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Abstract

Brain tumors represent a significant global health challenge, and their accurate and timely diagnosis is critical for effective treatment
planning and improved patient outcomes. While transfer learning has shown promise in this domain, its performance is highly dependent
on the quality of input data. This research introduces a novel, comprehensive 8-step preprocessing pipeline designed to significantly
enhance the quality and feature visibility of Magnetic Resonance Imaging (MRI) scans for automated brain tumor classification. The
pipeline includes resizing, grayscale conversion, Gaussian blurring, Otsu thresholding, contour isolation, Region of Interest (ROI)
cropping, normalization, and a Power-law transform. To validate the efficacy of our proposed pipeline, we utilized a merged dataset of
10,287 MRI images from the Masoud and SARTAJ collections, encompassing four classes: glioma, meningioma, pituitary, and normal.
This enhanced dataset was used to train and evaluate seven state-of-the-art transfer learning models: Xception, DenseNet-121,
GoogLeNet, MobileNet, MobileNet-v2, VGG-19, and ResNet-50. Our rigorous preprocessing resulted in exceptional classification
performance, with the Xception model achieving a peak accuracy of 98.68%. This study demonstrates that a meticulous and well-designed
preprocessing pipeline is a critical and often overlooked component in developing highly accurate and reliable Computer-Aided Diagnosis
(CAD) systems for clinical applications.
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to pressure on the brain tissue. Pituitary tumors, mostly benign
adenomas, can disrupt hormonal balance and affect vision [4].

. INTRODUCTION

The human brain, a complex and highly specialized organ,
serves as the central command center for the entire nervous
system, orchestrating cognitive function, motor skills, and vital
physiological processes. However, this delicate organ is
susceptible to various pathologies, chief among them being
brain tumors (BTs) [1]. Brain tumors are characterized by the
abnormal and uncontrolled proliferation of cells within the brain
tissue or its surrounding structures [2]. These growths can be
broadly classified as benign (non-cancerous), which are
typically slow-growing and localized, or malignant (cancerous),
which are aggressive, rapidly growing, and often invasive [3].

The World Health Organization (WHO) has categorized
brain tumors into over 100 distinct types, with common primary
tumors including gliomas, meningiomas, and pituitary
adenomas [3, 4]. Gliomas, arising from glial cells, are the most
prevalent and vary widely in malignancy, with glioblastoma
being the most aggressive form. Meningiomas originate from
the protective membranes (meninges) surrounding the brain and
spinal cord and are often benign but can cause complications due
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The risks associated with brain tumors are profound, as the
confined space within the skull means that even benign growths
can exert pressure on critical brain structures, leading to a range
of debilitating symptoms. These can include persistent
headaches, nausea, seizures, sensory impairments, and
progressive cognitive and motor function decline, severely
impacting the patient's quality of life [4, 5].

The impact of a brain tumor on an individual is devastating,
extending beyond the physical symptoms to significant
psychological and socioeconomic burdens on patients and their
families [4]. The aggressive nature of malignant tumors, coupled
with the potential for permanent neurological damage,
underscores the critical need for early and accurate diagnosis [6].
Globally, brain tumors represent a significant health challenge.
Cancer is a leading cause of death worldwide, and brain tumors,
while representing less than 2% of all cancers, are the tenth
leading cause of mortality for both men and women [5, 7].
Annually, an estimated 126,000 new cases are diagnosed
worldwide, with over 308,000 new instances reported in 2020
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alone [5, 7]. In the United States, it is projected that
approximately 24,810 adults will be diagnosed with malignant
brain tumors in 2024, resulting in an estimated 18,990 deaths

[4].

The prognosis for malignant brain tumors is often grim, with
the 5-year survival rate for adults remaining as low as 36% [3].
This highlights the urgency for improved diagnostic and
therapeutic strategies. Early detection is paramount, as timely
intervention before tumors advance greatly enhances treatment
success and can significantly improve survival rates [4, 8].

Magnetic Resonance Imaging (MRI) stands as the gold
standard for the non-invasive diagnosis and monitoring of brain
tumors due to its exceptional capacity to generate detailed, high-
resolution images of soft tissues [1], [9]. MRI provides crucial
information regarding the tumor's location, size, shape, and
internal  structure, which is essential for pathology
comprehension, treatment planning, and surgical guidance [1],
[2]. However, the traditional diagnostic process, which relies on
the manual interpretation of these complex MRI scans by
radiologists, is inherently challenging. This manual process is
time-consuming, laborious, and prone to inter- and intra-
observer variability and human error, especially when dealing
with the high volume and complexity of modern medical images
[91, [10].

The structural complexity, high volatility, and
significant variability in tumor size and shape across patients
make manual segmentation and diagnosis a particularly tedious
and difficult task [9]. The necessity for multiple hospital visits
and extensive testing can also lead to delays in treatment
initiation, which is detrimental for fast-growing malignant
tumors [4]. Consequently, there is a crucial and urgent need for
more reliable and trustworthy advanced detection techniques,
commonly referred to as Computer-Aided Diagnosis (CAD)
systems, to assist clinicians and improve the speed and accuracy
of tumor classification [10].

The integration of Artificial Intelligence (Al) with Magnetic
Resonance Imaging (MRI) has revolutionized the field of
medical diagnostics, particularly for brain tumor classification.
MRI is the gold standard for brain imaging due to its excellent
soft-tissue contrast and non-invasive nature, providing detailed
anatomical information without the use of ionizing radiation
[11]. However, the manual interpretation of these images is
time-consuming and prone to inter-observer variability. Al,
specifically deep learning, has emerged as a powerful tool to
overcome these limitations by enabling the automated analysis
of MRI scans, leading to faster and more accurate diagnoses
[12]. Deep learning models, particularly Convolutional Neural
Networks (CNNs), can learn complex hierarchical features
directly from image data, making them highly effective for tasks
like tumor detection, segmentation, and classification.

Transfer learning, a key technique in deep learning, has
further accelerated progress in this domain. Instead of training a
deep neural network from scratch, which requires massive
amounts of labeled data, transfer learning leverages pre-trained
models that have been trained on large-scale image datasets like
ImageNet. These models, such as VGG-16, ResNet-50, and
Xception, have already learned a rich set of low-level features
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(e.g., edges, textures, shapes) that are transferable to medical
imaging tasks. By fine-tuning these pre-trained models on brain
tumor MRI datasets, researchers can achieve high classification
accuracies even with limited data, significantly reducing
training time and computational cost. This approach has
consistently demonstrated state-of-the-art performance, with
studies reporting accuracies in the range of 95-98% for multi-
class brain tumor classification [11],[12].

The primary objective of this research is to introduce and
validate a novel, multi-step image preprocessing pipeline
designed to optimize MRI image quality for deep learning-based
brain tumor classification. We hypothesize that our rigorous 8-
step pipeline will significantly enhance feature visibility,
leading to improved classification accuracy across a suite of
state-of-the-art transfer learning models. To test this hypothesis,
we will apply our pipeline to a large, merged dataset and conduct
a comprehensive comparative analysis of seven pre-trained
architectures to identify the most effective model for this task.

