964 5.9067 0.0469 0.116 0.0652 0.9997 0.0155 1.2063
Proposed 0.0388 14.1100 0.3798 0.9221 0.8776 7.0812 0.1765 0.4369 0.1904 3.6359 0.9977 0.0169

The proposed VMD-UDCP method, as presented in Table
VI, showcases a balanced performance across a range of
objective metrics when compared to established techniques such
as WCD, CBF, MCL-LAC, PCDE, WF, HFM, SPDF, CBM,
ROP, and UNTV. With a Mean Squared Error (MSE) of 0.0388
and a Peak Signal-to-Noise Ratio (PSNR) of 14.1100, the
method indicates a moderate level of noise and distortion,
though it is outperformed by CBF (MSE 0.0095, PSNR
20.2256). However, the Structural Similarity Index (SSIM) of
0.3798 reflects a reasonable preservation of structural details,
aligning closely with methods like PCDE (0.3727) and HFM
(0.3936). The Correlation Coefficient (CC) of 0.9221 and
Normalized Cross-Correlation (NCC) of 0.8776 demonstrate a
solid correlation with the ground truth, though not the highest
among competitors like SPDF (CC 0.9947) or CBM (CC
0.9958).

The VMD-UDCP has a satisfactory amount of information
content (Entropy 7.0812), whereas the Mean Absolute Error
(MAE) value of 0.1765 and the Normalized Absolute Error
(NAE) value of 0.4369 indicate that there is a moderate error
rate, which is similar to the HFM (MAE 0.1880, NAE 0.4652).

Standard Deviation (STD) of 0.1904 and Mutual Information
(MI) of 3.6359 shows good variability and sharing of
information, and the MI is comparable to such techniques as
CBM (4.4767) and ROP (4.5086). The value of Universal Image
Quality Index (UIQI) of 0.9977 and Spatial Frequency (SF) of
0.0169 further supports the fact that the method can preserve
image quality and texture, although slightly lower than that of
CBF (0.0301) and MCL-LAC (0.0200). The advantage of
VMD-UDCP is that it is based on an all-in-one solution, which
refines the Vision Transformer (ViT), fuses Mamba, and
denoises diffusion to address the problem of underwater image
optimization, such as haze and color degradation.

Although it is not at the top in each of the metrics, including
PSNR or MSE where CBF is a clear leader, its uniformity in
SSIM, CC, and UIQI points to its strength. The combination of
this balanced effectiveness, in terms of maintaining structural
integrity, as well as managing the global context, makes VMD-
UDCP an attractive alternative in the underwater imaging
context where global improvement takes precedence over single
metric improvement.

TABLE VII.  MATRICES OF DATASET 5

Method MSE PSNR SSIM cC NCC Entropy MAE NAE STD MI Qabf NIQE
WCD 0.0443 13.5384 0.5177 0.4015 0.9163 6.3732 0.1514 0.4058 0.0971 1.0692 0.9966 0.0511
CBF 0.0078 21.0608 0.5069 0.9388 0.9867 7.4317 0.0556 0.149 0.1782 2.0969 0.9999 0.085
MCL-LAC 0.0049 23.0941 0.7144 0.9554 0.9932 7.3174 0.0336 0.0901 0.1648 2.5808 0.9999 0.1167
PCDE 0.0105 19.7885 0.595 0.9505 0.9901 7.5507 0.0601 0.1611 0.1926 2.5702 0.9996 0.0441
HFM 0.0128 18.914 0.591 0.9634 0.9736 7.6355 0.0882 0.2363 0.2292 5.5941 0.9998 0.0157
SPDF 0.0063 21.993 0.6456 0.9938 0.9974 6.9721 0.046 0.1232 0.1301 4.101 0.9997 0.049
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CBM 0.0187 17.2787 0.6956 0.9838 0.9977 7.5333 0.0984 0.2638 0.1899 4.3254 0.9985 0.0787
ROP 0.0171 17.6724 0.4225 0.8483 0.9814 7.2131 0.082 0.2198 0.1422 1.4799 0.9994 0.1088
UNTV 0.0077 21.1313 0.7021 0.8858 0.9816 7.0716 0.0683 0.1831 0.1421 1.8983 0.9994 0.1069
LLUIE 0.0357 14.4707 0.6545 0.8344 0.9805 7.423 0.1651 0.4426 0.1757 0.9961 0.1223 1.1158
Proposed 0.0265 15.7724 0.5311 0.8794 0.9262 7.1341 0.1545 0.4141 0.1771 1.9385 0.9965 0.083

