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Abstract 

Underwater imaging can often exhibit colour casts, reduced contrast, and scattering effects due to wavelength-dependent absorption and 

light turbidity. This paper presents an enhanced underwater image restoration technique called Enhanced Underwater Dark Channel 

Prior with Advanced Refinement (EUDCP-AR), which combines a physics-based dehazing approach with modern refinement 

mechanisms for effective visibility recovery. The proposed framework incorporates a variation of Underwater Dark Channel Prior 

(UDCP) to determine the intensity of initial haze, a Vision Refinement with global attention based on transformer (ViT) to adjust local 

differences in the dark channel. A Mamba-fusion approach which is inspired by state-space refinements helps to improve the atmospheric 

light estimation through bidirectional brightness propagation, which results in better color balance and more uniform 

lighting.Subsequently, Diffusion helps in dehazing the transmission by way of a diffusion process, mapping and maintain edge 

information. Quantitative and qualitative experiments were done on various underwater datasets, measures of PSNR, SSIM, MSE and 

entropy as measures to evaluate the performance. The experimental findings prove that EUDCP-AR has better contrast enhancement, 

color fidelity and structural clarity with conventional and deep learning-based efficient methods of underground improvement. The 

reconstructed images stabilise natural tone, better contour, and definition of edges and are natural, noise artefacts were reduced, which 

proved the soundness of the hybrid physical-learning model. The proposed EUDCP-AR framework showcases a more robust, 

perceptually consistent and computationally efficient solution which helps in enhancing the underwater images. Its ability to preserve the 

fine details, balancing color attenuation and restoring the structural integrity, makes it good for applications in marine research, 

autonomous underwater vehicles (AUVs), submersible robotics, and scientific imaging. 

Keywords:  Underwater image enhancement, dark channel prior, Vision Transformer, Mamba fusion, diffusion dehazing, image 

restoration. 
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I. INTRODUCTION  

Underwater vision is an important issue in ocean 
engineering. Different from natural images, underwater images 
often suffer from poor visibility due to the medium scattering 
and light distortion. First of all, capturing images underwater is 
one of the most challenging tasks, primarily due to deterioration 
caused by light that is reflected from a surface and is deflected 
and scattered by particles, and absorption substantially reduces 
the light energy. The random deterioration of the light is mainly 
caused by the haze appearance. In contrast, the fraction of the 
light scattered back from the water along the sight considerably 
degrades the scene contrast[1]. However, the quality of 
underwater images is severely affected by the particular physical 
and chemical characteristics of underwater conditions, raising 

issues that are being more easily overcome in terrestrial imaging 
[2]. Underwater images always show color cast, e.g., green-
bluish color, which is caused by different deterioration ratios of 
red, green and blue lights. Also, the particles that are suspended 
underwater absorb the majority of light energy and change the 
direction of light before the light reflected from the underwater 
scene reaches the camera, which leads to images having low 
contrast, blur and haze.  

Originating underwater images enhancement methods 
specialised in early applications on color balancing, contrast 
improvement, and automatic physical modeling. The multi scale 
fusion was proposed by Ancuti [3]. Multi scale fusion method, 
which composites several improved formations of a picture 
based on weight maps based on contrast, saturation, and 
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saliency, is a pleasant outcome that does not depend on depth 
information. This idea was extended by their subsequent output 
in the underwater scenes through the mixture of contrast, color 
and exposure adjusted inputs to come up with increasingly 
natural outputs[4]. Yuan used morphological component 
analysis to dissect structural and textual elements, and increased 
the visibility, as it helps in maintaining edge integrity.  

In the same manner, Zhang et al. suggested the main 
dehazing (PCDE) approach that is based on principal 
components (PCs) haze effects: minimized haze effects with the 
help of principal component analysis[5], [6]. Kong utilized the 
curvelet transform and combined it with histogram equalisation 
to improve contrast and detail sharpness in underwater images 
[7]. Li proposed a physically inspired enhancement approach 
that modeled underwater attenuation characteristics for effective 
color restoration[8]. Liu further explored real-world underwater 
enhancement challenges and benchmarked various non-deep-
learning approaches, identifying key limitations in color 
correction and transmission estimation[9]. To address these 
challenges, An combined multi-scale fusion with the Dark 
Channel Prior (DCP) to enhance clarity and natural color 
rendition[10]. Other methods of color correction have been 
extensively adopted. Iqbal presented an unsupervised contrast-
based color correction technique that was used to sharpen poor 
images stretching and color channel compensation[11]. Gibson 
invented a useful correction algorithm on robot color modeling 
of underwater light attenuation exploration[12]. Schechner and 
Karpel were the first to use physical-model-based underwater 
restoration, which offers a definite vision model that takes into 
consideration and calculates the influence of absorption and of 
scattering[13]. Later, Lu employed the homomorphic filtering to 
isolate the illumination and enhance image contrast and light 
reduction, reflectance variations[14]. Garcia proved the 
presence of a demon in the context of 3D reconstruction, argued 
that image preprocessing techniques are important in detecting 
images. significantly enhanced underwater construction and 
reconstruction accuracy[15].  

The Red Channel Compensation was suggested by Galdran 
The loss of red light specifically targeted the loss of red light and 
addressed through the red channel compensation (RCC) method, 
and effectively restored luminance and virtually restored the 
color balance [16]. Drews presented an introduction of Dark 
Channel Prior, (UDCP), which adapted the conventional DCP 
without the red channel when estimating transmission maps, 
producing better results in turbid waters [17]. Hitam effectively 
used Mixture Contrast Limited Adaptive Histogram 
Equalisation (CLAHE) to reduce over-enhancement without 
affecting the local contrast.[18]. Other models based on color 
models, including the integrated. color model by Islam and 
Rahman [19]. Retinex-based enhancement dealt with uneven 
light by simulating human visual adaptation[20]. Chiang and 
Chen proposed The Wavelength Compensation and Dehazing 
(WCD) technique which was a wavelength attenuation model, 
combined with effective color and contrast recoveries, being 
achieved through image fusion[21].  

The approach that was proposed by Peng et al. relies on 
image blurriness characteristics of light absorption to estimate 
more transmission accurately [22]. Zhu have suggested the 
attenuation-curve prior, more attenuation functions in form of 
wavelength dependence and realistic color correction [23]. Zhou 

and Xie [24] established further refinements that proposed a 
better DCP with histogram stretching to increase the clarity as 
well as contrast. Wang proposed a dy-colour-correction scheme 
based on adaptive filtering. namely, reform radically on a local 
basis illumination [25]. Zhao optimised under water image 
improvement scene by the hybrid method of color harmony and 
contrast correction, showing the better visual quality under 
different conditions underwater[26].  

Although these improvements have been made, there are still 
problems in conserving texture information, color naturalness is 
not reached, and manipulation is done. Diverse turbidity levels, 
Numerous precedent-based and hybrid-based techniques can be 
either too color-saturated, or will not perform under patchy 
conditions. It is therefore necessary to create a solid, improved 
framework that incorporates physical modelling, adaptive 
transmission, refinement and wavelength compensation are 
important. This gives rise to the current work that seeks to come 
up with a refined UDCP-based framework, Underwater Dark 
Channel Prior that counter-adjusts the attenuation of color and 
refines transmission estimation in order to obtain a higher 
underwater image spatial resolution and chromatic ability.  

Recent studies have demonstrated that there are considerable 
developments in the underwater image dehazing both in the 
learning-based and model-driven approaches. HydroVision 
presented by Uke (2025)[50] integrates the underwater image 
dehazing with the object detection system based on the YOLO 
and shows that the given enhancement is essential to ensure the 
effective perception and monitoring of the underwater 
environment. In the same manner, Kaur. (2025)[51] designed a 
hybrid GAN-based model with bottleneck attention and 
Retinex-based optimization that enhanced the color restoration 
and contrast enhancement with good learning of features and 
illumination correction. All these methods emphasize the 
increased use of advanced enhancement methods in enhancing 
the appearance of underwater images. 

In contrast to data-driven solutions, physics-inspired 
research, e.g. by Zhao (2025)[52], focuses on the modeling of 
the light absorption and scattering properties of underwater to 
inform image improvement. Inspired by the latest advances, the 
proposed work is based on the well-known principles of 
dehazing combined with efficient refinement techniques that can 
be used to improve the quality of underwater images. The 
approach is designed to generate both more consistent visualized 
and more perceptual results backed by objective measures of 
quality, which means that they fit a wide range of underwater 
imaging applications. 

The imaging of the water underwater is done using special 
camera equipments to overcome the problems of light 
absorption, scattering, and turbidity. Commonly used to balance 
wavelength-dependent attenuation (especially of red light) are 
standard RGB cameras with waterproof and pressure resistant 
housings, commonly accompanied by color-correction filters. 
As mentioned in Table I, HDR cameras capture finer details in 
the scenes with high levels of illumination differences, and 
stereo cameras allow estimating depth and reconstructing 3D 
information, though scattering may compromise the results. 
Hyperspectral cameras record several spectral bands to give 
detailed analysis of colors and materials but they usually need 
artificial illumination because of the absorption of water. Time-
of-flight (ToF) and LIDAR based cameras are capable of 
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measuring distances even when in low visibility and perform 
worse in turbid water. The cheap action cameras of the consumer 
type, like GoPro, are affordable and strong but have 

shortcomings in deep or cloudy water. Underwater imaging 
needs close coordination of optical design, lighting, and housing 
so as to capture high quality images. 
 

TABLE I.     CAMERAS USED IN UNDERWATER IMAGING

Camera / Model Company Camera Type Key Specifications How It Handles Underwater 

Degradation 

1Cam Alpha [44] SubC Imaging Optical subsea camera 

(ROV / fixed / towed) 

4K video, 16.6 MP stills, 20× 

zoom, CMOS sensor 

Relies on high-quality optics and external 

subsea lighting; haze and color degradation 

typically handled via post-processing 

Apex™ SeaCam® [45] DeepSea Power 

& Light 

Optical deep-sea zoom 

camera 

4K UHD + HD, 12× optical 

zoom, 20× digital zoom, 

titanium housing, depth-rated to 

6000 m 

High-sensitivity sensor and powerful 

illumination improve low-light capture; 

optical degradation mitigated through 

lighting control 

SmartSight™ MV100 

[46] 

DeepSea Power 

& Light 

Machine-vision subsea 

camera 

Global shutter, 0.4–3.2 MP 

options, GigE Vision, depth-

rated to 6000 m (optional 

11,000 m) 

Global shutter minimizes motion-induced 

blur; synchronized capture improves 

robustness in dynamic underwater scenes 

OE14-502 HD Zoom 

Camera [47] 

Kongsberg 

Maritime 

ROV inspection camera 10× optical zoom, HD output, 

depth-rated to 4500 m 

Optical zoom allows inspection from 

distance, reducing motion artifacts and 

illumination-induced degradation 

Multi-SeaCam® Series 

(e.g., 2060) [48] 

DeepSea Power 

& Light 

Scientific optical 

camera 

HD video, interchangeable 

optics, titanium housing, depth-

rated up to 6000 m 

Optimized optics and sensor sensitivity 

support low-light deep-sea imaging 

UWC-325 / UWC-625 

[49] 

Imenco Compact subsea HD 

camera 

HD video, compact form factor, 

depth-rated to 3000–6000 m 

Compact optics and stable mounting reduce 

distortion and motion-related degradation 

 

II. RELATED WORK 

Enhancement of underwater images has been a prolific field 
of study because of the complicated optical distortion by the 
aquatic medium. Precisely, wavelength-dependent light 
absorption and forward/ back scattering considerably hinder 
illumination and diminish contrast, which causes severe color 
distortion, lower visibility, and scene details. Early works 
primarily concentrated on model-based compensation to 
compensate for the light attenuation and haze. A fusion was 
suggested by Chiang and Chen [27] of forward scattering 
removal and flow of image contrast, which improved visibility, 
but was poor in computational complexity when the 
environments are very turbid.  