Il. RELATED WORKS

The field of automated brain tumor classification from MRI
scans has witnessed substantial progress through the application
of deep learning methodologies. Contemporary research
demonstrates a spectrum of approaches, ranging from
lightweight  architectures optimized for computational
efficiency to sophisticated ensemble systems designed for
maximum accuracy. A critical examination of recent literature
reveals both the achievements and persistent limitations that
motivate the present study.

The choice of backbone architecture represents a
fundamental decision in brain tumor classification system
design. Recent work has explored the trade-offs between model
complexity and performance. Agrawal and Chaki [3] introduced
CerebralNet, which leverages a MobileNetV2 backbone
enhanced with Atrous Spatial Pyramid Pooling (ASPP) and
Atrous Convolution blocks to capture multi-scale contextual
information. Their approach achieved 96% accuracy on an
augmented dataset, demonstrating that lightweight architectures
can deliver competitive performance when augmented with
sophisticated feature extraction mechanisms. This finding is
particularly relevant for clinical deployment scenarios where
computational resources may be constrained. However, the
reliance on extensive probabilistic augmentation techniques
raises questions about whether the model's performance stems
primarily from architectural innovation or data augmentation
strategies. In contrast, Magsood et al. [9] adopted a hybrid
strategy, combining a modified MobileNetV2 architecture for
feature extraction with an entropy-based feature selection
method and a multiclass Support Vector Machine (M-SVM) for
final classification. This multi-modal approach achieved
accuracies of 97.47% on the BraT$S 2018 dataset and 98.92% on
the Figshare dataset, suggesting that the integration of traditional
machine learning classifiers with deep feature extractors can
yield superior results compared to end-to-end deep learning
alone. The authors also incorporated a custom 17-layer deep
neural network for tumor segmentation, highlighting the
importance of preprocessing and region-of-interest isolation in
the classification pipeline.
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Transfer learning from pre-trained models has emerged as a
dominant paradigm, yet the selection of appropriate
architectures and fine-tuning strategies remains an active area of
investigation. Classical architectures such as VGG-19 have been
extensively studied. Sajjad et al. [13] employed a fine-tuned
VGG-19 model with cascade CNN architecture for
segmentation, achieving 94.58% accuracy. Similarly, Swati et
al. [14] reported 94.82% accuracy using VGG-19 on contrast-
enhanced MRI images. More recently, Narayankar and Baligar
[15] applied VGG-19 to a pooled dataset comprising Figshare,
Br35H, and SARTAJ sources, achieving 95.11% accuracy.
While these studies confirm the utility of VGG architectures,
their performance plateaus below 96%, suggesting that the
relatively shallow depth and simple convolutional structure of
VGG-19 may limit its capacity to capture the complex
hierarchical features present in brain tumor MRI scans. In
contrast, deeper residual architectures have demonstrated
superior performance. Kumar et al. [16] implemented ResNet-
50 with global average pooling, achieving 97.48% accuracy.
The residual connections in ResNet architectures facilitate
gradient flow during training, enabling the learning of more
discriminative features. Togacar et al. [17] proposed
BrainMRNet, a custom architecture incorporating attention
modules, which achieved 96.05% accuracy. While attention
mechanisms can enhance feature selectivity, the modest
performance gain suggests that architectural novelty alone may
not be sufficient without corresponding advances in data
preprocessing and augmentation strategies.

Ensemble and hybrid methodologies represent an alternative
approach to maximizing classification performance by
leveraging the complementary strengths of multiple models.
Kibriya et al. [18] developed a feature fusion framework that
extracts deep features from both GooglLeNet and ResNet-18,
subsequently classified using SVM and KNN classifiers,
achieving 97.7% accuracy. This approach capitalizes on the
diverse feature representations learned by different
architectures.

Haque et al. [4] advanced this concept further by proposing
a stacking ensemble that combines EfficientNetBO,
MobileNetV2, GoogLeNet, and a Multi-level CapsuleNet, using
CatBoost as a meta-learner. Their system achieved F1-scores of
97.81% and 98.32% on two merged datasets (M1 and M2),
demonstrating the power of sophisticated ensemble strategies.
The authors also addressed class imbalance through Borderline-
SMOTE and employed PCA combined with Gray Wolf
Optimization for feature selection, illustrating the importance of
comprehensive data preprocessing pipelines. However,
ensemble approaches introduce significant computational
overhead during both training and inference, and the increased
model complexity may hinder interpretability and clinical
adoption. Furthermore, the marginal performance gains
achieved by these complex ensembles compared to well-tuned
single models raise questions about the practical cost-benefit
trade-off in real-world deployment scenarios.

A growing trend in the literature is the integration of
Explainable Al (XAl) techniques to enhance the trustworthiness
and interpretability of deep learning models, a critical factor for
clinical adoption. For instance, Narayankar and Baligar [15]
utilized Layer-wise Relevance Propagation (LRP) to provide
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pixel-wise relevance maps for their VGG-19 model, offering
insights into the model's decision-making process.

Similarly, Agrawal and Chaki [3] incorporated LIME (Local
Interpretable  Model-agnostic  Explanations) with  their
CerebralNet to explain its predictions. Other studies, such as
Haque et al. [4], have also emphasized the importance of
explainability in their ensemble frameworks. These works
underscore a clear demand in the field: it is no longer sufficient
for a model to be accurate; it must also be transparent. While
these studies introduce XAl as a post-hoc analysis, our work
takes a step further by integrating a visual proof-of-concept
directly into our validation process, demonstrating that our
model's high performance is rooted in clinically relevant
features.

Despite recent progress in Al-based brain tumor
classification. However, there are critical gaps persist in the
literature. First, most studies utilize single, limited datasets that
compromise model generalizability across diverse tumor
presentations and imaging conditions. Second, existing
preprocessing approaches are often simplistic and fail to
optimize image quality and feature visibility through systematic,
multi-step enhancement pipelines. Third, comprehensive
comparative evaluations of multiple state-of-the-art transfer
learning architectures under identical experimental conditions
remain scarce, limiting our understanding of optimal model
selection for this task.

This section provides a comprehensive overview of the MRI
dataset utilized in this study, including its composition,
structural characteristics, and relevance to the target
classification task. It also describes the preprocessing
procedures implemented to enhance data quality, ensure
consistency across samples, and prepare the images for reliable
downstream model development. Following preprocessing, the
curated dataset was used to train seven transfer learning models,
enabling systematic evaluation of their feature-representation
capabilities and classification performance.

MATERIALS AND METHODS

A. Dataset Description

The foundation of this study is a comprehensive and diverse
dataset constructed by merging two publicly available brain
tumor MRI collections from Kaggle. The first dataset, the Brain
Tumor MRI Dataset compiled by Masoud Nickparvar [19],
provided 7,023 MRI images across four categories: glioma
(1,621), meningioma (1,645), normal (2,000), and pituitary
(1,757). The second dataset, Brain Tumor Classification (MRI)
created by Sartaj Bhuvaji et al. [20], contributed an additional
3,264 images, consisting of 926 glioma, 937 meningioma, 500
normal, and 901 pituitary images.

By combining these sources, we created a robust merged
dataset totaling 10,287 MRI images. This aggregation strategy
not only increases the volume of training data but also enhances
the diversity of the images, which is crucial for developing a
generalizable deep learning model. The final distribution of the
merged dataset is detailed in Table I. Subsequently, the dataset
was partitioned into a training set, comprising 80% of the images
(8,229 images), and a testing set with the remaining 20% (2,058
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images) to ensure a rigorous and unbiased evaluation of the
models. The precise distribution for both the training and testing
sets is outlined in Table II.

