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Abstract

This study proposes a unified environmental surveillance system, which fuses 10T sensor networks and the visual analytics of multispectral
remote-sensing to address the shortcomings of the conventional surveillance solutions. Edge-based LSTM anomaly detection on
distributed nodes of the 10T can offer high-frequency local measurements, whereas a hybrid ResNetVision Transformer (ViT) model can
improve the analysis of the satellite image. An adaptive Kalman-based temporal-spatial fusion algorithm incorporates heterogeneous
streams of data towards better environmental intelligence. The system was highly performing, indicating the accuracy of the 10T sensors
in 91.3-98.1% and a hybrid model at 92.4% and the fused levels at 94% and above respectively. The results were impressive on the system
level, since the response time to events was improved significantly, the completeness of data improved, and the accuracy of anomaly
detectors increased, as well as the network load decreased. On the whole, the suggested structure has high potential to monitor the
environment in real-time, being scalable, in the fields of smart agriculture, air-quality monitoring, water-resource control, climate-risk
identification, and smart urban governance.
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In its turn, recent breakthroughs in digital ecosystems,
especially the Internet of Things (IoT) and remote sensing via
satellites have created new opportunities to create intelligent,
multi-layered, and real-time systems of environmental
surveillance [5]. 10T allows the high-frequency deployment of

. INTRODUCTION

Rapid urbanization, industrialization, climate change and
anthropogenic stress are causing unprecedented transformation
in environmental systems across the world [1]. These activities

have increased the rate at which environmental abnormalities
like abrupt pollution surges, thermal strain, water pollution,
deteriorating vegetation well-being and ecological balance
changes are happening [2]. Conventional environmental
surveillance systems, which rely mostly on manual sampling,
regular laboratory tests and sparsely placed sensors, no longer
can adequately measure the magnitude, pace and intricacy of
such changes [3]. They do not deliver the temporal granularity
and spatial continuity needed to timely detect and predict
possible environmental risks and mitigate them [4].

low-cost sensors that are able to capture air quality, water
parameters and microclimatic variables, whereas remote sensing
offers multispectral and thermal observations of large areas that
are able to recognize spatial patterns and environmental
processes that are not perceivable at ground level [6].
Nevertheless, the two data modalities have been historically
exploited individually, which leads to disjointed information
pipelines and restricted situational-awareness [7].

This paper acknowledges the fact that environmental
phenomena exist on both micro and macro scale, and that
efficient surveillance demands the combination, and not the
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separation, of sensory modes [8]. With the integration of both
the 10T sensor systems and remote-sensed visual analytics one
is able to build an integrated environmental intelligence system
that can deliver continuous, scalable and rich context insights
[9]. These frameworks do not only benefit the detection of
anomalies but can also be used to generate environmental
modeling, predict risks and make informed decisions in various
applications like precision agriculture, disaster management,
pollution surveillance, and sustainable urban planning [10].

A.  Need for Integrated Environmental Surveillance

The processes associated with the environment are multi-
dimensional in nature and are characterized by interactions
among atmospheric, hydrological, terrestrial, and biological
processes. Such interactions occur in different ways at different
spatial and temporal levels [11]. For instance (1) Air pollution
outbreaks may begin at a local level but spread quickly through
the urban areas.(2)The source of vegetation stress can be in
microclimatic disequilibrium but over wide agro-scenery. (3) At
a point source, water contamination may be observed but over a
long period, it may have an impact on ecosystems downstream.

l0T sensors are good at measuring at high frequencies and at
a point, they are able to track short-term variations like spikes in
pollutants or rapid changes in temperature [12]. Their
granularity is useful in detecting anomalies at localized scales
but they are not as informed of the wide space as needed to link
regional environmental patterns.

Remote-sensed imagery, by contrast, has a wide-area
coverage, thus it is able to detect landscape-scale processes,
including urban heat islands, deforestation, algal blooms, the
extent of a flood, or vegetation degradation. Satellite data are,
however, generally affected by-limited temporal revisits, cloud
cover obstruction, atmospheric scattering, data latency,
andlower temporal resolution than 10T streams.

A complete monitoring platform, i.e. aligning the loT data to
satellite-based analytics, is the solution to these constraints by
leveraging the benefits of both modalities. These types of
integration offer a rich spatio-temporal environmental dataset
that can be continuously monitored, early anomalies are
detected, and projections are made.

B. Limitations of Existing Systems

Although significant progress has been made in
environmental monitoring technologies, several persistent
challenges limit the effectiveness of existing systems:

1) Temporal Gaps in Satellite Revisit Cycles: Sentinel-2 (5
days) and Landsat-8 (16 days) are remote sensing systems
that are not able to detect dynamic environmental changes,
particularly in dynamic cities or farms.

2) Sparse or Irregular 10T Deployment: 10T nodes are
usually distributed in a non-uniform manner due to cost,
complexity of maintenance, and distance, forming
blinding spots in the environmental knowledge.

3) Human-Dependent Image: Most remote-sensing
processes still use manual or semi-automatic processing,
thereby causing latencies in the detection of anomalies
and subjectivity.
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4) Absence of Real-Time Data Fusion: Current models
seldom tie ground-sensor data of the loT with spectral
information delivered by satellites in real-time and thus
lack the chance to combine the complementary
information provided by both data streams.

5) Fragmented Analytical Pipelines: 10T platforms, satellite
processing platforms, and deep-learning systems are
typically created on a case-by-case-basis, creating
incoherent workflows that are not interoperable.

Collectively, the following limitations highlight the need of
the integrated, intelligent and fully automated architecture of
environmental surveillance that can bridge the gap between real
time sensing and large scale remote-sensing analytics [13].

C. Role of IoT and Remote-Sensed Visual Analytics

IoT and remote sensing serve complementary roles in
environmental intelligence:

1) 10T Contributions-

e  Monitors environmental measurements also on a high-
frequency basis.

e Records fluctuations occurring in a short time that
satellites cannot detect.

e Enables edge computing of on-device preprocessing,
anomaly detection, and data compression.

o  Allows the use of inexpensive, scalable deployment in
various conditions.

2) Remote-Sensed Visual Analytics Contributions

e Provides extensive, multispectral, thermal, and

temporal scenes on the environment.

e Facilitates the extraction of complicated features
based on such indices as NDVI, NDWI, LST, and
spectral signatures.

e Native classification with deep learning based on
CNNSs, Vision Transformers and spectral spatial
models.

e  Gives the macro level context needed to comprehend
large scale environmental processes.

3) Integrated Fusion Advantages

In cases where machine learning and probabilistic modeling
is combined to fuse these modalities, the resulting system offers:
e  Multi-source environmental intelligence.

e Anomaly detection at early stages and reduced false
alarms.

e Improved classification of the
temporal reasoning.

spectral-spatial-

e Resiliency to operational problems of sensors or
satellite blockage.
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e  Better environmental management and policy making
support.

There is the ability of such hybrid forms to move towards
more holistic and data-based environmental governance as
opposed to fragmented monitoring.

D. Problem Statement

The growing pace of urban growth, industrialization, climate
change, and anthropogenic stressors have complicated and
increased the complexity of environmental monitoring [14].
Conventional monitoring methods, which are largely manual
methods and only utilize laboratory analysis and the deployment
of individual sensors, are inherently ineffective in identifying
rapid or large-scale problems in the environment. Such
traditional methods do not have the time resolution required to
monitor rapidly changing phenomena, including pollution
peaks, temperature fluctuations, or even a sudden water
pollution. Moreover, they have narrow coverage space, hence
blind spots, which they cannot observe early enough to take
precautions over environmental degradation.

Internet of Things (10T) sensor networks have developed as
a new option of continuous measurements in the environment,
but they have significant limitations to operation and structure.
Due to the limited resources and maintenance capabilities, the
IoT nodes are frequently thinly distributed, thus causing
disparities in data dissemination and inadequate coverage of a
specific area. There is also a possibility that sensors are subject
to noise, calibration drift, packet loss and failures due to power
which compromises the validity of the collected data. In the
meantime, remote-sensing satellites like Sentinel-2 and
Landsat-8 offer high spatial density but are afflicted with
lengthy revisit times, cloud cover, and atmospheric distortion, as
well as the latency between data collection and delivery. This
means that satellite imagery itself will not be able to provide
real-time situational awareness as well as identify short-term
anomalies.

Today the 10T data streams and remote-sensing analytics are
handled separately, which leads to disjointed workflows that do
not allow the environment to be interpreted comprehensively. A
unified system integrating real-time ground level measurements
on an loT with multispectral satellite-derived measurements
does not exist. Such lack of integration leads to incomplete
environmental intelligence, a decrease of accuracy of anomaly
detection, delayed environmental response, and inefficient
decision making. Additionally, the current environmental
monitoring architectures do not often use a sophisticated deep-
learning mechanism that can identify both intricate spectral-
spatial-temporal features of multi-source data.

Thus, the main issue that is discussed in this paper is the
absence of an integrated, scalable, real-time environmental
monitoring system that allows the combination of 10T sensors
data with remotely-sensed visual analytics through the
application of sophisticated tools of deep learning and
probabilistic fusion. This issue is a major obstacle to good
environmental ~ monitoring,  early-warning  mechanisms,
forecasting of risks and sustainable environmental governance.
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E. Significance of the Study

This study has a great scientific, technological and socio-
environmental impact because it introduces a thorough model of
integration of loT and Remote Sensing that can revolutionize the
future of environmental monitoring. The wide gap in the
existing body of environmental intelligence that the research
fills is the absence of integrated spatio-temporal environmental
data: combining micro-scale 10T observations with macro-scale
satellite-derived analytics. The suggested framework makes use
of edge-level LSTM anomaly detection, a hybrid ResNetVision
Transformer (ViT) deep-learning architecture, and an adaptive
Kalman-based fusion framework to provide real-time and high-
precision environmental data [15].

The importance of this framework is that it offers sustained,
high-resolution surveillance of the environment, which allows
identifying the abnormalities in the environment early, which
can be vegetative stress, air pollution hotspots, hydrological
contamination, and climatic variations. The system is able to
provide increased data completeness, fewer false alarms and
better decision-making effectiveness, which is superior
compared to current sensor-only or satellite-only systems. Its
ability to reduce network load and response time to events
makes it suitable to be deployed in congested urban areas as well
as sparsely populated rural or remote area with low connectivity.

In a bigger scope, this research adds to the sustainability and
environmental governance processes in the world. It can
promote the adaptation to climate change, the preparedness in
case of natural disasters, the intelligent management of
agriculture, and the ecological planning of cities. The
intelligence dashboards of the platform can be used to allow
policymakers, environmental agencies, and the smart city
authorities to monitor the health of the environment and enforce
environmental regulations, as well as design data-driven
intervention strategies.

Additionally, the research benefits the scientific community
by presenting methodological advances, such as multispectral
analysis hybrid deep-learning models, temporal-spatial fusion
strategies, and loT-satellite data pipes interoperability. These
inventions give the basis of additional studies in the areas of
environmental Al, geospatial analytics, Earth observation
systems, and smart sensing.

Ultimately, the study is important as it shows how integrated
sensing ecosystems, based on 10T, remote sensing, and artificial
intelligence, can transform environmental monitoring practices
and allow managing natural and urban environments in a more
resilient, informed, and sustainable manner.

F.  Purpose of the Study

The major aim of this research is to develop and prove a
comprehensive 10T- Remote Sensing system of integrated
environmental surveillance that would overcome the limitations
of traditional monitoring systems. The suggested framework
includes:

e Addistributed network of multi- sensor 10T nodes that

can monitor the atmospheric and hydrological
conditions in real-time.

e Lightweight LSTM based edge-level intelligence in
on-site anomaly detection.
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e Sentinel-2 and Landsat-8 multispectral satellite

imagery to visual analytics at the macro-scale.

e An advanced feature extractor and anomaly classifier
(ResNet + Vision Transformer) based on hybrid deep-
learning.

e An adaptive Kalman weighting-based (temporal-
spatial) data fusion model to integrate loT and
satellite-derived characteristics.

e Environmental intelligence dashboard in real time to
visualize anomalies and make decisions.

The general purpose is building a single monitoring platform
that is able to provide high precision, low latency, scalability in
operations, and strong anomaly detection in various
environmental settings.

This study contributes to the scientific body of knowledge
by showing how the fusion of multi-source environmental data,
with the help of deep learning, can be used to improve
environmental monitoring dramatically and to make the next-
generation smart environmental surveillance systems possible.

G. Research Objectives

This study is guided by the following four research
objectives:

1) To develop an all-encompassing environmental
surveillance system integrating 10T sensor networks
with multispectral visual analytics that is detached at
a distance.

2) To create and deploy a deep learning pipeline based
on a hybrid ResNet-Vision Transformer model to
analyze and detect anomalies in satellite images.

3) To develop a temporal-spatial data fusion paradigm
that is able to combine loT time- series measurements
with satellite-derived features to enhance the accuracy
of environmental monitoring.