Later, Chen [28] proposed a Wavelength Compensation and 
Dehazing (WCID) technique, which considers wavelength- 
dependent light attenuation, which resulted in a more balanced 
colour restoration at different depths. In order to reduce the color 
distortion, Ancuti [29] suggested incorporating a multi-scale 
fusion-based color correction structure that incorporates a series 
of contrast-enhanced and white-balanced versions of the same 
underwater image. This is also effective in maintaining natural 
color appearance and improving the visibility that forms 
bedrock to subsequent enhancement methods that are fusion-
driven. Extending this concept, Ancuti [30] proposed a multi-
scale fusion technique for both underwater images and videos, 

providing natural color tones and improved contrast consistency 
across frames.  

Yuan [31] advanced this direction using Morphological 
Component Analysis (MCA), enabling the separation of 
illumination and reflectance layers to enhance details and 
suppress color cast. On the other side, Zhang [32] employed the 
Principal Component Analysis (PCA) to integrate various 
optimised versions of underwater images, effectively 
maintaining their fine structures and sharpness of edges. Kong  
[33] came up with a strategy that relied on Curvelet Transform, 
which enabled enhancement by the multi-resolution, which is 
effective especially for small textures in low visibility. Li [34] 
proposed the process of underwater light propagation with the 
help of a physical image formation model, enhancing the joint 
estimation of background light and transmission maps. Other 
restoration methods that are model-driven have also been 
proposed for more accurate restoration.  

According to Liu [35], underwater degradation model was 
proposed to process the enhancement of restoration parameters 
on the ground of scene depth estimation and enhanced the 
robustness in variable lighting conditions. Li. [36] used global 
color transfer with local contrast stretching, resulting in visually 
attractive images across a variety of underwater conditions with 
minimal artefacts. Similarly, An [37] combined multiscale 
fusion with Dark Channel Prior (DCP) in improving images 
with heavy turbidity. As recent surveys conducted by Hou [38] 
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and Li [39] shows, both traditional and modern techniques of 
enhancement have been thoroughly analyzed, highlighting the 
transition from physics-based to learning-based methods. 
Anwar and Porikli [40] focused on performance comparison 
between benchmark datasets with greater research suggestions 
on hybrid enhancement pipelines in the future.  

Moreover, Chen and Wang [41] conducted a literature 
review of new GAN-driven underwater restoration models and 
referred to their advantages and shortcomings compared to older 
models. Finally, Hou and Tao [42] concluded the progress in 
clarity optimisation and restoration algorithms by focusing on 
parameter sensitivity and cross-domain generalisation that are 
still the current problem in underwater image enhancement. 

III. PRELIMINARIES    

A. Dark Channel Prior (DCP) 

The Dark Channel Prior (UDCP) is a method to enhance 
underwater images by removing haze, correcting colors, and 
improving details. It adapts the Dark Channel Prior (DCP), 
originally for atmospheric haze removal [8], to handle 
underwater challenges like red light absorption, which causes 
color distortion and low contrast. DCP is a physics-based 
approach to image restoration that produces artefree images 
unlike simple techniques like histogram equalization [1][2][5]. 
It works with both green and blue channels, hence effectively 
used in tasks such as in marine exploration or underwater 
photography [3][7]. 

To obtain the clear image, DCP uses three processes 
including the calculation of the dark channel, estimation of the 
background light and the calculation of the transmission map 
[11]. These measures are used to deconstruct the blurred picture 
to improve it specifically. 

For an underwater RGB image 𝐼(𝑥), where 𝑥 is a pixel, the 
imaging model is: 

     𝐼𝑐(𝑥) = 𝐽𝑐(𝑥)𝑡(𝑥) + 𝐴𝑐(1 − 𝑡(𝑥))                       (1) 

Here, 𝑐 is a color channel (red, green, or blue), 𝐽𝑐(𝑥) is the 
clear image, 𝑡(𝑥) is the transmission (light reaching the camera 
without scattering), and 𝐴𝑐 is the background light [3]. 

DCP assumes that in clear underwater images, the green or 
blue channel in a small patch has low intensity [1][3]: 

    𝐽udcp(𝑥) = min
𝑦∈Ω(𝑥)

( min
𝑐∈{𝑔,𝑏}

𝐽𝑐(𝑦)) ≈ 0                          (2) 

where Ω(𝑥)  is a local patch. The dark channel for the 
observed image is: 

𝐼udcp(𝑥) = min
𝑦∈Ω(𝑥)

( min
𝑐∈{𝑔,𝑏}

𝐼𝑐(𝑦))                                 (3) 

This gives the raw transmission: 

𝑡̃(𝑥) = 1 − 𝜔 min
𝑦∈Ω(𝑥)

( min
𝑐∈{𝑔,𝑏}

𝐼𝑐(𝑦)

𝐴𝑐
)                               (4) 

with 𝜔 = 0.95  to keep slight haze for naturalness. 
Background light 𝐴 is estimated from the brightest 0.1% pixels 
in the dark channel. The clear image is recovered as: 

𝐽𝑐(𝑥) =
𝐼𝑐(𝑥) − 𝐴𝑐

max(𝑡(𝑥), 0.1)
+ 𝐴𝑐                                            (5) 

where 0.1 avoids division errors. 

DCP processes a hazy image to compute the dark channel, 
refine transmission, and produce a dehazed image with better 
details. 

Recent improvements use neural techniques. A Vision 
Transformer (ViT) refines the dark channel by analyzing image 
patches globally with self-attention, reducing local errors [14]: 

    Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉                    (6) 

This enhances clarity across patches. 

A Mamba-like state space model (SSM) improves 
background light estimation by scanning the image forward and 
backward, capturing global patterns efficiently [15]: 

 ℎ𝑡 = 𝐴‾ℎ𝑡−1 + 𝐵‾ 𝑥𝑡 , 𝑦𝑡 = 𝐶ℎ𝑡                                    (7) 

This adjusts light based on the entire image context. 

Diffusion denoising smooths the transmission map by 
iteratively adding and removing noise [15]: 

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(𝑥𝑡; √1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼)                      (8) 

Gaussian filtering approximates noise removal, preserving 

image structure. 

The DCP pipeline with ViT, Mamba, and diffusion stages 
significantly improves image quality. 

DCP offers several benefits. It works across various water 
conditions without needing training data, unlike deep learning 
methods, and is computationally efficient [12]. Focusing on 
green and blue channels avoids red-light issues. ViT adds global 
context, Mamba provides efficient long-range modeling, and 
diffusion ensures smooth, natural results [14][15]. DCP 
maintains image resolution and details, ideal for high-quality 
visual applications. 

IV. EXPERIMENTS 

The process begins with preprocessing, where the input 
image 𝐼 is read, converted to double precision, and resized to 
256 × 256. Next, parameter initialization occurs, setting the 
patch size 𝑝 = 15 for local dark channel extraction, the haze 
retention factor 𝜔 = 0.95, and creating an output directory for 
metrics and intermediate results. The DCP dark channel 
computation follows, calculating the underwater dark channel 
𝐷 = min(𝐼𝑔 , 𝐼𝑏)  using the green and blue components, then 

applying a m1in-filter with a square structuring element of size 
𝑝 × 𝑝. 

In the Vision Transformer (ViT) refinement step, the dark 
channel map is partitioned into 32 × 32 patches, self-attention 
is applied to each patch to enhance global context, and the 
globally refined dark channel 𝐷refined  is reconstructed. 
Atmospheric light estimation then selects the top 0.1% brightest 
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pixels from 𝐷refined and computes atmospheric light 𝐴 from the 
corresponding RGB values of 𝐼. 

The Mamba fusion refinement step converts 𝐼 into grayscale 
𝐺, performs a bidirectional scan (forward and backward) using 
state-space updates, fuses the forward and backward states into 
𝑆mamba , and refines 𝐴  using the global mean of 𝑆mamba  to 
produce 𝐴refined . Transmission map estimation computes the 

initial transmission 𝑇raw = 1 − 𝜔 × min (
𝐼𝑔

𝐴refined𝑔

,
𝐼𝑏

𝐴refined𝑏

)  and 

applies morphological erosion with patch size 𝑝. 

For diffusion denoising refinement, 𝑇 = 𝑇raw  is initialised, 
and for each step from 1 to 3, Gaussian noise with a level of 

0.005 is added, followed by a Gaussian filter with a decaying 
𝜎 = 1 − 0.8 × (𝑠𝑡𝑒𝑝 − 1)/3, saving the refined transmission 
𝑇diffused. Image recovery then processes each color channel 𝑐 ∈

{𝑅, 𝐺, 𝐵}  using 𝐹𝑐 =
𝐼𝑐−𝐴refined𝑐

max(𝑇diffused ,0.1)
+ 𝐴refined𝑐

, clipping 

intensity values to [0, 1]. 

Finally, metric computation and storage calculate the 
metrics, saving the enhanced image and metrics into the output 
folder, followed by visualization and analysis, which displays 
the original and enhanced images side-by-side with PSNR, 
SSIM, MSE, CC, NCC, Entropy, MAE, NAE, STD, MI, UIQI 
and SF values. The information about the above matrices is 
mentioned in the Table III. 

TABLE III.             METRICES USED FOR OBJECTIVE EVALUATION

Metric Meaning (with range where applicable) Formula 

MSE (Mean Squared Error) 
Measures average squared difference between 
reference and restored image. Lower values 

indicate better reconstruction. 
𝑀𝑆𝐸 =  (

1

𝑁
) 𝛴 (𝐼 −  𝐾)² 

PSNR (Peak Signal-to-Noise Ratio) 
Indicates reconstruction quality relative to 

maximum signal intensity. Higher values mean 

better quality; typical good results are 20–50 dB. 
𝑃𝑆𝑁𝑅 =  10 log10 (

𝑀𝐴𝑋2

𝑀𝑆𝐸
) 

SSIM (Structural Similarity) 
Evaluates structural and perceptual similarity. 

Theoretical range −1 to 1, but usually 0–1; 

values closer to 1 indicate higher similarity. 
𝑆𝑆𝐼𝑀 =

(2𝜇𝐼𝜇𝐾  + 𝐶1)(2𝜎𝐼𝐾  +  𝐶2)

(𝜇𝐼
2 +  𝜇𝐾

2 + 𝐶1)(𝜎𝐼
2 + 𝜎𝐾

2 + 𝐶2)
 

CC (Correlation Coefficient) 

Measures linear correlation between images; 

values closer to 1 indicate stronger similarity 
(range −1 to 1). 

