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Abstract 

Brain tumors represent a significant global health challenge, and their accurate and timely diagnosis is critical for effective treatment 

planning and improved patient outcomes. While transfer learning has shown promise in this domain, its performance is highly dependent 

on the quality of input data. This research introduces a novel, comprehensive 8-step preprocessing pipeline designed to significantly 

enhance the quality and feature visibility of Magnetic Resonance Imaging (MRI) scans for automated brain tumor classification. The 

pipeline includes resizing, grayscale conversion, Gaussian blurring, Otsu thresholding, contour isolation, Region of Interest (ROI) 

cropping, normalization, and a Power-law transform. To validate the efficacy of our proposed pipeline, we utilized a merged dataset of 

10,287 MRI images from the Masoud and SARTAJ collections, encompassing four classes: glioma, meningioma, pituitary, and normal. 

This enhanced dataset was used to train and evaluate seven state-of-the-art transfer learning models: Xception, DenseNet-121, 

GoogLeNet, MobileNet, MobileNet-v2, VGG-19, and ResNet-50. Our rigorous preprocessing resulted in exceptional classification 

performance, with the Xception model achieving a peak accuracy of 98.68%. This study demonstrates that a meticulous and well-designed 

preprocessing pipeline is a critical and often overlooked component in developing highly accurate and reliable Computer-Aided Diagnosis 

(CAD) systems for clinical applications. 
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I. INTRODUCTION  

The human brain, a complex and highly specialized organ, 
serves as the central command center for the entire nervous 
system, orchestrating cognitive function, motor skills, and vital 
physiological processes. However, this delicate organ is 
susceptible to various pathologies, chief among them being 
brain tumors (BTs) [1]. Brain tumors are characterized by the 
abnormal and uncontrolled proliferation of cells within the brain 
tissue or its surrounding structures [2]. These growths can be 
broadly classified as benign (non-cancerous), which are 
typically slow-growing and localized, or malignant (cancerous), 
which are aggressive, rapidly growing, and often invasive [3]. 

The World Health Organization (WHO) has categorized 
brain tumors into over 100 distinct types, with common primary 
tumors including gliomas, meningiomas, and pituitary 
adenomas [3, 4]. Gliomas, arising from glial cells, are the most 
prevalent and vary widely in malignancy, with glioblastoma 
being the most aggressive form. Meningiomas originate from 
the protective membranes (meninges) surrounding the brain and 
spinal cord and are often benign but can cause complications due 

to pressure on the brain tissue. Pituitary tumors, mostly benign 
adenomas, can disrupt hormonal balance and affect vision [4]. 
The risks associated with brain tumors are profound, as the 
confined space within the skull means that even benign growths 
can exert pressure on critical brain structures, leading to a range 
of debilitating symptoms. These can include persistent 
headaches, nausea, seizures, sensory impairments, and 
progressive cognitive and motor function decline, severely 
impacting the patient's quality of life [4, 5]. 

The impact of a brain tumor on an individual is devastating, 
extending beyond the physical symptoms to significant 
psychological and socioeconomic burdens on patients and their 
families [4]. The aggressive nature of malignant tumors, coupled 
with the potential for permanent neurological damage, 
underscores the critical need for early and accurate diagnosis [6]. 
Globally, brain tumors represent a significant health challenge. 
Cancer is a leading cause of death worldwide, and brain tumors, 
while representing less than 2% of all cancers, are the tenth 
leading cause of mortality for both men and women [5, 7]. 
Annually, an estimated 126,000 new cases are diagnosed 
worldwide, with over 308,000 new instances reported in 2020 
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alone [5, 7]. In the United States, it is projected that 
approximately 24,810 adults will be diagnosed with malignant 
brain tumors in 2024, resulting in an estimated 18,990 deaths 
[4]. 

The prognosis for malignant brain tumors is often grim, with 
the 5-year survival rate for adults remaining as low as 36% [3]. 
This highlights the urgency for improved diagnostic and 
therapeutic strategies. Early detection is paramount, as timely 
intervention before tumors advance greatly enhances treatment 
success and can significantly improve survival rates [4, 8]. 

Magnetic Resonance Imaging (MRI) stands as the gold 
standard for the non-invasive diagnosis and monitoring of brain 
tumors due to its exceptional capacity to generate detailed, high-
resolution images of soft tissues [1], [9]. MRI provides crucial 
information regarding the tumor's location, size, shape, and 
internal structure, which is essential for pathology 
comprehension, treatment planning, and surgical guidance [1], 
[2]. However, the traditional diagnostic process, which relies on 
the manual interpretation of these complex MRI scans by 
radiologists, is inherently challenging. This manual process is 
time-consuming, laborious, and prone to inter- and intra-
observer variability and human error, especially when dealing 
with the high volume and complexity of modern medical images 
[9], [10]. 