4) To assess the functioning of the proposed integrated
system as per the accuracy in detection, computational
efficiency, and reduction of event-response latency.

H. Novelty and Contribution of the Study

Though edge-based anomaly detection, multispectral deep-
learning models and Kalman-based fusion methods have been
studied separately, this study is a novelty at the system-
integration and algorithm-adaptation level. In contrast to
traditional pipeline based methods that process 10T and satellite
data sequentially, the proposed framework creates a drift
sensitive, latency aware and uncertainty adaptive combination
of heterogeneous modalities of sensing. The innovation is not on
suggesting new standalone learning models, but the
coordination of the models across edge and cloud layers, the
explicit modeling of sensor drift and revisit gaps in the fusion
mechanism and cross-scale anomaly confirmation between
micro-scale observations of the 10T and macro-scale satellite
analytics. It is an integrated design that achieves strong real time
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environmental monitoring which is not achievable using
isolated or loosely coupled monitoring systems.

. Limitations and Practical Considerations

Although the conducted performance of the suggested IoT-
remote sensing environmental surveillance framework can be
regarded as encouraging, it is possible to identify certain
limitations. The fact that the system relies on satellite data makes
it prone to revisit delays and cloud cover, which can,
temporarily, limit macro-scale validation of anomalies detected
by loT. Even though the adaptive fusion model minimizes
uncertainty in such times, long time satellite outages are
difficult. The loT sensors that are more affordable can have their
calibration drift and hardware degradation with time, making
periodic maintenance necessary in terms of long-term
deployment. Also, the computational demands of the hybrid
ResNet Vision Transformer model might be a limitation to
scalability and cloud resources in cases where large areas or
dense sensor networks are to be monitored. The experimental
assessment is partially based on synthetic 10T data to control the
experiment, thus the performance can vary in the real-life
scenarios, where there is noise, packet loss, and hardware
failure. Lastly, the end-to-end latency of the achieved results is
appropriate in most cases of environmental monitoring, but in a
scenario that involves sub-second response time, additional edge
and communication layer optimization might be needed. These
restraints suggest the future work directions that can be greater
field deployments, more fault tolerance, and better scalability
plans.

Il. LITERATURE REVIEW

A. loT-Based Environmental Monitoring

loT systems had radically changed the paradigm of
environmental monitoring, as they allowed continuous and high-
frequency and distributed data collection of heterogeneous
ecological and urban environments. Before the introduction of
the 10T technologies, the traditional techniques to track the
environment mainly involved using the traditional techniques of
environmental surveillance, including manual field sampling,
periodic laboratory tests, and even individual instruments
installed at random. These old infrastructures were characterized
by low temporal granularity, spatial discontinuities and limited
density of measurements and it was very difficult to record
rapidly changing environmental dynamics. Sudden emissions by
industrial sources, rapid dispersion of pollutants due to
microclimatic variation, flash floods, or even changes in the soil
or water chemistry were usually not noticed until it was too late
and once they resulted in severe ecological or public-health
effects. These constraints highlighted the ineffectiveness of
conventional monitoring systems in assisting real time
environmental decision making.

In contrast, modern loT-oriented solutions have presented
new capabilities of flexibility, scalability, and adaptiveness with
the combines of wireless sensor networks (WSNSs), low-power
wide-area networks (LPWAN, LoRaWAN), energy-efficient
microcontrollers, and edge processing units. These systems
enabled thousands of sensors to act independently, share data
with limited human interventions, and produce high-resolution
datasets that were able to capture micro-scale variability, as well
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as larger-scale environmental trends. It was based on the
integration of edge intelligence, in which machine-learning or
anomaly-detection algorithms are tiny and run on sensor nodes
or gateways, greatly decreasing the overhead of communication,
improving latency, increasing reactiveness of the environmental
monitoring infrastructure. Consequently, 10T ecosystems
became potent instruments of real-time diagnostics, early-
warning systems and predictive environmental analytics.

Kaginalkar et al. (2022) exhibited the potential of
transforming the use of big-data governance models alongside
loT-based sensors in urban air-quality management [16]. They
emphasized in their research that intelligent environmental
surveillance needs more than mere sensor deployment; it needs
to have structured data architectures, powerful data pipelines,
and governance policies that promote data integrity, temporal
consistency, and reliability. They installed sensors into a big-
data ecosystem and were able to process it automatically, cut
down delays in the responses and enhance the interpretability of
environmental indicators. This publication was a clear
demonstration of the fact that the 10T systems should be backed
by modern data-management systems to unveil their
capabilities.

Similarly, Popescu et al. (2019) increased the spatial
capacities of 10T systems by combining WSNs with unmanned
aerial vehicles (UAVSs). Their study revealed that the UAV-
WSN hybrid structures surpass the spatial constraints of ground-
fixed sensors through the mobile sensing of the environment,
which is adaptive, and sampling inaccessible or unsafe areas
[17]. The UAVs may be deployed according to the timely
detected anomalies through sensors, make specific aerial
inspections, transfer sensor data to distantly located locations.
This greatly improved the spatiotemporal resolution of the
environmental datasets and provided a flexible multi-layered
sensing infrastructure that dynamically responds to the
environmental conditions.

Zarboubi et al. (2024) offered additional proof of the
flexibility of loT by launching low-cost Raspberry Pi
microcomputers combined with YOLOv10m, a contemporary
deep-learning object and anomaly detector, in precision
agriculture [18]. Their results validated the fact that even cost-
effective embedded systems are capable of providing highly
accurate, fine scale environmental analytics. The
democratization of high-technology environmental monitoring
tools through the use of low-cost 10T sensors to identify pest
intrusions, crop distress, or vegetation abnormalities shows this
as the tools are available even in rural areas, which may have
limited resources.

In another significant contribution, Pei et al. (2021)
emphasized how important integration of loT streams and
GIScience methodological approaches is, demonstrating that
meaningful interpretation of loT data cannot be achieved
without contextualization of data by its geospatial location [19].
l0T sensors give point-based data measurements, but these data
do not include spatial relationships: landforms, watershed
boundaries, land-use patterns, and so forth. loT systems were
enhanced by GIS technology, which allowed environmental
practitioners to relate localized variations to the process at the
regional scale, which facilitated the use of the system in the
characterization of landscapes, environmental risk assessment,
management of natural resources and monitoring ecosystems.
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Complementing this, Kiling (2024) highlighted the growing
significance of GIS-based analytics, i.e. spatial clustering,
kriging-based interpolation, geostatistical modeling and spatial-
temporal trend extraction. These cutting-edge methods of
analysis were demonstrated to be quite useful in boosting
predictive capabilities and explainability of loT-based
environmental data. GIS-based analytics were involved in more
precise environmental modeling and forecasting by decreasing
noise, detecting outliers and filling in space [20].

Collectively, the above studies all agree on one finding that
10T technologies have succeeded in development to become
more than a mere sensing platform and have become a pillar of
next generation environmental intelligence systems. By the
capability to create high-density real-time information streams,
scale spatial coverage with UAV-WSN hybrids, and provide
higher analytical accuracy by integrating GlIScience, loT
systems have become useful in multiple applications such as
early-warning systems, precision agriculture, atmospheric
pollution measurement, smart-water monitoring, and automated
anomaly detection. The literature defines loT as scalable,
versatile and data rich backbone that can greatly enhance the
level of accuracy, responsiveness and resilience of the
environmental surveillance infrastructures across the globe.

B. Remote-Sensed Visual Analytics

Remote sensing became one of the most transformative and
irreplaceable technologies of environmental surveillance
because of its ability to gather synoptic, multi spectral and time-
fulfilled data on a regional to a global scale. In contrast to
ground-based loT sensors that could only record localized and
point-specific data, remote-sensed imagery offered a wide-area
observational coverage, which made it possible to record both
subtle and large-scale phenomena in the environment that could
not be easily seen or detected by traditional methods of
monitoring. Its capacities to watch the earth, atmosphere,
shoreline, and hydrology systems at the same time made it the
core of the present-day environmental intelligence systems.
Notably, remote sensing grew beyond primitive reflectance-
based measurements to the very advanced levels of analytical
pipeline using machine learning, deep learning, and state-of-the-
art geospatial modeling. This shift further augmented its
capabilities of providing highly accurate, automated and
context-rich environmental information in sectors of agriculture,
forestry, climate science, water management, disaster early
warning, and ecosystem health.

Wang et al. (2024) presented one of the most extensive
analyses of the revolution of the satellite-based environmental
diagnostics by machine learning [21]. In their research, they also
showed that the application of multispectral and thermal
imaging and models based on Al enhanced significantly the
ability to detect environmental anomalies, including vegetation
stress, soil moisture deprivation, nutrient imbalances, and crop
disease development. The classical measurements, such as
NDVI or NDWI, reflect the overall vegetation or water state,
whereas machine learning methods can identify minor changes
in the spectral properties way before the visual indicators appear.
This was a paradigm shift instead of mapping the environment
in stasis, to predictive and preventive environmental intelligence
where the stakeholders will be able to take action before the
ecological degradation is too severe.
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Further strengthening this perspective, Zhang et al. (2022)
carried out a comprehensive bibliometric and scient metric
review that showed that the field of remote-sensing has grown
exponentially over the years due to the availability of more
sensors, enhanced spectral sensitivity and the availability of free
and open data sources such as Sentinel-2 MSI, Landsat-8
OLI/TIRS, and MODIS [22]. In their work, the research
hotspots were found to be spectral unmixing, hyperspectral
feature extraction, biophysical variable estimation, detecting
change, land-cover mapping, and automated anomaly detection.
These themes revealed remote-sensed analytics was now an
interdisciplinary scientific ecosystem that combines physics,
ecology, geoscience, machine learning and environmental
modeling. The paper has pointed out that remote sensing was no
longer limited to scholarly research but a strategic tool of
governments, agricultural players, water managers and
environmental control mechanisms.

Shaurub (2024) increased the field of application through its
proof of the importance of remote sensing in ecological and
biological early-warning systems. Their research into the
detection of fall armyworm exemplified the fact that problem-
specific spectral features, like canopy reflectance reduction,
thermal change related to plant stress and spatial degradation
patterns, could be detected by remote-sensed indices well before
ground manifestations of the problem could be observed [23].
The combination of multispectral indicators and GIS-based
spatial modeling made it possible to represent and predict the
dynamics of pest infestation on a large and agricultural area.
This made remote sensing a proactive monitoring system, which
can provide early warning of biological hazards, hence
protecting the crop production and food security.

From a methodological standpoint, Venkataraman and
Gautam (2024) presented an in-depth overview of techniques of
satellite image preprocessing and analytical enhancement. Their
study put emphasis on the significant advancement of
atmospheric correction schemes, radiometric normalization
processing and noise elimination approaches, and spectral-
spatial classification schemes [24]. They stressed that these
preprocessing operations are not a fortuitous addition to the
system but form the basis on which consistent classification is
to be expected, particularly in cases involving medium-
resolution imagery prone to atmospheric interference. Their
results supported the notion that the processed pipeline of
satellite processing narrows the margin of uncertainty, enhances
separability of objects, and augment the interpretive value of
environmental records especially when these are applied in land-
use mapping, thermal anomaly detection and waterbody survey.

Adding to this, Wang, Huang, and Zhang (2020) followed
historical development of remote-sensing scene classification
methods and found a definite transition between classical
machine learning frameworks and the latest state of the art deep-
learning architectures [25]. Initial methods, including support
vector machines, decision trees, random forests, and handcrafted
texture features, provided practical but poor interpretive power
since they are unable to represent hierarchical spatial patterns,
or spectralspatial relationships. Recent advances in
convolutional neural networks (CNNs), hybrid spectral-spatial,
and Vision Transformers (ViTs) have provided strong
algorithms to learn multi-scale representations which are learned
directly on raw image data. These are models that are very
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effective in extracting deep semantic features, detecting
complex land-cover patterns, and detecting fine-grained
anomalies. Their greater ability to reason spatially and
understand a situation in context increased the ability of remote
sensing to go beyond basic classification to more complex
functions like multi-temporal change detection, environmental
forecasting, and automatic notification of environmental
degradation.

Collectively, the examined articles give solid proof that
remote-sensed visual analytics had become a high-resolution,
intelligence-oriented surveillance technology that was necessary
in contemporary environmental regulation. Its combination with
machine learning resulted in effective models which could
identify the spatial patterns, predict ecosystem changes, and
detect anomalies with great precision. Remote sensing provided
macro-level information that could be used to supplement the
micro-level measurements of l1oT and overcome the spatial
constraints of ground sensors at the advantage of the high-
frequency time resolution that could be offered by 10T systems.

Consequently, remote sensing became a staple of modern
environmental monitoring- supporting evidence-based decision
making, improving predictive environmental protection, and
demonstrated the capability to shift to highly automated, full
scale environmental intelligence systems with the capability to
deal with the increasing demands of climate change, biodiversity
loss, water scarcity and urban pollution.