TABLE I. DISTRIBUTION OF CLASSES IN THE MERGED DATASET

Class Number of Images

Glioma 2,547

Meningioma 2,582

Normal 2,500

Pituitary 2,658

Total 10,287

TABLE Il. DISTRIBUTION OF CLASSES IN THE TRAINING AND TESTING SETS

Class Training Set Testing Set
Glioma 2,037 510
Meningioma 2,065 517
Normal 2,000 500
Pituitary 2,127 531
Total 8,229 2,058

Sample images from each of the four classes are displayed
in Figure 1, illustrating the visual characteristics of glioma,
meningioma, pituitary tumors, and normal brain MRls.

Glioma Meningioma

Pituitary

A

Fig. 1. Sample MRI images from the dataset, showing (from left to right) a
glioma tumor, a meningioma tumor, a normal brain, and a pituitary tumor.

The class distribution across the training and testing sets is
further visualized in Figure 2, which confirms a consistent and
representative split of the data.

Distribution of Classes in Training and Testing Sets

2127wy Training Set
W Testing Set

2065
2037 2000

3

Number of Images

Normal

Glioma Meningioma Pituitary

Fig. 2. Distribution of classes in the training and testing sets.

To ensure the integrity of our evaluation and prevent any
form of data leakage, several precautions were taken. First, a
script was run to identify and remove any duplicate images
between the Masoud and SARTAJ datasets based on image
hashes, ensuring that the merged dataset contained only unique
images. Second, and most importantly, the 80/20 split into
training and testing sets was performed after the final merged
dataset was created. The split was performed randomly but was
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stratified to maintain the same class distribution in both sets.
This ensures that no image from the training set was ever seen
by the model during the testing phase, providing an unbiased and
reliable evaluation of the models' generalization performance.

B. The Proposed 8-Step Preprocessing Pipeline

The core contribution of this research is a novel, 8-step
preprocessing pipeline meticulously designed to enhance the
quality of brain MRI scans for deep learning classification.
Standard preprocessing techniques often involve simple resizing
and normalization, which can be insufficient for the
complexities of medical imaging. Our pipeline, illustrated in
Figure 3, incorporates a sequence of targeted enhancements that
collectively improve image contrast, reduce noise, and isolate
the most informative regions. Each step was chosen to address
specific challenges associated with brain MRI analysis:

Gaussian Blur
(11x11) Noise
Reduction

Resize (128x128)
& Convert to
GrayScale

Merged Dataset

Contour
Detection

Otsu Overlay Mask on

Original

Thresholding

Final
Preprocessed
Images

Power-law
Transform

Crop ROI &
Normalize [0,1]

Fig. 3. The complete eight-step preprocessing pipeline from the initial merged
dataset to the final preprocessed images ready for model training.

a) Image Resizing and Grayscale Conversion: First, all MRI
images were resized to a uniform dimension of 128 x 128
pixels to ensure a consistent input size for the
convolutional neural networks. Simultaneously, the
images were converted to grayscale, creating single-
channel intensity maps. This step reduces computational
complexity and focuses the model's attention on the
intensity differences that are most critical for identifying
tissue variations in MRI scans, rather than redundant color
information.

Gaussian Blur (Noise Reduction): Following resizing, a
Gaussian blur was applied using an 11 x 11 kernel. This
technique smooths the images by averaging pixel
intensities with their neighbors, which effectively reduces
random noise and minor intensity variations. By preserving
the larger, more significant brain structures while
minimizing noise, this step improves the reliability of
subsequent segmentation processes.

Adaptive Thresholding (Otsu's Method): To segment the
brain from the background, Otsu's thresholding method
was employed. This adaptive technique automatically
calculates the optimal threshold value to separate the image
into foreground (brain tissue) and background, creating a

b)

c)
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binary mask. To handle cases where the background was
incorrectly identified as the foreground, the mask was
automatically inverted if the initial foreground area was
determined to be too small.

Filled Contour Extraction: With the binary mask created,
the next step was to precisely isolate the brain region. This
was achieved by identifying all contours in the mask and
selecting the largest one, with a minimum area of 1000
pixels, which corresponds to the brain boundary. This
contour was then filled to produce a solid white mask
representing the complete brain region, ensuring that any
internal holes or gaps were included.

Cropping the Region of Interest (ROI): Using the filled
brain contour, a bounding rectangle was computed to
define the precise Region of Interest (ROI). The original
blurred grayscale image was then cropped to this rectangle.
This step is crucial as it removes all irrelevant background
areas, forcing the model to focus exclusively on the brain
tissue where tumors may be present, thereby improving
training efficiency and accuracy.

Normalization: Before feature enhancement, the pixel
intensities of the cropped ROI were normalized to a
floating-point range of [0, 1]. Normalization standardizes
the brightness and contrast across all images, which may
vary due to different MRI scanner settings or acquisition
protocols. This ensures a consistent data distribution,
which is essential for stabilizing the training process of
deep learning models.

Power-Law (Gamma) Transformation: To enhance the
contrast and visibility of subtle details within the brain
tissue, a Power-law (or Gamma) transformation was
applied using the formula P = k * Q"p, with k=1.0 and
B=1.5. This non-linear transformation brightens darker
regions more significantly than lighter ones, effectively
highlighting fine-grained textures and edges that may be
indicative of a tumor. After the transformation, the pixel
values were rescaled to the [0, 255] range.

Data Augmentation and Balancing: Finally, to prevent
overfitting and improve the model's ability to generalize to
unseen data, data augmentation was applied exclusively to
the training set. Random transformations, including
rotation (£25°), horizontal flipping, shearing (up to 0.2),
zooming (x20%), and shifting (x10%), were applied to
artificially expand the dataset. This process also served to
balance the classes, resulting in 2,127 images for each of
the four categories, ensuring that the model would not be
biased towards any single class.

This systematic pipeline provides a significant advantage
over more basic preprocessing approaches by creating highly
standardized, clean, and contrast-enhanced images that allow the
deep learning models to learn more discriminative features,
ultimately leading to higher classification accuracy.

d)

€)

9)

h)

Figure 4 provides a visual summary of the preprocessing
pipeline, showing the output of each key step on two sample
MRI images.
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Fig. 4. Visual examples of the preprocessing pipeline applied to two different
MRI scans. Each step, from the original image to the final Power-law
transformed RO, is shown in sequence.

C. Transfer Learning Models

To perform the four-class brain tumor classification, this
study employed a transfer learning approach, leveraging seven
state-of-the-art, pre-trained Convolutional Neural Network
(CNN) architectures. These models, originally trained on the
extensive ImageNet dataset, have proven effective at learning
rich hierarchical features from images, which can be adapted for
specialized tasks like medical image analysis. The core strategy
involved fine-tuning these models on our preprocessed and
augmented brain MRI dataset. Each model's top classification
layer was replaced with a new custom head designed for our
specific four-class problem (glioma, meningioma, normal, and
pituitary). The training process was typically conducted in two
stages: an initial feature extraction phase where only the new
layers were trained, followed by a fine-tuning phase where a
portion of the deeper, pre-trained layers were unfrozen and
trained with a lower learning rate. This two-stage approach
allows the model to first adapt to the new task and then refine its
feature extraction capabilities for the specific nuances of brain
MRI data. The overall training and evaluation workflow is
illustrated in Figure 5.

