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Abstract 

This study proposes a unified environmental surveillance system, which fuses IoT sensor networks and the visual analytics of multispectral 

remote-sensing to address the shortcomings of the conventional surveillance solutions. Edge-based LSTM anomaly detection on 

distributed nodes of the IoT can offer high-frequency local measurements, whereas a hybrid ResNetVision Transformer (ViT) model can 

improve the analysis of the satellite image. An adaptive Kalman-based temporal-spatial fusion algorithm incorporates heterogeneous 

streams of data towards better environmental intelligence. The system was highly performing, indicating the accuracy of the IoT sensors 

in 91.3-98.1% and a hybrid model at 92.4% and the fused levels at 94% and above respectively. The results were impressive on the system 

level, since the response time to events was improved significantly, the completeness of data improved, and the accuracy of anomaly 

detectors increased, as well as the network load decreased. On the whole, the suggested structure has high potential to monitor the 

environment in real-time, being scalable, in the fields of smart agriculture, air-quality monitoring, water-resource control, climate-risk 

identification, and smart urban governance. 
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I. INTRODUCTION 

Rapid urbanization, industrialization, climate change and 
anthropogenic stress are causing unprecedented transformation 
in environmental systems across the world [1]. These activities 
have increased the rate at which environmental abnormalities 
like abrupt pollution surges, thermal strain, water pollution, 
deteriorating vegetation well-being and ecological balance 
changes are happening [2]. Conventional environmental 
surveillance systems, which rely mostly on manual sampling, 
regular laboratory tests and sparsely placed sensors, no longer 
can adequately measure the magnitude, pace and intricacy of 
such changes [3]. They do not deliver the temporal granularity 
and spatial continuity needed to timely detect and predict 
possible environmental risks and mitigate them [4]. 

In its turn, recent breakthroughs in digital ecosystems, 
especially the Internet of Things (IoT) and remote sensing via 
satellites have created new opportunities to create intelligent, 
multi-layered, and real-time systems of environmental 
surveillance [5]. IoT allows the high-frequency deployment of 
low-cost sensors that are able to capture air quality, water 
parameters and microclimatic variables, whereas remote sensing 
offers multispectral and thermal observations of large areas that 
are able to recognize spatial patterns and environmental 
processes that are not perceivable at ground level [6]. 
Nevertheless, the two data modalities have been historically 
exploited individually, which leads to disjointed information 
pipelines and restricted situational-awareness [7]. 

This paper acknowledges the fact that environmental 
phenomena exist on both micro and macro scale, and that 
efficient surveillance demands the combination, and not the 
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separation, of sensory modes [8]. With the integration of both 
the IoT sensor systems and remote-sensed visual analytics one 
is able to build an integrated environmental intelligence system 
that can deliver continuous, scalable and rich context insights 
[9]. These frameworks do not only benefit the detection of 
anomalies but can also be used to generate environmental 
modeling, predict risks and make informed decisions in various 
applications like precision agriculture, disaster management, 
pollution surveillance, and sustainable urban planning [10]. 

 

A. Need for Integrated Environmental Surveillance 

The processes associated with the environment are multi-
dimensional in nature and are characterized by interactions 
among atmospheric, hydrological, terrestrial, and biological 
processes. Such interactions occur in different ways at different 
spatial and temporal levels [11]. For instance (1) Air pollution 
outbreaks may begin at a local level but spread quickly through 
the urban areas.(2)The source of vegetation stress can be in 
microclimatic disequilibrium but over wide agro-scenery. (3) At 
a point source, water contamination may be observed but over a 
long period, it may have an impact on ecosystems downstream. 

IoT sensors are good at measuring at high frequencies and at 
a point, they are able to track short-term variations like spikes in 
pollutants or rapid changes in temperature [12]. Their 
granularity is useful in detecting anomalies at localized scales 
but they are not as informed of the wide space as needed to link 
regional environmental patterns. 

Remote-sensed imagery, by contrast, has a wide-area 
coverage, thus it is able to detect landscape-scale processes, 
including urban heat islands, deforestation, algal blooms, the 
extent of a flood, or vegetation degradation. Satellite data are, 
however, generally affected by-limited temporal revisits, cloud 
cover obstruction, atmospheric scattering, data latency, 
andlower temporal resolution than IoT streams. 

A complete monitoring platform, i.e. aligning the IoT data to 
satellite-based analytics, is the solution to these constraints by 
leveraging the benefits of both modalities. These types of 
integration offer a rich spatio-temporal environmental dataset 
that can be continuously monitored, early anomalies are 
detected, and projections are made.   
 

B. Limitations of Existing Systems 

Although significant progress has been made in 
environmental monitoring technologies, several persistent 
challenges limit the effectiveness of existing systems: 
1) Temporal Gaps in Satellite Revisit Cycles: Sentinel-2 (5 

days) and Landsat-8 (16 days) are remote sensing systems 

that are not able to detect dynamic environmental changes, 

particularly in dynamic cities or farms. 

2) Sparse or Irregular IoT Deployment: IoT nodes are 

usually distributed in a non-uniform manner due to cost, 

complexity of maintenance, and distance, forming 

blinding spots in the environmental knowledge. 

3) Human-Dependent Image: Most remote-sensing 

processes still use manual or semi-automatic processing, 

thereby causing latencies in the detection of anomalies 

and subjectivity. 

4) Absence of Real-Time Data Fusion: Current models 

seldom tie ground-sensor data of the IoT with spectral 

information delivered by satellites in real-time and thus 

lack the chance to combine the complementary 

information provided by both data streams. 

5) Fragmented Analytical Pipelines: IoT platforms, satellite 

processing platforms, and deep-learning systems are 

typically created on a case-by-case-basis, creating 

incoherent workflows that are not interoperable. 

Collectively, the following limitations highlight the need of 
the integrated, intelligent and fully automated architecture of 
environmental surveillance that can bridge the gap between real 
time sensing and large scale remote-sensing analytics [13]. 

 

C. Role of IoT and Remote-Sensed Visual Analytics 

IoT and remote sensing serve complementary roles in 

environmental intelligence: 

1) IoT Contributions- 

 Monitors environmental measurements also on a high-

frequency basis. 

 Records fluctuations occurring in a short time that 

satellites cannot detect. 

 Enables edge computing of on-device preprocessing, 

anomaly detection, and data compression. 

 Allows the use of inexpensive, scalable deployment in 

various conditions. 

2) Remote-Sensed Visual Analytics Contributions 

 Provides extensive, multispectral, thermal, and 

temporal scenes on the environment. 

 Facilitates the extraction of complicated features 

based on such indices as NDVI, NDWI, LST, and 

spectral signatures. 

 Native classification with deep learning based on 

CNNs, Vision Transformers and spectral spatial 

models. 

 Gives the macro level context needed to comprehend 

large scale environmental processes. 

3) Integrated Fusion Advantages 

In cases where machine learning and probabilistic modeling 
is combined to fuse these modalities, the resulting system offers: 

 Multi-source environmental intelligence. 

 Anomaly detection at early stages and reduced false 

alarms. 

 Improved classification of the spectral-spatial-

temporal reasoning. 

 Resiliency to operational problems of sensors or 

satellite blockage. 
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 Better environmental management and policy making 

support. 

There is the ability of such hybrid forms to move towards 
more holistic and data-based environmental governance as 
opposed to fragmented monitoring. 

 

D. Problem Statement 

The growing pace of urban growth, industrialization, climate 
change, and anthropogenic stressors have complicated and 
increased the complexity of environmental monitoring [14]. 
Conventional monitoring methods, which are largely manual 
methods and only utilize laboratory analysis and the deployment 
of individual sensors, are inherently ineffective in identifying 
rapid or large-scale problems in the environment. Such 
traditional methods do not have the time resolution required to 
monitor rapidly changing phenomena, including pollution 
peaks, temperature fluctuations, or even a sudden water 
pollution. Moreover, they have narrow coverage space, hence 
blind spots, which they cannot observe early enough to take 
precautions over environmental degradation. 

Internet of Things (IoT) sensor networks have developed as 
a new option of continuous measurements in the environment, 
but they have significant limitations to operation and structure. 
Due to the limited resources and maintenance capabilities, the 
IoT nodes are frequently thinly distributed, thus causing 
disparities in data dissemination and inadequate coverage of a 
specific area. There is also a possibility that sensors are subject 
to noise, calibration drift, packet loss and failures due to power 
which compromises the validity of the collected data. In the 
meantime, remote-sensing satellites like Sentinel-2 and 
Landsat-8 offer high spatial density but are afflicted with 
lengthy revisit times, cloud cover, and atmospheric distortion, as 
well as the latency between data collection and delivery. This 
means that satellite imagery itself will not be able to provide 
real-time situational awareness as well as identify short-term 
anomalies. 

Today the IoT data streams and remote-sensing analytics are 
handled separately, which leads to disjointed workflows that do 
not allow the environment to be interpreted comprehensively. A 
unified system integrating real-time ground level measurements 
on an IoT with multispectral satellite-derived measurements 
does not exist. Such lack of integration leads to incomplete 
environmental intelligence, a decrease of accuracy of anomaly 
detection, delayed environmental response, and inefficient 
decision making. Additionally, the current environmental 
monitoring architectures do not often use a sophisticated deep-
learning mechanism that can identify both intricate spectral-
spatial-temporal features of multi-source data. 

Thus, the main issue that is discussed in this paper is the 
absence of an integrated, scalable, real-time environmental 
monitoring system that allows the combination of IoT sensors 
data with remotely-sensed visual analytics through the 
application of sophisticated tools of deep learning and 
probabilistic fusion. This issue is a major obstacle to good 
environmental monitoring, early-warning mechanisms, 
forecasting of risks and sustainable environmental governance. 

 

E. Significance of the Study  

This study has a great scientific, technological and socio-
environmental impact because it introduces a thorough model of 
integration of IoT and Remote Sensing that can revolutionize the 
future of environmental monitoring. The wide gap in the 
existing body of environmental intelligence that the research 
fills is the absence of integrated spatio-temporal environmental 
data: combining micro-scale IoT observations with macro-scale 
satellite-derived analytics. The suggested framework makes use 
of edge-level LSTM anomaly detection, a hybrid ResNetVision 
Transformer (ViT) deep-learning architecture, and an adaptive 
Kalman-based fusion framework to provide real-time and high-
precision environmental data [15]. 

The importance of this framework is that it offers sustained, 
high-resolution surveillance of the environment, which allows 
identifying the abnormalities in the environment early, which 
can be vegetative stress, air pollution hotspots, hydrological 
contamination, and climatic variations. The system is able to 
provide increased data completeness, fewer false alarms and 
better decision-making effectiveness, which is superior 
compared to current sensor-only or satellite-only systems. Its 
ability to reduce network load and response time to events 
makes it suitable to be deployed in congested urban areas as well 
as sparsely populated rural or remote area with low connectivity. 

In a bigger scope, this research adds to the sustainability and 
environmental governance processes in the world. It can 
promote the adaptation to climate change, the preparedness in 
case of natural disasters, the intelligent management of 
agriculture, and the ecological planning of cities. The 
intelligence dashboards of the platform can be used to allow 
policymakers, environmental agencies, and the smart city 
authorities to monitor the health of the environment and enforce 
environmental regulations, as well as design data-driven 
intervention strategies. 

Additionally, the research benefits the scientific community 
by presenting methodological advances, such as multispectral 
analysis hybrid deep-learning models, temporal-spatial fusion 
strategies, and IoT-satellite data pipes interoperability. These 
inventions give the basis of additional studies in the areas of 
environmental AI, geospatial analytics, Earth observation 
systems, and smart sensing. 

Ultimately, the study is important as it shows how integrated 
sensing ecosystems, based on IoT, remote sensing, and artificial 
intelligence, can transform environmental monitoring practices 
and allow managing natural and urban environments in a more 
resilient, informed, and sustainable manner. 

 

F. Purpose of the Study 

The major aim of this research is to develop and prove a 
comprehensive IoT- Remote Sensing system of integrated 
environmental surveillance that would overcome the limitations 
of traditional monitoring systems. The suggested framework 
includes:  

 A distributed network of multi- sensor IoT nodes that 

can monitor the atmospheric and hydrological 

conditions in real-time. 

 Lightweight LSTM based edge-level intelligence in 

on-site anomaly detection. 
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 Sentinel-2 and Landsat-8 multispectral satellite 

imagery to visual analytics at the macro-scale. 

 An advanced feature extractor and anomaly classifier 

(ResNet + Vision Transformer) based on hybrid deep-

learning. 

 An adaptive Kalman weighting-based (temporal-

spatial) data fusion model to integrate IoT and 

satellite-derived characteristics. 

 Environmental intelligence dashboard in real time to 

visualize anomalies and make decisions. 

The general purpose is building a single monitoring platform 
that is able to provide high precision, low latency, scalability in 
operations, and strong anomaly detection in various 
environmental settings. 

This study contributes to the scientific body of knowledge 
by showing how the fusion of multi-source environmental data, 
with the help of deep learning, can be used to improve 
environmental monitoring dramatically and to make the next-
generation smart environmental surveillance systems possible. 

 

G. Research Objectives  

This study is guided by the following four research 
objectives: 

1) To develop an all-encompassing environmental 

surveillance system integrating IoT sensor networks 

with multispectral visual analytics that is detached at 

a distance. 

2) To create and deploy a deep learning pipeline based 

on a hybrid ResNet-Vision Transformer model to 

analyze and detect anomalies in satellite images. 

3) To develop a temporal-spatial data fusion paradigm 

that is able to combine IoT time- series measurements 

with satellite-derived features to enhance the accuracy 

of environmental monitoring. 

4) To assess the functioning of the proposed integrated 

system as per the accuracy in detection, computational 

efficiency, and reduction of event-response latency. 
 