C. Fusion Approaches

The combination of remote-sensed imagery with the data
created through 10T had become one of the most critical
contributions to environmental intelligence with an opportunity
to understand the ecological situation on a multi-scale and multi-
modal level. 10T sensors provided point-based datasets, which
unlike satellites could provide rapid changes (air quality, soil
moisture, hydrological, and microclimatic changes), which
satellite sensors could not capture in time because of the time-
related limitations. On the other hand, the remote sensing using
satellites and UAV gave extensive spatial resolution and made
it possible to perform macroscopically the land cover, vegetation
health, thermal environment, and water-body dynamics.
Combining these mixed data streams overcame the drawbacks
of each data system and generated more contextual and more
complete and trustworthy information about the environment.

Leung, Braun, and Cuzzocrea (2019) highlighted the
importance of Al-based sensor information fusion as a way to
enhance performance in environment-monitoring systems by
supervised learning. Their experiment showed that a
combination of several sensor streams increased the robustness
of models, minimized ambiguity and provided more correct
predictions especially on environmental data prone to noise [26].
The fused system also delivered more consistent environmental
interpretations compared to any of the individual sources of data
through the integration of varied sources including gas sensors,
meteorological probes and spectral reflectance signals.

Expanding on these insights, Li and Hsu (2022) introduced
the notion of GeoAl, a new paradigm of analytics that combines
geographic information science and artificial intelligence [27].
Their analysis demonstrated that GeoAl could be very useful to
integrate 10T time-series data with satellite-based spectral
features into integrated spatial processes. GeoAl allowed



Madhuri et al. / Journal of Applied Science and Technology Trends Vol. 06, No. SI*, pp. 90 —113 (2025)

detecting patterns at large scales, finding anomalies, and
modeling the environment with a higher degree of precision
through the use of deep-learning-based features extraction and
spatial reasoning. The value of their findings was the recognition
of the relevance of spatial-temporal alignment in multi-source
analytics and the usefulness of integrating satellite images into
loT-enhanced geospatial pipelines.

Pajany et al. (2024) proposed a multispectral image based
deep-learning fusion neural network that uses multispectral
images collected by UAVs to identify plant diseases [28]. Their
model of hybrid was based on spectral properties obtained by
UAVs and contextual environmental variables, including
humidity, or soil variables. The fused representation greatly
enhanced the classification accuracy of the plant disease
detection models and demonstrated how multi-modal inputs
enhanced the learning process and reduced the weakness of
imagery or sensor data only.

Complementing these findings, Seralathan and Edward
(2024) surveyed a set of deep learning-related fusion methods
on UAV-based crop surveillance in a variety of agricultural and
climatic conditions [29]. Their comparison showed that fusion
methods, specifically the implementation of CNN-Transformer
hybrids, spectral-spatial analysis and attention-based methods,
achieved greater stability of predictions and resistance to
environmental changes. They observed that fusion models
worked particularly well in cloud occlusion conditions,
illumination change, or partial sensor breakdown, and multi-
source data integration is more reliable.

Zhu et al. (2017) delivered one of the most impactful and
thorough considerations of deep learning in remote sensing,
such as multi-modal fusion method [30]. Their study described
the process in which neural architectures would incorporate
multispectral or hyperspectral images with other supplementary
sensor data, terrain and time sequences. They established that
state-of-the-art fusion models were significantly more effective
in land-use classification, anomaly detection, and ecological
forecasting through the exploitation of complementary assets in
space, spectral, and temporal domains.

Put together, the literature indicated that the fusion of multi-
modal based on Al, deep learning, and geospatial analytics was
now critical to the next-generation environmental monitoring
systems [31]. These types of fusion were improved:

e Accuracy, by reducing uncertainty inherent in single-

source inputs

e Contextual richness, by linking fine-grained local

sensor readings with broad regional observations

e Robustness, through redundancy and cross-validation

between sensor modalities

e Timeliness and reliability, on uniting the high-

frequency signals of l1oT with the deep insights of
space provided by the satellite platforms.

The fusion of 10T data and remote-sensed visual analytics
allowed transforming the solitary-observe approaches in the
environment into combined intelligence systems that could
comprehend it real-time, make predictions, and assist decision-
making in various ecological settings [32].
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D. Research Gap

The literature survey of scientific articles about the loT-
based environmental monitoring, remote-sensed visual
analytics, and multisource data fusion has shown that there is a
significant advance in the evolution of distributed sensing
systems, more advanced image-processing methods, and hybrid
analysis  frameworks.  Nevertheless, even with the
improvements, some crucial gaps were not filled and this
constrained the performance and the expansion of the existing
environmental surveillance systems.

First, despite the fact that 10T networks had vastly improved
the resolution in time of environmental measurements, existing
literature by Kaginalkar et al. (2022) and Popescu et al. (2019)
dealt more with domain-specific applications, including urban
air quality, or hybrid UAV-WSN sampling, other than large-
scale and integrated environmental intelligence. The available
10T systems were often localized application-focused and did
not have the capabilities of comparing sensor data with larger
spatial structures, as observed with satellites. This implied that
there was a loophole in contextual alignment between sensors
and satellites to enable the full interpretation of the environment.

Second, although remote-sensed visual analytics had
evolved significantly for instance, Wang et al. (2024), Zhang et
al. (2022), and Venkataraman and Gautam (2024) were confined
to improvements in algorithms used to classify images, extract
features or identify anomalies. These works highlighted the
strength of multispectral and deep learning-based imagery
analysis but did not mention how imagery may be continuously
calibrated or validated on the basis of real-time ground-level
measurements. Accordingly, a gap in the framework
development that would allow integrating the macro-level
potential of the remote sensing with the high-frequency and
micro-level accuracy of the 10T sensing remained.

Third, there were some limited studies that explored fusion
approaches in specific contexts, including Al-based sensor
fusion (Leung et al., 2019), GeoAl-based spatial integration (Li
and Hsu, 2022), and UAV-sensor hybrid models (Pajany et al.,
2024; Seralathan and Edward, 2024) but none of them suggested
an architecture of a generalizable fusion based on environmental
surveillance. The previous studies on fusion were mostly
focused on either UAV imagery and field-level data or
algorithm-level fusion, but not the integration of ground loT
networks, satellite multispectral imagery, and deep learning into
a single end-to-end system. This showed that there was a big
discrepancy in terms of time-spatial fusion modeling that would
enable harmonization between heterogeneous data in real time.

Finally, there were no thorough evaluation frameworks of
integrated loT-remote sensing systems that measured detection
accuracy, computational efficiency, and reduction of latency.
Research tended to assess one of the sensing or the imaging
components separately, and there was a lack of studies that
assessed the entire performance of the unified environmental
intelligence systems.

Overall, although previous studies had achieved significant
achievements in each of the individual fields, the current
literature gap was present:

1) an integrated architecture unifying 10T and remote-sensed
analytics,
2) real-time temporal-spatial data fusion models,
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3) deep learning frameworks leveraging both sensor and
satellite information, and
4) systematic evaluation of such integrated systems.

These limitations highlighted the necessity of the current
research, the goal of which is to design and confirm a single loT-
remote sensing-deep learning system of surveillance to detect
and monitor environmental anomalies more effectively.

11. METHODOLOGY

The methodology used in the current research combines
environmental sensing with the use of 10T devices, multispectral
remote-sensed analytics, and temporal-spatial data fusion. The
entire process includes gathering data, the implementation of
IoT nodes, satellite image processing, the extraction of
environmental features with the help of deep learning, and
sensor image fusion to identify anomalies. The performance
evaluation measures are also included in the methodology to
justify the proposed integrated system.

A. Data Sources

The study utilized three categories of data to develop and
validate the proposed environmental surveillance framework:
(i) loT Sensor Data

Synthetic real-time sensor feeds were created to represent
the most important atmospheric and hydrological variables, such
as PM25, NO 2, VOCs, pH, turbidity, temperature and
humidity. These parameters are some of the general air and
water quality indicators provided in Table I.

(ii) Remote-Sensing Data
The following were the satellites that multispectral and thermal
imagery were obtained:

e LANDSAT-8 OLI/TIRS: Bands covering visible,
NIR, SWIR, and thermal regions

e Sentinel-2 MSI: Bands B2-B12 with 10 m and 20 m
resolution

These data were extracted to obtain environmental indices as
well as to be inputs in visual analytics.
(iii) Ground Truth Data

Publicly available environmental datasets were used to
obtain ground truth samples in order to confirm model
predictions to achieve reliability of fused output.
10T Node Deployment

The loT nodes were intended to operate as edge enabled
micro-environment monitoring units. Each node consisted of:
e ESP32 microcontroller (data acquisition + Wi-
Fi/LoRa communication)

e BME680 sensor (VOC, humidity,
quality)

e MQ-135 sensor (NOz, CO2, NHs, pollution gases)

pressure, air

e DS18B20 sensor (temperature)

e pH and turbidity modules (water-quality assessment)
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e LoRaWAN transceiver (long-range communication
capability)

Preprocessing of sensor data at the edge was done and sent
to a cloud based MQTT broker using the 10T edge gateway. This
design minimized bandwidth usage, latency, and high frequency

data acquisition [34].

TABLE I. 10T SENSOR NODE COMPONENTS AND THEIR FUNCTIONAL
ROLE
Component / Measured Primary Purpose in
Sensor Parameter(s) Environmental Monitoring
ESP32 Data _acqwsmon_,
Microcontroller o preprocessing, anq W_|re|ess
communication (Wi-Fi/LoRa)
VOCs, Humidity, . .
BME680 Pressure, Gas Air guallty measurement and
: microclimate assessment
Resistance
Detection of atmospheric
NO:, CO:, NHs, -
MQ-135 Other gases pollutants an_d chemical
contaminants
Monitoring thermal variations
DS18B20 Temperature in air and water
Assessment of
pH Module Water pH acidity/alkalinity for water

quality

Turbidity Sensor

Water Turbidity

Detection of suspended
particles and contamination
events

LoRaWAN
Transceiver

Long-range low-power
communication for remote

deployments

B. Synthetic Data Generation and Validation Protocol

A synthetically created data in Table | of loT sensors and
publicly available real-world datasets of remote-sensing were
used to guarantee a controlled experimentation, reproducibility,
and systematic evaluation of the proposed I0T- Remote Sensing
integrated environmental surveillance framework. The synthetic
loT data were required due to the unavailability of consistent,
long-term, and multi-parameter data of the environment, with
simultaneous satellite ground truths and under the same
conditions.

a) Synthetic 10T Sensor Data Generation

Simulated data of 0T sensors were created to simulate actual
environmental sensing activity of major atmospheric and
hydrological characteristics, such as PM2.5, NO 2, VOCs,
temperature, humidity, pH, and turbidity. The process of
generation was based on the statistical models of generation
based on published environmental sensing research and actual
sensor configurations.

The models of each sensor stream used were stochastic time
series models of the form:

Base signal distribution Gaussian distribution with
environment realistic means
The time dynamics:

e The seasonal and diurnal variations were added with
the help of sinusoids.

e Sensors Noise sensor Additive white Gaussian noise
(AWGN) to model sensor uncertainty.
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e Drift behavior: drift of the low frequencies that are
added in order to model sensor aging and calibration
loss.

e Anomaly injection: This is where a controlled spike
and step change to emulate pollution events,
contamination incidents and sudden climatic changes.

The synthetic sensor signal S(t) was generated mathematically
as Eq.1:

S) = ut) + Asinruft)+ () + 6(t) €Y

b) Statistical Validation Against Real Sensor Characteristics

Statistical characteristics of the data generated by the
synthetic loT were tested against literature values of sensor
behavior in the environment to confirm the faithfulness of the
synthetic 10T data. The validation focused on:

e Mean and variance consistency

o Daily drift rate

¢  Signal-to-noise ratio

e  Frequency and amplitude of anomalies.

The modeled datasets showed a high level of correspondence
to the documented real sensor properties, the variance error limit
was set at less than 5 percent and the drift rate was confined
within the normal operational value which is observed in long
field applications. This guaranteed the realistic sensing
conditions and controlled experimental conditions of the trained
models and fusion mechanisms.

c) Publicly Available Remote-Sensing Datasets Used
Satellite imagery in the real-world was only collected by
publicly available open-range Earth observation sources,
making them transparent and reproducible:
e Sentinel-2 MSI

o Spatial Resolution: 10 m/20 m

Acquisition Period: 2022-2024

o Areas: South Indian semi-urban and agricultural
areas.

o Bands Used: B2-B12

e Landsat-8 OLI/TIRS

o Spatial Resolution: 30 m (multispectral), 100 m
(thermal)

o Acquisition Period: 2021-2024

o Regions River basins, urban heat zones, vegetation
belts.

o Products NDVI,
Temperature (LST).