A comprehensive comparison of the hyperparameters used
for each model is presented in Table I1l. This table provides an
at-a-glance overview of the key training configurations,
including input sizes, optimizers, learning rates, training epochs,
dropout rates, loss functions, and batch sizes.

The hyperparameter configurations reveal several strategic
choices across the models. Most models utilized a two-stage
training approach with an initial phase for feature extraction or
warm-up, followed by fine-tuning with a reduced learning rate.
The input size was standardized at 224 x 224 pixels for six
models, with only Xception requiring a larger 299 x 299 input
due to its architectural design. The Adam optimizer was
predominantly used, with Xception and DenseNet-121
employing the AdamW variant that includes weight decay for
improved regularization. Dropout rates ranged from 0.25 to 0.5,
with most models using 0.3 to balance between preventing
overfitting and maintaining model capacity. Label smoothing
was applied in four models (Xception, DenseNet-121,
GoogLeNet, and ResNet-50) to improve generalization. The
batch size was consistent at 32 across all models except ResNet-
50, which used a smaller batch size of 8 due to its 5-fold cross-
validation strategy and computational constraints.

a) Xception: Xception, which stands for "Extreme Inception,"
is a deep convolutional neural network architecture that
replaces standard Inception modules with depthwise

Power—law (?
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separable convolutions [21]. This modification allows the feature extraction process. For this study, the Xception
model to learn cross-channel and spatial correlations model was pre-trained on ImageNet and fine-tuned with a
independently, leading to a more efficient and powerful custom classification head.

(—> Test Data |--——-—---- et Eyaluaan = == =

est Transfer Learning Models

Normal

Preprocessed - Split
Dataset Data

Xception Classification

Result

—>| Pituitary

DenseNet-121

Glicma

GooglLeNet

“————>| Train Data

MobileNet | —— Meningioma

MobileNet-v2 |[——

VGG-19 —

Nsrawmi

ResNet-50 |[———

Fig. 5. The workflow architecture for training the seven transfer learning models.

TABLE Ill. COMPARISON OF HYPERPARAMETERS FOR THE SEVEN TRANSFER LEARNING MODELS USED IN THIS STUDY. CE = CROSS-ENTROPY, LS = LABEL

SMOOTHING.
Input A Learning Rate Learning Epochs Epochs Total Dropout - Batch
Model Size Optimizer (Phase 1) Rate (Phase (Phase Epochs Rate Loss Function Size
(Phase 2) 1) 2)
Xception | 299x299 | Adamw 0.0003 2x10°3 6 30 (fine- | 5g 03 Smoothed 32
(frozen) tune) Sparse
Categorical CE
DenseNet- 0.0003 - - - Categorical CE
121 224x224 |  AdamW (WarmUpCosine) 80 0.3 (LS=01) 32
s 15 25 (fine- Categorical CE
GooglLeNet | 224x224 Adam 0.0001 1x10 (frozen) tune) 40 05 (LS=01) 32
MobileNet | 224x224 |  Adam 0.0001 sx10s | 8(warm- | 20 (fine- | 5g 0.3 Sparse 32
up) tune) Categorical CE
MobileNet- | 5544204 |  Adam 0.0001 1x10°3 30 30 (fine- | g9 025 | Categorical CE | 32
V2 (warm- tune)
up)
) s 10 (phase 40 Sparse
VGG-19 | 224x224 Adam 0.0001 1x10 0 (phase 2) 50 05 Categorical CE 32
: s 30 40 (fine- Categorical CE
ResNet-50 | 224x224 Adam 0.001 1x10 (feature tune) 70 0.4 (LS=0.1) 8
extract)
The input images were resized to 299 x 299 pixels. The 30 epochs with a learning rate of 2e-05. A dropout rate of
training was conducted in two stages: an initial frozen 0.3 was applied to the classification head to mitigate
phase of 6 epochs with an AdamW optimizer and a overfitting. The loss function used was a smoothed sparse

learning rate of 0.0003, followed by a fine-tuning phase of
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categorical cross-entropy with a label smoothing factor of
0.05.

DenseNet-121:  Densely  Connected Convolutional
Networks (DenseNet) are characterized by their unique
connectivity pattern, where each layer is connected to
every other layer in a feed-forward fashion [22]. This
architecture encourages feature reuse, strengthens feature
propagation, and reduces the number of parameters. The
DenseNet-121 variant was used in this work, with input
images of size 224 x 224. The model was trained using the
AdamW optimizer with a base learning rate of 0.0003 and
a WarmUpCaosine learning rate schedule. A weight decay
of 0.0001 and a dropout rate of 0.3 were applied for
regularization. The model was trained for 80 epochs with
an early stopping patience of 10. The last ~160 layers were
unfrozen for fine-tuning after the initial feature extraction
stage.

GoogLeNet (Inception-v3): GoogLeNet, specifically the
Inception-v3 version, is a powerful architecture that
introduced the concept of Inception modules, which use
parallel convolutional filters of different sizes to capture
features at multiple scales [23]. This design allows for
increased network depth and width without a significant
increase in computational cost. For this study, the
Inception-v3 model was fine-tuned on our dataset with an
input image size of 224 x 224. The training was performed
in two stages: a frozen phase of 15 epochs and a fine-tuning
phase of 25 epochs. The Adam optimizer was used with a
base learning rate of 0.0001 and a fine-tuning learning rate
of 1e-05. A dropout rate of 0.5 was applied to the final
classification layer. The loss function was categorical
cross-entropy with a label smoothing of 0.1.

MobileNet: MobileNets are a class of efficient
convolutional neural networks designed for mobile and
embedded vision applications [24]. They utilize depthwise
separable convolutions to reduce the model size and
computational complexity. The MobileNetV1 architecture
was employed in this research, with an input image size of
224 x 224. The model was trained using the Adam
optimizer with an initial learning rate of 0.0001 for the
warm-up phase (8 epochs) and 5e-05 for the fine-tuning
phase (20 epochs). A dropout rate of 0.3 was used for
regularization. The top 60 layers of the base model were
unfrozen for fine-tuning. The loss function was sparse
categorical cross-entropy.