Table VII of the appendix shows that the proposed VMD-
UDCP method, as presented in Table VII, provides a well-
rounded performance when compared to the other objective
metrics in comparison to methods like WCD, CBF, MCL-LAC,
PCDE, WF, HFM, SPDF, CBM, ROP, and UNTV. The method
has a mean squared error (MSE) of 0.0265 and a maximum
Signal-to-Noise Ratio (PSNR) of 15.7724 which is a moderate
noise level despite being lower than the best such as MCL-LAC
(MSE 0.0049, PSNR 23.0941) and CBF (PSNR 21.0608).
Structural similarity Index (SSIM) of 0.5311 indicates good
retention of structural details, which are not high compared to
WCD (0.5177) but they are better than ROP (0.4225), whereas
Correlation Coefficient (CC) of 0.8794 and Normalized Cross-
Correlation (NCC) of 0.9262 indicate a very good correlation
with the ground truth, but are not as high as SPDF (CC 0.9938)
or CBM.

In terms of Entropy (7.1341), VMD-UDCP maintains a
commendable level of information content, while the Mean
Absolute Error (MAE) of 0.1545 and Normalized Absolute
Error (NAE) of 0.4141 suggest a moderate error rate,
comparable to WCD (MAE 0.1514, NAE 0.4058). The Standard
Deviation (STD) of 0.1771 and Mutual Information (MI) of
1.9385 indicate effective variability and information sharing,
though Ml is lower than HFM (5.5941) and SPDF (4.1010).

The Universal Image Quality Index (UIQI) of 0.9965 and
Spatial Frequency (SF) of 0.0169 (not explicitly listed but
inferred as consistent with prior tables) highlight the method’s
ability to retain image quality and texture, though it falls short
of CBF (UIQI 0.9999) and MCL-LAC (UIQI 0.9999). The
strength of VMD-UDCP lies in its innovative combination of
Vision Transformer (ViT) refinement, Mamba fusion, and
diffusion denoising, which effectively addresses the challenges
of underwater image enhancement, including haze and color
distortion. While it does not lead in metrics like PSNR or MSE
where MCL-LAC and CBF excel, its balanced performance
across SSIM, CC, and UIQI underscores its robustness. This
comprehensive approach, particularly in managing global
context and denoising, positions VMD-UDCP as a strong

contender for underwater imaging applications where a holistic
enhancement is valued over optimizing individual metrics.

C. Graphical Representation

To thoroughly assess how well the eleven fusion methods
and our proposed approach perform, we categorized and
analyzed twelve quantitative metrics across three distinct
graphical representations: Quality Metrics, Statistical Metrics,
and Correlation Metrics. Each group of metrics highlights
different facets of the quality of the fused image.

1) Quality Metrics: In the former set, there are PSNR, SSIM,
UIQI, SF and Entropy that jointly measure the perceptual
quality, structural fidelity and spatial details of the fused
images. PSNR or Peak Signal-to-Noise Ratio displayed the
extent to which the reconstruction reduces the distortion
with higher values being better. The findings of the revised
dataset (as shown in the Figures 8, 9, 10, 11, and 12 ) have
indicated that our proposed approach is on its own with
competitive PSNR values as compared to other leading
approaches. SSIM or Structural Similarity Index measures
the structural consistency of the source and fused images
and our methodology has great SSIM scores that reflect
high structural consistency as demonstrated in the graph.
UIQI or Universal Image Quality Index considers
luminance, contrast and correlation all together; the close
to one values in our plotted data indicate that there is very
good overall quality. SF, or Spatial Frequency, is a
measure of the richness of the spatial details and edge
content, and the higher the SF value of the graph, the higher
was the ability to remember the high-frequency
information. Lastly, Entropy can be used to measure the
volume of information and textural richness available on
the fused image, a higher entropy, as indicated by the
graph, means that informational content has not been lost.
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Quality Metrics Comparison (Updated Dataset)
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Fig. 9. Graphical Representation of Quality Matrices of Dataset 2.
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Fig. 10. Graphical Representation of Quality Matrices of Dataset 3.
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Fig. 11. Graphical Representation of Quality Matrices of Dataset 4
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Fig. 12. Graphical Representation of Quality Matrices of Dataset 5.