@)

NDWI and Land Surface

Such datasets have been chosen because of their extensive
use in the field of environmental analytics and the multispectral
and thermal anomaly detection.

d) Rationale for Using Synthetic loT Data
Synthetic data of the 10T sensors was used in the following
reasons:
1) Controlled experimentation: Permits systematic injection
of anomalies and controlled analysis of detection accuracy.
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2) Reproducibility: Enables other scientists to reproduce the
results without the need to rely on proprietary or unavailable
sensor deployments.

3) Long-duration analysis: Enables the simulation of months-
long sensing scenarios that are not limited by hardware.

4) Scalability testing: Allows the ability to test performance in
the dense loT deployments and the high-frequency
sampling conditions.

The proposed framework will provide a trade-off between
experimental rigor and practical relevance since synthetically
validated datasets of 1oT will be used and balanced with real
satellite imagery, such that reported performance metrics will be
credible without detracting the reproducibility.

C. Remote-Sensed Visual Analytics Pipeline

Satellite images were subjected to multiple stages of
preprocessing and analysis (based on deep learning) to produce
the high-level environmental features given in Table II.

(i) Atmospheric and Radiometric Corrections

The LANDSAT images have been fixed with the help of the
LEDAPS algorithm, and the Sentinel-2 images have been fixed
with the help of the standard pipelines of radiometric
normalization.

(i) Environmental Index Extraction

Key environmental indices were computed as follows:

e Normalized Difference Vegetation Index (NDVI):

NDVI = (NIR-RED) @)

(NIR+RED)

e Normalized Difference Water Index (NDWI):

NDWI = (GREEN—-NIR) 3)
(GREEN—NIR)

e Land Surface Temperature (LST):

Computed on the basis of a single-channel thermal
emissivity algorithm used on TIRS data.

(iii) Deep Learning Architecture
A hybrid deep learning model was developed:

e Feature Extractor: ResNet-50 applied to multispectral
composite patches

e Transformer Encoder: An 8-layer Vision Transformer
(VIT) applied to patch embeddings

e Classifier: Softmax-based anomaly classifier
This architecture allowed the efficient spectral spatial reason

to perform and allowed improved performance of the anomaly
detection [36].
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TABLE II. SPECIFICATIONS OF REMOTE-SENSING DATASETS USED IN
THE STUDY
. Spectral . Key
Satellite Sensor Bands Spa“?' Environmental
Platform Resolution L
Used Applications
Visible, NDVI, NDWI,
LANDSAT- oLI/ NIR, B?Org (M_S?' LST, land cover
8 TIRS | SWIR, | o m‘g‘ﬂR) and thermal
TIR analysis
Vegetation
monitoring,
. Bands moisture
Sentinel-2 MSI B2_B12 10m,20m detection,
multispectral
anomaly detection

D. Data Fusion Model

A temporal-spatial fusion model using adaptive Kalman
weighting mechanism was formulated to combine high-
frequency measurements of loT sensors [37] with low-
frequency measurements of satellites.

Let:

e S, = 10T sensor vector at time t

e R, =remote-sensed feature vector

e K, K,= adaptive weights derived from variance V; and

Vi

The fused environmental quality score was computed as:

_ Vv _ Vs
T VgV’ LA “)

X = KS; + KRy (%)

This was a strategy that guaranteed that the fusion process
put more emphasis on the data source that has the least
uncertainty in every time step.

Ks

E. Sensor-Drift-Aware Adaptive Kalman Fusion
(Algorithmic Novelty)

Compared to the classical Kalman fusion methods where the
covariance of the sensor and noise are estimated at a certain
point or with noise-only models, the suggested fusion model
offers a sensor-drift-aware adaptive recalibration mechanism of
the variance. It is a long-term sensor calibration drift and short-
term measurement noise that is explicitly explained by this
mechanism, allowing the fusion of heterogeneous loT data
streams, as well as remote-sensing data streams, to be robust.
The adaptive sensor variance is defined as:

V(@) = Vs(®) + 4 Ds(t) (6)

In Eq.6 V s (1) is a real-time variance of 10T sensor stream,
Ds (t) is accumulated sensor drift based on temporal residuals
over a sliding window and A is a drift-sensitivity coefficient that
regulates the impact of long-term degradation. The Kalman
fusion weights are then updated as:

K (t) = YS—(t) K (t) =
§ Y, (t) + Hy(t)""°

Hy (t)

no+ao 0

In Eq.7 K, (t) represents the error of the remote-sensing feature
stream.
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This formulation enables the process of fusion to down-
weight drifting or unreliable sensors of the 10T and remain
confident in the consistency of the satellite-measured
measurements. It is a drift-aware adaptive Kalman weighting
algorithm that builds on the traditional formulations of this
algorithm and is not used in the present-day loT-remote sensing
integration frameworks, which also makes it an essential
element of the algorithmic novelty of the current system.

F. Handling Spatio-Temporal Resolution Mismatch

To combine 10T sensor streams with remote-sensed satellite
analytics, the issue of the latent spatial and temporal
discrepancies between the two modalities needs to be solved. In
the suggested system, the individual geo-referenced loT sensors
are spatially aligned with the respective satellite pixel or any
local pixel buffer with the spatial resolution of the satellite,
where aggregation of environmental indices (NDVI, NDWI,
LST) are synthesized to give macro-scale context. High-
frequency loT measurements are timed temporarily and low-
frequency satellite measurements at any given time are
synchronized with high-frequency measurements via window
based aggregation and interpolation and decay weighting to
highlight sensor measurements nearest to satellite overpass
times. Kalman based adaptive fusion mechanism is then adopted
where probabilistic fusion of these aligned data streams is done,
and the contribution of the streams dynamically changed based
on estimated uncertainty. This method allows strong fusion in
the presence of sensor noise, calibration bias, satellite revisit
periods and asynchronous sampling and makes a step beyond
the mere weighted averaging to robust, cross-scale
environmental intelligence.

G. Performance Metrics

A combination of the statistical, computational, and
operational measures were used in assessing the performance of
the proposed integrated loT-remote sensing [38] environmental
surveillance system. These were to make sure a strict evaluation
of the accuracy of anomaly detection, response to systems, light-
consumption of energy and general reliability [39].

a) Accuracy, Precision, and Recall

The metrics [40] given in Eq.8,9,10 were used to measure
the performance of anomaly detection with both the LSTM
model 1oT-based and the ResNetViT visual analytics pipeline.

Accuracy
Tp+TN
Accuracy = S LAL (8)
Tp+TN+FP+FN
Precision
. TP
Precision = ©)
TP+FP
Recall
TP
Recall = (10)
TP+FN
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Where:
e  TP: True Positives
e  TN: True Negatives
e FP: False Positives
e FN: False Negatives

Having a high precision meant that there were less false
alarms whereas having high recall meant that the anomaly
detection sensitivity was high.

b) Latency (ms)

Latency was the amount of time taken to process sensor data
all the way to the calculation of the fused environmental quality
score.

Latency + Teqge + Tiransmit + Tcloud + Trusion  (11)
Where:

e Teqge: Preprocessing + LSTM inference time

®  Tiransmit: 10T-to-cloud communication delay

o Tcouq: Satellite correction + deep learning inference
time

o Trusion : TiMe to compute the Kalman-weighted fusion

output

Reduced latency was an indicator of hastened decision-
maker which is important in real-time environmental
monitoring.

c) loT Node Energy Consumption

IoT node consumption was calculated as energy
consumption:
E:node = E:sense + ECompute + Etransmit (12)

Where:
o Egonse: Sensor sampling energy

®  Ecompute: Edge LSTM computation cost
o  Eiransmit : LOREWAN/Wi-Fi data transmission cost

This measure made sure that nodes were also power-efficient
to be used in long term deployment.

d) Satellite Processing Time

The satellite processing time was used to measure the
computational load of remote-sensing applications:

Tsat = Teorr + Tinder + Tpatch + Tpy, (13)
Where:

o T.o: Atmospheric/radiometric correction time
o Tinger: NDVI/NDWI/LST computation time

e T

patch T TpL Patch extraction time
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e Tpy: Deep learning (ResNet-ViT) inference time

This measure determined the scalability and operational
ability of continuous monitoring.
e) Event Detection Reliability
Reliability was evaluated as the consistency of
anomaly detection in correct and multiple time intervals:

Reliability = JCorrect (14)

Niotal

Where:

® Ncorrect: Probably number of correctly identified
environmental events.

e Niota1 : Total observed environmental events.

The increase in values showed strength in the application of
the sensor to differing environmental conditions, sensor
variations, and changes in quality of images.

H. Proposed System Architecture

The suggested loT-Remote Sensing environmental
surveillance system is developed as a five-layer architecture in
Fig. 1, which allows uninterrupted information exchange
between sensor data, satellite imagery, edge intelligence, and
cloud-based analytics.

N
/ \— \\
! Cloud \__

[ | Remote Sensing Analysis | Decision Intergene

g Za) alerts
’ NDVI/NDWI/LST {——»| « Vegetation stress
Computation | « Pollution hotspots
2 o

\\‘ e ——— + Water contamination
{ ResNet-ViT Model « Thermal anomalies

\L Data Fusion /

/
/

] Y
—_—
Edge Analylics} Edge Analytics Layer Visualization
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WebGIS Maps
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Fig. 1. Proposed System Architecture for loT-Remote Sensing Integrated
Environmental Surveillance

a) loT Sensing Layer

This layer will be built of distributed loT nodes that will
include gas sensors, water-quality probes, and microclimate
modules. Parameters that are continuously monitored by the
nodes include PM 2.5, NO 2, VOCs, temperature, humidity, pH,
and turbidity. These are high-frequency measurements that give
local real-time environmental measurements.
b) Edge Analytics Layer

Preprocessing of sensor readings such as filtering,
normalization and batching is done at the edge gateway. A
LSTM model is lightweight and it recognizes anomalies at the
local level, enhancing unneeded data transmission. flagged
events and compressed summaries only are sent to the cloud,
reducing the load of the network and enhancing latency.
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c) Cloud Processing Layer
The loT streams are combined with the remote-sensed
images in the cloud layer. It performs:
o Radiometric and atmospheric corrections.
e  Computation of NDVI, NDWI and LST.
e Hybrid ResNet -ViT based multispectral analysis.
e Animal models: Adaptive Kalman weighting
Temporal-spatial fusion.

This layer produces an environmentally rich intelligence in
terms of space that is vital in detection of anomalies.

d) Decision Intelligence Layer

This layer will process merged outputs and send therein
alerts of conditions, including vegetation stress, pollution
hotspots, water pollution and thermal anomalies. Model-driven
and rule-based logic guarantees the timely events detection.

e) Visualization Layer
The visualization of environment insights is conducted using:

e 10T time-series data dashboarding with Grafana.
o WebGIS maps of anomaly layers derived by satellite.

These instruments offer visual interpretation, which is user
friendly and in real-time.

I.  Integrated Algorithmic Workflow

The present subsection gives the essence of the
computational logic that is utilized throughout the 10T edge
layer, the satellite-based visual analytics pipeline, and the
temporal-spatial fusion mechanism. All the algorithms will be
expressed in pseudocode to ensure clarity and reproducibility.

Algorithm 1 introduces the edge-level anomaly detection
algorithm on the 10T nodes deployed on a lightweight LSTM.
The algorithm normalizes data feeds of sensor time-series and
then it has the LSTM which is used to learn the normal
environmental patterns. It then calculates the reconstruction
error on each new reading, and any deviation larger than some
threshold ( 0 ) is an indication of an anomaly. This allows real
time detection of abnormal environmental behavior right at the
edge, which minimizes latency and redundant cloud
communication.

through a ResNet feature extractor and a Vision Transformer
encoder which allows local and global spatial reasoning. An
identification of environmental anomalies on the basis of
learned spectral-spatial patterns is finally arrived at by a
Softmax classifier.

Algorithm 2 visual analytics pipeline in multispectral satellite
imagery

Input: Multispectral image |

1. Perform atmospheric and radiometric corrections
2. Extract indices (NDVI, NDWI, LST)

3. Convert image into patches (16x16)

4. Encode patches using ResNet backbone

5. Apply Transformer encoder for spatial context

6. Classify anomalies using Softmax layer

b) Fusion Algorithm

Algorithm 3 describes the adaptive fusion mechanism in
space and time that enables the combination of high-frequency
data on loT sensors with low-frequency remote-sensed
characteristics. The algorithm calculates the variances of the two
data sources, and adapts weighted Kalman based weights such
that the uncertainty of the source with lower uncertainty is more
influential to the fused output. The overall fused environmental
quality score is a more valid and context-sensitive measure of
environmental conditions compared to either source of data.