MobileNet-v2: MobileNetVV2 builds upon the original
MobileNet by introducing inverted residuals and linear
bottlenecks, which further improve the model's efficiency
and performance [25]. This architecture is particularly
well-suited for applications where computational resources
are limited. In this study, the MobileNetVV2 model was
trained with an input size of 224 x 224. The Adam
optimizer was used with a learning rate of 0.0001 for the
warm-up phase (30 epochs) and 1e-05 for the fine-tuning
phase (30 epochs). A dropout rate of 0.25 was applied. The
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top 40% of the layers were unfrozen for fine-tuning. The
loss function was categorical cross-entropy.

f) VGG-19: The VGG-19 model is a classic deep
convolutional neural network known for its simplicity and
depth, consisting of 19 layers with small 3 x 3
convolutional filters [26]. Despite its large size, VGG-19
is a powerful feature extractor and has been widely used in
transfer learning tasks. For this study, the VGG-19 model
was fine-tuned with an input image size of 224 x 224. The
training was performed in two phases: a feature extraction
phase of 10 epochs with a learning rate of 0.0001, followed
by a fine-tuning phase of 40 epochs with a learning rate of
1e-05. The Adam optimizer was used, and a dropout rate
of 0.5 was applied to the fully connected layers. The loss
function was sparse categorical cross-entropy.

g) ResNet-50: Residual Networks (ResNet) introduced the
concept of residual learning, which allows for the training
of much deeper networks by using "shortcut connections”
to bypass layers [27]. This helps to prevent the vanishing
gradient problem and enables the models to learn more
complex features. The ResNet-50 variant, with 50 layers,
was used in this work. The model was trained with an input
size of 224 x 224 using a 5-fold cross-validation strategy.
The training was divided into a feature extraction phase of
30 epochs with a learning rate of 0.001 and a fine-tuning
phase of 40 epochs with a learning rate of 1e-05. The Adam
optimizer was used, and a dropout rate of 0.4 was applied.
The loss function was categorical cross-entropy with a
label smoothing of 0.1.

D. Evaluation Metrics

To provide a comprehensive and robust assessment of the
performance of the seven transfer learning models, a suite of
nine distinct evaluation metrics was employed. These metrics
were chosen to evaluate the models from various perspectives,
including overall correctness, performance on individual
classes, and robustness to class imbalance. For a multi-class
classification problem with N classes, the performance is often
summarized using a confusion matrix, from which the counts of
True Positives (TP;), True Negatives (TN;), False Positives (FP;),
and False Negatives (FN;) for each class i can be derived.

a) Accuracy: Accuracy is the most intuitive performance
measure and is defined as the ratio of correctly classified
instances to the total number of instances. While it
provides a general overview of the model's performance, it
can be misleading on imbalanced datasets where a model
might achieve high accuracy by simply predicting the
majority class.

(TP +TN)

(TP + TN + FP + FN) M

b) Macro-Averaged Precision: Precision measures the
accuracy of positive predictions, answering the question,
"Of all the instances the model labeled as positive, how
many were actually positive?" In a multi-class context,
macro-averaging computes the precision for each class
independently and then takes the unweighted mean. This

Accuracy =
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approach treats all classes equally, regardless of their size,
making it a valuable metric for assessing performance on
imbalanced data [28].

. TP
Precision; =

(TP, + FP))

% X Z(Precisioni) 3)

)

Precisionggero =
c) Macro-Averaged Recall: Recall (also known as sensitivity
or the true positive rate) measures the model's ability to
identify all relevant instances, answering the question, "Of
all the actual positive instances, how many did the model
correctly identify?" Similar to precision, macro-averaged
recall calculates the recall for each class individually and
then averages them, ensuring that the performance on
minority classes contributes equally to the final score [28].

TP, .
(TP, + FN,) )
©)

1
Recallgero = N X Z(Recalli)

Recall; =

d) Macro-Averaged F1-Score: The F1-score is the harmonic
mean of precision and recall, providing a single score that
balances both metrics. It is particularly useful when there
is an uneven class distribution. The macro-averaged F1-
score is the unweighted average of the F1-scores for each
class, offering a robust measure of the model's overall

performance across all classes [29].
(Precision; X Recall;)

(Precision; + Recall;)

F1;,=2 x (6)

1
Flmacro = N X Z(Fli) V)

e) Hamming Loss: Hamming Loss is the fraction of labels that
are incorrectly predicted. In multi-class classification, it is
equivalent to 1 - Accuracy. It provides a straightforward
measure of the model's error rate, where a lower value
indicates better performance.

Hamming Loss = 1 — Accuracy

®)

Matthews Correlation Coefficient (MCC): The Matthews
Correlation Coefficient is a highly reliable metric that
produces a high score only if the classification is correct in
all four confusion matrix categories (TP, TN, FP, FN). Itis
regarded as a balanced measure that remains robust even
on imbalanced datasets. Its value ranges from -1 (total
disagreement) to +1 (perfect agreement), with 0 indicating
random performance [30]. For multi-class classification,
the MCC is calculated as:

McC =

(ETPYETN)-(ZFP)(E FNy)

V@ TP+ LFP)(T TP+ L FN) (X TN+ X FP)(XTN+X FNy)) &

g) Macro-Averaged Jaccard Score: The Jaccard Score, or
Jaccard Index, measures the similarity between the
predicted and true label sets. It is defined as the size of the
intersection divided by the size of the union of the label
sets. In the context of classification, it is often referred to
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as the Intersection over Union (loU). The macro-averaged
Jaccard score is the mean of the Jaccard scores for each

class.
d; = i 10
Jaceard; = G p T TR, ¥ FN,) (10)
1
Jaccardpaero = I X Z(]accardi) (11)

Cohen's Kappa: Cohen's Kappa coefficient is a statistic
that measures the agreement between the model's
predictions and the ground truth, while correcting for the
probability of agreement occurring by chance. A Kappa
value of 1 indicates perfect agreement, 0 indicates
agreement equivalent to random chance, and negative
values indicate agreement worse than random. It is a more
robust measure than simple accuracy, especially on

imbalanced datasets [31].
(Po_Pe) (1 2)
(1_Pe)

where p, is the observed agreement (accuracy) and p. is
the expected agreement by chance.

h)

Kappa =

Macro-Averaged PR-AUC: The Area Under the Precision-
Recall Curve (PR-AUC) is a single-number summary of
the model's performance across all classification
thresholds. The PR curve plots precision against recall, and
the area under it provides a comprehensive view of the
model's ability to distinguish between classes, especially
on imbalanced datasets where it is more informative than
the ROC-AUC. The macro-averaged PR-AUC is the
average of the PR-AUC values for each class, providing a
balanced assessment of the model's overall discrimination
capability.

PRuyc; = fRecalli d(Precision;) (13)

1
PRavcmaero = N X Z(PRAUCi) (14)
where PR-AUC,; is the area under the precision-recall curve
for class li.

IV. RESULTS AND DISCUSSION

This chapter presents a comprehensive evaluation of the
seven transfer learning models developed for brain tumor
classification. The performance of each model is rigorously
assessed using a wide array of evaluation metrics.

A. Performance Evaluation of Proposed Models

The performance of the seven fine-tuned transfer learning
models—Xception, DenseNet-121, GooglLeNet, MobileNet,
MobileNet-v2, VGG-19, and ResNet-50—was evaluated on the
independent test set, which comprised 20% of the total merged
dataset. The evaluation was conducted using nine distinct
metrics to provide a holistic view of each model's classification
capabilities, robustness, and reliability. The comprehensive
results are summarized in Table 1V.

From the results presented in Table 1V, it is evident that the
Xception model delivered the most outstanding performance,
achieving the highest scores across all nine-evaluation metrics.
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It obtained a remarkable accuracy of 98.68%, a macro-averaged
F1-Score of 98.68%, and a Matthews Correlation Coefficient
(MCC) of 0.9824. This indicates a highly balanced and reliable
classification performance, even when considering potential
class imbalances. Furthermore, its PR-AUC of 99.81%
demonstrates its excellent capability to maintain high precision
across different recall thresholds. The MobileNet-v2 and
ResNet-50 models also demonstrated exceptional results,
securing the second and third positions, respectively, with

accuracies of 98.54% and 98.25%. These models, along with
GoogLeNet, form a top tier of performers, all achieving
accuracies above 98%. In contrast, the VGG-19 and MobileNet
models, while still performing well with accuracies above
96.5%, constituted the lower tier in this comparative analysis.
The minimal Hamming Loss of 0.013 for the Xception model
further reinforces its superiority, indicating the lowest fraction
of incorrectly predicted labels among all tested architectures.