H. Novelty and Contribution of the Study 

Though edge-based anomaly detection, multispectral deep-
learning models and Kalman-based fusion methods have been 
studied separately, this study is a novelty at the system-
integration and algorithm-adaptation level. In contrast to 
traditional pipeline based methods that process IoT and satellite 
data sequentially, the proposed framework creates a drift 
sensitive, latency aware and uncertainty adaptive combination 
of heterogeneous modalities of sensing. The innovation is not on 
suggesting new standalone learning models, but the 
coordination of the models across edge and cloud layers, the 
explicit modeling of sensor drift and revisit gaps in the fusion 
mechanism and cross-scale anomaly confirmation between 
micro-scale observations of the IoT and macro-scale satellite 
analytics. It is an integrated design that achieves strong real time 

environmental monitoring which is not achievable using 
isolated or loosely coupled monitoring systems. 

 

I. Limitations and Practical Considerations 

Although the conducted performance of the suggested IoT-
remote sensing environmental surveillance framework can be 
regarded as encouraging, it is possible to identify certain 
limitations. The fact that the system relies on satellite data makes 
it prone to revisit delays and cloud cover, which can, 
temporarily, limit macro-scale validation of anomalies detected 
by IoT. Even though the adaptive fusion model minimizes 
uncertainty in such times, long time satellite outages are 
difficult. The IoT sensors that are more affordable can have their 
calibration drift and hardware degradation with time, making 
periodic maintenance necessary in terms of long-term 
deployment. Also, the computational demands of the hybrid 
ResNet Vision Transformer model might be a limitation to 
scalability and cloud resources in cases where large areas or 
dense sensor networks are to be monitored. The experimental 
assessment is partially based on synthetic IoT data to control the 
experiment, thus the performance can vary in the real-life 
scenarios, where there is noise, packet loss, and hardware 
failure. Lastly, the end-to-end latency of the achieved results is 
appropriate in most cases of environmental monitoring, but in a 
scenario that involves sub-second response time, additional edge 
and communication layer optimization might be needed. These 
restraints suggest the future work directions that can be greater 
field deployments, more fault tolerance, and better scalability 
plans. 

II. LITERATURE REVIEW  

A. IoT-Based Environmental Monitoring  

IoT systems had radically changed the paradigm of 
environmental monitoring, as they allowed continuous and high-
frequency and distributed data collection of heterogeneous 
ecological and urban environments. Before the introduction of 
the IoT technologies, the traditional techniques to track the 
environment mainly involved using the traditional techniques of 
environmental surveillance, including manual field sampling, 
periodic laboratory tests, and even individual instruments 
installed at random. These old infrastructures were characterized 
by low temporal granularity, spatial discontinuities and limited 
density of measurements and it was very difficult to record 
rapidly changing environmental dynamics. Sudden emissions by 
industrial sources, rapid dispersion of pollutants due to 
microclimatic variation, flash floods, or even changes in the soil 
or water chemistry were usually not noticed until it was too late 
and once they resulted in severe ecological or public-health 
effects. These constraints highlighted the ineffectiveness of 
conventional monitoring systems in assisting real time 
environmental decision making. 

In contrast, modern IoT-oriented solutions have presented 
new capabilities of flexibility, scalability, and adaptiveness with 
the combines of wireless sensor networks (WSNs), low-power 
wide-area networks (LPWAN, LoRaWAN), energy-efficient 
microcontrollers, and edge processing units. These systems 
enabled thousands of sensors to act independently, share data 
with limited human interventions, and produce high-resolution 
datasets that were able to capture micro-scale variability, as well 
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as larger-scale environmental trends. It was based on the 
integration of edge intelligence, in which machine-learning or 
anomaly-detection algorithms are tiny and run on sensor nodes 
or gateways, greatly decreasing the overhead of communication, 
improving latency, increasing reactiveness of the environmental 
monitoring infrastructure. Consequently, IoT ecosystems 
became potent instruments of real-time diagnostics, early-
warning systems and predictive environmental analytics. 

Kaginalkar et al. (2022) exhibited the potential of 
transforming the use of big-data governance models alongside 
IoT-based sensors in urban air-quality management [16]. They 
emphasized in their research that intelligent environmental 
surveillance needs more than mere sensor deployment; it needs 
to have structured data architectures, powerful data pipelines, 
and governance policies that promote data integrity, temporal 
consistency, and reliability. They installed sensors into a big-
data ecosystem and were able to process it automatically, cut 
down delays in the responses and enhance the interpretability of 
environmental indicators. This publication was a clear 
demonstration of the fact that the IoT systems should be backed 
by modern data-management systems to unveil their 
capabilities. 

Similarly, Popescu et al. (2019) increased the spatial 
capacities of IoT systems by combining WSNs with unmanned 
aerial vehicles (UAVs). Their study revealed that the UAV-
WSN hybrid structures surpass the spatial constraints of ground-
fixed sensors through the mobile sensing of the environment, 
which is adaptive, and sampling inaccessible or unsafe areas 
[17]. The UAVs may be deployed according to the timely 
detected anomalies through sensors, make specific aerial 
inspections, transfer sensor data to distantly located locations. 
This greatly improved the spatiotemporal resolution of the 
environmental datasets and provided a flexible multi-layered 
sensing infrastructure that dynamically responds to the 
environmental conditions. 

Zarboubi et al. (2024) offered additional proof of the 
flexibility of IoT by launching low-cost Raspberry Pi 
microcomputers combined with YOLOv10m, a contemporary 
deep-learning object and anomaly detector, in precision 
agriculture [18]. Their results validated the fact that even cost-
effective embedded systems are capable of providing highly 
accurate, fine scale environmental analytics. The 
democratization of high-technology environmental monitoring 
tools through the use of low-cost IoT sensors to identify pest 
intrusions, crop distress, or vegetation abnormalities shows this 
as the tools are available even in rural areas, which may have 
limited resources. 

In another significant contribution, Pei et al. (2021) 
emphasized how important integration of IoT streams and 
GIScience methodological approaches is, demonstrating that 
meaningful interpretation of IoT data cannot be achieved 
without contextualization of data by its geospatial location [19]. 
IoT sensors give point-based data measurements, but these data 
do not include spatial relationships: landforms, watershed 
boundaries, land-use patterns, and so forth. IoT systems were 
enhanced by GIS technology, which allowed environmental 
practitioners to relate localized variations to the process at the 
regional scale, which facilitated the use of the system in the 
characterization of landscapes, environmental risk assessment, 
management of natural resources and monitoring ecosystems. 

Complementing this, Kilinç (2024) highlighted the growing 
significance of GIS-based analytics, i.e. spatial clustering, 
kriging-based interpolation, geostatistical modeling and spatial-
temporal trend extraction. These cutting-edge methods of 
analysis were demonstrated to be quite useful in boosting 
predictive capabilities and explainability of IoT-based 
environmental data. GIS-based analytics were involved in more 
precise environmental modeling and forecasting by decreasing 
noise, detecting outliers and filling in space [20]. 

Collectively, the above studies all agree on one finding that 
IoT technologies have succeeded in development to become 
more than a mere sensing platform and have become a pillar of 
next generation environmental intelligence systems. By the 
capability to create high-density real-time information streams, 
scale spatial coverage with UAV-WSN hybrids, and provide 
higher analytical accuracy by integrating GIScience, IoT 
systems have become useful in multiple applications such as 
early-warning systems, precision agriculture, atmospheric 
pollution measurement, smart-water monitoring, and automated 
anomaly detection. The literature defines IoT as scalable, 
versatile and data rich backbone that can greatly enhance the 
level of accuracy, responsiveness and resilience of the 
environmental surveillance infrastructures across the globe. 

 

B. Remote-Sensed Visual Analytics  

Remote sensing became one of the most transformative and 
irreplaceable technologies of environmental surveillance 
because of its ability to gather synoptic, multi spectral and time-
fulfilled data on a regional to a global scale. In contrast to 
ground-based IoT sensors that could only record localized and 
point-specific data, remote-sensed imagery offered a wide-area 
observational coverage, which made it possible to record both 
subtle and large-scale phenomena in the environment that could 
not be easily seen or detected by traditional methods of 
monitoring. Its capacities to watch the earth, atmosphere, 
shoreline, and hydrology systems at the same time made it the 
core of the present-day environmental intelligence systems. 
Notably, remote sensing grew beyond primitive reflectance-
based measurements to the very advanced levels of analytical 
pipeline using machine learning, deep learning, and state-of-the-
art geospatial modeling. This shift further augmented its 
capabilities of providing highly accurate, automated and 
context-rich environmental information in sectors of agriculture, 
forestry, climate science, water management, disaster early 
warning, and ecosystem health. 

Wang et al. (2024) presented one of the most extensive 
analyses of the revolution of the satellite-based environmental 
diagnostics by machine learning [21]. In their research, they also 
showed that the application of multispectral and thermal 
imaging and models based on AI enhanced significantly the 
ability to detect environmental anomalies, including vegetation 
stress, soil moisture deprivation, nutrient imbalances, and crop 
disease development. The classical measurements, such as 
NDVI or NDWI, reflect the overall vegetation or water state, 
whereas machine learning methods can identify minor changes 
in the spectral properties way before the visual indicators appear. 
This was a paradigm shift instead of mapping the environment 
in stasis, to predictive and preventive environmental intelligence 
where the stakeholders will be able to take action before the 
ecological degradation is too severe. 
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Further strengthening this perspective, Zhang et al. (2022) 
carried out a comprehensive bibliometric and scient metric 
review that showed that the field of remote-sensing has grown 
exponentially over the years due to the availability of more 
sensors, enhanced spectral sensitivity and the availability of free 
and open data sources such as Sentinel-2 MSI, Landsat-8 
OLI/TIRS, and MODIS [22]. In their work, the research 
hotspots were found to be spectral unmixing, hyperspectral 
feature extraction, biophysical variable estimation, detecting 
change, land-cover mapping, and automated anomaly detection. 
These themes revealed remote-sensed analytics was now an 
interdisciplinary scientific ecosystem that combines physics, 
ecology, geoscience, machine learning and environmental 
modeling. The paper has pointed out that remote sensing was no 
longer limited to scholarly research but a strategic tool of 
governments, agricultural players, water managers and 
environmental control mechanisms. 

Shaurub (2024) increased the field of application through its 
proof of the importance of remote sensing in ecological and 
biological early-warning systems. Their research into the 
detection of fall armyworm exemplified the fact that problem-
specific spectral features, like canopy reflectance reduction, 
thermal change related to plant stress and spatial degradation 
patterns, could be detected by remote-sensed indices well before 
ground manifestations of the problem could be observed [23]. 
The combination of multispectral indicators and GIS-based 
spatial modeling made it possible to represent and predict the 
dynamics of pest infestation on a large and agricultural area. 
This made remote sensing a proactive monitoring system, which 
can provide early warning of biological hazards, hence 
protecting the crop production and food security. 

From a methodological standpoint, Venkataraman and 
Gautam (2024) presented an in-depth overview of techniques of 
satellite image preprocessing and analytical enhancement. Their 
study put emphasis on the significant advancement of 
atmospheric correction schemes, radiometric normalization 
processing and noise elimination approaches, and spectral-
spatial classification schemes [24]. They stressed that these 
preprocessing operations are not a fortuitous addition to the 
system but form the basis on which consistent classification is 
to be expected, particularly in cases involving medium-
resolution imagery prone to atmospheric interference. Their 
results supported the notion that the processed pipeline of 
satellite processing narrows the margin of uncertainty, enhances 
separability of objects, and augment the interpretive value of 
environmental records especially when these are applied in land-
use mapping, thermal anomaly detection and waterbody survey. 

Adding to this, Wang, Huang, and Zhang (2020) followed 
historical development of remote-sensing scene classification 
methods and found a definite transition between classical 
machine learning frameworks and the latest state of the art deep-
learning architectures [25]. Initial methods, including support 
vector machines, decision trees, random forests, and handcrafted 
texture features, provided practical but poor interpretive power 
since they are unable to represent hierarchical spatial patterns, 
or spectralspatial relationships. Recent advances in 
convolutional neural networks (CNNs), hybrid spectral-spatial, 
and Vision Transformers (ViTs) have provided strong 
algorithms to learn multi-scale representations which are learned 
directly on raw image data. These are models that are very 

effective in extracting deep semantic features, detecting 
complex land-cover patterns, and detecting fine-grained 
anomalies. Their greater ability to reason spatially and 
understand a situation in context increased the ability of remote 
sensing to go beyond basic classification to more complex 
functions like multi-temporal change detection, environmental 
forecasting, and automatic notification of environmental 
degradation. 

Collectively, the examined articles give solid proof that 
remote-sensed visual analytics had become a high-resolution, 
intelligence-oriented surveillance technology that was necessary 
in contemporary environmental regulation. Its combination with 
machine learning resulted in effective models which could 
identify the spatial patterns, predict ecosystem changes, and 
detect anomalies with great precision. Remote sensing provided 
macro-level information that could be used to supplement the 
micro-level measurements of IoT and overcome the spatial 
constraints of ground sensors at the advantage of the high-
frequency time resolution that could be offered by IoT systems. 

Consequently, remote sensing became a staple of modern 
environmental monitoring- supporting evidence-based decision 
making, improving predictive environmental protection, and 
demonstrated the capability to shift to highly automated, full 
scale environmental intelligence systems with the capability to 
deal with the increasing demands of climate change, biodiversity 
loss, water scarcity and urban pollution. 