𝐶𝐶 =  
𝛴(𝐼 − 𝜇𝐼)(𝐾 − 𝜇𝐾)

√ 𝛴(𝐼 − 𝜇𝐼)2𝛴(𝐾 − 𝜇𝐾)2
 

NCC (Normalised Cross-Correlation) 
Scale-independent similarity measure; values 
near 1 indicate high similarity (range −1 to 1). 

𝑁𝐶𝐶 =  
𝛴𝐼𝐾 

√ 𝛴𝐼2𝛴𝐾2
 

Entropy 

Measures information content or richness of 

detail; higher values usually indicate more 
texture and variability. 

𝐻 =  − 𝛴 𝑝𝑖 log2 𝑝𝑖 

MAE (Mean Absolute Error) 

Average absolute difference between reference 

and restored image; lower values indicate better 
accuracy. 

𝑀𝐴𝐸 =  (
1

𝑁
) 𝛴 |𝐼 −  𝐾| 

NAE (Normalised Absolute Error) 
Absolute error normalized by image intensity; 

lower values indicate better restoration. 
𝑁𝐴𝐸 =  

𝛴|𝐼 −  𝐾|

𝛴|𝐼|
 

STD (Standard Deviation) 

Describes contrast or intensity variation; higher 

values often correspond to stronger contrast 
(context-dependent). 

𝜎 =  √ 
1

𝑁
𝛴 (𝐼 − 𝜇𝐼)2 

MI (Mutual Information) 

Quantifies how much information two images 

share; higher values indicate better alignment 

and similarity. 

𝑀𝐼 =  𝛴 𝑝𝐼𝐾 𝑙𝑜𝑔 
𝑝𝐼𝐾

𝑝𝐼𝑝𝐾

 

UIQI (Universal Image Quality Index) 
Captures luminance, contrast, and structural 

fidelity; values closer to 1 indicate better quality 

(range −1 to 1). 

𝑈𝐼𝑄𝐼 =
4 𝜇𝐼 𝜇𝐾 𝜎𝐼𝐾

(𝜇𝐼
2 + 𝜇𝐾

2 )(𝜎𝐼
2 + 𝜎𝐾

2)
 

SF (Spatial Frequency) 
Reflects global image sharpness and activity; 

higher values generally indicate sharper images. 𝑆𝐹 =  √𝑅𝐹2 +  𝐶𝐹2 

A. Datasets 

The proposed underwater image fusion and enhancement 
framework was rigorously validated using five publicly 
available benchmark datasets as shown in Figure 1, each 
selected to represent diverse underwater imaging conditions 
such as varying illumination, turbidity, and color degradation.  
1) Dataset A (PCDE Dataset) — ([6]): consists of a set of 

images taken underwater at various visibility conditions and 
under varying lighting conditions. The data set is mainly on 
color distortion and haze degradation, where realistic 
underwater scenes have been provided and used in 
assessing the performance of color restoration and 
dehazing. It features shots of coral reefs, marinelife, and 

drowned man-made structures, shot in both the shallow and 
deep water worlds. It has a dataset resolution of 
approximately (512 x 512) pixels, which is adequate to both 
assess pixel-based and perceptual quality.  

2) Dataset B (MMLE Dataset):  (Li GitHub: MMLE_code[18]) 
— has pictures submerged in water in order to assess multi-
scale and enhancement algorithms that are multi-level. The 
dataset presents scenes with varying levels of lighting and 
levels of differentness. water turbidity, which allows 
benchmarking the performance in an expo- certain 
correction and lightening balancing methods. Typical 
image dimensions are (480 × 480) pixels. The dataset is 
well- appropriate to evaluate the consistency and strength 
of enhancements under various underwater conditions.  
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3) Dataset C (CBF Dataset): (Fergaletto GitHub: Color-
Balance-and-Fusion[29]) — comprises underwater scenes 
emphasising the challenges of color imbalance and non-
uniform lighting. This dataset features paired flash and no-
flash images, allowing analysis of fusion-based 
enhancement approaches that combine color correction 
with illumination improvement. Average image 
dimensions. are approximately (640×480) pixels. The 
dataset has been widely employed for testing fusion-based 
and learning-based underwater image enhancement models.  

4) Dataset D (TURBID Dataset): (Duarte., Turbid Image 
Dataset[43]) — This dataset is the set of underwater 
pictures meant to depict various underwater turbidity levels, 
in this way, we get to acquaint ourselves with the scattering 
effects that are experienced in actual underwater conditions. 
It shows pictures at five different levels of turbidity, which 
proves to be excellent in analyzing the performance of the 
enhancement algorithms when the visual quality of the 
picture becomes worse. The collection consists of images 
of both natural marine life and man-made objects all of 
which are generally of size (512x512) pixels. It is a precious 
asset in testing the algorithms that are aimed at haze 
removal, haze contrast restoration, color balance recovery. 

5) Dataset E (L 2 UWE Dataset): (Tunai et al., GitHub: 
L2UWE[36]) —This dataset offers a strong set of images 
underwater that showcase the element of brightness and 
colour consistency. It is the samples of the shallow, mid-
depth and deep water with varying light and scattering of 
each sample. It can be of great use in testing deep learning 
methods of image enhancement and fusing underwater 
images. The pictures are approximately (480x320) pixels 
which are used to give qualitative and quantitative criteria 
in which they can test the ability of enhancement models to 
restore visual realism and color fidelity. 

All the experiments were performed with the help of a 
workstation based on AMD Ryzen 5 3500U (2.10 GHz), 8 GB 
of DDR4 RAM (2400 MT/s), AMD RadeonTM Vega 8 
Graphics (2 GB VRAM) and 477 GB of SSD storage with the 
Windows 11 Pro (64-bit). these were all applied in matlab with 
the use of image processing toolbox to preprocess and evaluate 
the metrics. such arrangement provides uniformity, steadiness of 
the performance, and repeatability of all the experiments. 

V. PROPOSED METHODOLOGY 

To overcome the limitations of haze retention and color 
imbalance in traditional underwater image enhancement 
techniques, the proposed algorithm(Enhanced Underwater Dark 
Channel Prior with Advanced Refinement (EUDCP-AR) 
integrates a physics-based restoration framework with modern 
refinement modules. It involves a Vision Transformer-based 
enhancement, Mamba state-space fusion for illumination 
correction, and a haze refinement diffusion mechanism. The 
entire algorithm, as demonstrated in Figure 2, proceeds through 
dark channel estimation, refinement, atmospheric light 
correction, transmission map computation, and final radiance 
recovery. 

 

 

Fig. 1. Sample Source Images 

A. Underwater Dark Channel Estimation 

Given an underwater RGB image 𝐈(𝑥, 𝑦) = [𝐼𝑅 , 𝐼𝐺 , 𝐼𝐵]𝑇 , the 
dark channel is calculated to estimate the concentration of haze, 
because red light is heavily absorbed underwater, so only the 
green and blue channels are considered for computation: 

𝑌dark(𝑥, 𝑦) = min
𝑐∈{𝐺,𝐵}

( min
𝑝∈Ω(𝑥,𝑦)

𝐼𝑐(𝑝))                     (9) 

where Ω(𝑥, 𝑦) is a local patch of size 15 × 15, highlighting 
the regions influenced by haze and scattering, serving as a robust 
haze indicator. 

B. Vision Transformer–Based Refinement 

The estimated dark channel may contain artifacts and 
irregularities. To preserve global coherence, a lightweight 
Vision Transformer (ViT) module is used. The dark channel is 
divided into non-overlapping 32 × 32  patches, each 
transformed into an embedding vector. The self-attention 
mechanism expressed below is being used to capture global 
relationship among all the patches: In the equation 

𝑃̃ = softmax (
𝑃𝑇𝑃

√𝑑
) 𝑃𝑇                            (10) 

Each term plays a important role in the Vision Transformer’s 
self-attention mechanism. Here, 𝑃  represents the embedding 
matrix containing the feature vectors of all image patches, where 
each column corresponds to one patch and encodes its important 
visual characteristics such as color, texture, and haze intensity. 
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The transpose 𝑃𝑇  is used to compute the similarity between 
patches through the product 𝑃𝑇𝑃 , producing a matrix of 
pairwise dot products in which larger values indicate stronger 
similarity between patches. This similarity matrix is divided by 

√𝑑 , where 𝑑  denotes the feature dimension, to stabilize the 
values and prevent numerical overflow as the feature size 
increases. The softmax function is then applied to normalize 
each row of this similarity matrix so that the values become 
attention weights—probabilities that sum to one—representing 
how much each patch should attend to or borrow information 
from others. Finally, these attention weights are multiplied by 
𝑃𝑇 , allowing the model to aggregate contextual information 

from all patches according to their relevance. The resulting 𝑃̃ 
contains refined feature embeddings in which each patch 
integrates global context from the entire image, thereby 
preserving global coherence, smooth transitions, and consistent 
haze estimation across the refined dark channel. 

C. Atmospheric Light Estimation and Mamba Fusion 

After refinement, the atmospheric light 𝐀  is estimated to 
model the ambient light scattered in water. The top 0.1% 
brightest pixels in 𝑌refined are selected, and their corresponding 
RGB intensities in 𝐈 are averaged. To adapt this global estimate 
to local illumination variation, a Mamba-based state fusion is 
applied: 

𝑆fwd(𝑖, 𝑗) = 𝛼𝑆fwd(𝑖, 𝑗 − 1) + (1 − 𝛼)𝐺(𝑖, 𝑗),
𝑆bwd(𝑖, 𝑗) = 𝛼𝑆bwd(𝑖, 𝑗 + 1) + (1 − 𝛼)𝐺(𝑖, 𝑗),

       (11) 

where 𝛼 controls smoothing. The fused state is computed as: 

𝑆fused =
𝑆fwd + 𝑆bwd

2
                                 (12) 

The refined atmospheric light is updated adaptively by: 

     𝐀refined = 𝐀 ∘ (1 + 𝛽(𝑆fused − 𝐀))                     (13) 

where 𝛽 (≈ 0.05) adjusts correction intensity. This ensures 
illumination uniformity and prevents over-saturation in deeper 
regions. 

D. Transmission Map Estimation and Diffusion-Based Haze 

Refinement 

The transmission map 𝑡(𝑥, 𝑦) quantifies the proportion of 
light reaching the camera after attenuation. It is estimated using: 

 

𝑡raw(𝑥, 𝑦) = 1 − 𝜔 ⋅ min
𝑐∈{𝐺,𝐵}

( min
𝑝∈Ω(𝑥,𝑦)

𝐼𝑐(𝑝)

𝐴𝑐

)             (14) 

where 𝜔 = 0.95 controls haze retention. 
To reduce local contaminations, a Diffusion-Based Haze 

Refinement is applied. The process performs iterative haze 
diffusion to balance smoothness and edge preservation: 

1. Physical scattering of haze is modeled by adding a 

Gaussian disturbance in the intensity. 

2. Apply Gaussian filtering with 𝜎 = {1.0,0.6,0.2} 

which results in refining the structure progressively. 