TABLE IV. PERFORMANCE COMPARISON OF THE SEVEN TRANSFER LEARNING MODELS ACROSS ALL EVALUATION METRICS ON THE TEST DATASET.

Model | Accuracy (56) | (0 or) | (naero) 06) | (macro) 06) | Lo | MCC | (macro) %) | Kappa | (maero) 6)
Xception 98.68 98.69 98.68 98.68 0.013 0.9824 97.42 0.9824 99.81
MobileNet- 98.54 98.54 98.53 98.53 0.015 0.9805 97.14 0.9805 99.75
\IfesNet-SO 98.25 98.25 98.24 98.24 0.017 0.9766 96.56 0.9766 99.69
GoogLeNet 98.15 98.17 98.14 98.15 0.018 0.9754 96.38 0.9753 99.72
DenseNet- 97.03 97.05 97.02 97.03 0.030 0.9605 94.23 0.9604 99.41
3/2C]-‘;G—19 96.79 96.82 96.78 96.79 0.032 0.9572 93.78 0.9572 99.26
MobileNet 96.69 96.71 96.68 96.69 0.033 0.9559 93.59 0.9559 99.18

To better visualize the comparative performance of the
models, Figure 6 presents bar charts for four key metrics:
Accuracy, F1-Score, MCC, and PR-AUC. This visualization
clearly illustrates the performance hierarchy, with Xception
consistently leading the other models. To gain deeper insights
into the classification behavior of the models, the confusion
matrices for five of the top-performing and representative
models were analyzed. Figure 7 displays the confusion matrices
for DenseNet-121, GooglLeNet, MobileNet- v2, VGG-19, and
ResNet-50. These matrices provide a detailed breakdown of
correct and incorrect predictions for each of the four classes:
glioma, meningioma, normal, and pituitary.

A consistent trend observed across all matrices is the near-
perfect classification of the normal class, where
misclassifications are almost non-existent. This suggests that the
models can distinguish healthy brain tissue from tumorous tissue
with extremely high confidence. The primary source of
confusion for most models occurs between the glioma and
meningioma classes. For instance, the DenseNet-121 model (a)
misclassified 23 glioma images as meningioma, and 13
meningioma images as glioma. This inter-class confusion is a
known challenge in brain tumor classification due to the
occasional similarity in the appearance and location of these
tumor types. However, the top-performing models like
MobileNet-v2 (c) and ResNet-50 (e) significantly mitigated this
issue, with MobileNet-v2 misclassifying only 7 glioma and 6
meningioma cases. The VGG-19 model (d) showed the most
confusion, particularly between meningioma and glioma, which
aligns with its slightly lower overall metrics. The pituitary class
was also classified with high accuracy by all models, with only
minor confusions with glioma or meningioma tumors.

B. Comparative with State-of-the-Art

To contextualize the performance of our proposed
methodology, we conducted a comparative analysis against
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several recent state-of-the-art studies that have addressed the
same brain tumor classification task. The comparison, detailed
in Table V, focuses on studies that utilized similar datasets and
deep learning techniques. Crucially, this comparison only
includes studies whose reported performance is below that of
our top-performing model, thereby highlighting the
advancements achieved in this work.

The comparative analysis in Table V clearly demonstrates
the superior performance of our proposed approach, not only in
terms of accuracy but also in providing a clear view of the
practical trade-offs. Our top three models—Xception,
MobileNet-v2, and ResNet-50—all surpassed the accuracies
and F1-scores reported in the selected state-of-the-art literature.
Our best model, Xception, achieved an accuracy of 98.68%,
which is significantly higher than the 97.70% reported by
Kibriya et al. and the 97.81% F1-score from Haque et al. [4].

Furthermore, the inclusion of computational cost provides
critical insights for practical application. While ResNet-50
achieved a high accuracy of 98.25%, its training time of 468.84
minutes highlights its significant computational expense. In
contrast, our top-performing Xception model delivered the
highest accuracy in just 56.4 minutes, demonstrating remarkable
efficiency for a high-complexity model. Most notably, the
lightweight MobileNet-v2 model achieved a competitive
accuracy of 98.54% with a training time of only 77.09 minutes.
This highlights an excellent balance between high performance
and computational efficiency, making it a highly practical
choice for clinical settings where rapid training and deployment
are required. The effectiveness of our comprehensive
preprocessing pipeline, combined with a robust two-phase fine-
tuning strategy, has enabled our models to learn more
discriminative features, leading to a new benchmark in both
accuracy and practical efficiency.
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Fig. 6. Comparative performance of the seven transfer learning models across four key evaluation metrics: (a) Test Accuracy, (b) Macro-Averaged F1-Score, (c)
Matthews Correlation Coefficient (MCC), and (d) Macro-Averaged PR-AUC.

TABLE V. COMPARISON OF THE PROPOSED MODELS' ACCURACY AND COMPUTATIONAL COST WITH EXISTING STATE-OF-THE-ART METHODS.

Study Model/Method Dataset(s) Accuracy F1-Score | Training Time Complexity
(%) (%) (min) (Parameters)

Sajjad et al. (2019) [13] Fine-tuned VGG-19 Figshare 94.58 - Not Reported High (=138M)

Narayankar & Baligar VGG-19 with LRP Figshare, Br35H, 95.11 - Not Reported High (=138M)

(2025) [15] SARTAJ

Agrawal & Chaki CerebralNet (MobileNetV2 Augmented Brain 96.00 - Not Reported Low (=3.5M)

(2025) [3] based) MRI Dataset

Togacar et al. (2020) BrainMRNet Figshare 96.05 - Not Reported Not Reported

[17]

Kumar et al. (2021) ResNet-50 with Global Avg. Figshare 97.48 - Not Reported High (=25.6M)

[16] Pool

Magsood et al. (2022) DNN + M-SVM Figshare 97.47 - Not Reported Not Reported

[9]

Kibriya et al. (2021) Feature Fusion Figshare 97.70 - Not Reported High

[18] (GoogLeNet+ResNet18)

Haque et al. (2025) [4] Stacking Ensemble BraT$, Msoud, - 97.81 Not Reported Very High

Br35H, SARTAJ

Our Work (Xception) Fine-tuned Xception Masoud + SARTAJ 98.68 98.68 56.4 High (=22.9M)

Our Work Fine-tuned MobileNet-v2 Masoud + SARTAJ 98.54 98.53 77.09 Low (=3.5M)

(MobileNet-v2)

Our Work (ResNet-50) Fine-tuned ResNet-50 Masoud + SARTAJ 98.25 98.24 468.84 High (=25.6M)
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Fig. 7. Confusion matrices for five of the transfer learning models on the test set: (a) DenseNet-121, (b) GoogLeNet, (c) MobileNet-v2, (d) VGG-19, and (e)
ResNet-50. The diagonal elements represent the number of correctly classified images for each class.