 

C. Fusion Approaches 

The combination of remote-sensed imagery with the data 
created through IoT had become one of the most critical 
contributions to environmental intelligence with an opportunity 
to understand the ecological situation on a multi-scale and multi-
modal level. IoT sensors provided point-based datasets, which 
unlike satellites could provide rapid changes (air quality, soil 
moisture, hydrological, and microclimatic changes), which 
satellite sensors could not capture in time because of the time-
related limitations. On the other hand, the remote sensing using 
satellites and UAV gave extensive spatial resolution and made 
it possible to perform macroscopically the land cover, vegetation 
health, thermal environment, and water-body dynamics. 
Combining these mixed data streams overcame the drawbacks 
of each data system and generated more contextual and more 
complete and trustworthy information about the environment. 

Leung, Braun, and Cuzzocrea (2019) highlighted the 
importance of AI-based sensor information fusion as a way to 
enhance performance in environment-monitoring systems by 
supervised learning. Their experiment showed that a 
combination of several sensor streams increased the robustness 
of models, minimized ambiguity and provided more correct 
predictions especially on environmental data prone to noise [26]. 
The fused system also delivered more consistent environmental 
interpretations compared to any of the individual sources of data 
through the integration of varied sources including gas sensors, 
meteorological probes and spectral reflectance signals. 

Expanding on these insights, Li and Hsu (2022) introduced 
the notion of GeoAI, a new paradigm of analytics that combines 
geographic information science and artificial intelligence [27]. 
Their analysis demonstrated that GeoAI could be very useful to 
integrate IoT time-series data with satellite-based spectral 
features into integrated spatial processes. GeoAI allowed 
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detecting patterns at large scales, finding anomalies, and 
modeling the environment with a higher degree of precision 
through the use of deep-learning-based features extraction and 
spatial reasoning. The value of their findings was the recognition 
of the relevance of spatial-temporal alignment in multi-source 
analytics and the usefulness of integrating satellite images into 
IoT-enhanced geospatial pipelines. 

Pajany et al. (2024) proposed a multispectral image based 
deep-learning fusion neural network that uses multispectral 
images collected by UAVs to identify plant diseases [28]. Their 
model of hybrid was based on spectral properties obtained by 
UAVs and contextual environmental variables, including 
humidity, or soil variables. The fused representation greatly 
enhanced the classification accuracy of the plant disease 
detection models and demonstrated how multi-modal inputs 
enhanced the learning process and reduced the weakness of 
imagery or sensor data only. 

Complementing these findings, Seralathan and Edward 
(2024) surveyed a set of deep learning-related fusion methods 
on UAV-based crop surveillance in a variety of agricultural and 
climatic conditions [29]. Their comparison showed that fusion 
methods, specifically the implementation of CNN-Transformer 
hybrids, spectral-spatial analysis and attention-based methods, 
achieved greater stability of predictions and resistance to 
environmental changes. They observed that fusion models 
worked particularly well in cloud occlusion conditions, 
illumination change, or partial sensor breakdown, and multi-
source data integration is more reliable. 

Zhu et al. (2017) delivered one of the most impactful and 
thorough considerations of deep learning in remote sensing, 
such as multi-modal fusion method [30]. Their study described 
the process in which neural architectures would incorporate 
multispectral or hyperspectral images with other supplementary 
sensor data, terrain and time sequences. They established that 
state-of-the-art fusion models were significantly more effective 
in land-use classification, anomaly detection, and ecological 
forecasting through the exploitation of complementary assets in 
space, spectral, and temporal domains. 

Put together, the literature indicated that the fusion of multi-
modal based on AI, deep learning, and geospatial analytics was 
now critical to the next-generation environmental monitoring 
systems [31]. These types of fusion were improved: 

 Accuracy, by reducing uncertainty inherent in single-

source inputs 

 Contextual richness, by linking fine-grained local 

sensor readings with broad regional observations 

 Robustness, through redundancy and cross-validation 

between sensor modalities 

 Timeliness and reliability, on uniting the high-

frequency signals of IoT with the deep insights of 

space provided by the satellite platforms. 

The fusion of IoT data and remote-sensed visual analytics 
allowed transforming the solitary-observe approaches in the 
environment into combined intelligence systems that could 
comprehend it real-time, make predictions, and assist decision-
making in various ecological settings [32]. 

 

D. Research Gap  

The literature survey of scientific articles about the IoT-
based environmental monitoring, remote-sensed visual 
analytics, and multisource data fusion has shown that there is a 
significant advance in the evolution of distributed sensing 
systems, more advanced image-processing methods, and hybrid 
analysis frameworks. Nevertheless, even with the 
improvements, some crucial gaps were not filled and this 
constrained the performance and the expansion of the existing 
environmental surveillance systems. 

First, despite the fact that IoT networks had vastly improved 
the resolution in time of environmental measurements, existing 
literature by Kaginalkar et al. (2022) and Popescu et al. (2019) 
dealt more with domain-specific applications, including urban 
air quality, or hybrid UAV-WSN sampling, other than large-
scale and integrated environmental intelligence. The available 
IoT systems were often localized application-focused and did 
not have the capabilities of comparing sensor data with larger 
spatial structures, as observed with satellites. This implied that 
there was a loophole in contextual alignment between sensors 
and satellites to enable the full interpretation of the environment. 

Second, although remote-sensed visual analytics had 
evolved significantly for instance, Wang et al. (2024), Zhang et 
al. (2022), and Venkataraman and Gautam (2024) were confined 
to improvements in algorithms used to classify images, extract 
features or identify anomalies. These works highlighted the 
strength of multispectral and deep learning-based imagery 
analysis but did not mention how imagery may be continuously 
calibrated or validated on the basis of real-time ground-level 
measurements. Accordingly, a gap in the framework 
development that would allow integrating the macro-level 
potential of the remote sensing with the high-frequency and 
micro-level accuracy of the IoT sensing remained. 

Third, there were some limited studies that explored fusion 
approaches in specific contexts, including AI-based sensor 
fusion (Leung et al., 2019), GeoAI-based spatial integration (Li 
and Hsu, 2022), and UAV-sensor hybrid models (Pajany et al., 
2024; Seralathan and Edward, 2024) but none of them suggested 
an architecture of a generalizable fusion based on environmental 
surveillance. The previous studies on fusion were mostly 
focused on either UAV imagery and field-level data or 
algorithm-level fusion, but not the integration of ground IoT 
networks, satellite multispectral imagery, and deep learning into 
a single end-to-end system. This showed that there was a big 
discrepancy in terms of time-spatial fusion modeling that would 
enable harmonization between heterogeneous data in real time. 

Finally, there were no thorough evaluation frameworks of 
integrated IoT-remote sensing systems that measured detection 
accuracy, computational efficiency, and reduction of latency. 
Research tended to assess one of the sensing or the imaging 
components separately, and there was a lack of studies that 
assessed the entire performance of the unified environmental 
intelligence systems. 

Overall, although previous studies had achieved significant 
achievements in each of the individual fields, the current 
literature gap was present: 
1) an integrated architecture unifying IoT and remote-sensed 

analytics, 

2) real-time temporal–spatial data fusion models, 
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3) deep learning frameworks leveraging both sensor and 

satellite information, and 

4) systematic evaluation of such integrated systems. 

These limitations highlighted the necessity of the current 
research, the goal of which is to design and confirm a single IoT-
remote sensing-deep learning system of surveillance to detect 
and monitor environmental anomalies more effectively. 

 

III. METHODOLOGY 

The methodology used in the current research combines 
environmental sensing with the use of IoT devices, multispectral 
remote-sensed analytics, and temporal-spatial data fusion. The 
entire process includes gathering data, the implementation of 
IoT nodes, satellite image processing, the extraction of 
environmental features with the help of deep learning, and 
sensor image fusion to identify anomalies. The performance 
evaluation measures are also included in the methodology to 
justify the proposed integrated system. 
 

A. Data Sources 

The study utilized three categories of data to develop and 
validate the proposed environmental surveillance framework: 
(i) IoT Sensor Data 

Synthetic real-time sensor feeds were created to represent 
the most important atmospheric and hydrological variables, such 
as PM2.5, NO 2, VOCs, pH, turbidity, temperature and 
humidity. These parameters are some of the general air and 
water quality indicators provided in Table I. 

(ii) Remote-Sensing Data 

The following were the satellites that multispectral and thermal 

imagery were obtained: 

 LANDSAT-8 OLI/TIRS: Bands covering visible, 

NIR, SWIR, and thermal regions 

 Sentinel-2 MSI: Bands B2–B12 with 10 m and 20 m 

resolution 

These data were extracted to obtain environmental indices as 
well as to be inputs in visual analytics. 
(iii) Ground Truth Data 

Publicly available environmental datasets were used to 
obtain ground truth samples in order to confirm model 
predictions to achieve reliability of fused output. 
IoT Node Deployment 

The IoT nodes were intended to operate as edge enabled 
micro-environment monitoring units. Each node consisted of: 

 ESP32 microcontroller (data acquisition + Wi-

Fi/LoRa communication) 

 BME680 sensor (VOC, humidity, pressure, air 

quality) 

 MQ-135 sensor (NO₂, CO₂, NH₃, pollution gases) 

 DS18B20 sensor (temperature) 

 pH and turbidity modules (water-quality assessment) 

 LoRaWAN transceiver (long-range communication 

capability) 

Preprocessing of sensor data at the edge was done and sent 
to a cloud based MQTT broker using the IoT edge gateway. This 
design minimized bandwidth usage, latency, and high frequency 
data acquisition [34]. 

TABLE I.  IOT SENSOR NODE COMPONENTS AND THEIR FUNCTIONAL 

ROLE 

Component / 

Sensor 

Measured 

Parameter(s) 

Primary Purpose in 

Environmental Monitoring 

ESP32 

Microcontroller 
— 

Data acquisition, 

preprocessing, and wireless 
communication (Wi-Fi/LoRa) 

BME680 

VOCs, Humidity, 

Pressure, Gas 
Resistance 

Air quality measurement and 

microclimate assessment 

MQ-135 
NO₂, CO₂, NH₃, 

Other gases 

Detection of atmospheric 

pollutants and chemical 

contaminants 

DS18B20 Temperature 
Monitoring thermal variations 

in air and water 

pH Module Water pH 
Assessment of 

acidity/alkalinity for water 

quality 

Turbidity Sensor Water Turbidity 

Detection of suspended 

particles and contamination 
events 

LoRaWAN 

Transceiver 
— 

Long-range low-power 

communication for remote 
deployments 

 

B. Synthetic Data Generation and Validation Protocol 

A synthetically created data in Table I of IoT sensors and 
publicly available real-world datasets of remote-sensing were 
used to guarantee a controlled experimentation, reproducibility, 
and systematic evaluation of the proposed IoT- Remote Sensing 
integrated environmental surveillance framework. The synthetic 
IoT data were required due to the unavailability of consistent, 
long-term, and multi-parameter data of the environment, with 
simultaneous satellite ground truths and under the same 
conditions. 

a) Synthetic IoT Sensor Data Generation 

Simulated data of IoT sensors were created to simulate actual 
environmental sensing activity of major atmospheric and 
hydrological characteristics, such as PM2.5, NO 2, VOCs, 
temperature, humidity, pH, and turbidity. The process of 
generation was based on the statistical models of generation 
based on published environmental sensing research and actual 
sensor configurations. 

The models of each sensor stream used were stochastic time 
series models of the form: 

Base signal distribution Gaussian distribution with 
environment realistic means 

The time dynamics: 

 The seasonal and diurnal variations were added with 

the help of sinusoids. 

 Sensors Noise sensor Additive white Gaussian noise 

(AWGN) to model sensor uncertainty. 
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 Drift behavior: drift of the low frequencies that are 

added in order to model sensor aging and calibration 

loss. 

 Anomaly injection: This is where a controlled spike 

and step change to emulate pollution events, 

contamination incidents and sudden climatic changes. 

The synthetic sensor signal S(t) was generated mathematically 

as Eq.1: 

𝑆(𝑡) =  𝜇(𝑡) +  𝐴 𝑠𝑖𝑛(2𝜋𝑓 𝑡) +  𝜀(𝑡) +  𝛿(𝑡)         (1)        
 

b) Statistical Validation Against Real Sensor Characteristics 

Statistical characteristics of the data generated by the 
synthetic IoT were tested against literature values of sensor 
behavior in the environment to confirm the faithfulness of the 
synthetic IOT data. The validation focused on: 

 Mean and variance consistency 

 Daily drift rate 

 Signal-to-noise ratio 

 Frequency and amplitude of anomalies. 

The modeled datasets showed a high level of correspondence 
to the documented real sensor properties, the variance error limit 
was set at less than 5 percent and the drift rate was confined 
within the normal operational value which is observed in long 
field applications. This guaranteed the realistic sensing 
conditions and controlled experimental conditions of the trained 
models and fusion mechanisms. 

 

c) Publicly Available Remote-Sensing Datasets Used 

Satellite imagery in the real-world was only collected by 
publicly available open-range Earth observation sources, 
making them transparent and reproducible: 

 Sentinel-2 MSI 

o Spatial Resolution: 10 m / 20 m 

o Acquisition Period: 2022–2024 

o Areas: South Indian semi-urban and agricultural 

areas. 

o Bands Used: B2–B12 

 Landsat-8 OLI/TIRS 

o Spatial Resolution: 30 m (multispectral), 100 m 

(thermal) 

o Acquisition Period: 2021–2024 

o Regions River basins, urban heat zones, vegetation 

belts. 

o Products NDVI, NDWI and Land Surface 

Temperature (LST). 

Such datasets have been chosen because of their extensive 
use in the field of environmental analytics and the multispectral 
and thermal anomaly detection. 
 

d) Rationale for Using Synthetic IoT Data 

Synthetic data of the IoT sensors was used in the following 
reasons: 
1) Controlled experimentation:  Permits systematic injection 

of anomalies and controlled analysis of detection accuracy. 

2) Reproducibility: Enables other scientists to reproduce the 

results without the need to rely on proprietary or unavailable 

sensor deployments. 

3) Long-duration analysis: Enables the simulation of months-

long sensing scenarios that are not limited by hardware. 