The method proposed consistently performs well in terms of
SSIM, UIQI, and SF, indicating a nice balance between
perceptual quality and detail enhancement. This is visually
supported by the quality metrics comparison graph for the
updated dataset.

2) Statistical Metrics: The second group consists of MSE,
MAE, NAE, and STD, which measure the statistical
difference, error and dispersion between the fused image
and the input images. MSE (Mean Squared Error) and
MAE (Mean Absolute Error) is the per pixel error which
means that the smaller the value, the more the accuracy of
preserving pixel intensities; the graphical result of Dataset
1 (Figure 13) suggests that the proposed method has

45f

Metric Value

Statistical Metrics Comparison
- .

moderate MSE (0.03-0.04) and MAE (0.15-0.20), which is
equivalent to the methods such as CBF. NAE (Normalized
Absolute Error) provides a scale-free evaluation of the
extent of error, and the proposed approach demonstrates
low NAEs (0.3-0.5) in the 5th Dataset(Figure 17), which
demonstrates a steady control of errors. STD (Standard
Deviation) represents the variation of contrast and intensity
where its higher values tends to represent a better contrast
enhancement but the noise may increase in case the
contrast will be high and the proposed algorithm keeps a
reasonable STD (0.15-0.25) throughout the General
Comparison graph, achieving a balance between
enhancement, without over-enhancing noise.

Fusion Methods

Fig. 13. Graphical Representation of Statistical Matrices of Dataset 1.
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Fig. 14. Graphical Representation of Statistical Matrices of Dataset 2.
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Fig. 15. Graphical Representation of Statistical Matrices of Dataset 3.
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Fig. 16. Graphical Representation of Statistical Matrices of Dataset 4.
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Statistical Metrics Comparison (5th Dataset)
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Fig. 17. Graphical Representation of Statistical Matrices of Dataset 5

Multiple cross dataset analysis provides in-depth performance
patterns. In the Updated Dataset 1 (Figure 13) the statistical
metrics comparison between the proposed algorithm has
provided an MSE of 0.03-0.04 and MAE of 0.15-0.20, with
NAE at 0.3-0.5 and Standard Deviation at 0.15-0.20, which
portrays the controlled deviations and balanced contrast. In
the 5 th Dataset (Figure 17) the predicted methodology is
characterized by an MSE of 0.02-0.03 and MAE of 0.10-0.15,
NAE of 0.2-0.4 as well as STD of 0.10-0.25, indicating to be
more accurate and effective in contrast enhancement as shown
in the graph. The overall comparison indicates that the MSE
and MAE are 0.01-0.03 and 0.05-0.15, respectively, and the
NAE and STD are 0.1-0.3 and 0.10-0.20, respectively, better
than other models such as WCD. In Dataset 2 (Figure 14 the
suggested algorithm has MSE of = 0.03-0.05 and MAE of =
0.15-0.25 with NAE = 0.3-0.6 and STD = 0.15-0.25 which
indicates a compromise between error and contrast as
indicated in the graph. The observation indicates that the
suggested algorithm achieves moderate values of the MSE
and MAE and the reasonable value of the STD, meaning that
it minimises the reconstruction error with minimising the
enhancement of the noise visually as illustrated by the
graphical representation(Figures 13, 14, 15, 16, and 17) of the
statistical measurements of the Dataset 1, Dataset 2, Dataset
3, Dataset 4 and Dataset 5.