 The structural complexity, high volatility, and 
significant variability in tumor size and shape across patients 
make manual segmentation and diagnosis a particularly tedious 
and difficult task [9]. The necessity for multiple hospital visits 
and extensive testing can also lead to delays in treatment 
initiation, which is detrimental for fast-growing malignant 
tumors [4]. Consequently, there is a crucial and urgent need for 
more reliable and trustworthy advanced detection techniques, 
commonly referred to as Computer-Aided Diagnosis (CAD) 
systems, to assist clinicians and improve the speed and accuracy 
of tumor classification [10]. 

The integration of Artificial Intelligence (AI) with Magnetic 
Resonance Imaging (MRI) has revolutionized the field of 
medical diagnostics, particularly for brain tumor classification. 
MRI is the gold standard for brain imaging due to its excellent 
soft-tissue contrast and non-invasive nature, providing detailed 
anatomical information without the use of ionizing radiation 
[11]. However, the manual interpretation of these images is 
time-consuming and prone to inter-observer variability. AI, 
specifically deep learning, has emerged as a powerful tool to 
overcome these limitations by enabling the automated analysis 
of MRI scans, leading to faster and more accurate diagnoses 
[12]. Deep learning models, particularly Convolutional Neural 
Networks (CNNs), can learn complex hierarchical features 
directly from image data, making them highly effective for tasks 
like tumor detection, segmentation, and classification. 

Transfer learning, a key technique in deep learning, has 
further accelerated progress in this domain. Instead of training a 
deep neural network from scratch, which requires massive 
amounts of labeled data, transfer learning leverages pre-trained 
models that have been trained on large-scale image datasets like 
ImageNet. These models, such as VGG-16, ResNet-50, and 
Xception, have already learned a rich set of low-level features 

(e.g., edges, textures, shapes) that are transferable to medical 
imaging tasks. By fine-tuning these pre-trained models on brain 
tumor MRI datasets, researchers can achieve high classification 
accuracies even with limited data, significantly reducing 
training time and computational cost. This approach has 
consistently demonstrated state-of-the-art performance, with 
studies reporting accuracies in the range of 95-98% for multi-
class brain tumor classification [11],[12]. 

The primary objective of this research is to introduce and 
validate a novel, multi-step image preprocessing pipeline 
designed to optimize MRI image quality for deep learning-based 
brain tumor classification. We hypothesize that our rigorous 8-
step pipeline will significantly enhance feature visibility, 
leading to improved classification accuracy across a suite of 
state-of-the-art transfer learning models. To test this hypothesis, 
we will apply our pipeline to a large, merged dataset and conduct 
a comprehensive comparative analysis of seven pre-trained 
architectures to identify the most effective model for this task. 

II. RELATED WORKS 

The field of automated brain tumor classification from MRI 
scans has witnessed substantial progress through the application 
of deep learning methodologies. Contemporary research 
demonstrates a spectrum of approaches, ranging from 
lightweight architectures optimized for computational 
efficiency to sophisticated ensemble systems designed for 
maximum accuracy. A critical examination of recent literature 
reveals both the achievements and persistent limitations that 
motivate the present study. 

The choice of backbone architecture represents a 
fundamental decision in brain tumor classification system 
design. Recent work has explored the trade-offs between model 
complexity and performance. Agrawal and Chaki [3] introduced 
CerebralNet, which leverages a MobileNetV2 backbone 
enhanced with Atrous Spatial Pyramid Pooling (ASPP) and 
Atrous Convolution blocks to capture multi-scale contextual 
information. Their approach achieved 96% accuracy on an 
augmented dataset, demonstrating that lightweight architectures 
can deliver competitive performance when augmented with 
sophisticated feature extraction mechanisms. This finding is 
particularly relevant for clinical deployment scenarios where 
computational resources may be constrained. However, the 
reliance on extensive probabilistic augmentation techniques 
raises questions about whether the model's performance stems 
primarily from architectural innovation or data augmentation 
strategies. In contrast, Maqsood et al. [9] adopted a hybrid 
strategy, combining a modified MobileNetV2 architecture for 
feature extraction with an entropy-based feature selection 
method and a multiclass Support Vector Machine (M-SVM) for 
final classification. This multi-modal approach achieved 
accuracies of 97.47% on the BraTS 2018 dataset and 98.92% on 
the Figshare dataset, suggesting that the integration of traditional 
machine learning classifiers with deep feature extractors can 
yield superior results compared to end-to-end deep learning 
alone. The authors also incorporated a custom 17-layer deep 
neural network for tumor segmentation, highlighting the 
importance of preprocessing and region-of-interest isolation in 
the classification pipeline. 
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Transfer learning from pre-trained models has emerged as a 
dominant paradigm, yet the selection of appropriate 
architectures and fine-tuning strategies remains an active area of 
investigation. Classical architectures such as VGG-19 have been 
extensively studied. Sajjad et al. [13] employed a fine-tuned 
VGG-19 model with cascade CNN architecture for 
segmentation, achieving 94.58% accuracy. Similarly, Swati et 
al. [14] reported 94.82% accuracy using VGG-19 on contrast-
enhanced MRI images. More recently, Narayankar and Baligar 
[15] applied VGG-19 to a pooled dataset comprising Figshare, 
Br35H, and SARTAJ sources, achieving 95.11% accuracy. 
While these studies confirm the utility of VGG architectures, 
their performance plateaus below 96%, suggesting that the 
relatively shallow depth and simple convolutional structure of 
VGG-19 may limit its capacity to capture the complex 
hierarchical features present in brain tumor MRI scans. In 
contrast, deeper residual architectures have demonstrated 
superior performance. Kumar et al. [16] implemented ResNet-
50 with global average pooling, achieving 97.48% accuracy. 
The residual connections in ResNet architectures facilitate 
gradient flow during training, enabling the learning of more 
discriminative features. Togacar et al. [17] proposed 
BrainMRNet, a custom architecture incorporating attention 
modules, which achieved 96.05% accuracy. While attention 
mechanisms can enhance feature selectivity, the modest 
performance gain suggests that architectural novelty alone may 
not be sufficient without corresponding advances in data 
preprocessing and augmentation strategies. 