4) Scalability testing: Allows the ability to test performance in 

the dense IoT deployments and the high-frequency 

sampling conditions. 

The proposed framework will provide a trade-off between 
experimental rigor and practical relevance since synthetically 
validated datasets of IoT will be used and balanced with real 
satellite imagery, such that reported performance metrics will be 
credible without detracting the reproducibility. 
 

C. Remote-Sensed Visual Analytics Pipeline 

Satellite images were subjected to multiple stages of 
preprocessing and analysis (based on deep learning) to produce 
the high-level environmental features given in Table II. 
(i) Atmospheric and Radiometric Corrections 

The LANDSAT images have been fixed with the help of the 
LEDAPS algorithm, and the Sentinel-2 images have been fixed 
with the help of the standard pipelines of radiometric 
normalization. 
(ii) Environmental Index Extraction 

Key environmental indices were computed as follows: 

 Normalized Difference Vegetation Index (NDVI): 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
                 (2) 

 Normalized Difference Water Index (NDWI): 

  𝑁𝐷𝑊𝐼 =
(𝐺𝑅𝐸𝐸𝑁−𝑁𝐼𝑅)

(𝐺𝑅𝐸𝐸𝑁−𝑁𝐼𝑅)
             (3) 

 Land Surface Temperature (LST): 

Computed on the basis of a single-channel thermal 

emissivity algorithm used on TIRS data. 

(iii) Deep Learning Architecture 

A hybrid deep learning model was developed: 

 Feature Extractor: ResNet-50 applied to multispectral 

composite patches 

 Transformer Encoder: An 8-layer Vision Transformer 

(ViT) applied to patch embeddings 

 Classifier: Softmax-based anomaly classifier 

 
This architecture allowed the efficient spectral spatial reason 

to perform and allowed improved performance of the anomaly 
detection [36]. 
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TABLE II.  SPECIFICATIONS OF REMOTE-SENSING DATASETS USED IN 

THE STUDY 

Satellite 

Platform 
Sensor 

Spectral 

Bands 

Used 

Spatial 

Resolution 

Key 

Environmental 

Applications 

LANDSAT-

8 

OLI / 

TIRS 

Visible, 
NIR, 

SWIR, 

TIR 

30 m (MS), 

100 m → 
30 m (TIR) 

NDVI, NDWI, 
LST, land cover 

and thermal 

analysis 

Sentinel-2 MSI 
Bands 

B2–B12 
10 m, 20 m 

Vegetation 
monitoring, 

moisture 

detection, 
multispectral 

anomaly detection 

 

D. Data Fusion Model 

A temporal-spatial fusion model using adaptive Kalman 
weighting mechanism was formulated to combine high-
frequency measurements of IoT sensors [37] with low-
frequency measurements of satellites. 
Let: 

 St = IoT sensor vector at time t 

 𝑅𝑡 = remote-sensed feature vector 

 𝐾𝑠, 𝐾𝑟= adaptive weights derived from variance 𝑉𝑠 and 

Vr 
 

The fused environmental quality score was computed as: 

 

KS =
Vr

VS+Vr
, + Kr =

Vs

Vs+Vr
            (4) 

Xt = KsSt + KrRt                           (5) 

This was a strategy that guaranteed that the fusion process 
put more emphasis on the data source that has the least 
uncertainty in every time step. 

 

E. Sensor-Drift-Aware Adaptive Kalman Fusion 

(Algorithmic Novelty) 

Compared to the classical Kalman fusion methods where the 
covariance of the sensor and noise are estimated at a certain 
point or with noise-only models, the suggested fusion model 
offers a sensor-drift-aware adaptive recalibration mechanism of 
the variance. It is a long-term sensor calibration drift and short-
term measurement noise that is explicitly explained by this 
mechanism, allowing the fusion of heterogeneous IoT data 
streams, as well as remote-sensing data streams, to be robust. 
The adaptive sensor variance is defined as: 

𝑉𝑠
∗(𝑡) = 𝑉𝑠(𝑡) + 𝜆 ⋅ 𝐷𝑠(𝑡)                      (6) 

 
In Eq.6 V s (t) is a real-time variance of IoT sensor stream, 

Ds (t) is accumulated sensor drift based on temporal residuals 
over a sliding window and λ is a drift-sensitivity coefficient that 
regulates the impact of long-term degradation. The Kalman 
fusion weights are then updated as: 

𝐾𝑠(𝑡) =
𝑌𝑠(𝑡)

𝑌𝑠(𝑡) + 𝐻𝑠(𝑡)
, 𝐾𝑠(𝑡) =

𝐻𝑠(𝑡)

𝑌𝑠(𝑡) + 𝐻𝑠(𝑡)
          (7) 

 
In Eq.7 𝐾𝑠(𝑡) represents the error of the remote-sensing feature 

stream. 

This formulation enables the process of fusion to down-
weight drifting or unreliable sensors of the IoT and remain 
confident in the consistency of the satellite-measured 
measurements. It is a drift-aware adaptive Kalman weighting 
algorithm that builds on the traditional formulations of this 
algorithm and is not used in the present-day IoT-remote sensing 
integration frameworks, which also makes it an essential 
element of the algorithmic novelty of the current system. 
 

F. Handling Spatio-Temporal Resolution Mismatch 

To combine IoT sensor streams with remote-sensed satellite 
analytics, the issue of the latent spatial and temporal 
discrepancies between the two modalities needs to be solved. In 
the suggested system, the individual geo-referenced IoT sensors 
are spatially aligned with the respective satellite pixel or any 
local pixel buffer with the spatial resolution of the satellite, 
where aggregation of environmental indices (NDVI, NDWI, 
LST) are synthesized to give macro-scale context. High-
frequency IoT measurements are timed temporarily and low-
frequency satellite measurements at any given time are 
synchronized with high-frequency measurements via window 
based aggregation and interpolation and decay weighting to 
highlight sensor measurements nearest to satellite overpass 
times. Kalman based adaptive fusion mechanism is then adopted 
where probabilistic fusion of these aligned data streams is done, 
and the contribution of the streams dynamically changed based 
on estimated uncertainty. This method allows strong fusion in 
the presence of sensor noise, calibration bias, satellite revisit 
periods and asynchronous sampling and makes a step beyond 
the mere weighted averaging to robust, cross-scale 
environmental intelligence. 
 

G. Performance Metrics 

A combination of the statistical, computational, and 
operational measures were used in assessing the performance of 
the proposed integrated IoT-remote sensing [38] environmental 
surveillance system. These were to make sure a strict evaluation 
of the accuracy of anomaly detection, response to systems, light-
consumption of energy and general reliability [39]. 

 
a) Accuracy, Precision, and Recall 

The metrics [40] given in Eq.8,9,10 were used to measure 
the performance of anomaly detection with both the LSTM 
model IoT-based and the ResNetViT visual analytics pipeline. 

 

Accuracy 

 Accuracy =
Tp+TN

Tp+TN+FP+FN
                  (8) 

Precision 

 

Precision =
TP

TP+FP
                                               (9) 

 

Recall 

Recall =
TP

TP+FN
                                    (10) 
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Where: 

 TP: True Positives 

 TN: True Negatives 

 FP: False Positives 

 FN: False Negatives 

Having a high precision meant that there were less false 
alarms whereas having high recall meant that the anomaly 
detection sensitivity was high. 

 
b) Latency (ms) 

Latency was the amount of time taken to process sensor data 
all the way to the calculation of the fused environmental quality 
score. 

 

Latency + Tedge + Ttransmit + TCloud + Tfusion        (11) 

Where: 

 Tedge: Preprocessing + LSTM inference time 

 Ttransmit: IoT-to-cloud communication delay 

 TCloud: Satellite correction + deep learning inference 

time 

 Tfusion : Time to compute the Kalman-weighted fusion 

output 

Reduced latency was an indicator of hastened decision-
maker which is important in real-time environmental 
monitoring. 

 

c) IoT Node Energy Consumption 

IoT node consumption was calculated as energy 
consumption: 

         Enode = Esense + ECompute + Etransmit          (12) 

Where: 

 Esense: Sensor sampling energy 

 ECompute: Edge LSTM computation cost 

 Etransmit : LoRaWAN/Wi-Fi data transmission cost 

This measure made sure that nodes were also power-efficient 
to be used in long term deployment. 

 

d) Satellite Processing Time 

The satellite processing time was used to measure the 
computational load of remote-sensing applications: 

𝑇𝑠𝑎𝑡 = 𝑇𝑐𝑜𝑟𝑟 + 𝑇𝑖𝑛𝑑𝑒𝑟 + 𝑇𝑝𝑎𝑡𝑐ℎ + 𝑇𝐷𝐿                       (13) 

Where: 

 Tcorr: Atmospheric/radiometric correction time 

 Tinder: NDVI/NDWI/LST computation time 

 Tpatch + TDL Patch extraction time 

 TDL: Deep learning (ResNet–ViT) inference time 

This measure determined the scalability and operational 
ability of continuous monitoring. 
e) Event Detection Reliability 

Reliability was evaluated as the consistency of 

anomaly detection in correct and multiple time intervals: 

                   Reliability =
NCorrect

Ntotal
                                    (14) 

Where: 

 NCorrect: Probably number of correctly identified 

environmental events. 

 Ntotal : Total observed environmental events. 

The increase in values showed strength in the application of 
the sensor to differing environmental conditions, sensor 
variations, and changes in quality of images. 

H. Proposed System Architecture  

The suggested IoT-Remote Sensing environmental 
surveillance system is developed as a five-layer architecture in 
Fig. 1, which allows uninterrupted information exchange 
between sensor data, satellite imagery, edge intelligence, and 
cloud-based analytics. 

 

Fig. 1. Proposed System Architecture for IoT–Remote Sensing Integrated 
Environmental Surveillance 

 

a) IoT Sensing Layer 

This layer will be built of distributed IoT nodes that will 
include gas sensors, water-quality probes, and microclimate 
modules. Parameters that are continuously monitored by the 
nodes include PM 2. 5, NO 2, VOCs, temperature, humidity, pH, 
and turbidity. These are high-frequency measurements that give 
local real-time environmental measurements. 
b) Edge Analytics Layer 

Preprocessing of sensor readings such as filtering, 
normalization and batching is done at the edge gateway. A 
LSTM model is lightweight and it recognizes anomalies at the 
local level, enhancing unneeded data transmission. flagged 
events and compressed summaries only are sent to the cloud, 
reducing the load of the network and enhancing latency. 
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c) Cloud Processing Layer 

The IoT streams are combined with the remote-sensed 
images in the cloud layer. It performs: 

 Radiometric and atmospheric corrections. 

 Computation of NDVI, NDWI and LST. 

 Hybrid ResNet -ViT based multispectral analysis. 

 Animal models: Adaptive Kalman weighting 

Temporal-spatial fusion. 

This layer produces an environmentally rich intelligence in 
terms of space that is vital in detection of anomalies. 

 

d) Decision Intelligence Layer 

This layer will process merged outputs and send therein 
alerts of conditions, including vegetation stress, pollution 
hotspots, water pollution and thermal anomalies. Model-driven 
and rule-based logic guarantees the timely events detection. 

 

e) Visualization Layer 

The visualization of environment insights is conducted using: 

 IoT time-series data dashboarding with Grafana. 

 WebGIS maps of anomaly layers derived by satellite. 

These instruments offer visual interpretation, which is user 
friendly and in real-time. 

 

I. Integrated Algorithmic Workflow 

The present subsection gives the essence of the 
computational logic that is utilized throughout the IoT edge 
layer, the satellite-based visual analytics pipeline, and the 
temporal-spatial fusion mechanism. All the algorithms will be 
expressed in pseudocode to ensure clarity and reproducibility. 

Algorithm 1 introduces the edge-level anomaly detection 
algorithm on the IoT nodes deployed on a lightweight LSTM. 
The algorithm normalizes data feeds of sensor time-series and 
then it has the LSTM which is used to learn the normal 
environmental patterns. It then calculates the reconstruction 
error on each new reading, and any deviation larger than some 
threshold ( 0 ) is an indication of an anomaly. This allows real 
time detection of abnormal environmental behavior right at the 
edge, which minimizes latency and redundant cloud 
communication. 

 

Algorithm 1: IoT-Based Anomaly Detection (Edge-Level 

LSTM) 
 

Input: Sensor time-series S(t) 

 

1. Normalize S(t) 

2. Train LSTM to learn normal patterns 

3. Compute reconstruction error E(t) 

4. If E(t) > θ → Flag anomaly 

a) Remote-Sensed Deep Visual Analytics 

Algorithm 2 provides the description of the deep learning-
based visual analytics pipeline in multispectral satellite imagery. 
Following the atmospheric and radiometric correction, major 
environmental indices are calculated including NDVI, NDWI, 
and LST. The fixed image is then split into patches and sent 

through a ResNet feature extractor and a Vision Transformer 
encoder which allows local and global spatial reasoning. An 
identification of environmental anomalies on the basis of 
learned spectral-spatial patterns is finally arrived at by a 
Softmax classifier. 

Algorithm 2 visual analytics pipeline in multispectral satellite 

imagery  

 

Input: Multispectral image I 

 

1. Perform atmospheric and radiometric corrections 

2. Extract indices (NDVI, NDWI, LST) 

3. Convert image into patches (16×16) 

4. Encode patches using ResNet backbone 

5. Apply Transformer encoder for spatial context 

6. Classify anomalies using Softmax layer 

b) Fusion Algorithm 

Algorithm 3 describes the adaptive fusion mechanism in 
space and time that enables the combination of high-frequency 
data on IoT sensors with low-frequency remote-sensed 
characteristics. The algorithm calculates the variances of the two 
data sources, and adapts weighted Kalman based weights such 
that the uncertainty of the source with lower uncertainty is more 
influential to the fused output. The overall fused environmental 
quality score is a more valid and context-sensitive measure of 
environmental conditions compared to either source of data. 