3. Repeat for three iterations to obtain 𝑇refined. 

This diffusion mechanism eliminates residual haze while 
maintaining clear object boundaries. 

E. Scene Radiance Recovery 

The haze-free scene radiance 𝐉(𝑥, 𝑦) is finally reconstructed 
by the underwater image formation model: 

𝐉(𝑥, 𝑦) =
𝐈(𝑥,𝑦)−𝐀refined

max(𝑇refined(𝑥,𝑦),𝑡min)
+ 𝐀refined,     (15) 

where 𝑡min = 0.1 prevents instability in dense haze regions. 
This step restores contrast, natural colors, and global brightness 
balance. 

Through these sequential steps—dark channel estimation, 
ViT refinement, Mamba-based atmospheric correction, 
diffusion-based haze refinement, and radiance recovery—the 
proposed EUDCP-AR framework achieves perceptually 
consistent and haze-free underwater image enhancement. 

 
Fig. 2. Proposed Algorithm 
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VI. RESULT ANALYSIS AND DISCUSSION 

A. Visual result 

Visual assessment has been done on five data sets(SET-
1through SET-5) to evaluate the perceptual quality of the images 
that had been improved by our VMD UDCP algorithm in 
comparison with ten underwater image enhancement 
techniques, namely Wavelength Compensation and Dehazing 
(WCD) [28], Color Balance and Fusion (CBF) [29], Mixture 
Contrast-Limited Adaptive Histogram Equalization (MCL-
LAC) [18], Principal Component–Based Dehazing (PCDE) [6], 

Homomorphic Filtering Method (HFM) [14], Single Image 
Prior–Based Dehazing Filter (SPDF) [17], Color Balance 
Method (CBM) [26], Red Channel Prior–Based Restoration 
(ROP) [16], Underwater Nonlinear Transmission–Based 
Visualization (UNTV) [35], and Lightweight Underwater Image 
Enhancement (LLUIE) [36]. Every set has images of the 
underwater area taken in various depths, turbidity, haze, 
lighting, etc. Improvements that we analysed were in the form 

Input: 

 Underwater RGB image: I 

 Parameters: 

o p = DCP patch size, ω= haze retention factor, P = ViT patch size, Nd = number of diffusion steps 

Output: 

 Dehazed RGB image: Ienhanced 

Part 1: Input Preparation 

01: Read input underwater image I 

02: Convert I to double precision and normalize to [0, 1] 

03: Verify that I is an RGB image 

Part 2: Underwater Dark Channel Computation 

04: Extract green and blue channels from I 

05: Compute underwater dark channel: 

     D=min(IG,IB)  

06: Apply morphological erosion on D using square structuring element of size p. 

Part 3: Vision Transformer–Based Dark Channel Refinement 

07: Divide dark channel DDD into non-overlapping patches of size P×P  

08: For each patch: 

Compute self-attention using patch similarity 

09: Reassemble refined patches to obtain refined dark channel Dr 

Part 4: Atmospheric Light Estimation and Mamba Fusion 

10: Select top 0.1% brightest pixels from Dr 

11: Estimate initial atmospheric light A from corresponding RGB values 

12: Convert input image I to grayscale 

13: Perform forward state-space scan to estimate illumination state 

14: Perform backward state-space scan 

15: Fuse forward and backward states 

16: Refine atmospheric light Ar  using fused global illumination 

Part 5: Transmission Map Estimation 

17: Normalize green and blue channels using Ar 

18: Estimate raw transmission map: 

     Traw=1−ω⋅min-filter(⋅) 

Part 6: Diffusion-Based Transmission Refinement 

19: Initialize T=Traw 

20: For each diffusion step n=1:Nd 

21: Add Gaussian noise to T 

22: Apply Gaussian filtering with decreasing variance 

23: End 

24: Obtain refined transmission map Tr 

Part 7: Scene Radiance Recovery 

25: For each color channel c∈{R,G,B}c \in \{R, G, B\}c∈{R,G,B} 

26: Recover dehazed image: 

Ic
enhanced=(Ic−Ac

r)/max⁡(Tr,0.1)+Ac
r 

27: End 

28: Clip Ienhanced to range [0, 1] 

Return 

29: Return enhanced underwater image Ienhanced 
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of colour naturalness, visibility improvement, detail 
preservation, de-haze, and general appearance of the picture is 
improved. 

In SET-1, as illustrated in Figure 3,the VMD-UDCP method 
is different in its ability to reinstate natural colors and improve 
highlighted objects that contain fine details and reduce 
backscattering effects. Such methods as CBF and MCLAC are 
decent task of color correction and frequently cause an excessive 
saturation of the blue-green channels, and this gives rise to 

unnatural hues in vegetation areas. WFE and HFM improve 
contrast but cancel light, blurring in textured regions,such as 
coral surfaces.In contrast, our method keeps sharp edges and 
balanced illumination, out performing WCD and PCDE,which 
tend to introduce visible artefacts and residual haze. Compared 
to SPDF and ROP, which could do too much shadowing or gasp 
with unevenness. lighting, VMD-UDCP strikes a harmonious 
balance between color fidelity and clarity,with non-negligible 
distortions.

 
Fig. 3. Outputs of Dataset 1 with different techniques.

In SET-2, as illustrated in Figure 4 VMD-UDCP method 
used in is distinctive. The enhanced image finds the latent forms 
of structure where one can be able to see and experience visible 
and colourful yet natural colours and clear visibility even in 
murky water. The traditional methods of WCD, WFE and CBF 
struggle to do without it, often resulting in outputs that are 
smoky or motioned. towards greenish hues. Whereas, ROP and 
CBM yield decency. noise of this kind, and increase in a dim 
place they sometimes, giving it a lumpen appearance.MCLAC 

and SPDF are able to maintain. there are a few things omitted, 
but these will not be comprehensive enough to compare with the 
light and clarity that VMD-UDCP is capable of.PCDE brings 
lightness. halo effects on bright objects though the proposed 
method. manages to reduce these artefacts.It is worth 
mentioning that HFM. and WFE can hardly maintain fine 
marine textures in. SET-2, whereas VMD-UDCP provides a 
clean, visually coherent sharp edges and better diagnostic 
potential of an image. underwater exploration
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Fig. 4. Outputs of Dataset 2 with different techniques.

In Figure 5 which represents the SET-3, the situation is more 
demanding with a heavy turbidity and variable lighting 
conditions. The VMD-UDCP technique is quite successful in 
this case as it can balance between highly developed color 
correction and adaptive dehazing to show bright details, both as 
close and far. Such methods as PCDE and CBF do a fair job and 
are not able to record finer color variations in darker regions. 
SPDF does a good job of preserving edges but has a slight 

aliasing effect in smooth areas of water. ROP and HFM have a 
fair level of visibility but bring some noise in plain backgrounds. 
In the meantime, the WCD and WFE results are too desaturated 
to provide scene interpretation with the required level of 
accuracy. However, VMD-UDCP preserves textural continuity 
and balanced contrast and does not over-brighten in contrast to 
CBM, which can distort the intensity levels unevenly with no 
efficient recovery of significant information.

Fig. 5. Outputs of Dataset 3 with different techniques.  
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SET-4 as illustrated in Figure 6, noise is exhibited or low-
contrast underwater images; the VMD-UDCP technique works 
well by cutting noise and improving the significance of such 
items as the outlines of objects and color gradients. On the other 
hand, MCLAC and ROP are likely to increase the noise, and 
leading to obscured images. While HFM does a decent job, it 
does add artifacts on edges of high contrast. CBF and PCDE find 
it hard to expand the fine details in murky. areas adequately. 

WFE and CBM give a fair visual presentation. pleasing though 
lacking color reinstatement. The proposed method is unique 
because it provides more graceful gradients, with precision. 
identifying important factors and providing a natural 
improvement. that retains textures with few hazy distortions. It 
is not as blocky and edge haloyed as the outputs of WCD and 
SPDF.

 
Fig. 6. Outputs of Dataset 4 with different techniques. 

Still on SET-5, as shown in Figure 7, which in- volves 
images that are of extreme contrast and varied. of textures (such 
as rocky seabeds decorated with bioluminescent the strengths of 
the VMD-UDCP approach are turned out to be. even more 
apparent. It keeps high-contrast features as it does. blending 
small textures without blurriness. or oversaturation. CBF and 
SPDF can enhance contrast, however. they renounce the 
clearness of gentler details. ROP and HFM strike a fair balance 
though show inconsistencies in bright. areas. WCD and 
MCLAC have a serious loss of detail and crunching of dynamic 
ranges. PCDE has mediocre outcomes. but is not consistent 

between textured areas. WFE performs sufficiently and does not 
quite coincide with visual coherence and. monotony that VMD-
UDCP attains.   In general, in all datasets, the suggested VMD-
UDCP method is always visually superior and has natural 
colors, sharp details, and haze removal. Its ability to decrease 
haze, and increase vital markers places it well in comparison 
with the majority of traditional and modern methods.The 
algorithm demonstrates high generalisation under different 
underwater environments, which makes it a reliable choice in 
the application in actual marine imaging and exploration.



Rana et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 161 –188 (2025) 

 

172 

 

Fig. 7. Outputs of Dataset 5 with different techniques. 

B. Objective Results 

As The objective measurement is conducted in ten state- 
underwater improvement methods utilising twelve Tof the art. 
common quantitative measures: MSE, PSNR, SSIM, CC, NCC, 
Entropy, MAE, NAE, STD, MI, UIQI and SF. These indicators 
gives a detailed evaluation of haze perception, structural 
consistency, structural fidelity and perceptual quality. The 
suggested Vision-Mamba-Diffusion improved. UDCP method 
is contrasted to conventional techniques of dehazing color 
balancing and fusion-based methods. The proposed algorithm 
attains a as summarised in Table III high balance throughout the 
majority of the measures, SSIM is too high= 0.7748, CC = 
0.9817, and UIQI = 0.9965, highlighting its great power to resist 
structural losses and deterioration. similarity with the ground 
truth as perceptions. Although meth- ROPs like ROP (PSNR = 
15.7949) and CBF (PSNR =15.1087)Peak signal-to-noise ratios, 
which are slightly higher in 15.1087) report, they have lower 
SSIM values which denote weaker. structural consistency. On 
the same note, CBM secures the top. SSIM (0.6311) across all 
the baselines but does not pass the test. of entropy and mutual 
information as a measure of poorer information richness. It is 
worth mentioning the Wavelet Fusion Enhanced (WFE) method 
has high entropy (7.8658) but it has a drawback. by too much 
distortion, which is clear in its high MAE. SF (0.0413) and 

(4.0605) are low, which is why it is not applicable to practical 
deployment. HFM and HFM Deep fusion methods like HFM. 
Competitively, SPFD are good at entropy and correlation but 
trade off between MAE and PSNR. In contrast, the proposed 
method is always capable of providing balanced improvements. 
in all metrics, average entropy (7.6750), small error. rates (MSE 
= 0.0352, MAE = 0.1585), and high statistical measures (MI = 
2.7429, SF = 0.1479). This highlights its capability to decrease 
distortion, maintain texture content, improve. edge details, and 
structural fidelity at the same time, outcompeting the learning-
based and traditional methods in overall effectiveness. 