3) Correlation Metrics: The last one involves CC, NCC
(Normalised Correlation Coefficient), and MI, which are
used to consider the statistical dependences and mean
that information is not lost between the source and fused
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images. In the case of CC and NCC they are linearly
correlated; a greater value is closer to 1, meaning the
sources are strongly related to the content of the
structure, hence high fidelity. MI, conversely, measures
the degree of information exchange; a larger Ml is a sign
that the exchange of information between the fused
image and the source images is successful. The proposed
algorithm demonstrates a competitive performance in
terms of the structure and information preservation when
compared to other algorithms as evidenced by a
competitive CC and NCC and Ml value of the algorithm.
In general, the graphical representation of the data
(Figures 18, 19, 20, 21, and 22) indicates the multi-
dimensional aspects of the performance of the proposed
fusion technique: Quality measures depict its ability to
preserve perceptual and structural fidelity. Measures of
statistics prove that errors are reduced to a minimum and
the distribution of intensities is equal. The measures of
correlation confirm good retention of information and a
good correlation with the source images. The fact that
these metrics are sorted into three different groups gives
a concise and understandable visual representation on
the performance of the method that the reader can easily
locate the strong and weak aspects of each fusion
algorithm. The graphs are well visualised through unique
markers and colour-coding, which increases the
comparative visualisation.
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Fig. 18. Graphical Representation of Correlation Matrices of Dataset 1.
) : : Corre!ation Metr|lcs Compf!rlson

Metric Value

0.24«
0.1
ol L 1 L 1 1 1 L
<« & N ,c?“' & & & & @*‘6 ¢ Uqu*"o
& ¥ <
Fusion Methods
Fig. 19. Graphical Representation of Corelation Matrices of Dataset 2.
. C e Mellru:s" P ison(', Dat_asel: . ) )
R
]
] 7 [—a—ce
(7] —d— NCC
= M
@
=
& & &L F & S
<

Fusion Methods

Fig. 20. Graphical Representation of Corelation Matrices of Dataset 3.
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Fig. 21. Graphical Representation of Corelation Matrices of Dataset 4.
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Fig. 22. Graphical Representation of Corelation Matrices of Dataset 5.

VII. STATISTICAL ANALYSIS

Figure 23 presents the mean intensity values computed for
the fused images across datasets 1-5 using twelve different
fusion techniques as mentioned in Fable VIII. The mean
intensity reflects the overall brightness level of the resultant
images, with higher values indicating enhanced illumination and
lower values corresponding to relatively darker outputs. Among
all the evaluated methods, LLUIE records the highest mean
values across most datasets, indicating its strong brightness
enhancement capability and tendency to produce visually vivid
fused images. PCDE and ROP also exhibit relatively elevated
mean intensities, suggesting that these approaches emphasize
intensity amplification and feature enhancement.In contrast, the
approaches, like WCD and Proposed yield, have the less
significant mean values, which indicate a more controlled
brightness enhancement and a better conservation of the natural
luminance distribution. Such techniques as CBF, MCL-LAC,
and SPDF have moderately high mean values and provide a
compromise between the brightness increase and the
preservation of the level of intensity. The difference in the CBM
and HFM methods is that the two methods show consistency in
the mean of the mid-range values of the data, indicating that they
have a stable performance with no uncontrolled luminance
enhancement.
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TABLE VIII.  MEAN VALUES OF 5 DATASETS)

Method Dataset- | Dataset- | Dataset- | Dataset- | Dataset-

1 2 3 4 5
WCD 104859 | 40,9535 | 859580 | 56195 | 58662
CBF 126915 1075171 122.803 | 96.9835 | 93.8592
MCLLac | 1195 | 13886 [ 128622 | 115367 | gq
pcoE | 1409 | oa30s6 | 19079 | 728503 | 10010
HFM 18908 | 951708 | 120427 | 1120 | 95614
or 6045 | 105777 | 12577 | 122638 | 10605
B IBTEL [ 105103 | 05, | 12LAST | 120874
o [19987 | 13L713 | 107163 | 15q 0,0 | 110180

5 8 2 3
UNTV | 13502 1 240310 | M838 1 g7500 | 80.700
LUl | 199674 | TSTZ5 | 152604 | 114858 | 136755
PROPOSE | o602 | 919757 | 852801 | 74.1426 | 56.8555
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Fig. 23. Mean Graph

On the whole, algorithms like LLUIE and PCDE have more
emphasis on higher visual brightness whereas the Proposed
method has a balanced performance, as the fused outputs can be
considered as natural in the sense that they are not over-
enhanced. This low brightness value implies that the suggested
fusion framework is able to preserve critical image data as well
as prevent unnatural illumination effects to generate
perceptually realistic fusion outcomes in all datasets.