Algorithm 3: Sensor-Drift-Aware Adaptive Kalman Fusion 

 

Input: IoT sensor stream S(t), remote-sensed feature stream R(t) 

 

1. Estimate instantaneous sensor variance Vs(t) 

2. Estimate remote-sensing variance Vr(t) 

3. Compute sensor drift Ds(t) using temporal residuals over a 

sliding window 

4. Recompute adaptive sensor variance: 

       Vs'(t) = Vs(t) + λ · Ds(t)          (Eq. X) 

5. Update Kalman fusion weights: 

       Ks(t) = Vr(t) / (Vs'(t) + Vr(t)) 

       Kr(t) = Vs'(t) / (Vs'(t) + Vr(t))   (Eq. Y) 

6. Compute fused environmental state: 

       X(t) = Ks(t) · S(t) + Kr(t) · R(t) 

Output: Drift-aware fused environmental quality score X(t) 

 
 

IV. RESULTS AND ANALYSIS 

The proposed IoT- Remote Sensing environmental 
surveillance system has been tested in four areas which include 
sensing performance of the IoT, multispectral visual analytics, 
fusion based intelligence and system efficiency. In this section, 
the findings are represented in well-organized tables and graphs. 

A. IoT Sensor Module Performance 

Table IV gives an overall assessment of the IoT sensor 
module to be used in the proposed environmental surveillance 
system. The table IV will contrast the performance of the 
separate sensing components of air-quality, water-quality, and 
temperature/humidity sensors in terms of three major metrics: 
accuracy, latency, and daily energy consumption. All these 
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metrics demonstrate the accuracy in the detection of the 
environmental parameters, the reactiveness of the data delivery 
system, the sustainability of the functioning of every IoT node 
during the long-term perspective. The findings form the 
supporting sensing credibility required in downstream analytics 
and fusion actions in the integrated IoT Remote Sensing 
framework. 

TABLE III.  IOT SENSOR MODULE PERFORMANCE 

Parameter Accuracy 
Latency 

(ms) 

Energy 

(mWh/day) 

Air-quality sensing 94.7% 38 121 

Water-quality sensing 91.3% 42 139 

Temperature/Humidity 98.1% 21 67 
 

The performance parameters available in Table III show the 
strength of the IoT sensing system under the various 
environmental parameters. The thermal sensor digital thermal 
sensors were also characterized by high consistency and low 
noise as temperature and humidity detection was the most 
accurate at 98.1 percent. This accuracy is very crucial in 
detecting anomalies driven by climate and in the micro-
environmental measurements. The next nearest prediction is air-
quality sensing with 94.7% accuracy suggesting that it is good 
at identifying pollutants including NO 2, VOCs and particulate 
concentration that tend to change quickly in dynamic outdoor 
scenarios. Water-quality sensing reported a reduced accuracy of 
91.3%, which is natural because of the variability and sensitivity 
of the pH and turbidity sensors in the field.. 

The latency in all sensors was small enough (21 ms-42 ms) 
to make sure that the received data can be transferred and 
processed in close real-time. Such responsiveness is required in 
applications like the detection of pollution spikes and fast 
environmental decision making. The related consumption of 
energy further promotes the suitability of the system in terms of 
long-term deployment, as all sensors can work with acceptable 
limits of the battery-powered or solar-assisted IoT nodes. In 
sum, the findings highlight the fact that IoT sensing module can 
be not only used to deliver adequate and timely environmental 
data, but it could also help to sustain and efficiently work with 
large-scale infrastructures of environmental monitoring. 

Table IV contains the in-depth quantitative evaluation of the 
IoT sensor module details, including the error nature, temporal 
drift, packets loss, and general stability. These parameters give 
more information about long-term reliability in operations other 
than mere accuracy. Mean error measures the difference 
between measured and reference values, drift/24h is used to 
measure sensor consistency during the entire operation, packet 
loss is used to determine the reliability of communication and 
the index of stability is used to summarize the overall 
robustness. This Table IV aids in assessing how the IoT nodes 
are resilient to changes in the actual environment. 

 

TABLE IV.  DETAILED IOT SENSOR PERFORMANCE EVALUATION 

Parameter 

Mean 

Error 

(%) 

Drift/24h 

(%) 

Packet 

Loss 

(%) 

Stability 

Index 

Air-quality sensing 3.1 0.42 1.8 0.94 

Water-quality sensing 4.7 0.55 2.3 0.91 

Temperature/Humidity 1.2 0.18 0.6 0.98 

The specifics of the performance as shown in Table IV 
indicate the dependability and stability of the IoT sensing 
module when subjected to the continuous environmental 
monitoring parameters. The temperature and humidity sensor 
shows very high performance with the lowest average error of 
1.2% and the minimal drift at 24 hours of 0.18% with negligible 
loss of packets at 0.6%. This validates the appropriateness of 
digital thermal sensors in the accurate microclimatic monitoring. 

Air-quality sensors show a little more mean error (3.1%), 
drift (0.42%), but this is not surprising since the chemical 
sensitivity of gas sensors and the variable pollutant 
concentration in the atmosphere. However, its stability index is 
0.94 which means that the sensor is stable and will not 
malfunction with time. 

The error (4.7%) and packet loss (2.3%) in water-quality 
sensing are the highest average errors and packet losses, and 
such errors and losses are common with pH and turbidity sensors 
that are vulnerable to dissolved solids, temperature variations, 
and periodic sensor foulages. Nonetheless, the stability index of 
0.91 proves that the reliability of the environmental water 
monitoring is acceptable. 

Overall, It has been demonstrated that all three of the sensing 
modules are highly stable, with low drift and communication 
loss that can be effectively addressed in the integrated IoT-
Remote Sensing environmental surveillance system due to 
durability and applicable to long deployments. 

Fig. 2 will be a comparative visualization of the level of 
accuracy of the three major IoT sensors integrated into the 
environmental monitoring system. The chart brings out the 
performance of the air-quality sensor and the water-quality 
sensor and the temperature/humidity sensor allowing the easy 
contrast of the performance of the precision of their 
measurements. This value is an intuitive value that shows the 
dependability of each sensing unit and is used as a base value of 
the strength of the whole system. Fig. 2. Comparative accuracy 
performance of IoT air-quality, water-quality, and temperature-
humidity sensors under simulated deployment conditions. 

The data presented in Fig.2 is an informative comparative 
analysis of the accuracy of measurements of the IoT sensor suite. 
The temperature and humidity sensor has the best performance 
with accuracy of 98.1%, which can be attributed to the stability 
characteristic and relative resistance to noise of digital 
microclimate sensors. This precision is especially valuable, 
because temperature and humidity are used as control 
environmental variables affecting most derived ecological 
indicators. 

Air-quality detection is next with 94.7% accuracy, which 
means that gas and particulate detectors work well to obtain real-
time changes of the concentrations of NO 2, VOC and PM 2.5. 
Since the urban air pollution is a naturally dynamic 
phenomenon, such accuracy proves the sensor in question to be 
reliable in the dynamic atmospheric conditions. 

Much less, yet still very good, is water-quality sensing with 
a 91.3% accuracy. This will occur because of sensor fouling, 
suspended particles and chemical variability, which normally 
surround pH and turbidity measurements. However, the 
precision is high enough to allow an actual-time environmental 
surveillance and complies well with the operational standards of 
the field-based water-sensing instruments. 
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Fig. 2. IoT Sensor Accuracy Comparison 

Overall, as Fig.2 interpretation confirms, all three sensor 
modules work within high-accuracy ranges, which is effectively 
a reliable base of the integrated IoT Remote Sensing 
surveillance system. The accuracy of environmental anomaly 
detection and decision support is obtained by ensuring that the 
accuracy of downstream analytics, such as deep-learning-based 
visual processing and fusion algorithms, is fed with reliable 
input data, which is guaranteed by this degree of sensing 
accuracy. 

B. Visual Analytics Performance 

Table V shows the comparative results of the three deep-
learning models, ResNet-50, Vision Transformer (ViT), and the 
proposed hybrid ResNet-ViT architecture, of the multispectral 
remote-sensing image analysis. The metrics of evaluation are the 
overall classification accuracy, F1 Score, and the inference time 
of the model on a single image providing a complete picture of 
model accuracy, robustness, and efficiency. 

TABLE V.  VISUAL ANALYTICS MODEL PERFORMANCE 

Model Accuracy F1 Score GPU Time/Image 

ResNet-50 87.5% 0.84 12 s 

ViT 89.2% 0.86 15 s 

ResNet + ViT (Proposed) 92.4% 0.91 18 s 

 

Table V results show that there are evident variations in the 
performance of the models of deep-learning that are being 
tested. ResNet-50 demonstrated an accuracy of 87.5% and an F1 
Score of 0.84, which is considered good performance in the 
learning of spatial patterns in the multispectral image but has 
weaknesses in learning long-range dependencies. ViT model 
achieved the best accuracy of 89.2%, and F1 Score of 0.86; this 
implies that ViT model has higher accuracy because it can 
process global spatial relationships due to its self-attention 
mechanism; although this does not come at low cost as 
evidenced by its inference time per image of 15 seconds. 

The hybrid model that proved to be the most effective in 
general was the combination of the local feature extraction of 
ResNet with the global consideration of ViT. It achieved an 
accuracy of 92.4% and a F1 Score of 0.91 which is a substantial 
increase in the strength of the anomaly detector, and shows the 

advantage of using convolution-based and transformer-based 
feature representations. This computational cost was 
compensated by the fact that the inference time of this model 
grew to 18 seconds per image but at the cost of a significant 
improvement in the classification reliability. 

Overall, the relative comparison proves that the hybrid 
ResNetViT model is the one to offer a moderate performance 
gain, with better spectral-spatial insights that are critical to 
achieve high-performance environmental surveillance activities. 
This confirms the appropriateness of hybrid deep-learning 
systems in the processing of multispectral and multi-index 
inputs of remote-sensing in the context of the proposed 
monitoring system. 

Fig. 3 indicates the comparison of the F1 Scores of the three 
deep-learning models tested within the visual analytics module 
including ResNet-50, Vision Transformer (ViT), and the 
proposed hybrid ResNetVit model. The Fig. 3 shows the 
comparative performance of both models according to the 
balance of precision and recall; it gives an idea on how the two 
models are able to correctly identify environmental anomalies 
with the aid of multispectral remote-sensing images. 

The comparison in Fig. 3 illustrates the evident differences 
in the classification ability of the three considered models. 
ResNet-50 reached a F1 Score of 0.84 which is the moderate 
strength of anomaly detection by means of extraction of spatial 
features, but with weaknesses in extracting larger contextual 
information. ViT model showed a better performance with the 
F1 Score of 0.86, which is explained by the fact that the model 
has a self-attention mechanism that is able to learn global spatial 
dependencies. 

 

 

Fig. 3. Visual Analytics Model F1 Score Comparison 

The hybrid ResNet ViT model proposed performed better 
than the two baseline architectures with a F1 Score of 0.91. This 
gain can be attributed to the benefit of jointly using convolution-
based local feature extraction and transformer-based global 
reasoning to allow the model to be better at detecting subtle 
spectralspatial anomalies. The high F1 score also shows that the 
hybrid model has a more balanced precision and recall, 
eliminating false positives and false negatives. 

Overall, Fig. 3 illustrates that all the hybrid model has the 
best and most realistic classification performance in 
multispectral environmental monitoring tasks. This finding 
confirms the efficiency of CNN and transformer architecture 
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integration in developing profound visual analytics of IoT- 
Remote Sensing environmental surveillance platforms. 

Table VI  shows the confusion of the proposed hybrid 
ResNetViT deep-learning model employed in multispectral 
detection of environmental anomalies. The matrix indicates the 
occurrence of the true positive, false positive, true negative, and 
false negative values in two major classes- Anomaly and 
Normal. The given tabulation gives an insight into the 
classification behavior of the model and the error patterns, as 
well as its general accuracy in differentiating abnormal 
environmental events and typical levels of the baseline. 

TABLE VI.  CONFUSION MATRIX FOR PROPOSED HYBRID MODEL 

Category 
True 

Positive 

False 

Positive 

True 

Negative 

False 

Negative 

Anomaly 241 18 — 32 

Normal — 21 516 14 

 

The results in Table VI indicate that the proposed hybrid 
model has good classification properties in both anomaly and 
normal classes with a high percentage of correct prediction. The 
model was able to recognize 241 samples of anomalies (true 
positive), and the sensitivity of the model to the environment 
abnormalities (vegetation stress, pollution hotspots, and water-
quality deviations) is high. The false positives indicate that there 
are only a small number of false positives (18), which implies 
that there is only a small rate of over-prediction, or false alarms 
in the system, meaning that it was overly cautious in its approach 
to false alarms; nevertheless, the rate of over-prediction, in its 
turn, is usually agreeable especially in the context of early 
warning systems where environmental safety is considered a 
priority. 

In the same way, the model registered 516 true negativities 
which validates the model to have performed exceptionally well 
in identifying stable environmental conditions and reducing 
unnecessary alarms. The false negative 32 is quite small but the 
cases of missing anomalies and it shows the remaining area to 
diminish under-detection cases of operational deployments. The 
normal group had 21 false positive and 14 false negative, which 
further shows that it performed with a balanced score on 
precision and recall. 

Overall, the confusion matrix proves the hypothesis that the 
hybrid resnet-ViT architecture is a strong and precise decision 
boundary in detecting anomalies in the environment. It is not the 
most suitable choice because its false-alarm rate is low and its 
ability to detect is strong, which is suitable in real-time IoT 
measurements in Remote Sensing surveillance when it is 
imperative to distinguish between ordinary and unusual 
conditions. 