Regarding the listed methods, the proposed Vision-Mamba-
Diffusion enhanced UDCP has moderate entropy (6.7961) and 
a high structural fidelity (SSIM: 0.4867, MI: 1.5609), which 
means that the overall fusion quality is good. Although Minimal 
Color Loss and Locally Adaptive Contrast has a little higher 
entropy (7.5880) and Color Balance and Fusion has high PSNR 
(18.0603), the proposed method has a balanced performance of 
low noise (STD: 0.1563) and competitive spatial 
frequency(0.0326). Wavelet Fusion and Structural Patch 
Decomposition are classified as classical and hybrid techniques, 
as they are high-correlation and low-STD, respectively, giving 
them high consistency in fusion. In general, the stochastic 
crossfusion method is better balanced and provides a more 
visually consistent and noisier result.

TABLE III.       MATRICES OF DATASET 1

Method MSE PSNR SSIM CC NCC Entropy MAE NAE STD MI UIQI SF 

WCD 0.0695 11.5784 0.5244 0.2777 0.9037 7.357 0.2024 0.3715 0.188 0.1503 0.9964 0.1363 

CBF 0.0308 15.1087 0.4146 0.9908 0.9918 7.5925 0.0633 0.1161 0.2119 3.0114 0.9996 0.13 

MCL-LAC 0.0773 11.1209 0.3582 0.9197 0.9211 7.4533 0.2088 0.3832 0.3642 1.5575 0.9986 0.3319 

PCDE 0.0595 12.2565 0.3762 0.9412 0.9671 7.3132 0.153 0.2807 0.3142 1.8104 0.9994 0.2211 

HFM 0.0501 13.0042 0.3507 0.9948 0.9625 7.8989 0.1318 0.2419 0.2846 3.9818 0.9987 0.1699 
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SPDF 0.0353 14.5232 0.3458 0.9814 0.9882 7.6333 0.0916 0.168 0.2059 2.4585 0.9989 0.1425 

CBM 0.0328 14.8412 0.6311 0.9861 0.9641 7.9216 0.1349 0.2475 0.2701 4.1357 0.9984 0.1819 

ROP 0.0263 15.7949 0.6177 0.9548 0.9799 7.7053 0.0925 0.1697 0.2292 2.0471 0.9991 0.1503 

UNTV 0.0479 13.1979 0.4431 0.7616 0.9494 7.8511 0.1453 0.2665 0.2731 0.7255 0.9994 0.2998 

LLUIE 0.014 18.5475 0.944 0.9453 0.9951 7.4464 0.0894 0.164 0.1996 0.9989 0.1419 1.8178 

PROPOSED 0.0352 14.5287 0.7748 0.9817 0.9661 7.2612 0.1585 0.2909 0.1582 0.9965 0.1479 2.7429 

TABLE IV.       MATRICES OF DATASET 2

Method MSE PSNR SSIM CC NCC Entropy MAE NAE STD MI Qabf NIQE 

WCD 0.049 13.0962 0.4805 0.3567 0.9393 6.325 0.1599 0.3422 0.0832 0.7263 0.9961 0.0189 

CBF 0.0156 18.0603 0.3265 0.8252 0.9807 6.9858 0.0832 0.1781 0.1331 1.5361 0.9996 0.0374 

MCL-LAC 0.0232 16.3478 0.4942 0.9624 0.9632 7.588 0.1051 0.2249 0.2003 2.3361 0.9996 0.0832 

PCDE 0.0257 15.9076 0.3136 0.9542 0.9447 7.5212 0.1338 0.2862 0.1893 1.9847 0.9981 0.0569 

HFM 0.0298 15.2555 0.3428 0.9913 0.943 7.5675 0.1305 0.2792 0.2019 4.2733 0.9984 0.041 

SPDF 0.0163 17.8785 0.5013 0.9884 0.9781 7.335 0.0833 0.1782 0.1645 3.4637 0.9997 0.0386 

CBM 0.0327 14.8546 0.3465 0.975 0.9595 7.5681 0.107 0.2288 0.1932 3.5583 0.9993 0.0637 

ROP 0.03 14.75 0.6 0.95 0.98 7.4 0.09 0.2 0.17 2.17 1 0.05 

UNTV 0.0273 15.6421 0.3595 0.9386 0.9671 6.9502 0.1743 0.373 0.1243 2.1224 0.9955 0.0547 

LLUIE 0.031 15.0804 0.8298 0.7648 0.9905 7.032 0.15 0.3209 0.1345 0.9967 0.0578 0.9252 

Proposed 0.0785 11.0499 0.4867 0.8271 0.9178 6.7961 0.2537 0.5596 0.1563 1.5609 0.9904 0.0326 

Based on the suggested VMD-UDCP approach, as the Table 
IV illustrates, the algorithm performs competitively across 
different objective measures compared to the existing 
approaches of WCD, CBF, MCL-LAC, PCDE, HFM, SPDF, 
CBM, ROP, UNTV, and LLUIE. Although the method has a 
higher Mean Squared Error (MSE) of 0.0785 and a lower Peak 
Signal-to-Noise Ratio (PSNR) of 11.0499, which denotes the 
presence of residual noise or distortion, it still has a decent 
Structural Similarity Index (SSIM) of 0.4867, which implies that 
the structural information is well preserved. The Correlation 
Coefficient (CC) of 0.8271 and the Normalized Cross-
Correlation (NCC) of 0.9178 also shows that the relationship to 
the ground truth is strong but not the best among the peers. 
Logging in Entropy (6.7961) and Mean Absolute Error (MAE) 
of 0.2537 and normalized absolution error (NAE) of 0.5596, the 
method also has a reasonable amount of information content; 
however, the underwater image enhancement is complicated, 
which may explain the moderate deviation on optimal output. 
The fact that the Standard Deviation (STD) is 0.1563 and the 

Mutual Information (MI) is 1.5609 also confirm the fact that the 
method has an excellent ability to capture variability and shared 
information. The Spatial Frequency (SF) 0.0326 is also 
interesting because it reflects a high fidelity and texture 
preservation of the underwater conditions, which are not easy to 
handle, and the Universal Image Quality Index (UIQI) of 0.9904 
is also notable, as it shows that the image is of high fidelity. The 
excellence of VMD-UDCP is that it provides a holistic 
combination of Vision Transformer (ViT) refinement, Mamba 
fusion, and diffusion denoising as a complete solution to the 
distinctive problem of underwater imaging, including haze and 
distortion of colors. Even though certain measures, such as 
PSNR and MSE are worse than the approaches, such as CBF 
(PSNR 18.0603) or SPDF (MSE 0.0163), the balanced results of 
the proposed method in terms of SSIM, CC, and UIQI illustrate 
its strength. This combination with its innovative way of treating 
global context and denoising makes VMD-UDCP a potential 
solution, especially where structure integrity is needed rather 
than absolute noise reduction.

TABLE V.    MATRICES OF DATASET 3.

Method MSE PSNR SSIM CC NCC Entropy MAE NAE STD MI UIQI SF 

WCD 0.1091 9.6211 0.1822 0.4424 0.9637 6.3364 0.1994 0.4003 0.081 1.6251 0.994 0.0113 

CBF 0.0619 12.0813 0.0567 0.9282 0.989 7.3226 0.0652 0.1308 0.176 2.0383 0.9999 0.023 

MCL-LAC 0.0707 11.5072 0.1287 0.9899 0.9761 7.8571 0.1100 0.2209 0.2533 3.3127 0.9997 0.0369 

PCDE 0.1008 9.9642 0.1280 0.9658 0.9608 7.5935 0.1743 0.3499 0.3123 2.764 0.999 0.0441 

HFM 0.0748 11.2583 0.0501 0.9966 0.9536 7.8591 0.1352 0.2715 0.2688 4.5435 0.999 0.0190 

SPDF 0.0644 11.9097 0.1839 0.9928 0.9819 7.7331 0.0929 0.1866 0.2345 3.6388 0.9998 0.0279 

CBM 0.0562 12.5029 0.3257 0.996 0.9693 7.8979 0.1125 0.2259 0.2562 4.3829 0.9996 0.0300 

ROP 0.0800 11.1700 0.0900 0.97 0.9700 7.6100 0.1100 0.2300 0.1300 2.7800 1.0000 0.0300 

UNTV 0.0369 14.3297 0.4662 0.9836 0.9691 7.7491 0.1114 0.2237 0.2493 2.8802 0.9996 0.0446 

LLUIE 0.0127 18.9512 0.9419 0.8876 0.9934 7.0155 0.1019 0.2046 0.134 0.9985 0.0356 1.4872 

Proposed 0.0289 15.3962 0.7923 0.8861 0.9851 6.7402 0.164 0.3293 0.1232 1.5962 0.996 0.0578 



Rana et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 161 –188 (2025) 

 

174 

In the case of dataset proposed in Table V, the VMD-UDCP 
achieves high structural fidelity (SSIM: 0.7923) and high PSNR 
(15.3962) and maintains low MAE (0.1640) and NAE (0.3293) 
which leads to a cleaner reconstruction. Though, UNTV has the 
highest PSNR (14.3297), high SSIM (0.4662) its entropy 
(7.7491) is slightly more than the proposed method but with high 
MAE/NAE. CBM, SPDF obtain high competitive SSIM (0.3257 
and 0.1839), and extremely high correlation (CC > 0.99), yet 
have larger values of standard deviation which indicates noisier 

results. WF and HFM do not lose strong entropy (>7.7) or 
correlation but with high MAE (3.1615, 0.1352) or worse PSNR 
( 11-12). Weaker enhancing algorithms such as WCD and 
PCDE are behind the state of the art in PSNR (9-10 dB) and 
SSIM (<0.2). All in all, the proposed approach offers the most 
appropriate trade-off between fidelity, correlation, and lower 
noise and it outperforms transform-based and conventional 
algorithms in perceptual quality.