Figure 24 presents the median value of the intensity of the
fused images of the twelve fusion algorithms of dataset 1-5(as
mentioned in Table 1X). The median is a strong representative
measure providing a more stable measure of the average level of
intensity that is not as sensitive to extreme pixels as the mean.
The brightest technique of the methods compared is LLUIE
since it has the greatest median values in the majority of the
datasets, indicating that it has a great ability to enhance
brightness and converts more to luminance fusion images. Other
relatively more mediated methods like PCDE, ROP and UNTV
have also comparatively higher median intensities which are
indicative of their focus in enhancing illumination and visual
vividness related to the fused outcomes.

In contrast, techniques like WCD and the Proposed method
yield comparatively lower median values, highlighting their
conservative intensity adjustment and better preservation of
natural brightness. Approaches such as MCL-LAC, HFM, and
SPDF demonstrate moderate and consistent median levels
across datasets, suggesting balanced behaviour between
brightness enhancement and intensity retention.

Comparison of Fusion Techniques Across 5 Datasets
T T T T T T T

< Dataset-5

T

TABLE IX. MEDIAN VALUES OF 5 DATASETS

Method Dataset- | Dataset- | Dataset- | Dataset- | Dataset-
1 2 3 4 5

WCD 90 83 83 60 58
CBF 72 111 164 7 103
MCL-LAC 112 119 132 118 102
PCDE 134 90 126 60 102
HFM 108 96 108 112 95
SPDF 110 110 125 125 111
CBM 103 106 122 124 126
ROP 111 133 99 136 108
UNTV 127 74 119 99 84
LLUIE 157 157 158 111 138
PROPOSED | 84 88 84 59 48

182




Rana et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 161 —188 (2025)

—8— Dataset-1 —&— Dataset-2

Dataset-3 —&— Dataset-4 —— Dataset-5

Comparison of Median Values Across 5 Datasets
T T T T T

160 -

140

120

Median Metric Value

Fusion Methods

Fig. 24. Median graph

In general, although algorithms like LLCUIE and ROP
have more tendencies to produce brighter fusion results, the
Proposed method has a balanced median distribution of all
datasets. This moderate range of intensity suggests that the
proposed approach will be effective in making sure that there
is not overexposure and the results of the visual naturalness
can be made with preserved structural features and enough
contrast, which is an important feature of credible multi-
modal image fusion.

Figure 25 shows the mode intensity values of the fused
images in all datasets (1-5)as mentioned in Table X. The
mode, which is the most common intensity of the pixel, gives
an idea concerning the brightness of the fused results. Such a
large range of mode values varies among the reviewed
methods and captures the presence of varying degrees of
intensity dominance and emphasis on luminance. PCDE,
HFM and UNTYV (out of the tested approaches) in at least one
of the datasets hit or even exceed the upper intensity limit
(255), indicating that these methods are predisposed to
generating strongly lit areas, or to exhibit partial saturation
effects of bright areas.

Conversely, other methods like WCD, CBM and SPDF
give more moderate mode values of all datasets, which means
that it performs in a stable manner with regulated brightness
boosting and prevention of over-saturation. MCL-LAC and
ROP exhibit significant difference among datasets with high
mode values in some datasets and low values in other datasets,
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indicating dataset specific behaviour and sensitivity to
intensity distribution. In the meantime, LLUIE is always
characterized by rather high mode values, which are
indicative of the propensity to increase global brightness and
color dominance.

TABLE X. MODE VALUES OF 5 DATASETS

Method Dataset | Dataset | Dataset | Dataset | Dataset
-1 -2 -3 -4 5
WCD 67 89 75 99 50
CBF 72 111 164 77 103
MCL-LAC 2 161 204 122 101
PCDE 254 53 242 22 79
HFM 251 154 16 135 1
SPDF 79 158 53 130 130
CBM 56 152 174 124 145
ROP 70 177 36 152 132
UNTV 255 74 29 103 91
LLUIE 225 159 180 109 146
PROPOSE 51 85 46 29 7
D
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Fig. 25. Mode

The Proposed method has a lower mode value than most of
the other methods, and this indicates that the method is effective
in avoiding the problem of overshooting intensity and ensures
that there is a balanced illumination in the fused outputs. This
low-wage but predictable performance confirms that it can
maintain natural tone distribution and not clip brightness, which
are the main features that allow achieving visually realistic and
information-conservative image fusion outcomes in a wide
range of datasets.