Table VII provides a summary of the computational and 
resource demands of the three deep-learning architectures 
considered in this paper, namely ResNet-50, Vision 
Transformer (ViT), and the hybrid ResNetViT architecture. The 
total number of trainable parameters, floating-point operations 
(FLOPs), inference time per image, and memory usage are used 
as performance indicators. These measurements can be used to 
understand the computational complexity and scalability of any 
model when used in multispectral environmental analytics. 

TABLE VII.  COMPUTATIONAL COMPLEXITY OF DEEP LEARNING MODELS 

Model 
Parameters 

(M) 

FLOPs 

(G) 

Inference 

Time (s) 

Memory 

Usage (MB) 

ResNet-50 25.6 4.1 12 912 

ViT 86 9.7 15 1280 

Proposed 
Hybrid 

112 12.4 18 1542 

 

The calculated computational measurements in Table VII  
depict resource trade-offs between the accuracy and resource 
used by different deep-learning models under evaluation. The 
lightest among the three models is the ResNet-50, which has 
25.6 million parameters and 4.1 GFLOPs and has a minimum 
inference time of 12 seconds and minimum memory footprint of 
912 MB. This enables it to be used in applications where high 
speed processing or deployment on relatively powered hardware 
is required, but its structural depth limits its capability in 
capturing long-range spatial dependencies. 

ViT model of 86 million parameters and 9.7 GFLOPs has 
much greater computing properties. The inference time also 
goes up to 15 seconds and also the memory usage goes up to 
1280MB giving the signal of the higher footprint of transformer-
based attention mechanisms. Despite the fact that ViT is better 
at representation of features by capturing global spatial context, 
ViT carries a significant resource overhead, particularly when 
operating on high-dimensional multispectral data. 

The hybrid ResNetViT model proposed is the most 
expensive, as it combines convolutional feature extraction with 
transformer-based reasoning on the global scale. The hybrid 
architecture has 112 million parameters and 12.4 GFLOPs, 
which take a 18 seconds time to make an inference and consume 
1542 MB memory. The high performance of the resource needs, 
however, is explained by its high accuracy and F1 performance. 
The combination of CNN and transformer blocks increases its 
ability to simultaneously detect fine-grained spatial patterns and 
broad contextual relationships, which are important to detect 
environmental anomalies accurately. 

Overall, Table VII shows a distinct performance-complexity 
complex: the hybrid model has the greatest analytical capability 
at the cost of a higher computational load, whereas ResNet-50 
has higher performance at the cost of lower precision. These 
findings highlight the importance of the hybrid model as the best 
compromise between accuracy and computability when using 
high-stakes environmental surveillance, particularly in cloud-
based or GPGU-based infrastructures. 

 

C. Comparison with State-of-the-Art Environmental 

Monitoring Systems 

While the proposed framework demonstrates strong internal 
performance through detailed ablation and hybrid model 
evaluation, its contribution is further validated through 
comparison with representative state-of-the-art (SOTA) 
environmental monitoring systems reported in recent literature. 
The selected SOTA approaches reflect three dominant 
paradigms in integrated environmental surveillance: (i) UAV-
assisted WSN systems, (ii) GeoAI-based IoT–satellite fusion 
models, and (iii) conventional IoT-only or satellite-only 
monitoring frameworks. 

UAV-WSN frameworks, such as those reported by Popescu 
et al. (2019), primarily enhance spatial coverage through mobile 
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aerial sensing but remain constrained by limited temporal 
continuity and high operational cost. GeoAI-based fusion 
models, including Li and Hsu (2022), integrate spatial reasoning 
with satellite analytics but generally rely on offline batch 
processing and lack real-time edge intelligence. Conventional 
IoT-centric systems (e.g., Kaginalkar et al., 2022) achieve high 
temporal resolution but suffer from sparse spatial context and 
increased false-alarm rates in isolation. 

In contrast, the proposed IoT–Remote Sensing framework 
uniquely combines edge-level LSTM anomaly detection, hybrid 
ResNet–Vision Transformer multispectral analytics, and a 
sensor-drift-aware adaptive Kalman fusion mechanism within a 
unified, real-time architecture. This integration enables cross-
scale anomaly confirmation, reduced uncertainty under sensor 
drift and satellite revisit gaps, and improved operational latency 
compared to existing systems. The comparative assessment 
summarized in Table VIII demonstrates that the proposed 
framework achieves superior detection accuracy, lower 
response latency, and enhanced scalability while maintaining 
practical deployment feasibility. 

TABLE VIII.  COMPARISON WITH STATE-OF-THE-ART ENVIRONMENTAL 

MONITORING SYSTEMS 

System 

/ Study 

Sensing 

Modaliti

es 

Analytic

s Method 

Fusion 

Strate

gy 

Real-

Time 

Capabil

ity 

Report

ed 

Accura

cy 

Key 

Limitati

ons 

Popescu 

et al. 

(2019) 

UAV + 

WSN 

Statistica

l + ML 

Spatial 

aggreg

ation 

Partial ~85% 

High 

cost, 

intermitte

nt 

sensing 

Kaginal

kar et al. 

(2022) 

IoT 

sensors 

Big-data 

analytics 

No 

true 

fusion 

Yes ~88% 

Limited 

spatial 

context 

Li & 

Hsu 

(2022) 

IoT + 

Satellite 

GeoAI 

models 

Spatial 

AI 

fusion 

No 

(offline) 
~90% 

Batch 

processin

g, latency 

Pajany 

et al. 

(2024) 

UAV 

multispec

tral + 

sensors 

CNN-

based 

Featur

e-level 

fusion 

Partial ~89% 

Domain-

specific, 

UAV-

dependen

t 

Propose

d 

System 

IoT + 

Satellite 

LSTM + 

ResNet-

ViT 

Drift-

aware 

adapti

ve 

Kalma

n 

fusion 

Yes 94%+ 

Higher 

cloud 

compute 

demand 

 

D. Fusion Output 

Table IX shows the statistical performance of the proposed 
temporal-spatial fusion algorithm in three large categories of 
environmental anomalies namely, vegetation stress, water-
quality anomalies, and air pollution hotspots. The table IX 
presents four important parameters, such as mean fused score, 
standard deviation, root mean square error (RMSE) and the level 
of confidence used to measure the reliability, consistency and 
predictive stability of the fused outputs obtained when 
integrating the IoT sensor data and the remote visual features. 

 

TABLE IX.  FUSION SCORE STATISTICS ACROSS ENVIRONMENTAL 

EVENTS 

Event Type 

Mean 

Fused 

Score 

Std. 

Dev 
RMSE 

Confidence 

Level (%) 

Vegetation 
Stress 

0.924 0.037 0.041 96.2 

Water-Quality 

Anomaly 
0.897 0.044 0.053 94.1 

Air Pollution 
Hotspot 

0.901 0.039 0.048 95.4 

 
The summarized fusion performance in Table IX shows that 

the adaptive temporal-spatial fusion model has a robust and 
stable predictive performance on a wide range of events in the 
environment. The best fused score of 0.924 of vegetation stress 
detection had a low standard deviation (0.037) and lowest 
RMSE (0.041) compared with the other two categories. This 
indicates that vegetation-related anomalies, which in many cases 
are highly presented in the indices like NDVI and LST, are 
greatly advantageous of the joint informational value of the IoT 
microclimate measurements with multispectral satellite 
characteristics. 

Anomalies of water-quality have a slightly lower fused score 
of 0.897, and a standard deviation of 0.044 which represents a 
moderate variability in the predictions. This variability can be 
attributed to the dynamism of the aquatic ecosystem and the 
effect of other factors like change in turbidity, pH fluctuations 
and sensor noise in water-quality measurements. However, the 
level of confidence is also high, 94.1, which proves the strength 
of the model. 

Hotspot identification of air pollution has a fused score of 
0.901, standard deviation of 0.039 and RMSE of 0.048 that 
indicates high model stability in identifying anomalies in the 
concentration of the pollutants. This type also enjoys the 
advantages of the complementary relationship between IoT gas 
sensors (good time resolution) and satellite-based 
thermal/optical signals (wide spatial resolution) that makes the 
confidence level equal 95.4%. 

Overall, the indicators in Table IX verify that the fusion 
algorithm considerably boosts the accuracy of the anomaly 
prediction in all the environmental domains. The reasons why 
the high fused scores, low errors and high confidence levels are 
combined are because it appears that the fusion mechanism fully 
utilizes the capabilities of both the IoT sensing and remote-
sensed visual analytics to provide a more reliable and holistic 
environmental intelligence system. 

Fig. 4 shows the relative accuracy of the proposed adaptive 
temporal-spatial fusion model on three key types of 
environmental anomalies- vegetation stress, water-quality 
degradation and air pollution hotspots. The Fig. 4 reflects how 
much the combination of IoT-based real-time measurements 
with remote-sensed multispectral visual analytics enhances the 
accuracy of the predictive nature of the monitoring system. This 
visualization proves efficiency of the combination of 
heterogeneous data modalities to enhance the environmental 
anomaly detection. 
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Fig. 4. Fusion Output Accuracy Across Environmental Events 

The patterns of accuracy shown in Fig. 4 are good empirical 
evidence to have an opinion on the value of multi-source data 
fusion in environmental intelligence systems. The fusion model 
shows its best results in the detection of the stress on vegetation 
with the accuracy of 92.4%. Such high performance is explained 
by the high levels of complementarity between the variables of 
the industrial Internet of Things microclimate, namely 
temperature, humidity, and concentration of VOCs, and spectral 
variables, i.e. NDVI and LST calculated on the basis of satellite 
images. The datasets, which are used to record physiological 
plant responses under ground level and macro-scale canopy 
conditions, make the model to recognize the stress signatures 
with high accuracy. 

Anomaly detection of water-quality is a more variable 
phenomenon with an accuracy of 89.7% as aquatic 
environments are complex and subject to change. Noise in pH 
and turbidity readings in IoT can be caused by rain or suspended 
sediments or sensor contamination. However, the fusion process 
is able to stabilize the quality of the prediction, by incorporating 
a larger spatial information in the multispectral imagery and this 
helps to counter the variations in sensor-level measurements. 

Hotspot detection of air pollution shows a 90.1% accuracy 
which shows that it is highly fused in detecting atmospheric 
pollution. IoT gas sensors is picking up rapid and localized 
spikes of pollutants whereas thermal and optical indicators 
gathered by satellites due to a wider dispersion pattern and urban 
heat island effects. The fusion model is successful in balancing 
these complementary sources of data, which produce a more 
complete picture of the dynamics of pollution as opposed to each 
modality individually. 

Fig. 5 shows that the fusion method significantly increases 
anomaly detection in all of its environmental classes. The high 
accuracy rates obtained consistently across different periods 
testify to the fact that the high-frequency IoT data with the 
spatial and spectral richness of the satellite imagery can be used 
to create a more stable, contextual, and credible monitoring 
ecosystem. It highlights the importance of multimodal data 
fusion as a fundamental technological enabler to next-generation 
smart environmental surveillance systems, which can provide 
better decision support to environmental management and early 
warning as well as policy interventions. 

E. Anticipated Field Deployment Challenges and Limitations 

While the proposed IoT–Remote Sensing integrated 
environmental surveillance framework demonstrates strong 
performance in controlled, semi-realistic circumstances, a 
number of practical problems of deployment should be admitted. 
Situation awareness can be compromised in the short term (due 
to heavy cloud cover or other atmospheric disruptions) by the 
inability to feed on satellite data, although the system is still able 
to lever on high-frequency streams of IoT sensors and edge-level 
anomaly detection to keep things up to date. Measurement 
stability of sensors across long deployments could also be 
compromised by sensor drift and hardware ageing effects which 
the proposed framework is able to overcome by using a sensor-
drift-aware adaptive Kalman fusion framework that down-
weights non-reliable sensors with time residuals. The problems 
of packets loss, intermittent connectivity, or node failures 
associated with large-scale IoT deployments are inherent; the 
LoRaWAN usage, edge-level pruning, and event-driven 
transmission decrease the network congestion and increase the 
resilience. The scalability issues that may occur with the higher 
sensor density and increased spatial coverage may introduce an 
increase in cloud computation and storage requirements; 
nevertheless, edge analytics can substantially lower the volume 
of upstream data, and efficient monitoring is achieved over vast 
geographic expanses. Even though there can be moderate 
degradation of the performance under noise conditions, 
environmental variability and hardware constraints in real-world 
deployments, the fusion-based multi-modality design of the 
proposed system is robust in its nature and is actually designed 
to work successfully under imperfect sensing and 
communication conditions. Generalizability and Expected 
Performance in Real-World Deployments 

To verify the experimental value of the proposed IoT-
Remote Sensing framework of environmental surveillance, the 
synthetic IoT sensor streams and real multispectral satellite 
images were statistically validated and enabled reproducible 
analyzes and control. Other uncertainties that can be 
encountered in the real world deployments include the 
environmental noise, degradation of sensors overtime, 
intermittent failure of communication, and fluctuating quality of 
satellite images, which are supposed to bring moderate 
performance degradation. According to what was measured on 
the stability indices, packet loss tolerance, and drift-aware fusion 
behavior, the overall accuracy of the anomaly detection is 
expected to be reduced by 3-7 percent in the long term 
conditions out in the field compared to those under control 
experimental conditions. Notably, the suggested multi-modal 
fusion scheme reduces these effects by dynamically controlling 
the source confidence using adaptive Kalman weighting 
enabling the system to remain reliable even when specific 
sensing modalities become unsound. Thus, absolute accuracy 
values might be different depending on the deployment 
conditions, however, relative performance improvements of the 
integrated fusion-based framework compared to the use of only 
IoT or only satellite in the real-world environment are likely to 
be similar. 