TABLE VI.      MATRICES OF DATASET 4)  

Method MSE PSNR SSIM CC NCC Entropy MAE NAE STD MI UIQI SF 

WCD 0.0662 11.7911 0.6145 0.7034 0.7918 5.9144 0.1845 0.4567 0.1481 2.6506 0.9944 0.0034 

CBF 0.0095 20.2256 0.397 0.6897 0.9777 6.6037 0.0734 0.1817 0.1022 1.2383 0.9998 0.0301 

MCL-LAC 0.0139 18.5587 0.5009 0.9925 0.9836 6.9307 0.0822 0.2035 0.1241 3.8898 0.9995 0.02 

PCDE 0.0524 12.807 0.3727 0.8988 0.834 7.0353 0.1978 0.4895 0.2225 2.623 0.9973 0.034 

HFM 0.0503 12.9844 0.3936 0.9685 0.9051 7.6352 0.188 0.4652 0.2483 4.6816 0.9991 0.0157 

SPDF 0.0272 15.6535 0.3389 0.9947 0.978 7.1804 0.1114 0.2756 0.1471 4.177 0.9989 0.0144 

CBM 0.0372 14.2949 0.2677 0.9958 0.9607 7.2683 0.1332 0.3295 0.1828 4.4767 0.9989 0.018 

ROP 0.0536 12.7086 0.2259 0.9952 0.9677 7.4333 0.1603 0.3966 0.0355 4.5086 0.9975 0.0127 

UNTV 0.016 17.9541 0.1308 0.988 0.9818 6.8003 0.0602 0.1489 0.1089 3.282 0.9998 0.0191 

LLUIE 0.0041 23.8973 0.7771 0.8416 0.9964 5.9067 0.0469 0.116 0.0652 0.9997 0.0155 1.2063 

Proposed 0.0388 14.1100 0.3798 0.9221 0.8776 7.0812 0.1765 0.4369 0.1904 3.6359 0.9977 0.0169 

The proposed VMD-UDCP method, as presented in Table 
VI, showcases a balanced performance across a range of 
objective metrics when compared to established techniques such 
as WCD, CBF, MCL-LAC, PCDE, WF, HFM, SPDF, CBM, 
ROP, and UNTV. With a Mean Squared Error (MSE) of 0.0388 
and a Peak Signal-to-Noise Ratio (PSNR) of 14.1100, the 
method indicates a moderate level of noise and distortion, 
though it is outperformed by CBF (MSE 0.0095, PSNR 
20.2256). However, the Structural Similarity Index (SSIM) of 
0.3798 reflects a reasonable preservation of structural details, 
aligning closely with methods like PCDE (0.3727) and HFM 
(0.3936). The Correlation Coefficient (CC) of 0.9221 and 
Normalized Cross-Correlation (NCC) of 0.8776 demonstrate a 
solid correlation with the ground truth, though not the highest 
among competitors like SPDF (CC 0.9947) or CBM (CC 
0.9958). 

The VMD-UDCP has a satisfactory amount of information 
content (Entropy 7.0812), whereas the Mean Absolute Error 
(MAE) value of 0.1765 and the Normalized Absolute Error 
(NAE) value of 0.4369 indicate that there is a moderate error 
rate, which is similar to the HFM (MAE 0.1880, NAE 0.4652). 

Standard Deviation (STD) of 0.1904 and Mutual Information 
(MI) of 3.6359 shows good variability and sharing of 
information, and the MI is comparable to such techniques as 
CBM (4.4767) and ROP (4.5086). The value of Universal Image 
Quality Index (UIQI) of 0.9977 and Spatial Frequency (SF) of 
0.0169 further supports the fact that the method can preserve 
image quality and texture, although slightly lower than that of 
CBF (0.0301) and MCL-LAC (0.0200). The advantage of 
VMD-UDCP is that it is based on an all-in-one solution, which 
refines the Vision Transformer (ViT), fuses Mamba, and 
denoises diffusion to address the problem of underwater image 
optimization, such as haze and color degradation.  

Although it is not at the top in each of the metrics, including 
PSNR or MSE where CBF is a clear leader, its uniformity in 
SSIM, CC, and UIQI points to its strength. The combination of 
this balanced effectiveness, in terms of maintaining structural 
integrity, as well as managing the global context, makes VMD-
UDCP an attractive alternative in the underwater imaging 
context where global improvement takes precedence over single 
metric improvement.

TABLE VII.      MATRICES OF DATASET 5

Method MSE PSNR SSIM CC NCC Entropy MAE NAE STD MI Qabf NIQE 

WCD 0.0443 13.5384 0.5177 0.4015 0.9163 6.3732 0.1514 0.4058 0.0971 1.0692 0.9966 0.0511 

CBF 0.0078 21.0608 0.5069 0.9388 0.9867 7.4317 0.0556 0.149 0.1782 2.0969 0.9999 0.085 

MCL-LAC 0.0049 23.0941 0.7144 0.9554 0.9932 7.3174 0.0336 0.0901 0.1648 2.5808 0.9999 0.1167 

PCDE 0.0105 19.7885 0.595 0.9505 0.9901 7.5507 0.0601 0.1611 0.1926 2.5702 0.9996 0.0441 

HFM 0.0128 18.914 0.591 0.9634 0.9736 7.6355 0.0882 0.2363 0.2292 5.5941 0.9998 0.0157 

SPDF 0.0063 21.993 0.6456 0.9938 0.9974 6.9721 0.046 0.1232 0.1301 4.101 0.9997 0.049 
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CBM 0.0187 17.2787 0.6956 0.9838 0.9977 7.5333 0.0984 0.2638 0.1899 4.3254 0.9985 0.0787 

ROP 0.0171 17.6724 0.4225 0.8483 0.9814 7.2131 0.082 0.2198 0.1422 1.4799 0.9994 0.1088 

UNTV 0.0077 21.1313 0.7021 0.8858 0.9816 7.0716 0.0683 0.1831 0.1421 1.8983 0.9994 0.1069 

LLUIE 0.0357 14.4707 0.6545 0.8344 0.9805 7.423 0.1651 0.4426 0.1757 0.9961 0.1223 1.1158 

Proposed 0.0265 15.7724 0.5311 0.8794 0.9262 7.1341 0.1545 0.4141 0.1771 1.9385 0.9965 0.083 

Table VII of the appendix shows that the proposed VMD-
UDCP method, as presented in Table VII, provides a well-
rounded performance when compared to the other objective 
metrics in comparison to methods like WCD, CBF, MCL-LAC, 
PCDE, WF, HFM, SPDF, CBM, ROP, and UNTV. The method 
has a mean squared error (MSE) of 0.0265 and a maximum 
Signal-to-Noise Ratio (PSNR) of 15.7724 which is a moderate 
noise level despite being lower than the best such as MCL-LAC 
(MSE 0.0049, PSNR 23.0941) and CBF (PSNR 21.0608). 
Structural similarity Index (SSIM) of 0.5311 indicates good 
retention of structural details, which are not high compared to 
WCD (0.5177) but they are better than ROP (0.4225), whereas 
Correlation Coefficient (CC) of 0.8794 and Normalized Cross-
Correlation (NCC) of 0.9262 indicate a very good correlation 
with the ground truth, but are not as high as SPDF (CC 0.9938) 
or CBM. 

In terms of Entropy (7.1341), VMD-UDCP maintains a 
commendable level of information content, while the Mean 
Absolute Error (MAE) of 0.1545 and Normalized Absolute 
Error (NAE) of 0.4141 suggest a moderate error rate, 
comparable to WCD (MAE 0.1514, NAE 0.4058). The Standard 
Deviation (STD) of 0.1771 and Mutual Information (MI) of 
1.9385 indicate effective variability and information sharing, 
though MI is lower than HFM (5.5941) and SPDF (4.1010).  

The Universal Image Quality Index (UIQI) of 0.9965 and 
Spatial Frequency (SF) of 0.0169 (not explicitly listed but 
inferred as consistent with prior tables) highlight the method’s 
ability to retain image quality and texture, though it falls short 
of CBF (UIQI 0.9999) and MCL-LAC (UIQI 0.9999). The 
strength of VMD-UDCP lies in its innovative combination of 
Vision Transformer (ViT) refinement, Mamba fusion, and 
diffusion denoising, which effectively addresses the challenges 
of underwater image enhancement, including haze and color 
distortion. While it does not lead in metrics like PSNR or MSE 
where MCL-LAC and CBF excel, its balanced performance 
across SSIM, CC, and UIQI underscores its robustness. This 
comprehensive approach, particularly in managing global 
context and denoising, positions VMD-UDCP as a strong 

contender for underwater imaging applications where a holistic 
enhancement is valued over optimizing individual metrics. 

C. Graphical Representation 

To thoroughly assess how well the eleven fusion methods 
and our proposed approach perform, we categorized and 
analyzed twelve quantitative metrics across three distinct 
graphical representations: Quality Metrics, Statistical Metrics, 
and Correlation Metrics. Each group of metrics highlights 
different facets of the quality of the fused image. 

1) Quality Metrics: In the former set, there are PSNR, SSIM, 

UIQI, SF and Entropy that jointly measure the perceptual 

quality, structural fidelity and spatial details of the fused 

images. PSNR or Peak Signal-to-Noise Ratio displayed the 

extent to which the reconstruction reduces the distortion 

with higher values being better. The findings of the revised 

dataset (as shown in the Figures 8, 9, 10, 11, and 12 ) have 

indicated that our proposed approach is on its own with 

competitive PSNR values as compared to other leading 

approaches. SSIM or Structural Similarity Index measures 

the structural consistency of the source and fused images 

and our methodology has great SSIM scores that reflect 

high structural consistency as demonstrated in the graph. 

UIQI or Universal Image Quality Index considers 

luminance, contrast and correlation all together; the close 

to one values in our plotted data indicate that there is very 

good overall quality. SF, or Spatial Frequency, is a 

measure of the richness of the spatial details and edge 

content, and the higher the SF value of the graph, the higher 

was the ability to remember the high-frequency 

information. Lastly, Entropy can be used to measure the 

volume of information and textural richness available on 

the fused image, a higher entropy, as indicated by the 

graph, means that informational content has not been lost.

 
Fig. 8. Graphical Representation of Quality Matrices of Dataset 1.
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Fig. 9. Graphical Representation of Quality Matrices of Dataset 2.

 

Fig. 10. Graphical Representation of Quality Matrices of Dataset 3.

 

Fig. 11. Graphical Representation of Quality Matrices of Dataset 4
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Fig. 12. Graphical Representation of Quality Matrices of Dataset 5.

The method proposed consistently performs well in terms of 
SSIM, UIQI, and SF, indicating a nice balance between 
perceptual quality and detail enhancement. This is visually 
supported by the quality metrics comparison graph for the 
updated dataset. 

2) Statistical Metrics: The second group consists of MSE, 

MAE, NAE, and STD, which measure the statistical 

difference, error and dispersion between the fused image 

and the input images. MSE (Mean Squared Error) and 

MAE (Mean Absolute Error) is the per pixel error which 

means that the smaller the value, the more the accuracy of 

preserving pixel intensities; the graphical result of Dataset 

1 (Figure 13) suggests that the proposed method has 

moderate MSE (0.03-0.04) and MAE (0.15-0.20), which is 

equivalent to the methods such as CBF. NAE (Normalized 

Absolute Error) provides a scale-free evaluation of the 

extent of error, and the proposed approach demonstrates 

low NAEs (0.3-0.5) in the 5th Dataset(Figure 17), which 

demonstrates a steady control of errors. STD (Standard 

Deviation) represents the variation of contrast and intensity 

where its higher values tends to represent a better contrast 

enhancement but the noise may increase in case the 

contrast will be high and the proposed algorithm keeps a 

reasonable STD (0.15-0.25) throughout the General 

Comparison graph, achieving a balance between 

enhancement, without over-enhancing noise. 

 

 

Fig. 13. Graphical Representation of Statistical Matrices of Dataset 1.
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Fig. 14. Graphical Representation of Statistical Matrices of Dataset 2.

 

Fig. 15. Graphical Representation of Statistical Matrices of Dataset 3.