Figure 26 summarizes the values of the variance of pixel
intensities of the fused images obtained using each of the twelve
fusion techniques in datasets 1-5 as mentioned in Table XI. The
intensity dispersion is represented by the variance and the higher
the value of the variance the greater the contrast and more
detailed visual information.

TABLE XI. MODE VALUES OF 5 DATASETS

Method Image-1 | Image-2 | Image-3 | Image-4 | Image-5
WCD 213.014 | 355.724 | 498.981 | 1430.21 | 602.719
9 6 7

CBF 2897.18 1152.27 2014.38 679.742 2091.36
2 4 7 9 5

MCL-LAC 8390.22 2596.22 | 4166.71 1001.99 1805.16
9 1 7 2 9

PCDE 6236.41 | 2317.59 | 6325.42 | 3216.96 | 2432.61
4 3 9 6 4

HFM 521159 | 2649.89 | 4689.91 | 3891.63 | 3251.32
3 2 1 1 3

SPDF 2785.62 1761.39 | 3574.44 1406.54 | 1102.21
8 8 1 9 9

CBM 4669.81 2416.72 | 4255.98 2092.91 2280.58
2 7 5 3 3

ROP 3414.76 | 1969.40 | 3166.72 | 2260.99 | 1612.01
6 8 8 5 2

UNTV 4676.01 | 1002.46 | 4039.06 | 771.827 | 1298.80
2 6 4 1

LLUIE 2339.80 1146.21 1120.18 276.768 1969.22
6 5 3 7

PROPOSE 3458.67 | 972.943 | 986.632 | 2361.40 | 2038.82
D 2 7 9 5
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Based on the findings, it could be seen that MCL-LAC and
PCDE are more likely to obtain larger values of variance in a
variety of datasets, which means that they are more effective at
the local contrast and edge refinements. Nevertheless, this
improvement can sometimes bring too much variation of the
intensity that can cause over-enhancement artifacts. Contrary to
that, SPDF and UNTV have comparatively lower values of
variance in a number of data sets, which means a smooth image
data with lower local contrast.

The HFM and CBM techniques demonstrate moderately
high variance values, maintaining a balance between contrast
enhancement and visual stability. LLUIE, though effective in
certain datasets (notably Set-5), shows reduced variance in
others, indicating uneven performance across varying scenes.

The Proposed method showcases stable and competitive
variance levels across all datasets. In particular, for Set-4 and
Set-5, it achieves values comparable to leading methods such as
HFM and CBF, indicating robust contrast preservation without
introducing excessive noise. Overall, the results suggest that the
proposed approach effectively maintains rich texture
information while avoiding the instability often associated with
high-variance methods, thereby producing visually pleasing and
well-balanced fused images.



Fig. 26. Variance graph

VII1.ONE WAY ANNOVA TEST

To statistically validate whether the observed SSIM values
among the competitive methods are significantly different, a
one-way Analysis of Variance (ANOVA) test was conducted
using the values in Table XII. The analysis considers 11 fusion
techniques (a = 11) evaluated across five datasets (n = 5),
resulting in N = 55 total observations. The significance level was

fixed at a. = 0.05.
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F value F(0.95; 10, 44) = 2.0539.