F. End-to-End System Performance 

Table X provides a comparative analysis of system-level 
results of the current environmental monitoring system and the 
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proposed IoT- Remote Sensing integrated architecture. The 
metrics are event response time, data completeness, accuracy of 
anomaly reporting and network load. All these signs 
demonstrate real-time responsiveness, data integrity, detection 
reliability, and communication efficiency improvements 
realized with the help of the proposed system. 

TABLE X.  SYSTEM-LEVEL EFFICIENCY IMPROVEMENTS 

Metric 
Baseline 

System 

Proposed 

System 

Improvement 

(%) 

Event Response Time 

(s) 
5.8 3.8 34.4 

Data Completeness 
(%) 

58 81.8 41.0 

Anomaly Reporting 

Accuracy (%) 
81.5 91.2 12.0 

Network Load 

(MB/day) 
124 72 41.9 

 
As shown in the conclusions in Table X, the suggested 

integrated system of environmental surveillance has provided 
significant improvements in the operation efficiency and 
analytic capability. The time to respond to the event dropped to 
3.8 seconds in the improved system, which is 34.4% better than 
baselines. Such decrease emphasizes the efficiency of edge-
level anomaly detection and the optimization of cloud 
processing processes, which allows proceeding to 
environmental notification faster and timely decision-making. 

There was a significant 41% increase in data completeness 
with the levels rising by 58% to 81.8%. This has been achieved 
mostly due to the conjoined application of the IoT continuity in 
sensing and the space coverage of the satellites which helps 
greatly in reducing the data gaps created by sensor outages, 
transmission failures, or environmental barriers. Complete 
information on data will improve long-term environmental 
analysis and model reliability directly. 

The accuracy of the anomaly reporting went up by 12 % 
(81.5% to 91.2%), showing that when the temporal IoT signals 
are combined with the spectral and spatial satellite features, the 
anomalies in the environment are better detected. This has been 
essential in the early warning system, the environmental policy 
formulation, and the direct mitigation measures. 

The operational efficiency of the proposed architecture is 
indicated by a significant decrease in the network load, which is 
41.9% when compared to the original 124 MB/day network 
load. The combination of edge preprocessing, LSTM-based 
anomaly filtering and compressed data transmissions minimizes 
unnecessary uplink traffic, allowing the system to be more 
scalable and cost effective particularly in large scale 
deployments or low bandwidth areas. 

Overall, Table XI indicates that the proposed system has 
enhanced in all key dimensions of operation proving to be more 
superior than traditional monitoring systems. The findings 
confirm the usefulness of the system in real-time, dependable 
and resource effective environmental monitoring under varying 
field conditions. 

To assess the effectiveness of the proposed IoT–remote 
sensing integrated surveillance framework, its performance was 
compared against representative state-of-the-art environmental 
monitoring paradigms reported in the literature. These include 

IoT-only monitoring systems, satellite-only visual analytics 
approaches, and recent GeoAI or UAV-assisted multimodal 
fusion frameworks. The comparison focuses on key operational 
metrics relevant to real-world deployment, including anomaly 
detection accuracy, spatial coverage, temporal responsiveness, 
fusion capability, and scalability. 

TABLE XI.  END-TO-END LATENCY BREAKDOWN OF THE PROPOSED 

SYSTEM 

Processing Stage 
Average 

Latency 

Edge-level IoT preprocessing & LSTM inference 420 ms 

IoT-to-Cloud communication delay 1.6 s 

Cloud-based satellite analytics (ResNet-ViT 

inference) 
1.4 s 

Adaptive Kalman fusion & decision logic 380 ms 

Total End-to-End Latency ≈ 3.8 s 

 
The end-to-end latency of about 3.8 seconds is the total 

processing time of all the edges, including network 
transmission, cloud inference, and adaptive fusion. Lightweight 
LSTM execution adds insignificantly to aggregate latency, 
whereas the driver elements are caused by communication 
overhead and multispectral cloud inference. Notably, instead of 
considering latency as an external constraint, it is explicitly 
represented as a system design, which allows predictable and 
application-conscious response behavior. 

In order to put the effectiveness of the proposed IoT- Remote 
Sensing environmental surveillance framework into perspective, 
a comparative analysis with typical state-of-the-art (SOTA) 
systems as reported in the recent literature was conducted. 
Hybrid UAV-WSN systems like those suggested by Popescu et 
al. are flexible in terms of spatial sampling, but have poor 
temporal continuity and scalability to large-scale operations. 
GeoAI-based solutions proposed by Li and Hsu combine spatial 
reasoning with satellite data and are majorly based on 
centralized processing and not edge-level intelligence to filter 
anomalies in real time. The current UAV-based multispectral 
fusion models have high accuracy in localized agricultural 
monitoring but cannot be applied at scale-level as their 
implementation depends on the availability of UAVs, planning 
of flights, and cost factors. 

In Fig.5, the percentages of improvement obtained by the 
proposed IoT-Remote Sensing integrated system of 
environmental monitoring are depicted in three major 
dimensions of the key performance: response time, data 
completeness, and accuracy of anomaly reporting. The 
operational benefits of the system relative to the traditional base 
architectures are highlighted through the visual comparison and 
show improved benefits in real time detection, enhancements in 
data coverage and higher reliability in anomaly detection. 
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Fig. 5. End-to-End System Performance Improvements 

Fig. 5 gives a vivid and impressive picture of the notable 
improvements that the proposed environmental surveillance 
framework brings on board. The highest increase is recorded on 
data completeness that rose by 41%. This is an enhancement of 
the synergistic integration of IoT continuous sensing and 
satellite-based spatial coverage, which is a good solution to the 
typical shortcomings of independent sensor networks, such as 
the loss of transmission, blind spots, and device failure. When 
the data continuity is enriched, this will provide a stronger 
environmental assessment and improve the performance of 
machine learning models in the long run. 

The fact that the response time of the event has been reduced 
by 34% proves that the system has significant improvements in 
real-time processing. The delay of cloud-only processing can be 
tremendously minimized with the edge-level anomaly detection 
based on the LSTM networks, leading to faster environmental 
notifications. The performance improvement is also necessary 
when it comes to applications with fast situational awareness 
needs, e.g., pollution spike detection, water pollution events, or 
monitoring vegetation stress. 

The fusion architecture is also associated with the 12% 
accuracy improvement in the anomaly reporting, highlighting 
the importance of the heterogeneous data modalities fusion. The 
system achieves fine-grained measurements of the IoT by 
integrating multispectral images that are spatially rich with the 
aim of minimizing misclassification and improving the 
confidence in the identified environmental abnormalities. This 
has been especially beneficial to environmental management 
agencies that use automated systems in the early warning and 
decision support. 

Overall, Fig.5. confirms, the given framework does not only 
result in a higher level of analytical accuracy, but it also leads to 
the optimization of the operational efficiency. The evaluated 
changes support the usefulness of multi-source environmental 
intelligence and point to the appropriateness of the framework 
to scalable, real-time, and resource-efficient infrastructures of 
environmental monitoring. 

G. Deployment Cost and Scalability Considerations 

Practical deployment feasibility is a critical requirement for 
large-scale environmental surveillance systems. Accordingly, 
this study provides an indicative cost and scalability assessment 

of the proposed IoT–Remote Sensing integrated framework to 
evaluate its real-world applicability in smart agriculture, urban 
monitoring, and environmental governance scenarios. 

Each IoT sensing node in the proposed architecture is 
designed using low-cost, commercially available components, 
including an ESP32 microcontroller, environmental sensors 
(BME680, MQ-135), temperature and humidity sensors 
(DS18B20), water-quality probes (pH and turbidity), a power 
management module, and a LoRaWAN transceiver. The 
estimated hardware cost per IoT node ranges between ₹3,500–
₹5,000 (USD 42–60), depending on sensor configuration, 
enclosure, and power provisioning. This low per-node cost 
enables dense sensor deployment across geographically large 
and resource-constrained regions. 

Communication overhead and operational expenditure are 
minimized through the use of LoRaWAN, which supports long-
range, low-power data transmission without recurring cellular 
subscription costs. Edge-level preprocessing and LSTM-based 
anomaly filtering further reduce data transmission frequency, 
thereby lowering bandwidth usage and extending node battery 
life. 

On the cloud side, the system employs containerized 
analytics and periodic multispectral satellite processing. For a 
medium-scale deployment involving approximately 100–150 
IoT nodes, the estimated cloud compute and storage cost 
remains below ₹3,000–₹4,000 per month, assuming GPU-
assisted inference for satellite image analysis and compressed 
IoT data streams. The combination of edge analytics and 
adaptive fusion significantly reduces long-term cloud 
processing and storage requirements, making the framework 
economically viable and scalable for continuous environmental 
monitoring applications. 

V.  DISCUSSION 

The developed framework of IoT-Remote Sensing based on 
the environmental surveillance implied significant positive 
results in terms of detection accuracy of anomalies, data 
coverage, and monitoring efficiency in general. The discussion 
section further elaborates on the information of the system level, 
conceptualises the scientific applicability of the results, and puts 
the results in the context of broader studies on environmental 
monitoring. Each subsystem, IoT sensing, visual analytics, and 
data fusion, is discussed critically and reflects on its contribution 
to the environmental intelligence. 

Although it is stated that the proposed system works in real 
time, its applicability is subject to time needs specific to the 
application. The resulting latency of about 3.8 seconds is far 
enough inside allowable limits to air pollution warnings, urban 
heat control, and stress monitoring of vegetation, where 
operationally viable response times of the order of seconds are 
sufficiently low. The framework is however not meant to handle 
ultra-low-latency emergency situations, such as the onset of a 
flash flood or the detection of a seismic event, which need a 
response time of sub-seconds. The difference places the 
suggested system in a more realistic lumping as a near-time 
environmental intelligence platform, tailored towards a 
continuous monitoring aspect and not immediate response to 
hazards. 
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A. Integration of IoT and Remote Sensing: A Convergence 

of Complementary Modalities 

The fact that it was possible to demonstrate a successful 
multimodal environmental intelligence framework that can 
harmonize the temporal richness of an IoT sensing system with 
the spatial breadth of satellite images is one of the most 
important results of this research. IoT sensing at high 
frequencies is geographically constrained, even when handled 
alone, by the nature of sensor deployment of either a static or 
semi-static deployment. Remote sensing, on the other hand, is 
very comprehensive, however, it has a problem with poor 
revisiting and atmospheric interferences. 

These two data modalities are integrated, thus making the 
system address these opposing constraints. The IoT data stream 
offers continuous updates in time, between the satellite 
acquisitions to track the time gaps, and remote sensed indices 
(NDVI, NDWI, LST) place the local sensor measurements in the 
context of the overall patterns of the environment. 

The combined accuracy of the fused output, which is more 
than 90% in all categories of anomalies, proves the fact that the 
complementary nature of the IoT and satellite data is indeed a 
synergistic effect that increases the interpretative coherence to 
what is incapable of individual modalities. This overlap confers 
the growing trend in the environmental analytics around the 
globe namely multi-source sensing environments where 
semantic, spectral, and temporal data is concurrently tapped into 
to improve environmental decision-making. 

B. IoT Sensing Performance: Reliability, Stability, and 

Field Readiness 

High operational robustness is indicated by the performance 
of the IoT subsystem. A value of accuracy of over 91 %, low 
latency (21-42 ms) and low average error rates (1.2-4.7%) 
indicate that the sensor network can provide reliable near-real-
time environmental measurements. The consistency of the IoT 
nodes in long monitoring (0.91-0.98) and the low drift (0.18-
0.55%) indicate that the IoT nodes will be consistent even with 
long-term monitoring, which further indicates their applicability 
to continuous outdoor use. 

These results highlight one essential conclusion, namely that 
an IoT node is not just a passive data collector but an active, 
intelligent edge device. The nodes will be able to pre-filter data, 
find anomalies on-site, and minimize the bandwidth 
consumption by transferring only pertinent data with the 
inclusion of lightweight LSTM models. This can be particularly 
useful in deployments where high-volume data transmission is 
perhaps not always possible due to rural, remote or low-
bandwidth conditions. 

The good performance of the IoT also forms a fundamental 
basis to the data fusion module, as the reliability of data fusion 
is extremely sensitive to the quality and stability of the input 
sensor data. 

C. Deep Learning–Based Visual Analytics: Enhancing 

Macro-Level Environmental Interpretation 

The visual analytics pipeline of remote sensing was found to 
be an effective means of detecting anomalies on a large scale. 
The ResNetViT hybrid model was the most accurate (92.4%), 
with the best F1 score (0.91) and worked better than single 

architectures. This excellent performance is directly the 
consequence of hybridization: 

 ResNet-50 extracts rich local spectral–spatial features. 

 Vision Transformer (ViT) captures global image 

context and long-range dependencies. 

This is a dual capability, which is a reflection of the multi-
scale nature of environmental anomalies. Vegetation stress can 
be reflected, such as small local variabilities of a spectrum, then 
diffuses to large spatial scales, and needs to be described both 
with microscopic (CNN) and macroscopic (Transformer) 
feature representation. 

The confusion matrix reveals a high level of classification of 
the normal environmental status (TN = 516), and a high level of 
identification of the anomaly regions (TP = 241), however, the 
moderate false negatives (32) can be considered as an indication 
of the sensitivity improvement. False negatives are normally due 
to fine spectral variability, atmospheric noise, or initial 
anomalies with low spectral signatures. This supports the fact 
that it is needed to combine IoT data since they can identify 
minute changes in the environment before they translate into a 
visual representation of the satellite image. 

D. Adaptive Temporal–Spatial Fusion: Improving 

Predictive Reliability 

The adaptive Kalman-based fusion system contributed 
greatly to the detection of environmental anomalies by 
dynamically combining the features of the IoT and satellite in 
relation to their uncertainties. The fusion algorithm produced 
high confidence level (94-96%) and low RMSE (0.041-0.053), 
which implies that the fusion algorithm did a good job of 
eliminating noise, outliers and enhanced stability even when the 
environment was changing. 