Algorithm 1: loT-Based Anomaly Detection (Edge-Level
LSTM)

Input: Sensor time-series S(t)

1. Normalize S(t)
2. Train LSTM to learn normal patterns
3. Compute reconstruction error E(t)

4. If E(t) > 6 — Flag anomaly

Algorithm 3: Sensor-Drift-Aware Adaptive Kalman Fusion
Input: 10T sensor stream S(t), remote-sensed feature stream R(t)

1. Estimate instantaneous sensor variance Vs(t)
2. Estimate remote-sensing variance Vr(t)
3. Compute sensor drift Ds(t) using temporal residuals over a
sliding window
4. Recompute adaptive sensor variance:
Vs'(t) = Vs(t) + L - Ds(t) (Eq. X)
5. Update Kalman fusion weights:
Ks(t) = Vr(t) / (Vs'(t) + Vr(t))
Kr(t) = Vs'(t) / (Vs'(t) + Vr(t)) (Eq.Y)
6. Compute fused environmental state:
X(t) = Ks(t) - S(t) + Kr(t) - R(t)
Output: Drift-aware fused environmental quality score X(t)

a) Remote-Sensed Deep Visual Analytics

Algorithm 2 provides the description of the deep learning-
based visual analytics pipeline in multispectral satellite imagery.
Following the atmospheric and radiometric correction, major
environmental indices are calculated including NDVI, NDWI,
and LST. The fixed image is then split into patches and sent
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V. RESULTS AND ANALYSIS

The proposed loT- Remote Sensing environmental
surveillance system has been tested in four areas which include
sensing performance of the 1oT, multispectral visual analytics,
fusion based intelligence and system efficiency. In this section,
the findings are represented in well-organized tables and graphs.

A. 10T Sensor Module Performance

Table IV gives an overall assessment of the 10T sensor
module to be used in the proposed environmental surveillance
system. The table IV will contrast the performance of the
separate sensing components of air-quality, water-quality, and
temperature/humidity sensors in terms of three major metrics:
accuracy, latency, and daily energy consumption. All these
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metrics demonstrate the accuracy in the detection of the
environmental parameters, the reactiveness of the data delivery
system, the sustainability of the functioning of every loT node
during the long-term perspective. The findings form the
supporting sensing credibility required in downstream analytics
and fusion actions in the integrated loT Remote Sensing
framework.

TABLE Il 10T SENSOR MODULE PERFORMANCE
Latency Energy
Parameter Accuracy (ms) (MWhiday)
Air-quality sensing 94.7% 38 121
Water-quality sensing 91.3% 42 139
Temperature/Humidity 98.1% 21 67

The performance parameters available in Table 111 show the
strength of the I0T sensing system under the various
environmental parameters. The thermal sensor digital thermal
sensors were also characterized by high consistency and low
noise as temperature and humidity detection was the most
accurate at 98.1 percent. This accuracy is very crucial in
detecting anomalies driven by climate and in the micro-
environmental measurements. The next nearest prediction is air-
quality sensing with 94.7% accuracy suggesting that it is good
at identifying pollutants including NO 2, VOCs and particulate
concentration that tend to change quickly in dynamic outdoor
scenarios. Water-quality sensing reported a reduced accuracy of
91.3%, which is natural because of the variability and sensitivity
of the pH and turbidity sensors in the field..

The latency in all sensors was small enough (21 ms-42 ms)
to make sure that the received data can be transferred and
processed in close real-time. Such responsiveness is required in
applications like the detection of pollution spikes and fast
environmental decision making. The related consumption of
energy further promotes the suitability of the system in terms of
long-term deployment, as all sensors can work with acceptable
limits of the battery-powered or solar-assisted 10T nodes. In
sum, the findings highlight the fact that 10T sensing module can
be not only used to deliver adequate and timely environmental
data, but it could also help to sustain and efficiently work with
large-scale infrastructures of environmental monitoring.

Table IV contains the in-depth quantitative evaluation of the
loT sensor module details, including the error nature, temporal
drift, packets loss, and general stability. These parameters give
more information about long-term reliability in operations other
than mere accuracy. Mean error measures the difference
between measured and reference values, drift/24h is used to
measure sensor consistency during the entire operation, packet
loss is used to determine the reliability of communication and
the index of stability is used to summarize the overall
robustness. This Table IV aids in assessing how the 10T nodes
are resilient to changes in the actual environment.

TABLE IV. DETAILED 10T SENSOR PERFORMANCE EVALUATION
Mean . Packet -
Parameter Error Drlit/24h Loss Stability
(%) (%) (%) Index
Air-quality sensing 3.1 0.42 1.8 0.94
Water-quality sensing 4.7 0.55 2.3 0.91
Temperature/Humidity 1.2 0.18 0.6 0.98
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The specifics of the performance as shown in Table 1V
indicate the dependability and stability of the loT sensing
module when subjected to the continuous environmental
monitoring parameters. The temperature and humidity sensor
shows very high performance with the lowest average error of
1.2% and the minimal drift at 24 hours of 0.18% with negligible
loss of packets at 0.6%. This validates the appropriateness of
digital thermal sensors in the accurate microclimatic monitoring.

Air-quality sensors show a little more mean error (3.1%),
drift (0.42%), but this is not surprising since the chemical
sensitivity of gas sensors and the variable pollutant
concentration in the atmosphere. However, its stability index is
0.94 which means that the sensor is stable and will not
malfunction with time.

The error (4.7%) and packet loss (2.3%) in water-quality
sensing are the highest average errors and packet losses, and
such errors and losses are common with pH and turbidity sensors
that are vulnerable to dissolved solids, temperature variations,
and periodic sensor foulages. Nonetheless, the stability index of
0.91 proves that the reliability of the environmental water
monitoring is acceptable.

Overall, It has been demonstrated that all three of the sensing
modules are highly stable, with low drift and communication
loss that can be effectively addressed in the integrated loT-
Remote Sensing environmental surveillance system due to
durability and applicable to long deployments.

Fig. 2 will be a comparative visualization of the level of
accuracy of the three major 10T sensors integrated into the
environmental monitoring system. The chart brings out the
performance of the air-quality sensor and the water-quality
sensor and the temperature/humidity sensor allowing the easy
contrast of the performance of the precision of their
measurements. This value is an intuitive value that shows the
dependability of each sensing unit and is used as a base value of
the strength of the whole system. Fig. 2. Comparative accuracy
performance of 10T air-quality, water-quality, and temperature-
humidity sensors under simulated deployment conditions.

The data presented in Fig.2 is an informative comparative
analysis of the accuracy of measurements of the 10T sensor suite.
The temperature and humidity sensor has the best performance
with accuracy of 98.1%, which can be attributed to the stability
characteristic and relative resistance to noise of digital
microclimate sensors. This precision is especially valuable,
because temperature and humidity are used as control
environmental variables affecting most derived ecological
indicators.

Air-quality detection is next with 94.7% accuracy, which
means that gas and particulate detectors work well to obtain real-
time changes of the concentrations of NO 2, VOC and PM 2.5.
Since the urban air pollution is a naturally dynamic
phenomenon, such accuracy proves the sensor in question to be
reliable in the dynamic atmospheric conditions.

Much less, yet still very good, is water-quality sensing with
a 91.3% accuracy. This will occur because of sensor fouling,
suspended particles and chemical variability, which normally
surround pH and turbidity measurements. However, the
precision is high enough to allow an actual-time environmental
surveillance and complies well with the operational standards of
the field-based water-sensing instruments.
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Overall, as Fig.2 interpretation confirms, all three sensor
modules work within high-accuracy ranges, which is effectively
a reliable base of the integrated loT Remote Sensing
surveillance system. The accuracy of environmental anomaly
detection and decision support is obtained by ensuring that the
accuracy of downstream analytics, such as deep-learning-based
visual processing and fusion algorithms, is fed with reliable
input data, which is guaranteed by this degree of sensing
accuracy.

B. Visual Analytics Performance

Table V shows the comparative results of the three deep-
learning models, ResNet-50, Vision Transformer (ViT), and the
proposed hybrid ResNet-ViT architecture, of the multispectral
remote-sensing image analysis. The metrics of evaluation are the
overall classification accuracy, F1 Score, and the inference time
of the model on a single image providing a complete picture of
model accuracy, robustness, and efficiency.

TABLE V. VISUAL ANALYTICS MODEL PERFORMANCE
Model Accuracy | F1 Score | GPU Time/lmage

ResNet-50 87.5% 0.84 12s

ViT 89.2% 0.86 155

ResNet + ViT (Proposed) 92.4% 0.91 18s

Table V results show that there are evident variations in the
performance of the models of deep-learning that are being
tested. ResNet-50 demonstrated an accuracy of 87.5% and an F1
Score of 0.84, which is considered good performance in the
learning of spatial patterns in the multispectral image but has
weaknesses in learning long-range dependencies. ViT model
achieved the best accuracy of 89.2%, and F1 Score of 0.86; this
implies that ViT model has higher accuracy because it can
process global spatial relationships due to its self-attention
mechanism; although this does not come at low cost as
evidenced by its inference time per image of 15 seconds.

The hybrid model that proved to be the most effective in
general was the combination of the local feature extraction of
ResNet with the global consideration of ViT. It achieved an
accuracy of 92.4% and a F1 Score of 0.91 which is a substantial
increase in the strength of the anomaly detector, and shows the
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advantage of using convolution-based and transformer-based
feature representations. This computational cost was
compensated by the fact that the inference time of this model
grew to 18 seconds per image but at the cost of a significant
improvement in the classification reliability.

Overall, the relative comparison proves that the hybrid
ResNetViT model is the one to offer a moderate performance
gain, with better spectral-spatial insights that are critical to
achieve high-performance environmental surveillance activities.
This confirms the appropriateness of hybrid deep-learning
systems in the processing of multispectral and multi-index
inputs of remote-sensing in the context of the proposed
monitoring system.

Fig. 3 indicates the comparison of the F1 Scores of the three
deep-learning models tested within the visual analytics module
including ResNet-50, Vision Transformer (ViT), and the
proposed hybrid ResNetVit model. The Fig. 3 shows the
comparative performance of both models according to the
balance of precision and recall; it gives an idea on how the two
models are able to correctly identify environmental anomalies
with the aid of multispectral remote-sensing images.

The comparison in Fig. 3 illustrates the evident differences
in the classification ability of the three considered models.
ResNet-50 reached a F1 Score of 0.84 which is the moderate
strength of anomaly detection by means of extraction of spatial
features, but with weaknesses in extracting larger contextual
information. ViT model showed a better performance with the
F1 Score of 0.86, which is explained by the fact that the model
has a self-attention mechanism that is able to learn global spatial
dependencies.

Visual Analytics Model F1 Score Comparison
0.91

0.90

F1 Score

0.86

0.85

0.84

ResNet-50 ViT Hybrid
Deep Learning Model

Fig. 3. Visual Analytics Model F1 Score Comparison

The hybrid ResNet ViT model proposed performed better
than the two baseline architectures with a F1 Score of 0.91. This
gain can be attributed to the benefit of jointly using convolution-
based local feature extraction and transformer-based global
reasoning to allow the model to be better at detecting subtle
spectralspatial anomalies. The high F1 score also shows that the
hybrid model has a more balanced precision and recall,
eliminating false positives and false negatives.

Overall, Fig. 3 illustrates that all the hybrid model has the
best and most realistic classification performance in
multispectral environmental monitoring tasks. This finding
confirms the efficiency of CNN and transformer architecture
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integration in developing profound visual analytics of loT-
Remote Sensing environmental surveillance platforms.

Table VI shows the confusion of the proposed hybrid
ResNetViT deep-learning model employed in multispectral
detection of environmental anomalies. The matrix indicates the
occurrence of the true positive, false positive, true negative, and
false negative values in two major classes- Anomaly and
Normal. The given tabulation gives an insight into the
classification behavior of the model and the error patterns, as
well as its general accuracy in differentiating abnormal
environmental events and typical levels of the baseline.

TABLE VI. CONFUSION MATRIX FOR PROPOSED HYBRID MODEL
Categor True False True False
gory Positive Positive Negative Negative
Anomaly 241 18 — 32
Normal — 21 516 14

The results in Table VI indicate that the proposed hybrid
model has good classification properties in both anomaly and
normal classes with a high percentage of correct prediction. The
model was able to recognize 241 samples of anomalies (true
positive), and the sensitivity of the model to the environment
abnormalities (vegetation stress, pollution hotspots, and water-
quality deviations) is high. The false positives indicate that there
are only a small number of false positives (18), which implies
that there is only a small rate of over-prediction, or false alarms
in the system, meaning that it was overly cautious in its approach
to false alarms; nevertheless, the rate of over-prediction, in its
turn, is usually agreeable especially in the context of early
warning systems where environmental safety is considered a
priority.

In the same way, the model registered 516 true negativities
which validates the model to have performed exceptionally well
in identifying stable environmental conditions and reducing
unnecessary alarms. The false negative 32 is quite small but the
cases of missing anomalies and it shows the remaining area to
diminish under-detection cases of operational deployments. The
normal group had 21 false positive and 14 false negative, which
further shows that it performed with a balanced score on
precision and recall.