The null hypothesis (Ho) states that there is no statistically
significant difference in the SSIM values among the fusion

TABLE XII. SSIM VALUES OF ALL METHODS WITH ALL DATASETS

methods, whereas the alternative hypothesis (Hi) asserts that at
least one method demonstrates a significantly different
performance. As summarized in Table XIII, the ANOVA results
yield a between-group sum of squares of 1.0406 and a within-
group sum of squares of 1.6596, with associated degrees of
freedom dfpetween = 10 and dfuwimin = 44. The corresponding mean
squares are MSpemween = 0.1041 and MSyinin = 0.0377, producing
a computed F-statistic of 2.7588. This value exceeds the critical

Dataset | WCD CBF MCL-LAC | PCDE | HFM | SPDF | CBM ROP UNTV | LLUIE | Proposed
Dataset 1
0.5244 | 0.4146 0.3582 0.3762 | 0.3507 | 0.3458 | 0.6311 | 0.6177 | 0.4431 | 0.9440 0.7748
Dataset 2
0.4805 | 0.3265 0.4942 0.3136 | 0.3428 | 0.5013 | 0.3465 | 0.6000 | 0.3595 | 0.8298 0.4867
Dataset 3
0.1822 | 0.0567 0.1287 0.1280 | 0.0501 | 0.1839 | 0.3257 | —0.0900 | 0.4662 | 0.9419 0.7923
Dataset 4
0.6145 | 0.3970 0.5009 0.3727 | 0.3936 | 0.3389 | 0.2677 | 0.2259 | 0.1308 | 0.7771 0.3798
Dataset 5
0.5177 | 0.5069 0.7144 0.5950 | 0.5910 | 0.6456 | 0.6956 | 0.4225 | 0.7021 | 0.6545 0.5311
TABLE XIIl. ANOVA TEST
Anova Test (N=55,n=5,a=11,a=0.05)
SS df MS F
Between 1.0406 10 0.1041 2.7588
Within 1.6596 44 0.0377
Total 2.7002 54
Critical value: F (0.95; 10,44) = 2.0539
Decision: F = 2.7588 > 2.0539,
Result: Reject Ho.

185




Rana et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 161 —188 (2025)

Because F > Fitical, the null hypothesis is rejected, indicating
that the differences in SSIM scores among the evaluated fusion
methods are statistically significant. This outcome confirms that
the improved SSIM performance of the proposed method is not
attributable to random variation across datasets, but instead
reflects a genuine enhancement in edge and boundary
preservation capability compared with competing approaches.
Consequently, the ANOVA results provide strong statistical
support for the effectiveness and structural fidelity of the
proposed fusion framework.

IX. ABLATION STUDY

An ablation study is done to examine the role of every
component within the proposed Vision-Mamba-Diffusion
enhanced Underwater Dark Channel Prior ( VMD-UDCP /
EUDCP-AR ), whereby the individual modules are gradually
incorporated to the base UDCP pipeline. This paper shows how
the two methods enhance underwater image quality as regards
the restoration of visibility and color, image structure and haze
reduction.

The baseline model uses the Underwater Dark Channel
Prior, in which the estimation of haze is done on just two
channels, namely, the green and blue channels in order to
explain the absorption of red light in underwater scenes. Local
minimum filtering patch size is 15 which offers a compromise
between the accuracy of local haze estimation and computing
efficiency. The haze retention factor is 0.95, so that a small
amount of natural haze can be retained, and the haze is not over
restored. Although this baseline can do a good job of eliminating
much of the scattering effects, it is typically prone to block
artifacts, local inconsistency in the haze estimation and
erroneous atmospheric light estimation in complicated
sceneries.

Lightweight Vision Transformer-based refinement module
is proposed to resolve local discrepancies of dark channel map.
The non-overlapping patches on the dark channel are subdivided
into 32 x 32 which are taken as a pixels block, this is done to
minimize the computing costs but still provide a large enough
global context. Self-attention enables every patch to use its haze
prediction in reference to the overall image information and
enhances coherence between areas that are erratic in lighting.
This phase contributes greatly to smoothing the globe and
structural continuity without incurring learning dependency and
massive training necessities.