An important comment is that the fusion model did not just 
combine those two data sources by averaging them but did 
context-based weighting whereby the more trusted modality was 
given more priority at any given timestamp. For example: 

 IoT data received more weights during hazy or cloudy 

satellite acquisitions (Ks ↓, Kr ↑). 

 Under sensor drift or local disturbance, the weights of 

satellite indices were higher (Ks ↑, Kr ↓). 

This dynamic weighting is a strength strategy which 
contributes to the robustness of the system which is resistant to 
the usual environmental monitoring issues like: 

 sensor calibration drift 

 atmospheric distortion 

 missing sensor packets 

 low-quality satellite scenes 

The successful results of the strong fusion justify the main 
assumption of the research: the integration of temporal richness 
(IoT) with spatial richness (satellite images) can bring a more 
precise environment intelligence in comparison to separate 
systems. 
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E. System-Level Improvements: Operational Efficiency and 

Real-World Scalability 

The system level analysis showed that there was significant 

improvement in operations: 

 Event response time reduced by 34.4% 

 Data completeness increased by 41% 

 Anomaly reporting accuracy improved by 12% 

 Network load reduced by 41.9% 

These results have several significant implications: 

1) Faster event detection 

Threats to the environment like the spike in pollution or the 
occurrence of contamination demand quick action. Lower 
latency of the proposed system increases emergency 
preparedness. 
2) Higher data completeness 

Combining the IoT and satellite information reduced blind 
spots. The gaps in sensor data were filled in with satellite data 
and the reverse. 
3) Improved accuracy 

Fusion eliminates the classification errors and enhances 
reliability, which is essential in the policy-making, 
environmental compliance, or precision agriculture. 
4) Efficient bandwidth use 

The system allows sending only data which is relevant to 
anomalies, which enables implementation in rural and remote, 
as well as resource-limited settings, which are very important in 
developing countries. The overall benefits of these efficiencies 
are to show that the suggested system is not only scientifically 
feasible, but also operationally feasible on a largescale 
environmental monitoring system. 

 

F. Anticipated Field Deployment Challenges and 

Generalizability Considerations 

Despite the fact the proposed IoT-Remote Sensing 
framework is very performance in controlled experimental 
settings, real-world deployments come with other sources of 
uncertainty which can impact on the system performance. 
Sensor drift (especially with gas, pH and turbidity) over long 
periods of time can cause a slow decrease in the accuracy of the 
measurements, and packet loss and intermittent interconnection 
can arise due to bandwidth limits or environmental interference 
during remote implementation. The cloud cover and 
atmospheric distortion also affect the optical satellite data, 
creating gaps in data or poor image quality at some point, 
hardware failure or node outage can locally affect spatial 
resolution. The proposed architecture will be able to manage 
these challenges by using edge-level intelligence and adaptive 
fusion which will enable the system to become more dependent 
on the most accurate source of data that is available at a 
particular point in time. Although performance degradation 
relative to simulation-based outcomes is anticipated, the system 
is designed to be graceful instead of crashed whereby the system 
does not lose almost real-time situational awareness and also 

promotes generalizability across the various real-world 
conditions. 

 

G. Alignment with Existing Research and Novel 

Contributions 

This study has found closely related results and in some 
ways expanded on the results of the previous studies. As an 
example, the enhancement of spatial interpretability and 
environmental mapping with the assistance of the IoT and GIS 
combination is the reflection of the improvements outlined by 
Pei et al. (2021). Their research showed that the integration of 
sensor-generated observations with geospatial analytic 
procedures can tremendously add to the environmental 
knowledge, which is evident in the enhanced data completeness 
and spatial reasoning of the current research. Similarly, the 
performance increases that the proposed hybrid ResNetViT 
architecture is capable of are comparable to the deep-learning 
advances reported by Wang et al. (2020) and Venkataraman and 
Gautam (2024), who have also emphasized that modern deep-
learning models are more effective in extracting more complex 
spectral-spatial features of satellite images. Additionally, it is 
confirmed that the data fusion of both temporal and spatial data 
significantly increases accuracy in prediction, which confirms 
the advantages of multimodal integration as mentioned by 
Leung et al. (2019) and Zhu et al. (2017). Their research 
highlighted the fact that sensor-based measurements are more 
accurate and less remote-sensed image based measurements 
create more reliable and contextual environmental 
measurements which is well justified by the high values 
obtained by the fused accuracy values in this study. 

Despite the differences in terms of sensing modalities and 
datasets used in the compared frameworks, the comparison can 
be made at the architectural and system-performance level, and 
it is the main contribution of this research. IoT-based systems 
prioritize time but not space, whereas satellite-based GeoAI 
models provide dense spatial analytics with high spatial 
analytics but high latency. UAV -WSN structures partially close 
this gap but have scalability and deployment limitations. In 
comparison, the suggested framework combines ground-level 
sensing and satellite analytics as a single, dynamic, and plan-
conscious architecture that allows near-real-time environmental 
intelligence that neither of the aforementioned modalities can 
attain on its own. This comparison at the system level supports 
the applied development of the proposed solution compared to 
the current state-of-the-art solutions. 

In addition to the correspondence to the current literature, the 
given work makes a number of new contributions that can be 
considered in the framework of developing technological 
possibilities of integrated environmental monitoring systems. 
To start with, the hybrid edge-cloud architecture is a 
considerable innovation that allows lightweight LSTM-anomaly 
sensors to execute their operations directly at the sensor node 
and leaves deep-computationally oriented operations, including 
deep-learning visual analytics, to the cloud. This separation of 
duties enhances the overall level of responsiveness of the system 
and minimizes network load. Second, the research hypothesizes 
a blended ResNetViT deep-learning architecture, particularly, 
the one that is trained in multispectral satellite analysis. This 
model builds on the localized convolutional feature extraction 
and global Transformer-based spatial reasoning and provides a 
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highly capable analytical feature, which outperforms the 
traditional CNN-only based analysis. Third, the implementation 
of a time-spatial fusion algorithm based on the adaptive Kalman 
weighting is an important methodological improvement that 
offers time-varying uncertainty modeling and makes predictions 
in a manner that data of the best source has a stronger impact. 
Lastly, the study has provided a cohesive IoT Remote Sensing 
environmental intelligence model, which has been evaluated end 
to end using realistic simulated data, and has shown to be very 
accurate, operationally efficient, and applicable in real time. 

Collectively, the contributions contribute to the 
technological preparedness of solutions of environmental 
monitoring as one whole and indicate the possibility of scaled 
implementation in a wide range of ecological and urban settings. 

 

H. Practical implications and Applicability Across Sectors 

The results of the performance of the suggested integrated 
IoT Remote Sensing system are indicative of a great 
applicability in all spheres of the environment. The system in 
smart farming provides great importance in early identification 
of drought stress, nutrient shortage, pest infestation, and crop 
morbidity. Combining the high-frequency IoT soil-climate data 
with the satellite-based vegetation indices enables the farmers 
and agricultural planners to react in advance, enhancing yield 
stability and resource use. This can especially help in areas 
where climatic variability and land degradation are becoming a 
major threat to crop productivity. 

The framework can be applied in the air quality monitoring 
sector to maintain uninterrupted measurements of PM 2. 5, 
gaseous pollutants and other pollution sources in cities with very 
high temporal resolution. IoT nodes record very fast changing 
pollutant concentrations, but the contextualization of these 
changes is conducted by satellite thermal and optical signatures 
at larger diagnostic spatial scales. This dual-layer intelligence 
improves the municipal pollution management strategies, assists 
in regulatory compliance, and assists in policy formulation by 
policymakers to establish specific intervention measures, basing 
on the real-time evidence. 

The system is also proven to be of high utility in the water 
resource management whereby the IoT sensors monitor the pH 
variation, turbidity, dissolved contaminants and temperature 
differences whereas the remote sensing provides visibility on a 
watershed scale. This arrangement makes it possible to detect 
instances of contamination, erosion and hydrological imbalance 
with more accuracy than traditional water-quality monitoring 
schemes. The alerts promoted by the fusion enable quick 
reaction to the environmental risks that protect the human well-
being and aquatic environment. 

In disaster management and climate, the system can be used 
to predict heatwaves, forest fires, floods, and droughts by 
detecting the thermal anomalies, stress pattern of vegetation and 
hydrological changes. The system enhances resilience planning 
by integrating local sensor signals with regional remote-sensed 
signals to facilitate timely information-driven situational 
awareness in emergency response agencies. 

Finally, in smart city governance, the framework also 
enables centralized environmental monitoring with connections 
with dashboards, including Grafana and WebGIS-based 
platforms. These visualization tools allow city administrators to 
monitor the environmental health indicators in real-time, 

optimize resource utilization, determine the pollution hotspots, 
and design the sustainable urban interventions. The versatility of 
the framework in terms of multi-sector lends more weight to its 
scalability, technological stability and the potential perceived 
societal impact. 

 

I. Novelty Beyond Pipeline Integration 

The key difference between the suggested framework and 
the existing environmental monitoring pipelines is based on the 
integration philosophy, and does not pertain to the novelty of the 
specific algorithmic components. Although edge-based LSTM 
models, Vision Transformer architectures and Kalman filtering 
mechanisms are established independently, their co-ordination 
within a coherent and adaptive architecture, as well as with 
respect to latency, is the main novelty in the current study. 

In the adaptive fusion approach, uncertainty properties of the 
heterogeneous data sources are dynamically used to weight the 
data sources. Abbreviations Vs(t) and Vr(t) represent the 
approximated variances of the IoT sensor data and remote-
sensing features, respectively. Adaptive Kalman weights are 
determined as follows: 

𝐾𝑠(𝑡) =
𝑉𝑟(𝑡)

𝑉𝑠(𝑡)+𝑉𝑟(𝑡)
, 𝐾𝑟(𝑡) =

𝑉𝑠(𝑡)

𝑉𝑠(𝑡)+𝑉𝑟(𝑡)
(15) 

The fused environmental state 𝑋(𝑡) is then obtained as: 

𝑋(𝑡) =  𝐾𝑠(𝑡)𝑆(𝑡) + 𝐾𝑟(𝑡)𝑅(𝑡)  (16) 

 

In which S(t) is the high-frequency IoT data and R(t) is low-
frequency satellite-based data. 

Contrary to the use of a static fusion scheme, the adaptive 
formulation allows the system to give precedence to the more 
trusted data source at each step, which keeps the system robust 
in cases of poor conditions like sensor calibration drift, 
intermittent satellite availability or communication delays. 

Moreover, the given framework incorporates the fusion logic 
into a latency-conscious edge-cloud workflow, which 
guarantees the decision to detect an anomaly to be made within 
the temporal bounds of the application. The fact that cross-scale 
anomaly confirmation is also included also contributes to 
reliability, as local sensor alerts are then reconciled with 
spatially large satellite-observations. 

All these design options contribute to making the suggested 
framework more than just an ordinary set-up of a pipeline, and 
transform it into a system-designed eco-consciousness 
architectural framework, which is capable of upscaling, real-
time and resilience. 

VI. CONCLUSION 

The current research has built and tested a complete 
mechanism of IoT-Remote Sensing environmental surveillance 
system that overcomes the major flaws of the traditional 
surveillance systems. The proposed system that fused high-
frequency IoT sensor measurements with multispectral satellite-
based visual analytics and an adaptive temporal-spatial fusion 
algorithm showed considerable enhancement of detection 
accuracy, operational performance and environmental 
situational awareness. The findings affirm that IoT sensors in 
their own right, even though rich in time, lack depth in space to 
facilitate an assessment of an ecosystem whereas remote-sensed 
imagery, in as much as it covers vast regions, is affected by 
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latency and temporal discontinuity. These limitations are solved 
by the integrated approach: IoT nodes can provide continuous 
data of the micro-environment, edge-level LSTM models can 
support local detection of anomalies, and satellite images can be 
used to analyze the macro-environment and use such indices as 
NDVI, NDWI, and LST. The spectral-spatial feature extraction 
was also improved by using the hybrid ResNet-ViT deep-
learning model that provided better classification results than 
single-network models. The adaptive Kalman-based data fusion 
mechanism was significant in the implementation of prediction 
stability and reliability in the vegetation stress, air pollution, and 
the water-quality anomaly detection. The fused accuracy of 
above 90% and the confidence level of above 94% show clearly 
the increased strength of and contextual relevance of multi-
source environmental intelligence. On the system-level tests, the 
operational benefits were significant: the event response time 
decreased by 34%, the data completeness increased by 41 
percent, the anomaly detection accuracy increased by 12%, and 
the network load decreased by almost 42%. These results 
highlight the scalability and efficiency of the suggested hybrid 
edge–cloud architecture, which is appropriate to implement in 
bandwidth constrained or geographically isolated areas. 

In general, the study has some notable contributions such as 
(1) a single, integrated IoT-Remote Sensing-Deep Learning 
architecture (2) a hybrid ResNet-ViT model that is tuned to 
multispectral and (3) adaptive temporal-spatial data fusion (4) 
end-to-end operational pipeline that is tested with realistic 
datasets. All these inventions contribute to the technological 
preparedness of intelligent environmental surveillance systems 
and are a solid base of the next generation of environmental 
governance. The future research can investigate field 
deployments, the combination of hyperspectral and LiDAR 
data, self-calibration sensor networks, and adaptive fusion using 
reinforcement learning. Further enhancement of transparency 
and confidence in the large-scale environmental monitoring 
activities by extending the system to include the use of 
decentralized or blockchain-based data integrity may be 
considered. The paper finally shows that integrating IoT 
sensing, satellite imagery, deep learning, and smart data fusion 
offers a ground breaking avenue to precise, scalable, and real-
time environmental monitoring, which is essential to sustainable 
development, climate, and informed decision-making regarding 
the environmental policy. 
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