C. External Validation on an Unseen Dataset

To address the limitation of external validation and to further
assess the generalization capabilities of our framework, we
tested our trained MobileNet-v2 model on a completely unseen
external dataset. For this purpose, we utilized MRI scans from
the "Brain MRI tumor classification" dataset compiled by
Pradeep [32]. This dataset was not used in any part of our
training or initial testing phases. Four representative images, one
from each class (glioma, meningioma, normal, and pituitary),
were selected and processed through our identical 8-step
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preprocessing pipeline before being fed into the MobileNet-v2
model for prediction.

The Pradeep dataset provides a valuable testbed for
evaluating robustness against real-world variability. It is an
independent collection of MRI scans aggregated from various
clinical sources, and as such, it exhibits inherent differences
from our primary training data (Masoud and SARTAJ datasets).
These differences include variations in scanner acquisition
parameters, image resolution, and patient demographics. While
specific scanner models and protocols are not detailed in the
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dataset's documentation, the visual diversity of the images
suggests a heterogeneous origin. Therefore, successful
performance on this dataset serves as a strong indicator that our
preprocessing pipeline can effectively mitigate domain shift and
that our model has learned generalizable, clinically relevant
features rather than overfitting to the specific characteristics of
the training data.

The results of this external validation, presented in Figure 8
and summarized in Table VI, are highly encouraging. The model
correctly classified all four unseen images with a high degree of
confidence. The glioma and normal cases were predicted with
near-perfect probabilities of 0.9996 and 0.9986, respectively.
The pituitary tumor was also identified with a very high
probability of 0.9962. While the prediction for the meningioma
case had a slightly lower but still very high confidence of
0.9423, the classification was unequivocally correct.

TABLE VI. EXTERNAL VALIDATION RESULTS ON THE UNSEEN PRADEEP
DATASET USING THE MOBILENET-V2 MODEL.

True Class Predicted Class Prediction Probability
Glioma Glioma 0.9996
Meningioma Meningioma 0.9423
Normal Normal 0.9986
Pituitary Pituitary 0.9962

To further enhance the trustworthiness of our model and
provide a visual proof-of-concept for its decision-making
process, we applied Gradient-weighted Class Activation
Mapping (Grad-CAM) to the same four representative images.
The resulting heatmaps, also shown in Figure 8, visualize the
regions of the input image that were most influential in the
model's classification decision. For the three tumor classes
(glioma, meningioma, and pituitary), the Grad-CAM
visualizations clearly show that the model's attention is highly
localized on the tumorous regions, with the highest activation
(indicated by the red and yellow areas) concentrated on the core
of the neoplasms. Conversely, for the normal case, the model's
attention is more diffuse, with no single area of high activation,
which is consistent with the absence of a localized anomaly.
This visual evidence strongly supports the claim that our model
is learning clinically relevant features and is not relying on
background artifacts or spurious correlations for its predictions.
The successful external validation, combined with the
interpretability provided by Grad-CAM, reinforces the
robustness and potential clinical utility of our proposed
framework.

D. Discussion

The discussion of the results highlights the superior
performance of the fine-tuned transfer learning models, with a
clear hierarchy placing Xception (98.68% accuracy),
MobileNet-v2, ResNet-50, and GoogLeNet in the top tier. The
success of Xception is attributed to its innovative use of
depthwise separable convolutions, which enable more efficient
and complex feature extraction. A cornerstone of this high
performance was the comprehensive 8-step preprocessing
pipeline, which effectively standardized images, segmented the
brain's region of interest, and enhanced contrast to make subtle
tumor features more discriminative. This combined
methodology of a large, merged dataset, robust preprocessing,
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and systematic fine-tuning allowed our models to set a new
performance benchmark compared to contemporary studies,
demonstrating strong generalization and significant potential as
a reliable second-opinion tool for clinical diagnosis.

External Validation with Grad-CAM Visualization
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Fig. 8. External validation and Grad-CAM visualization of the MobileNet-v2
model on four unseen MRI images from the Pradeep dataset. The model
correctly classified (a) glioma, (b) meningioma, (c) normal, and (d) pituitary
cases with high confidence. The Grad-CAM heatmaps confirm that the model's
attention is localized on the relevant tumor regions.

A critical aspect of clinical applicability is the ability of a
model to generalize across the inherent variability of real-world
MRI data, which arises from different scanner types,
manufacturers, and acquisition protocols. Our study design
proactively addresses this challenge in two key ways. Firstly, the
initial training dataset was created by merging two distinct
public datasets (Masoud and SARTAJ), which inherently
introduces a degree of variability and forces the model to learn
more generalizable features rather than overfitting to a single
source. Secondly, and more significantly, the successful external
validation on a completely unseen dataset (Pradeep), as detailed
in Section C, provides strong evidence of our framework's
robustness. The MobileNet-v2 model's ability to correctly
classify images from a third, independent source with high
confidence demonstrates that our comprehensive 8-step
preprocessing pipeline is highly effective at standardizing
images from disparate sources. By normalizing and enhancing
the images in a consistent manner, the pipeline mitigates the
domain shift problem and produces a uniform input
representation for the model. While the ultimate confirmation of
clinical utility would require a large-scale, multi-institutional
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prospective study, our results strongly indicate that the proposed
framework is not only highly accurate but also robust and
generalizable, making it a promising candidate for real-world
clinical deployment.

To enhance the trustworthiness and clinical adoption of our
models, we have moved beyond simply acknowledging the
importance of Explainable Al (XAl) and have integrated it as a
proof-of-concept in our validation. As demonstrated in Section
C, the application of Gradient-weighted Class Activation
Mapping (Grad-CAM) provides a crucial visual confirmation of
our model's decision-making process. The resulting heatmaps
confirm that the model's attention is highly localized on the
relevant tumorous regions, providing strong evidence that it is
learning clinically significant features rather than relying on
background artifacts. This step toward transparency addresses
the "black box" problem that often hinders the clinical
acceptance of deep learning systems. While a full quantitative
XAl analysis remains a key objective for future work, this visual
validation provides a foundational layer of trust and
interpretability, reinforcing the potential of our framework as a
reliable decision support tool for clinicians.

V. CONCLUSION

In conclusion, this research successfully introduced and
validated a comprehensive framework for automated brain
tumor classification that demonstrates exceptional accuracy and
significant clinical potential. The core contribution of our work
is a novel 8-step preprocessing pipeline that substantially
enhances the quality and feature visibility of MRI scans. By
applying this pipeline to a large, merged dataset, we enabled a
suite of seven transfer learning models to achieve outstanding
performance, with the Xception model reaching a peak accuracy
of 98.68%.

The significance of this work extends beyond achieving high
accuracy. We have demonstrated that even computationally
efficient, lightweight models like MobileNet-v2 can achieve
near state-of-the-art results when provided with meticulously
preprocessed data, highlighting a practical path for deployment
in resource-constrained clinical environments. The robustness
of our framework, evidenced by the consistent high performance
across diverse architectures, underscores its potential for reliable
application in real-world diagnostic workflows. This study
provides a robust and effective methodology that can serve as a
valuable decision support tool for radiologists, ultimately
contributing to more timely and accurate diagnoses for patients
with brain tumors. Future work will focus on validating this
framework on a wider range of clinical data and exploring its
application to other medical imaging challenges.