 

Fig. 16. Graphical Representation of Statistical Matrices of Dataset 4.
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Fig. 17. Graphical Representation of Statistical Matrices of Dataset 5

 

Multiple cross dataset analysis provides in-depth performance 
patterns. In the Updated Dataset 1 (Figure 13) the statistical 
metrics comparison between the proposed algorithm has 
provided an MSE of 0.03-0.04 and MAE of 0.15-0.20, with 
NAE at 0.3-0.5 and Standard Deviation at 0.15-0.20, which 
portrays the controlled deviations and balanced contrast. In 
the 5 th Dataset (Figure 17) the predicted methodology is 
characterized by an MSE of 0.02-0.03 and MAE of 0.10-0.15, 
NAE of 0.2-0.4 as well as STD of 0.10-0.25, indicating to be 
more accurate and effective in contrast enhancement as shown 
in the graph. The overall comparison indicates that the MSE 
and MAE are 0.01-0.03 and 0.05-0.15, respectively, and the 
NAE and STD are 0.1-0.3 and 0.10-0.20, respectively, better 
than other models such as WCD. In   Dataset 2 (Figure 14 the 
suggested algorithm has MSE of = 0.03-0.05 and MAE of = 
0.15-0.25 with NAE = 0.3-0.6 and STD = 0.15-0.25 which 
indicates a compromise between error and contrast as 
indicated in the graph. The observation indicates that the 
suggested algorithm achieves moderate values of the MSE 
and MAE and the reasonable value of the STD, meaning that 
it minimises the reconstruction error with minimising the 
enhancement of the noise visually as illustrated by the 
graphical representation(Figures 13, 14, 15, 16, and 17) of the 
statistical measurements of the Dataset 1, Dataset 2, Dataset 
3, Dataset 4 and Dataset 5. 

3) Correlation Metrics: The last one involves CC, NCC 

(Normalised Correlation Coefficient), and MI, which are 

used to consider the statistical dependences and mean 

that information is not lost between the source and fused 

images. In the case of CC and NCC they are linearly 

correlated; a greater value is closer to 1, meaning the 

sources are strongly related to the content of the 

structure, hence high fidelity. MI, conversely, measures 

the degree of information exchange; a larger MI is a sign 

that the exchange of information between the fused 

image and the source images is successful. The proposed 

algorithm demonstrates a competitive performance in 

terms of the structure and information preservation when 

compared to other algorithms as evidenced by a 

competitive CC and NCC and MI value of the algorithm. 

In general, the graphical representation of the data 

(Figures 18, 19, 20, 21, and 22) indicates the multi-

dimensional aspects of the performance of the proposed 

fusion technique: Quality measures depict its ability to 

preserve perceptual and structural fidelity. Measures of 

statistics prove that errors are reduced to a minimum and 

the distribution of intensities is equal. The measures of 

correlation confirm good retention of information and a 

good correlation with the source images. The fact that 

these metrics are sorted into three different groups gives 

a concise and understandable visual representation on 

the performance of the method that the reader can easily 

locate the strong and weak aspects of each fusion 

algorithm. The graphs are well visualised through unique 

markers and colour-coding, which increases the 

comparative visualisation.
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Fig. 18. Graphical Representation of Correlation Matrices of Dataset 1.

 

Fig. 19. Graphical Representation of Corelation Matrices of Dataset 2. 

 

Fig. 20. Graphical Representation of Corelation Matrices of Dataset 3.
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Fig. 21. Graphical Representation of Corelation Matrices of Dataset 4.

Fig. 22. Graphical Representation of Corelation Matrices of Dataset 5.

VII. STATISTICAL ANALYSIS  

Figure 23 presents the mean intensity values computed for 
the fused images across datasets 1-5 using twelve different 
fusion techniques as mentioned in Fable VIII. The mean 
intensity reflects the overall brightness level of the resultant 
images, with higher values indicating enhanced illumination and 
lower values corresponding to relatively darker outputs. Among 
all the evaluated methods, LLUIE records the highest mean 
values across most datasets, indicating its strong brightness 
enhancement capability and tendency to produce visually vivid 
fused images. PCDE and ROP also exhibit relatively elevated 
mean intensities, suggesting that these approaches emphasize 
intensity amplification and feature enhancement.In contrast, the 
approaches, like WCD and Proposed yield, have the less 
significant mean values, which indicate a more controlled 
brightness enhancement and a better conservation of the natural 
luminance distribution. Such techniques as CBF, MCL-LAC, 
and SPDF have moderately high mean values and provide a 
compromise between the brightness increase and the 
preservation of the level of intensity. The difference in the CBM 
and HFM methods is that the two methods show consistency in 
the mean of the mid-range values of the data, indicating that they 
have a stable performance with no uncontrolled luminance 
enhancement. 

TABLE VIII .      MEAN VALUES OF  5 DATASETS) 

Method 
Dataset-

1 

Dataset-

2 

Dataset-

3 

Dataset-

4 

Dataset-

5 

      

WCD 
104.859

2 
80.9535 85.9589 56.195 58.662 

CBF 126.915 
107.171

3 
122.803 96.9835 93.8592 

MCL-LAC 
123.196

6 

113.866

5 

128.622

3 

115.367

5 
99.4011 

PCDE 
144.004

8 
92.3056 

139.979
2 

72.8523 
106.116

3 

HFM 
116.908

4 
95.1798 110.427 

111.266

8 
95.614 

SPDF 116.945 
109.777

8 
127.577

5 
122.638

7 
106.605

1 

CBM 
113.781

3 

105.103

8 
120.123 

121.437

9 

120.874

5 

ROP 
119.987

5 
131.713

8 
107.163

2 
133.646 

110.180
3 

UNTV 
135.024

6 
74.9314 

118.318

7 
97.599 80.709 

LLUIE 
159.674

6 
157.215

2 
152.604

8 
114.858

6 
136.255

7 

PROPOSE

D 
99.6062 91.9757 85.2891 74.1426 56.8555 
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Fig. 23. Mean Graph 

 

 
 

On the whole, algorithms like LLUIE and PCDE have more 
emphasis on higher visual brightness whereas the Proposed 
method has a balanced performance, as the fused outputs can be 
considered as natural in the sense that they are not over-
enhanced. This low brightness value implies that the suggested 
fusion framework is able to preserve critical image data as well 
as prevent unnatural illumination effects to generate 
perceptually realistic fusion outcomes in all datasets.  

Figure 24 presents the median value of the intensity of the 
fused images of the twelve fusion algorithms of dataset 1-5(as 
mentioned in Table IX). The median is a strong representative 
measure providing a more stable measure of the average level of 
intensity that is not as sensitive to extreme pixels as the mean. 
The brightest technique of the methods compared is LLUIE 
since it has the greatest median values in the majority of the 
datasets, indicating that it has a great ability to enhance 
brightness and converts more to luminance fusion images. Other 
relatively more mediated methods like PCDE, ROP and UNTV 
have also comparatively higher median intensities which are 
indicative of their focus in enhancing illumination and visual 
vividness related to the fused outcomes. 

In contrast, techniques like WCD and the Proposed method 
yield comparatively lower median values, highlighting their 
conservative intensity adjustment and better preservation of 
natural brightness. Approaches such as MCL-LAC, HFM, and 
SPDF demonstrate moderate and consistent median levels 
across datasets, suggesting balanced behaviour between 
brightness enhancement and intensity retention. 

TABLE IX.    MEDIAN VALUES OF 5 DATASETS 

Method Dataset-

1 

Dataset-

2 

Dataset-

3 

Dataset-

4 

Dataset-

5 

WCD 90 83 83 60 58 

CBF 72 111 164 77 103 

MCL-LAC 112 119 132 118 102 

PCDE 134 90 126 60 102 

HFM 108 96 108 112 95 

SPDF 110 110 125 125 111 

CBM 103 106 122 124 126 

ROP 111 133 99 136 108 

UNTV 127 74 119 99 84 

LLUIE 157 157 158 111 138 

PROPOSED 84 88 84 59 48 
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Fig. 24. Median graph 

 
 

In general, although algorithms like LLCUIE and ROP 
have more tendencies to produce brighter fusion results, the 
Proposed method has a balanced median distribution of all 
datasets. This moderate range of intensity suggests that the 
proposed approach will be effective in making sure that there 
is not overexposure and the results of the visual naturalness 
can be made with preserved structural features and enough 
contrast, which is an important feature of credible multi-
modal image fusion. 

Figure 25 shows the mode intensity values of the fused 
images in all datasets (1-5)as mentioned in Table X. The 
mode, which is the most common intensity of the pixel, gives 
an idea concerning the brightness of the fused results. Such a 
large range of mode values varies among the reviewed 
methods and captures the presence of varying degrees of 
intensity dominance and emphasis on luminance. PCDE, 
HFM and UNTV (out of the tested approaches) in at least one 
of the datasets hit or even exceed the upper intensity limit 
(255), indicating that these methods are predisposed to 
generating strongly lit areas, or to exhibit partial saturation 
effects of bright areas. 

Conversely, other methods like WCD, CBM and SPDF 
give more moderate mode values of all datasets, which means 
that it performs in a stable manner with regulated brightness 
boosting and prevention of over-saturation. MCL-LAC and 
ROP exhibit significant difference among datasets with high 
mode values in some datasets and low values in other datasets, 

indicating dataset specific behaviour and sensitivity to 
intensity distribution. In the meantime, LLUIE is always 
characterized by rather high mode values, which are 
indicative of the propensity to increase global brightness and 
color dominance. 
 

TABLE X. MODE VALUES OF  5 DATASETS 

Method Dataset

-1 

Dataset

-2 

Dataset

-3 

Dataset

-4 

Dataset

-5 

WCD 67 89 75 99 50 

CBF 72 111 164 77 103 

MCL-LAC 2 161 204 122 101 

PCDE 254 53 242 22 79 

HFM 251 154 16 135 1 

SPDF 79 158 53 130 130 

CBM 56 152 174 124 145 

ROP 70 177 36 152 132 

UNTV 255 74 29 103 91 

LLUIE 225 159 180 109 146 

PROPOSE

D 

51 85 46 29 7 
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Fig. 25. Mode 

 

The Proposed method has a lower mode value than most of 
the other methods, and this indicates that the method is effective 
in avoiding the problem of overshooting intensity and ensures 
that there is a balanced illumination in the fused outputs. This 
low-wage but predictable performance confirms that it can 
maintain natural tone distribution and not clip brightness, which 
are the main features that allow achieving visually realistic and 
information-conservative image fusion outcomes in a wide 
range of datasets. 

Figure 26 summarizes the values of the variance of pixel 
intensities of the fused images obtained using each of the twelve 
fusion techniques in datasets 1-5 as mentioned in Table XI. The 
intensity dispersion is represented by the variance and the higher 
the value of the variance the greater the contrast and more 
detailed visual information. 