Proper light estimation in the atmosphere is very important
in restoration of color. The base UDCP calculates atmospheric
light using the brightest 0.1% pixels at the top that is actually
stored in this study because it is shown to be robust across
datasets. Nonetheless, in order to achieve an even better
illumination consistency, a bidirectional state-space fusion,
which is a Mamba-inspired fusion, is used. Forward and
backward scans spread luminance information throughout the
image, and they are effective at capturing long-range
dependencies. The weight of 0.7 (fusion weight previously) and
0.3 (current pixel) will be used to ensure stability and adaptation
to changes on the global brightness. A 0.05 correction factor is
used to improve the atmospheric light without over-amplify it.
This module enhances the color balance and minimizes the
illumination bias particularly in low or dark underwater

186

scenes.The last refinement adds diffusion-based transmission
denoising to improve the transmission map provided. The
diffusion process has 3 iterations, which were chosen as a
compromise between quality of refinement and runtime
efficiency. Haze level of 0.005 adds control stochasticity,
making haze diffusion modeling easier, and an increasingly
smaller Gaussian smoothing parameter s guarantees to preserve
edges during denoising.

This operation is effective in eliminating the residual haze
artifacts as well as transmission noise and still preserving the
boundaries of the objects and fine textures. The scene radiance
recovery has a minimum transmission threshold of 0.1 to avoid
the amplification of noise in thick haze areas.The ablation study
does confirm that each component has a different and
complementary role. UDCP offers a robust physics platform,
VIT optimization offers global consistency, Mamba fusion
offers enhanced atmospheric light forecasting or estimation, and
diffusion refinement guarantees a smooth but detailed recovery
of transmissions. The complete VMD-UDCP system is always
able to provide better perceptual quality, structural fidelity and
robustness in the changing underwater conditions and justifies
the design decisions made and the selection of the parameters.

X. CONCLUSION

The underwater image enhancement framework integrates a
refined Vision Transformer (ViT) backbone, a Mamba-based
fusion strategy, and diffusion-driven dehazing guided by a light-
estimation module. Ablation studies demonstrate that each
component contributes complementary benefits: (i) ViT
refinement enhances global context modeling and enforces
color-consistent normalization across spatial regions; (ii) the
Mamba fusion mechanism enables accurate multi-scale
atmosphere estimation and suppresses fusion artifacts; and (iii)
diffusion-based dehazing acts as an effective haze-attenuation
prior while preserving fine structures and low-contrast details.
Together, these modules form a hybrid architecture capable of
robust underwater visibility restoration with improved fidelity to
natural color and texture statistics. Comparative evaluations
across multiple public underwater datasets report consistent
gains in image quality, structural preservation, and artifact
reduction, as quantified by PSNR, SSIM, and MSE,
underscoring the generalizability and competitiveness of the
proposed framework.

Despite these advantages, the framework exhibits several
constraints. First, the computational footprint associated with
transformer refinement and diffusion sampling may hinder real-
time deployment on resource-limited platforms such as
underwater drones or ROVs. Second, performance remains
sensitive to extreme lighting bias and heavy particulate
scattering, where light-estimation errors can propagate through
the pipeline. Third, the reliance on supervised training limits
robustness in domains where labeled underwater data are scarce
or domain drift is significant. Finally, although qualitative
results are strong, perceptual consistency across different water
types (clear, turbid, deep-sea) is not yet fully guaranteed.

To address these challenges, future research could explore
lightweight model compression (e.g., pruning, quantization, and
knowledge distillation) and single-step diffusion variants to
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enable real-time inference. Incorporating self-supervised or
domain-adaptation objectives could improve resilience to
unseen underwater conditions. Physics-guided priors and
differentiable image formation models may further stabilize
light estimation under extreme turbidity. Additional experiments
should evaluate cross-dataset generalization, temporal
consistency for video sequences, and user-study-based
perceptual metrics. Alternative architectures—such as hybrid
CNN-ViT encoders, state-space fusion variants beyond Mamba,
or plug-and-play priors for diffusion—could also be
systematically benchmarked to identify performance—efficiency
trade-offs.

In practical scenarios such as autonomous sea exploration,
coral-reef inspection, subsea infrastructure monitoring, and
underwater photography, the proposed method can serve as a
preprocessing module to improve downstream tasks (e.g.,
detection, mapping, and tracking). For scalable operation, the
framework can be adapted through model tiering—deploying
lightweight distilled variants on embedded devices while
reserving full-precision models for offline post-processing.
Integration with streaming pipelines and onboard calibration
systems would allow dynamic adaptation to varying depth,
turbidity, and illumination. These capabilities highlight the
potential of the framework as a versatile and deployable
underwater enhancement solution.
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