Overall, the confusion matrix proves the hypothesis that the
hybrid resnet-ViT architecture is a strong and precise decision
boundary in detecting anomalies in the environment. It is not the
most suitable choice because its false-alarm rate is low and its
ability to detect is strong, which is suitable in real-time loT
measurements in Remote Sensing surveillance when it is
imperative to distinguish between ordinary and unusual
conditions.

Table VII provides a summary of the computational and
resource demands of the three deep-learning architectures
considered in this paper, namely ResNet-50, Vision
Transformer (ViT), and the hybrid ResNetViT architecture. The
total number of trainable parameters, floating-point operations
(FLOPs), inference time per image, and memory usage are used
as performance indicators. These measurements can be used to
understand the computational complexity and scalability of any
model when used in multispectral environmental analytics.

TABLE VII. COMPUTATIONAL COMPLEXITY OF DEEP LEARNING MODELS
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Model Parameters FLOPs Inference Memory
(M) (G) Time (s) Usage (MB)
ResNet-50 25.6 4.1 12 912
ViT 86 9.7 15 1280
Proposed
Hybrid 112 12.4 18 1542

The calculated computational measurements in Table VII
depict resource trade-offs between the accuracy and resource
used by different deep-learning models under evaluation. The
lightest among the three models is the ResNet-50, which has
25.6 million parameters and 4.1 GFLOPs and has a minimum
inference time of 12 seconds and minimum memory footprint of
912 MB. This enables it to be used in applications where high
speed processing or deployment on relatively powered hardware
is required, but its structural depth limits its capability in
capturing long-range spatial dependencies.

ViT model of 86 million parameters and 9.7 GFLOPs has
much greater computing properties. The inference time also
goes up to 15 seconds and also the memory usage goes up to
1280MB giving the signal of the higher footprint of transformer-
based attention mechanisms. Despite the fact that ViT is better
at representation of features by capturing global spatial context,
VIT carries a significant resource overhead, particularly when
operating on high-dimensional multispectral data.

The hybrid ResNetViT model proposed is the most
expensive, as it combines convolutional feature extraction with
transformer-based reasoning on the global scale. The hybrid
architecture has 112 million parameters and 12.4 GFLOPs,
which take a 18 seconds time to make an inference and consume
1542 MB memory. The high performance of the resource needs,
however, is explained by its high accuracy and F1 performance.
The combination of CNN and transformer blocks increases its
ability to simultaneously detect fine-grained spatial patterns and
broad contextual relationships, which are important to detect
environmental anomalies accurately.

Overall, Table VII shows a distinct performance-complexity
complex: the hybrid model has the greatest analytical capability
at the cost of a higher computational load, whereas ResNet-50
has higher performance at the cost of lower precision. These
findings highlight the importance of the hybrid model as the best
compromise between accuracy and computability when using
high-stakes environmental surveillance, particularly in cloud-
based or GPGU-based infrastructures.

C. Comparison with State-of-the-Art Environmental
Monitoring Systems

While the proposed framework demonstrates strong internal
performance through detailed ablation and hybrid model
evaluation, its contribution is further validated through
comparison with representative state-of-the-art (SOTA)
environmental monitoring systems reported in recent literature.
The selected SOTA approaches reflect three dominant
paradigms in integrated environmental surveillance: (i) UAV-
assisted WSN systems, (ii) GeoAl-based loT-satellite fusion
models, and (iii) conventional loT-only or satellite-only
monitoring frameworks.

UAV-WSN frameworks, such as those reported by Popescu
et al. (2019), primarily enhance spatial coverage through mobile
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aerial sensing but remain constrained by limited temporal
continuity and high operational cost. GeoAl-based fusion
models, including Li and Hsu (2022), integrate spatial reasoning
with satellite analytics but generally rely on offline batch
processing and lack real-time edge intelligence. Conventional
loT-centric systems (e.g., Kaginalkar et al., 2022) achieve high
temporal resolution but suffer from sparse spatial context and
increased false-alarm rates in isolation.

In contrast, the proposed loT-Remote Sensing framework
uniquely combines edge-level LSTM anomaly detection, hybrid
ResNet-Vision Transformer multispectral analytics, and a
sensor-drift-aware adaptive Kalman fusion mechanism within a
unified, real-time architecture. This integration enables cross-
scale anomaly confirmation, reduced uncertainty under sensor
drift and satellite revisit gaps, and improved operational latency
compared to existing systems. The comparative assessment
summarized in Table VIII demonstrates that the proposed
framework achieves superior detection accuracy, lower
response latency, and enhanced scalability while maintaining
practical deployment feasibility.

TABLE VIII.  COMPARISON WITH STATE-OF-THE-ART ENVIRONMENTAL
MONITORING SYSTEMS
. . Real- Report
/ Study s Method Capabil | Accura
es ay - ons
ity cy
High
Popescu - Spatial cost,
etal. UVC;/N+ Slt i“i;l'ﬁa aggreg Partial ~85% intermitte
(2019) ation nt
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kar et al. selnos-c:rs Sr:gl-dt?::asl true Yes ~88% spatial
(2022) Y fusion context
Li & Spatial Batch
o | ot | S| TR e | 06 | s
(2022) fusion g, latency
. UAV Domain-
Pajany multispec CNN- Featur specific,
etal. tral + based e-level Partial ~89% UAV-
(2024) fusion dependen
sensors t
Drift-
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Propose loT + LSTM + | adapti Hcigﬂzr
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System Satellite ViT Kalma compute
Y n demand
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D. Fusion Output

Table 1X shows the statistical performance of the proposed
temporal-spatial fusion algorithm in three large categories of
environmental anomalies namely, vegetation stress, water-
quality anomalies, and air pollution hotspots. The table 1X
presents four important parameters, such as mean fused score,
standard deviation, root mean square error (RMSE) and the level
of confidence used to measure the reliability, consistency and
predictive stability of the fused outputs obtained when
integrating the 10T sensor data and the remote visual features.
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TABLE IX. FUSION SCORE STATISTICS ACROSS ENVIRONMENTAL
EVENTS
Mean i
Std. Confidence
Event Type Zused Dev | RMSE | evel (o)
core
Vegetation 0.924 0.037 0.041 96.2
Stress
Water-Quality 0.897 0.044 0.053 94.1
Anomaly
Air Pollution 0.901 0.039 0.048 95.4
Hotspot

The summarized fusion performance in Table 1X shows that
the adaptive temporal-spatial fusion model has a robust and
stable predictive performance on a wide range of events in the
environment. The best fused score of 0.924 of vegetation stress
detection had a low standard deviation (0.037) and lowest
RMSE (0.041) compared with the other two categories. This
indicates that vegetation-related anomalies, which in many cases
are highly presented in the indices like NDVI and LST, are
greatly advantageous of the joint informational value of the loT
microclimate measurements with multispectral satellite
characteristics.

Anomalies of water-quality have a slightly lower fused score
of 0.897, and a standard deviation of 0.044 which represents a
moderate variability in the predictions. This variability can be
attributed to the dynamism of the aquatic ecosystem and the
effect of other factors like change in turbidity, pH fluctuations
and sensor noise in water-quality measurements. However, the
level of confidence is also high, 94.1, which proves the strength
of the model.

Hotspot identification of air pollution has a fused score of
0.901, standard deviation of 0.039 and RMSE of 0.048 that
indicates high model stability in identifying anomalies in the
concentration of the pollutants. This type also enjoys the
advantages of the complementary relationship between loT gas
sensors  (good time resolution) and satellite-based
thermal/optical signals (wide spatial resolution) that makes the
confidence level equal 95.4%.

Overall, the indicators in Table IX verify that the fusion
algorithm considerably boosts the accuracy of the anomaly
prediction in all the environmental domains. The reasons why
the high fused scores, low errors and high confidence levels are
combined are because it appears that the fusion mechanism fully
utilizes the capabilities of both the 10T sensing and remote-
sensed visual analytics to provide a more reliable and holistic
environmental intelligence system.

Fig. 4 shows the relative accuracy of the proposed adaptive
temporal-spatial fusion model on three key types of
environmental anomalies- vegetation stress, water-quality
degradation and air pollution hotspots. The Fig. 4 reflects how
much the combination of loT-based real-time measurements
with remote-sensed multispectral visual analytics enhances the
accuracy of the predictive nature of the monitoring system. This
visualization proves efficiency of the combination of
heterogeneous data modalities to enhance the environmental
anomaly detection.
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Fig. 4. Fusion Output Accuracy Across Environmental Events

The patterns of accuracy shown in Fig. 4 are good empirical
evidence to have an opinion on the value of multi-source data
fusion in environmental intelligence systems. The fusion model
shows its best results in the detection of the stress on vegetation
with the accuracy of 92.4%. Such high performance is explained
by the high levels of complementarity between the variables of
the industrial Internet of Things microclimate, namely
temperature, humidity, and concentration of VOCs, and spectral
variables, i.e. NDVI and LST calculated on the basis of satellite
images. The datasets, which are used to record physiological
plant responses under ground level and macro-scale canopy
conditions, make the model to recognize the stress signatures
with high accuracy.

Anomaly detection of water-quality is a more variable
phenomenon with an accuracy of 89.7% as aquatic
environments are complex and subject to change. Noise in pH
and turbidity readings in 10T can be caused by rain or suspended
sediments or sensor contamination. However, the fusion process
is able to stabilize the quality of the prediction, by incorporating
a larger spatial information in the multispectral imagery and this
helps to counter the variations in sensor-level measurements.

Hotspot detection of air pollution shows a 90.1% accuracy
which shows that it is highly fused in detecting atmospheric
pollution. 10T gas sensors is picking up rapid and localized
spikes of pollutants whereas thermal and optical indicators
gathered by satellites due to a wider dispersion pattern and urban
heat island effects. The fusion model is successful in balancing
these complementary sources of data, which produce a more
complete picture of the dynamics of pollution as opposed to each
modality individually.

Fig. 5 shows that the fusion method significantly increases
anomaly detection in all of its environmental classes. The high
accuracy rates obtained consistently across different periods
testify to the fact that the high-frequency loT data with the
spatial and spectral richness of the satellite imagery can be used
to create a more stable, contextual, and credible monitoring
ecosystem. It highlights the importance of multimodal data
fusion as a fundamental technological enabler to next-generation
smart environmental surveillance systems, which can provide
better decision support to environmental management and early
warning as well as policy interventions.
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E. Anticipated Field Deployment Challenges and Limitations

While the proposed loT-Remote Sensing integrated
environmental surveillance framework demonstrates strong
performance in controlled, semi-realistic circumstances, a
number of practical problems of deployment should be admitted.
Situation awareness can be compromised in the short term (due
to heavy cloud cover or other atmospheric disruptions) by the
inability to feed on satellite data, although the system is still able
to lever on high-frequency streams of 10T sensors and edge-level
anomaly detection to keep things up to date. Measurement
stability of sensors across long deployments could also be
compromised by sensor drift and hardware ageing effects which
the proposed framework is able to overcome by using a sensor-
drift-aware adaptive Kalman fusion framework that down-
weights non-reliable sensors with time residuals. The problems
of packets loss, intermittent connectivity, or node failures
associated with large-scale 10T deployments are inherent; the
LoRaWAN usage, edge-level pruning, and event-driven
transmission decrease the network congestion and increase the
resilience. The scalability issues that may occur with the higher
sensor density and increased spatial coverage may introduce an
increase in cloud computation and storage requirements;
nevertheless, edge analytics can substantially lower the volume
of upstream data, and efficient monitoring is achieved over vast
geographic expanses. Even though there can be moderate
degradation of the performance under noise conditions,
environmental variability and hardware constraints in real-world
deployments, the fusion-based multi-modality design of the
proposed system is robust in its nature and is actually designed
to work successfully under imperfect sensing and
communication conditions. Generalizability and Expected
Performance in Real-World Deployments

To verify the experimental value of the proposed loT-
Remote Sensing framework of environmental surveillance, the
synthetic 10T sensor streams and real multispectral satellite
images were statistically validated and enabled reproducible
analyzes and control. Other uncertainties that can be
encountered in the real world deployments include the
environmental noise, degradation of sensors overtime,
intermittent failure of communication, and fluctuating quality of
satellite images, which are supposed to bring moderate
performance degradation. According to what was measured on
the stability indices, packet loss tolerance, and drift-aware fusion
behavior, the overall accuracy of the anomaly detection is
expected to be reduced by 3-7 percent in the long term
conditions out in the field compared to those under control
experimental conditions. Notably, the suggested multi-modal
fusion scheme reduces these effects by dynamically controlling
the source confidence using adaptive Kalman weighting
enabling the system to remain reliable even when specific
sensing modalities become unsound. Thus, absolute accuracy
values might be different depending on the deployment
conditions, however, relative performance improvements of the
integrated fusion-based framework compared to the use of only
10T or only satellite in the real-world environment are likely to
be similar.