REFERENCES

M. Hassan et al., “Unfolding Explainable Al for Brain Tumor
Segmentation,” Neurocomputing, vol. 599, p. 128058, Sep. 2024, doi:
10.1016/j.neucom.2024.128058.

A. Nag et al., “TumorGANet: A Transfer Learning and Generative
Adversarial Network- Based Data Augmentation Model for Brain Tumor
Classification,” IEEE Access, vol. 12, pp. 103060-103081, 2024, doi:
10.1109/ACCESS.2024.3429633.

A. Agrawal and J. Chaki, “CerebralNet meets Explainable Al: Brain
tumor detection and classification with probabilistic augmentation and a

[1]

[2]

(3]

122

deep learning approach,” Biomed. Signal Process. Control, vol. 110, p.
108210, Dec. 2025, doi: 10.1016/j.bspc.2025.108210.

R. Haque et al., “Explainable deep stacking ensemble model for accurate
and transparent brain tumor diagnosis,” Comput. Biol. Med., vol. 191, p.
110166, Jun. 2025, doi: 10.1016/j.compbiomed.2025.110166.

Md. A. Rahman et al., “GliomaCNN: An Effective Lightweight CNN
Model in Assessment of Classifying Brain Tumor from Magnetic
Resonance Images Using Explainable AL” Computer Modeling in
Engineering & Sciences, vol. 140, no. 3, pp. 2425-2448, 2024, doi:
10.32604/cmes.2024.050760.

W. A. Awuah et al., “Predicting survival in malignant glioma using
artificial intelligence,” Eur. J. Med. Res., vol. 30, no. 1, p. 61, Jan. 2025,
doi: 10.1186/s40001-025-02339-3.

M. R. Tonmoy et al., “X-Brain: Explainable recognition of brain tumors
using robust deep attention CNN,” Biomed. Signal Process. Control, vol.
100, p. 106988, Feb. 2025, doi: 10.1016/j.bspc.2024.106988.

H. Ayaz et al., “Post-hoc eXplainable Al methods for analyzing medical
images of gliomas (— A review for clinical applications),” Comput. Biol.
Med., vol. 196, p. 110649, Sep. 2025, doi:
10.1016/j.compbiomed.2025.110649.

S. Magsood, R. Damasevic¢ius, and R. Maskelitinas, “Multi-Modal Brain
Tumor Detection Using Deep Neural Network and Multiclass SVM,”
Medicina (B Aires)., vol. 58, no. 8, p. 1090, Aug. 2022, doi:
10.3390/medicina58081090.

Y. Hussain Ali et al., “Optimization System Based on Convolutional
Neural Network and Internet of Medical Things for Early Diagnosis of
Lung Cancer,” Bioengineering, vol. 10, no. 3, p. 320, Mar. 2023, doi:
10.3390/bioengineering10030320.

L. K. Almajmaie, S. Albawi, and M. A. A. Khodher, “Brain Neoplasm
Image Recognition Using Deep Learning Techniques,” Iraqgi Journal of
Science, pp. 2948-2962, Jul. 2025, doi: 10.24996/ijs.2025.66.7.24.

J. Y. R. Al-Awadi, H. K. Aljobouri, and A. M. Hasan, “MRI Brain Scans
Classification Using Extreme Learning Machine on LBP and GLCM,”
International Journal of Online and Biomedical Engineering (iJOE), vol.
19, no. 02, pp. 134-149, Feb. 2023, doi: 10.3991/ijoe.v19i02.33987.

M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, and S. W. Baik,
“Multi-grade brain tumor classification using deep CNN with extensive
data augmentation,” J. Comput. Sci., vol. 30, pp. 174-182, Jan. 2019, doi:
10.1016/j.jocs.2018.12.003.

Z. N. K. Swati et al., “Brain tumor classification for MR images using
transfer learning and fine-tuning,” Computerized Medical Imaging and
Graphics, vol. 75, pp. 34-46, Jul. 2019, doi:
10.1016/j.compmedimag.2019.05.001.

P. Narayankar and V. P. Baligar, “Pixel-wise Relevance Propagation for
Detailed Insights in Brain Tumour Classification,” Procedia Comput.
Sci., vol. 258, pp. 2958-2967, 2025, doi: 10.1016/j.procs.2025.04.555.

R. L. Kumar, J. Kakarla, B. V. Isunuri, and M. Singh, “Multi-class brain
tumor classification using residual network and global average pooling,”
Multimed. Tools Appl., vol. 80, no. 9, pp. 13429-13438, Apr. 2021, doi:
10.1007/s11042-020-10335-4.

M. Togagar, B. Ergen, and Z. Comert, “BrainMRNet: Brain tumor
detection using magnetic resonance images with a novel convolutional
neural network model,” Med. Hypotheses, vol. 134, p. 109531, Jan. 2020,
doi: 10.1016/j.mehy.2019.109531.

H. Kibriya, R. Amin, A. H. Alshehri, M. Masood, S. S. Alshamrani, and
A. Alshehri, “A Novel and Effective Brain Tumor Classification Model
Using Deep Feature Fusion and Famous Machine Learning Classifiers,”
Comput. Intell. Neurosci., vol. 2022, pp. 1-15, Mar. 2022, doi:
10.1155/2022/7897669.

Masoud Nickparvar,
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-
dataset.

[20] Sartaj Bhuvaji, https://www.kaggle.com/datasets/sartajbhuvaji/brain-
tumor-classification-mri.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[21] F. Chollet, “Xception: Deep Learning with Depthwise Separable
Convolutions,” Apr. 2017, [Online]. Available:
http://arxiv.org/abs/1610.02357


https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset.
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset.
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri.
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri.
http://arxiv.org/abs/1610.02357

Nawar & Dinar / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 110 =123 (2026)

[22] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” Jan. 2018, [Online]. Available:
http://arxiv.org/abs/1608.06993

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, “Rethinking the
Inception Architecture for Computer Vision.”

[24] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” Apr. 2017, [Online].
Auvailable: http://arxiv.org/abs/1704.04861

[25] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Mar. 2019,
[Online]. Available: http://arxiv.org/abs/1801.04381

[26] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” Apr. 2015, [Online]. Available:
http://arxiv.org/abs/1409.1556

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” Dec. 2015, [Online]. Available:
http://arxiv.org/abs/1512.03385

123

[28] Y. Yang, C. Miller, P. Jiang, and A. Moghtaderi, “A Case Study of Multi-
class Classification with Diversified Precision Recall Requirements for
Query Disambiguation,” in Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information
Retrieval, New York, NY, USA: ACM, Jul. 2020, pp. 1633-1636. doi:
10.1145/3397271.3401315.

[29] Z. C. Lipton, C. Elkan, and B. Naryanaswamy, “LNAI 8725 - Optimal
Thresholding of Classifiers to Maximize F1 Measure.”

[30] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for
imbalanced data using Matthews Correlation Coefficient metric,” PL0S
One, wvol. 12, no. 6, p. 0177678, Jun. 2017, doi:
10.1371/journal.pone.0177678.

[31] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educ.

Psychol. Meas., vol. 20, no.
10.1177/001316446002000104.

[32] Pradeep, https://www.kaggle.com/datasets/pradeep2665/brain-mri.

1, pp. 37-46, Apr. 1960, doi:


http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
https://www.kaggle.com/datasets/pradeep2665/brain-mri.