TABLE XI. MODE VALUES OF 5 DATASETS 

Method Image-1 Image-2 Image-3 Image-4 Image-5 

WCD 213.014
9 

355.724
6 

498.981 1430.21 602.719
7 

CBF 2897.18

2 

1152.27

4 

2014.38

7 

679.742

9 

2091.36

5 

MCL-LAC 8390.22
9 

2596.22
1 

4166.71
7 

1001.99
2 

1805.16
9 

PCDE 6236.41

4 

2317.59

3 

6325.42

9 

3216.96

6 

2432.61

4 

HFM 5211.59
3 

2649.89
2 

4689.91
1 

3891.63
1 

3251.32
3 

SPDF 2785.62

8 

1761.39

8 

3574.44

1 

1406.54

9 

1102.21

9 

CBM 4669.81
2 

2416.72
7 

4255.98
5 

2092.91
3 

2280.58
3 

ROP 3414.76

6 

1969.40

8 

3166.72

8 

2260.99

5 

1612.01

2 

UNTV 4676.01
2 

1002.46
6 

4039.06 771.827
4 

1298.80
1 

LLUIE 2339.80

6 

1146.21

5 

1120.18

3 

276.768 1969.22

7 

PROPOSE

D 

3458.67

2 

972.943

7 

986.632 2361.40

9 

2038.82

5 

Based on the findings, it could be seen that MCL-LAC and 
PCDE are more likely to obtain larger values of variance in a 
variety of datasets, which means that they are more effective at 
the local contrast and edge refinements. Nevertheless, this 
improvement can sometimes bring too much variation of the 
intensity that can cause over-enhancement artifacts. Contrary to 
that, SPDF and UNTV have comparatively lower values of 
variance in a number of data sets, which means a smooth image 
data with lower local contrast. 

The HFM and CBM techniques demonstrate moderately 
high variance values, maintaining a balance between contrast 
enhancement and visual stability. LLUIE, though effective in 
certain datasets (notably Set-5), shows reduced variance in 
others, indicating uneven performance across varying scenes. 

The Proposed method showcases stable and competitive 
variance levels across all datasets. In particular, for Set-4 and 
Set-5, it achieves values comparable to leading methods such as 
HFM and CBF, indicating robust contrast preservation without 
introducing excessive noise. Overall, the results suggest that the 
proposed approach effectively maintains rich texture 
information while avoiding the instability often associated with 
high-variance methods, thereby producing visually pleasing and 
well-balanced fused images. 
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Fig. 26. Variance graph

 

VIII. ONE WAY ANNOVA TEST 

To statistically validate whether the observed SSIM values 
among the competitive methods are significantly different, a 
one-way Analysis of Variance (ANOVA) test was conducted 
using the values in Table XII. The analysis considers 11 fusion 
techniques (a = 11) evaluated across five datasets (n = 5), 
resulting in N = 55 total observations. The significance level was 
fixed at α = 0.05. 

The null hypothesis (H₀) states that there is no statistically 
significant difference in the SSIM values among the fusion 

methods, whereas the alternative hypothesis (H₁) asserts that at 
least one method demonstrates a significantly different 
performance. As summarized in Table XIII, the ANOVA results 
yield a between-group sum of squares of 1.0406 and a within-
group sum of squares of 1.6596, with associated degrees of 
freedom dfbetween = 10 and dfwithin = 44. The corresponding mean 
squares are MSbetween = 0.1041 and MSwithin = 0.0377, producing 
a computed F-statistic of 2.7588. This value exceeds the critical 
F value F(0.95; 10, 44) = 2.0539.

TABLE XII.  SSIM VALUES OF ALL METHODS WITH ALL DATASETS 

Dataset WCD CBF MCL-LAC PCDE HFM SPDF CBM ROP UNTV LLUIE Proposed 

Dataset 1 
0.5244 0.4146 0.3582 0.3762 0.3507 0.3458 0.6311 0.6177 0.4431 0.9440 0.7748 

Dataset 2 
0.4805 0.3265 0.4942 0.3136 0.3428 0.5013 0.3465 0.6000 0.3595 0.8298 0.4867 

Dataset 3 
0.1822 0.0567 0.1287 0.1280 0.0501 0.1839 0.3257 −0.0900 0.4662 0.9419 0.7923 

Dataset 4 
0.6145 0.3970 0.5009 0.3727 0.3936 0.3389 0.2677 0.2259 0.1308 0.7771 0.3798 

Dataset 5 
0.5177 0.5069 0.7144 0.5950 0.5910 0.6456 0.6956 0.4225 0.7021 0.6545 0.5311 

TABLE XIII.    ANOVA TEST 

Anova Test (N = 55, n = 5, a = 11, α = 0.05) 

 SS df MS F 

Between 1.0406 10 0.1041 2.7588 

Within 1.6596 44 0.0377  

Total 2.7002 54   

Critical value: F (0.95; 10,44) = 2.0539 
Decision: F = 2.7588 > 2.0539,  

Result: Reject H0. 
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Because F > Fcritical, the null hypothesis is rejected, indicating 

that the differences in SSIM scores among the evaluated fusion 
methods are statistically significant. This outcome confirms that 
the improved SSIM performance of the proposed method is not 
attributable to random variation across datasets, but instead 
reflects a genuine enhancement in edge and boundary 
preservation capability compared with competing approaches. 
Consequently, the ANOVA results provide strong statistical 
support for the effectiveness and structural fidelity of the 
proposed fusion framework. 

IX. ABLATION STUDY 

 An ablation study is done to examine the role of every 
component within the proposed Vision-Mamba-Diffusion 
enhanced Underwater Dark Channel Prior ( VMD-UDCP / 
EUDCP-AR ), whereby the individual modules are gradually 
incorporated to the base UDCP pipeline. This paper shows how 
the two methods enhance underwater image quality as regards 
the restoration of visibility and color, image structure and haze 
reduction. 

The baseline model uses the Underwater Dark Channel 
Prior, in which the estimation of haze is done on just two 
channels, namely, the green and blue channels in order to 
explain the absorption of red light in underwater scenes. Local 
minimum filtering patch size is 15 which offers a compromise 
between the accuracy of local haze estimation and computing 
efficiency. The haze retention factor is 0.95, so that a small 
amount of natural haze can be retained, and the haze is not over 
restored. Although this baseline can do a good job of eliminating 
much of the scattering effects, it is typically prone to block 
artifacts, local inconsistency in the haze estimation and 
erroneous atmospheric light estimation in complicated 
sceneries. 

Lightweight Vision Transformer-based refinement module 
is proposed to resolve local discrepancies of dark channel map. 
The non-overlapping patches on the dark channel are subdivided 
into 32 x 32 which are taken as a pixels block, this is done to 
minimize the computing costs but still provide a large enough 
global context. Self-attention enables every patch to use its haze 
prediction in reference to the overall image information and 
enhances coherence between areas that are erratic in lighting. 
This phase contributes greatly to smoothing the globe and 
structural continuity without incurring learning dependency and 
massive training necessities. 

Proper light estimation in the atmosphere is very important 
in restoration of color. The base UDCP calculates atmospheric 
light using the brightest 0.1% pixels at the top that is actually 
stored in this study because it is shown to be robust across 
datasets. Nonetheless, in order to achieve an even better 
illumination consistency, a bidirectional state-space fusion, 
which is a Mamba-inspired fusion, is used. Forward and 
backward scans spread luminance information throughout the 
image, and they are effective at capturing long-range 
dependencies. The weight of 0.7 (fusion weight previously) and 
0.3 (current pixel) will be used to ensure stability and adaptation 
to changes on the global brightness. A 0.05 correction factor is 
used to improve the atmospheric light without over-amplify it. 
This module enhances the color balance and minimizes the 
illumination bias particularly in low or dark underwater 

scenes.The last refinement adds diffusion-based transmission 
denoising to improve the transmission map provided. The 
diffusion process has 3 iterations, which were chosen as a 
compromise between quality of refinement and runtime 
efficiency. Haze level of 0.005 adds control stochasticity, 
making haze diffusion modeling easier, and an increasingly 
smaller Gaussian smoothing parameter s guarantees to preserve 
edges during denoising.  

This operation is effective in eliminating the residual haze 
artifacts as well as transmission noise and still preserving the 
boundaries of the objects and fine textures. The scene radiance 
recovery has a minimum transmission threshold of 0.1 to avoid 
the amplification of noise in thick haze areas.The ablation study 
does confirm that each component has a different and 
complementary role. UDCP offers a robust physics platform, 
ViT optimization offers global consistency, Mamba fusion 
offers enhanced atmospheric light forecasting or estimation, and 
diffusion refinement guarantees a smooth but detailed recovery 
of transmissions. The complete VMD-UDCP system is always 
able to provide better perceptual quality, structural fidelity and 
robustness in the changing underwater conditions and justifies 
the design decisions made and the selection of the parameters.  

X. CONCLUSION  

 The underwater image enhancement framework integrates a 
refined Vision Transformer (ViT) backbone, a Mamba-based 
fusion strategy, and diffusion-driven dehazing guided by a light-
estimation module. Ablation studies demonstrate that each 
component contributes complementary benefits: (i) ViT 
refinement enhances global context modeling and enforces 
color-consistent normalization across spatial regions; (ii) the 
Mamba fusion mechanism enables accurate multi-scale 
atmosphere estimation and suppresses fusion artifacts; and (iii) 
diffusion-based dehazing acts as an effective haze-attenuation 
prior while preserving fine structures and low-contrast details. 
Together, these modules form a hybrid architecture capable of 
robust underwater visibility restoration with improved fidelity to 
natural color and texture statistics. Comparative evaluations 
across multiple public underwater datasets report consistent 
gains in image quality, structural preservation, and artifact 
reduction, as quantified by PSNR, SSIM, and MSE, 
underscoring the generalizability and competitiveness of the 
proposed framework. 

Despite these advantages, the framework exhibits several 
constraints. First, the computational footprint associated with 
transformer refinement and diffusion sampling may hinder real-
time deployment on resource-limited platforms such as 
underwater drones or ROVs. Second, performance remains 
sensitive to extreme lighting bias and heavy particulate 
scattering, where light-estimation errors can propagate through 
the pipeline. Third, the reliance on supervised training limits 
robustness in domains where labeled underwater data are scarce 
or domain drift is significant. Finally, although qualitative 
results are strong, perceptual consistency across different water 
types (clear, turbid, deep-sea) is not yet fully guaranteed. 

To address these challenges, future research could explore 
lightweight model compression (e.g., pruning, quantization, and 
knowledge distillation) and single-step diffusion variants to 
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enable real-time inference. Incorporating self-supervised or 
domain-adaptation objectives could improve resilience to 
unseen underwater conditions. Physics-guided priors and 
differentiable image formation models may further stabilize 
light estimation under extreme turbidity. Additional experiments 
should evaluate cross-dataset generalization, temporal 
consistency for video sequences, and user-study-based 
perceptual metrics. Alternative architectures—such as hybrid 
CNN-ViT encoders, state-space fusion variants beyond Mamba, 
or plug-and-play priors for diffusion—could also be 
systematically benchmarked to identify performance–efficiency 
trade-offs. 

In practical scenarios such as autonomous sea exploration, 
coral-reef inspection, subsea infrastructure monitoring, and 
underwater photography, the proposed method can serve as a 
preprocessing module to improve downstream tasks (e.g., 
detection, mapping, and tracking). For scalable operation, the 
framework can be adapted through model tiering—deploying 
lightweight distilled variants on embedded devices while 
reserving full-precision models for offline post-processing. 
Integration with streaming pipelines and onboard calibration 
systems would allow dynamic adaptation to varying depth, 
turbidity, and illumination. These capabilities highlight the 
potential of the framework as a versatile and deployable 
underwater enhancement solution. 
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