F. End-to-End System Performance

Table X provides a comparative analysis of system-level
results of the current environmental monitoring system and the
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proposed loT- Remote Sensing integrated architecture. The
metrics are event response time, data completeness, accuracy of
anomaly reporting and network load. All these signs
demonstrate real-time responsiveness, data integrity, detection
reliability, and communication efficiency improvements
realized with the help of the proposed system.

TABLE X. SYSTEM-LEVEL EFFICIENCY IMPROVEMENTS

Metric Baseline Proposed Improvement
System System (%)

Event Response Time 58 38 34.4
) ' ' '
Data Completeness 58 818 410
(%) ' '
Anomaly Reporting
Accuracy (%) 815 91.2 12.0
Network Load
(MB/day) 124 72 41.9

As shown in the conclusions in Table X, the suggested
integrated system of environmental surveillance has provided
significant improvements in the operation efficiency and
analytic capability. The time to respond to the event dropped to
3.8 seconds in the improved system, which is 34.4% better than
baselines. Such decrease emphasizes the efficiency of edge-
level anomaly detection and the optimization of cloud
processing  processes, which allows proceeding to
environmental notification faster and timely decision-making.

There was a significant 41% increase in data completeness
with the levels rising by 58% to 81.8%. This has been achieved
mostly due to the conjoined application of the 10T continuity in
sensing and the space coverage of the satellites which helps
greatly in reducing the data gaps created by sensor outages,
transmission failures, or environmental barriers. Complete
information on data will improve long-term environmental
analysis and model reliability directly.

The accuracy of the anomaly reporting went up by 12 %
(81.5% to 91.2%), showing that when the temporal 10T signals
are combined with the spectral and spatial satellite features, the
anomalies in the environment are better detected. This has been
essential in the early warning system, the environmental policy
formulation, and the direct mitigation measures.

The operational efficiency of the proposed architecture is
indicated by a significant decrease in the network load, which is
41.9% when compared to the original 124 MB/day network
load. The combination of edge preprocessing, LSTM-based
anomaly filtering and compressed data transmissions minimizes
unnecessary uplink traffic, allowing the system to be more
scalable and cost effective particularly in large scale
deployments or low bandwidth areas.

Overall, Table Xl indicates that the proposed system has
enhanced in all key dimensions of operation proving to be more
superior than traditional monitoring systems. The findings
confirm the usefulness of the system in real-time, dependable
and resource effective environmental monitoring under varying
field conditions.

To assess the effectiveness of the proposed loT-remote
sensing integrated surveillance framework, its performance was
compared against representative state-of-the-art environmental
monitoring paradigms reported in the literature. These include
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loT-only monitoring systems, satellite-only visual analytics
approaches, and recent GeoAl or UAV-assisted multimodal
fusion frameworks. The comparison focuses on key operational
metrics relevant to real-world deployment, including anomaly
detection accuracy, spatial coverage, temporal responsiveness,
fusion capability, and scalability.

TABLE XI. END-TO-END LATENCY BREAKDOWN OF THE PROPOSED
SYSTEM
- Average

Processing Stage Latency
Edge-level 10T preprocessing & LSTM inference 420 ms
loT-to-Cloud communication delay 16s
Cloud-based satellite analytics (ResNet-ViT 145
inference) '
Adaptive Kalman fusion & decision logic 380 ms

Total End-to-End Latency ~38s

The end-to-end latency of about 3.8 seconds is the total
processing time of all the edges, including network
transmission, cloud inference, and adaptive fusion. Lightweight
LSTM execution adds insignificantly to aggregate latency,
whereas the driver elements are caused by communication
overhead and multispectral cloud inference. Notably, instead of
considering latency as an external constraint, it is explicitly
represented as a system design, which allows predictable and
application-conscious response behavior.

In order to put the effectiveness of the proposed 10T- Remote
Sensing environmental surveillance framework into perspective,
a comparative analysis with typical state-of-the-art (SOTA)
systems as reported in the recent literature was conducted.
Hybrid UAV-WSN systems like those suggested by Popescu et
al. are flexible in terms of spatial sampling, but have poor
temporal continuity and scalability to large-scale operations.
GeoAl-based solutions proposed by Li and Hsu combine spatial
reasoning with satellite data and are majorly based on
centralized processing and not edge-level intelligence to filter
anomalies in real time. The current UAV-based multispectral
fusion models have high accuracy in localized agricultural
monitoring but cannot be applied at scale-level as their
implementation depends on the availability of UAVs, planning
of flights, and cost factors.

In Fig.5, the percentages of improvement obtained by the
proposed loT-Remote Sensing integrated system of
environmental monitoring are depicted in three major
dimensions of the key performance: response time, data
completeness, and accuracy of anomaly reporting. The
operational benefits of the system relative to the traditional base
architectures are highlighted through the visual comparison and
show improved benefits in real time detection, enhancements in
data coverage and higher reliability in anomaly detection.
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Fig. 5. End-to-End System Performance Improvements

Fig. 5 gives a vivid and impressive picture of the notable
improvements that the proposed environmental surveillance
framework brings on board. The highest increase is recorded on
data completeness that rose by 41%. This is an enhancement of
the synergistic integration of loT continuous sensing and
satellite-based spatial coverage, which is a good solution to the
typical shortcomings of independent sensor networks, such as
the loss of transmission, blind spots, and device failure. When
the data continuity is enriched, this will provide a stronger
environmental assessment and improve the performance of
machine learning models in the long run.

The fact that the response time of the event has been reduced
by 34% proves that the system has significant improvements in
real-time processing. The delay of cloud-only processing can be
tremendously minimized with the edge-level anomaly detection
based on the LSTM networks, leading to faster environmental
notifications. The performance improvement is also necessary
when it comes to applications with fast situational awareness
needs, e.g., pollution spike detection, water pollution events, or
monitoring vegetation stress.

The fusion architecture is also associated with the 12%
accuracy improvement in the anomaly reporting, highlighting
the importance of the heterogeneous data modalities fusion. The
system achieves fine-grained measurements of the IoT by
integrating multispectral images that are spatially rich with the
aim of minimizing misclassification and improving the
confidence in the identified environmental abnormalities. This
has been especially beneficial to environmental management
agencies that use automated systems in the early warning and
decision support.

Overall, Fig.5. confirms, the given framework does not only
result in a higher level of analytical accuracy, but it also leads to
the optimization of the operational efficiency. The evaluated
changes support the usefulness of multi-source environmental
intelligence and point to the appropriateness of the framework
to scalable, real-time, and resource-efficient infrastructures of
environmental monitoring.

G. Deployment Cost and Scalability Considerations

Practical deployment feasibility is a critical requirement for
large-scale environmental surveillance systems. Accordingly,
this study provides an indicative cost and scalability assessment
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of the proposed loT—Remote Sensing integrated framework to
evaluate its real-world applicability in smart agriculture, urban
monitoring, and environmental governance scenarios.

Each loT sensing node in the proposed architecture is
designed using low-cost, commercially available components,
including an ESP32 microcontroller, environmental sensors
(BME680, MQ-135), temperature and humidity sensors
(DS18B20), water-quality probes (pH and turbidity), a power
management module, and a LoRaWAN transceiver. The
estimated hardware cost per loT node ranges between 33,500—
35,000 (USD 42-60), depending on sensor configuration,
enclosure, and power provisioning. This low per-node cost
enables dense sensor deployment across geographically large
and resource-constrained regions.

Communication overhead and operational expenditure are
minimized through the use of LoRaWAN, which supports long-
range, low-power data transmission without recurring cellular
subscription costs. Edge-level preprocessing and LSTM-based
anomaly filtering further reduce data transmission frequency,
thereby lowering bandwidth usage and extending node battery
life.

On the cloud side, the system employs containerized
analytics and periodic multispectral satellite processing. For a
medium-scale deployment involving approximately 100-150
10T nodes, the estimated cloud compute and storage cost
remains below 3,000-34,000 per month, assuming GPU-
assisted inference for satellite image analysis and compressed
loT data streams. The combination of edge analytics and
adaptive fusion significantly reduces long-term cloud
processing and storage requirements, making the framework
economically viable and scalable for continuous environmental
monitoring applications.

V. DISCUSSION

The developed framework of 10T-Remote Sensing based on
the environmental surveillance implied significant positive
results in terms of detection accuracy of anomalies, data
coverage, and monitoring efficiency in general. The discussion
section further elaborates on the information of the system level,
conceptualises the scientific applicability of the results, and puts
the results in the context of broader studies on environmental
monitoring. Each subsystem, 10T sensing, visual analytics, and
data fusion, is discussed critically and reflects on its contribution
to the environmental intelligence.

Although it is stated that the proposed system works in real
time, its applicability is subject to time needs specific to the
application. The resulting latency of about 3.8 seconds is far
enough inside allowable limits to air pollution warnings, urban
heat control, and stress monitoring of vegetation, where
operationally viable response times of the order of seconds are
sufficiently low. The framework is however not meant to handle
ultra-low-latency emergency situations, such as the onset of a
flash flood or the detection of a seismic event, which need a
response time of sub-seconds. The difference places the
suggested system in a more realistic lumping as a near-time
environmental intelligence platform, tailored towards a
continuous monitoring aspect and not immediate response to
hazards.
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A. Integration of 10T and Remote Sensing: A Convergence
of Complementary Modalities

The fact that it was possible to demonstrate a successful
multimodal environmental intelligence framework that can
harmonize the temporal richness of an 10T sensing system with
the spatial breadth of satellite images is one of the most
important results of this research. loT sensing at high
frequencies is geographically constrained, even when handled
alone, by the nature of sensor deployment of either a static or
semi-static deployment. Remote sensing, on the other hand, is
very comprehensive, however, it has a problem with poor
revisiting and atmospheric interferences.

These two data modalities are integrated, thus making the
system address these opposing constraints. The 10T data stream
offers continuous updates in time, between the satellite
acquisitions to track the time gaps, and remote sensed indices
(NDVI, NDWI, LST) place the local sensor measurements in the
context of the overall patterns of the environment.

The combined accuracy of the fused output, which is more
than 90% in all categories of anomalies, proves the fact that the
complementary nature of the 10T and satellite data is indeed a
synergistic effect that increases the interpretative coherence to
what is incapable of individual modalities. This overlap confers
the growing trend in the environmental analytics around the
globe namely multi-source sensing environments where
semantic, spectral, and temporal data is concurrently tapped into
to improve environmental decision-making.

B. 10T Sensing Performance: Reliability, Stability, and
Field Readiness

High operational robustness is indicated by the performance
of the loT subsystem. A value of accuracy of over 91 %, low
latency (21-42 ms) and low average error rates (1.2-4.7%)
indicate that the sensor network can provide reliable near-real-
time environmental measurements. The consistency of the 10T
nodes in long monitoring (0.91-0.98) and the low drift (0.18-
0.55%) indicate that the 10T nodes will be consistent even with
long-term monitoring, which further indicates their applicability
to continuous outdoor use.

These results highlight one essential conclusion, namely that
an loT node is not just a passive data collector but an active,
intelligent edge device. The nodes will be able to pre-filter data,
find anomalies on-site, and minimize the bandwidth
consumption by transferring only pertinent data with the
inclusion of lightweight LSTM models. This can be particularly
useful in deployments where high-volume data transmission is
perhaps not always possible due to rural, remote or low-
bandwidth conditions.

The good performance of the loT also forms a fundamental
basis to the data fusion module, as the reliability of data fusion
is extremely sensitive to the quality and stability of the input
sensor data.

C. Deep Learning—Based Visual Analytics: Enhancing
Macro-Level Environmental Interpretation
The visual analytics pipeline of remote sensing was found to
be an effective means of detecting anomalies on a large scale.
The ResNetViT hybrid model was the most accurate (92.4%),
with the best F1 score (0.91) and worked better than single

109

architectures. This excellent performance is directly the
consequence of hybridization:
e ResNet-50 extracts rich local spectral-spatial features.

e Vision Transformer (ViT) captures global image
context and long-range dependencies.

This is a dual capability, which is a reflection of the multi-
scale nature of environmental anomalies. Vegetation stress can
be reflected, such as small local variabilities of a spectrum, then
diffuses to large spatial scales, and needs to be described both
with microscopic (CNN) and macroscopic (Transformer)
feature representation.

The confusion matrix reveals a high level of classification of
the normal environmental status (TN = 516), and a high level of
identification of the anomaly regions (TP = 241), however, the
moderate false negatives (32) can be considered as an indication
of the sensitivity improvement. False negatives are normally due
to fine spectral variability, atmospheric noise, or initial
anomalies with low spectral signatures. This supports the fact
that it is needed to combine loT data since they can identify
minute changes in the environment before they translate into a
visual representation of the satellite image.

D. Adaptive Temporal-Spatial Fusion: Improving
Predictive Reliability

The adaptive Kalman-based fusion system contributed
greatly to the detection of environmental anomalies by
dynamically combining the features of the loT and satellite in
relation to their uncertainties. The fusion algorithm produced
high confidence level (94-96%) and low RMSE (0.041-0.053),
which implies that the fusion algorithm did a good job of
eliminating noise, outliers and enhanced stability even when the
environment was changing.

An important comment is that the fusion model did not just
combine those two data sources by averaging them but did
context-based weighting whereby the more trusted modality was
given more priority at any given timestamp. For example:

e |oT data received more weights during hazy or cloudy
satellite acquisitions (Ks |, Kr 1).

e Under sensor drift or local disturbance, the weights of
satellite indices were higher (Ks 1, Kr |).

This dynamic weighting is a strength strategy which
contributes to the robustness of the system which is resistant to
the usual environmental monitoring issues like:

e sensor calibration drift

e atmospheric distortion
e missing sensor packets
e low-quality satellite scenes

The successful results of the strong fusion justify the main
assumption of the research: the integration of temporal richness
(10T) with spatial richness (satellite images) can bring a more
precise environment intelligence in comparison to separate
systems.
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E. System-Level Improvements: Operational Efficiency and
Real-World Scalability

The system level analysis showed that there was significant
improvement in operations:

e Event response time reduced by 34.4%
e Data completeness increased by 41%
e Anomaly reporting accuracy improved by 12%
o Network load reduced by 41.9%
These results have several significant implications:
1) Faster event detection

Threats to the environment like the spike in pollution or the
occurrence of contamination demand quick action. Lower
latency of the proposed system increases emergency
preparedness.

2) Higher data completeness

Combining the 10T and satellite information reduced blind
spots. The gaps in sensor data were filled in with satellite data
and the reverse.

3) Improved accuracy

Fusion eliminates the classification errors and enhances
reliability, which is essential in the policy-making,
environmental compliance, or precision agriculture.

4) Efficient bandwidth use

The system allows sending only data which is relevant to
anomalies, which enables implementation in rural and remote,
as well as resource-limited settings, which are very important in
developing countries. The overall benefits of these efficiencies
are to show that the suggested system is not only scientifically
feasible, but also operationally feasible on a largescale
environmental monitoring system.

F. Anticipated Field Deployment Challenges and
Generalizability Considerations

Despite the fact the proposed loT-Remote Sensing
framework is very performance in controlled experimental
settings, real-world deployments come with other sources of
uncertainty which can impact on the system performance.
Sensor drift (especially with gas, pH and turbidity) over long
periods of time can cause a slow decrease in the accuracy of the
measurements, and packet loss and intermittent interconnection
can arise due to bandwidth limits or environmental interference
during remote implementation. The cloud cover and
atmospheric distortion also affect the optical satellite data,
creating gaps in data or poor image quality at some point,
hardware failure or node outage can locally affect spatial
resolution. The proposed architecture will be able to manage
these challenges by using edge-level intelligence and adaptive
fusion which will enable the system to become more dependent
on the most accurate source of data that is available at a
particular point in time. Although performance degradation
relative to simulation-based outcomes is anticipated, the system
is designed to be graceful instead of crashed whereby the system
does not lose almost real-time situational awareness and also
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promotes generalizability across the various real-world

conditions.

G. Alignment with Existing Research and Novel
Contributions

This study has found closely related results and in some
ways expanded on the results of the previous studies. As an
example, the enhancement of spatial interpretability and
environmental mapping with the assistance of the 1oT and GIS
combination is the reflection of the improvements outlined by
Pei et al. (2021). Their research showed that the integration of
sensor-generated  observations with geospatial analytic
procedures can tremendously add to the environmental
knowledge, which is evident in the enhanced data completeness
and spatial reasoning of the current research. Similarly, the
performance increases that the proposed hybrid ResNetViT
architecture is capable of are comparable to the deep-learning
advances reported by Wang et al. (2020) and Venkataraman and
Gautam (2024), who have also emphasized that modern deep-
learning models are more effective in extracting more complex
spectral-spatial features of satellite images. Additionally, it is
confirmed that the data fusion of both temporal and spatial data
significantly increases accuracy in prediction, which confirms
the advantages of multimodal integration as mentioned by
Leung et al. (2019) and Zhu et al. (2017). Their research
highlighted the fact that sensor-based measurements are more
accurate and less remote-sensed image based measurements
create more reliable and contextual environmental
measurements which is well justified by the high values
obtained by the fused accuracy values in this study.

Despite the differences in terms of sensing modalities and
datasets used in the compared frameworks, the comparison can
be made at the architectural and system-performance level, and
it is the main contribution of this research. 10T-based systems
prioritize time but not space, whereas satellite-based GeoAl
models provide dense spatial analytics with high spatial
analytics but high latency. UAV -WSN structures partially close
this gap but have scalability and deployment limitations. In
comparison, the suggested framework combines ground-level
sensing and satellite analytics as a single, dynamic, and plan-
conscious architecture that allows near-real-time environmental
intelligence that neither of the aforementioned modalities can
attain on its own. This comparison at the system level supports
the applied development of the proposed solution compared to
the current state-of-the-art solutions.

In addition to the correspondence to the current literature, the
given work makes a number of new contributions that can be
considered in the framework of developing technological
possibilities of integrated environmental monitoring systems.
To start with, the hybrid edge-cloud architecture is a
considerable innovation that allows lightweight LSTM-anomaly
sensors to execute their operations directly at the sensor node
and leaves deep-computationally oriented operations, including
deep-learning visual analytics, to the cloud. This separation of
duties enhances the overall level of responsiveness of the system
and minimizes network load. Second, the research hypothesizes
a blended ResNetViT deep-learning architecture, particularly,
the one that is trained in multispectral satellite analysis. This
model builds on the localized convolutional feature extraction
and global Transformer-based spatial reasoning and provides a
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highly capable analytical feature, which outperforms the
traditional CNN-only based analysis. Third, the implementation
of a time-spatial fusion algorithm based on the adaptive Kalman
weighting is an important methodological improvement that
offers time-varying uncertainty modeling and makes predictions
in a manner that data of the best source has a stronger impact.
Lastly, the study has provided a cohesive 10T Remote Sensing
environmental intelligence model, which has been evaluated end
to end using realistic simulated data, and has shown to be very
accurate, operationally efficient, and applicable in real time.
Collectively, the contributions contribute to the
technological preparedness of solutions of environmental
monitoring as one whole and indicate the possibility of scaled
implementation in a wide range of ecological and urban settings.

H. Practical implications and Applicability Across Sectors

The results of the performance of the suggested integrated
IoT Remote Sensing system are indicative of a great
applicability in all spheres of the environment. The system in
smart farming provides great importance in early identification
of drought stress, nutrient shortage, pest infestation, and crop
morbidity. Combining the high-frequency 10T soil-climate data
with the satellite-based vegetation indices enables the farmers
and agricultural planners to react in advance, enhancing yield
stability and resource use. This can especially help in areas
where climatic variability and land degradation are becoming a
major threat to crop productivity.

The framework can be applied in the air quality monitoring
sector to maintain uninterrupted measurements of PM 2. 5,
gaseous pollutants and other pollution sources in cities with very
high temporal resolution. 10T nodes record very fast changing
pollutant concentrations, but the contextualization of these
changes is conducted by satellite thermal and optical signatures
at larger diagnostic spatial scales. This dual-layer intelligence
improves the municipal pollution management strategies, assists
in regulatory compliance, and assists in policy formulation by
policymakers to establish specific intervention measures, basing
on the real-time evidence.

The system is also proven to be of high utility in the water
resource management whereby the 10T sensors monitor the pH
variation, turbidity, dissolved contaminants and temperature
differences whereas the remote sensing provides visibility on a
watershed scale. This arrangement makes it possible to detect
instances of contamination, erosion and hydrological imbalance
with more accuracy than traditional water-quality monitoring
schemes. The alerts promoted by the fusion enable quick
reaction to the environmental risks that protect the human well-
being and aquatic environment.

In disaster management and climate, the system can be used
to predict heatwaves, forest fires, floods, and droughts by
detecting the thermal anomalies, stress pattern of vegetation and
hydrological changes. The system enhances resilience planning
by integrating local sensor signals with regional remote-sensed
signals to facilitate timely information-driven situational
awareness in emergency response agencies.

Finally, in smart city governance, the framework also
enables centralized environmental monitoring with connections
with dashboards, including Grafana and WebGIS-based
platforms. These visualization tools allow city administrators to
monitor the environmental health indicators in real-time,
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optimize resource utilization, determine the pollution hotspots,
and design the sustainable urban interventions. The versatility of
the framework in terms of multi-sector lends more weight to its
scalability, technological stability and the potential perceived
societal impact.

. Novelty Beyond Pipeline Integration

The key difference between the suggested framework and
the existing environmental monitoring pipelines is based on the
integration philosophy, and does not pertain to the novelty of the
specific algorithmic components. Although edge-based LSTM
models, Vision Transformer architectures and Kalman filtering
mechanisms are established independently, their co-ordination
within a coherent and adaptive architecture, as well as with
respect to latency, is the main novelty in the current study.

In the adaptive fusion approach, uncertainty properties of the
heterogeneous data sources are dynamically used to weight the
data sources. Abbreviations Vs(t) and Vr(t) represent the
approximated variances of the loT sensor data and remote-
sensing features, respectively. Adaptive Kalman weights are
determined as follows:

_ @ __Vs@®
K@) = vs(r)+vr(r)'Kr(t) T Vs(+Ve(D) (15)
The fused environmental state X (t) is then obtained as:
X() = K, )S(®) + K- (DR() (16)

In which S(t) is the high-frequency 10T data and R(t) is low-
frequency satellite-based data.

Contrary to the use of a static fusion scheme, the adaptive
formulation allows the system to give precedence to the more
trusted data source at each step, which keeps the system robust
in cases of poor conditions like sensor calibration drift,
intermittent satellite availability or communication delays.

Moreover, the given framework incorporates the fusion logic
into a latency-conscious edge-cloud workflow, which
guarantees the decision to detect an anomaly to be made within
the temporal bounds of the application. The fact that cross-scale
anomaly confirmation is also included also contributes to
reliability, as local sensor alerts are then reconciled with
spatially large satellite-observations.

All these design options contribute to making the suggested
framework more than just an ordinary set-up of a pipeline, and
transform it into a system-designed eco-consciousness
architectural framework, which is capable of upscaling, real-
time and resilience.

VI. CONCLUSION

The current research has built and tested a complete
mechanism of loT-Remote Sensing environmental surveillance
system that overcomes the major flaws of the traditional
surveillance systems. The proposed system that fused high-
frequency loT sensor measurements with multispectral satellite-
based visual analytics and an adaptive temporal-spatial fusion
algorithm showed considerable enhancement of detection
accuracy, operational performance and environmental
situational awareness. The findings affirm that 10T sensors in
their own right, even though rich in time, lack depth in space to
facilitate an assessment of an ecosystem whereas remote-sensed
imagery, in as much as it covers vast regions, is affected by
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latency and temporal discontinuity. These limitations are solved
by the integrated approach: 10T nodes can provide continuous
data of the micro-environment, edge-level LSTM models can
support local detection of anomalies, and satellite images can be
used to analyze the macro-environment and use such indices as
NDVI, NDWI, and LST. The spectral-spatial feature extraction
was also improved by using the hybrid ResNet-ViT deep-
learning model that provided better classification results than
single-network models. The adaptive Kalman-based data fusion
mechanism was significant in the implementation of prediction
stability and reliability in the vegetation stress, air pollution, and
the water-quality anomaly detection. The fused accuracy of
above 90% and the confidence level of above 94% show clearly
the increased strength of and contextual relevance of multi-
source environmental intelligence. On the system-level tests, the
operational benefits were significant: the event response time
decreased by 34%, the data completeness increased by 41
percent, the anomaly detection accuracy increased by 12%, and
the network load decreased by almost 42%. These results
highlight the scalability and efficiency of the suggested hybrid
edge—cloud architecture, which is appropriate to implement in
bandwidth constrained or geographically isolated areas.

In general, the study has some notable contributions such as
(1) a single, integrated loT-Remote Sensing-Deep Learning
architecture (2) a hybrid ResNet-ViT model that is tuned to
multispectral and (3) adaptive temporal-spatial data fusion (4)
end-to-end operational pipeline that is tested with realistic
datasets. All these inventions contribute to the technological
preparedness of intelligent environmental surveillance systems
and are a solid base of the next generation of environmental
governance. The future research can investigate field
deployments, the combination of hyperspectral and LiDAR
data, self-calibration sensor networks, and adaptive fusion using
reinforcement learning. Further enhancement of transparency
and confidence in the large-scale environmental monitoring
activities by extending the system to include the use of
decentralized or blockchain-based data integrity may be
considered. The paper finally shows that integrating loT
sensing, satellite imagery, deep learning, and smart data fusion
offers a ground breaking avenue to precise, scalable, and real-
time environmental monitoring, which is essential to sustainable
development, climate, and informed decision-making regarding
the environmental policy.
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