Ensemble and hybrid methodologies represent an alternative 
approach to maximizing classification performance by 
leveraging the complementary strengths of multiple models. 
Kibriya et al. [18] developed a feature fusion framework that 
extracts deep features from both GoogLeNet and ResNet-18, 
subsequently classified using SVM and KNN classifiers, 
achieving 97.7% accuracy. This approach capitalizes on the 
diverse feature representations learned by different 
architectures.  

Haque et al. [4] advanced this concept further by proposing 
a stacking ensemble that combines EfficientNetB0, 
MobileNetV2, GoogLeNet, and a Multi-level CapsuleNet, using 
CatBoost as a meta-learner. Their system achieved F1-scores of 
97.81% and 98.32% on two merged datasets (M1 and M2), 
demonstrating the power of sophisticated ensemble strategies. 
The authors also addressed class imbalance through Borderline-
SMOTE and employed PCA combined with Gray Wolf 
Optimization for feature selection, illustrating the importance of 
comprehensive data preprocessing pipelines. However, 
ensemble approaches introduce significant computational 
overhead during both training and inference, and the increased 
model complexity may hinder interpretability and clinical 
adoption. Furthermore, the marginal performance gains 
achieved by these complex ensembles compared to well-tuned 
single models raise questions about the practical cost-benefit 
trade-off in real-world deployment scenarios. 

A growing trend in the literature is the integration of 
Explainable AI (XAI) techniques to enhance the trustworthiness 
and interpretability of deep learning models, a critical factor for 
clinical adoption. For instance, Narayankar and Baligar [15] 
utilized Layer-wise Relevance Propagation (LRP) to provide 

pixel-wise relevance maps for their VGG-19 model, offering 
insights into the model's decision-making process.  

Similarly, Agrawal and Chaki [3] incorporated LIME (Local 
Interpretable Model-agnostic Explanations) with their 
CerebralNet to explain its predictions. Other studies, such as 
Haque et al. [4], have also emphasized the importance of 
explainability in their ensemble frameworks. These works 
underscore a clear demand in the field: it is no longer sufficient 
for a model to be accurate; it must also be transparent. While 
these studies introduce XAI as a post-hoc analysis, our work 
takes a step further by integrating a visual proof-of-concept 
directly into our validation process, demonstrating that our 
model's high performance is rooted in clinically relevant 
features. 

Despite recent progress in AI-based brain tumor 
classification. However, there are critical gaps persist in the 
literature. First, most studies utilize single, limited datasets that 
compromise model generalizability across diverse tumor 
presentations and imaging conditions. Second, existing 
preprocessing approaches are often simplistic and fail to 
optimize image quality and feature visibility through systematic, 
multi-step enhancement pipelines. Third, comprehensive 
comparative evaluations of multiple state-of-the-art transfer 
learning architectures under identical experimental conditions 
remain scarce, limiting our understanding of optimal model 
selection for this task. 

III. MATERIALS AND METHODS 

This section provides a comprehensive overview of the MRI 
dataset utilized in this study, including its composition, 
structural characteristics, and relevance to the target 
classification task. It also describes the preprocessing 
procedures implemented to enhance data quality, ensure 
consistency across samples, and prepare the images for reliable 
downstream model development. Following preprocessing, the 
curated dataset was used to train seven transfer learning models, 
enabling systematic evaluation of their feature-representation 
capabilities and classification performance. 

A. Dataset Description 

The foundation of this study is a comprehensive and diverse 
dataset constructed by merging two publicly available brain 
tumor MRI collections from Kaggle. The first dataset, the Brain 
Tumor MRI Dataset compiled by Masoud Nickparvar [19], 
provided 7,023 MRI images across four categories: glioma 
(1,621), meningioma (1,645), normal (2,000), and pituitary 
(1,757). The second dataset, Brain Tumor Classification (MRI) 
created by Sartaj Bhuvaji et al. [20], contributed an additional 
3,264 images, consisting of 926 glioma, 937 meningioma, 500 
normal, and 901 pituitary images. 

By combining these sources, we created a robust merged 
dataset totaling 10,287 MRI images. This aggregation strategy 
not only increases the volume of training data but also enhances 
the diversity of the images, which is crucial for developing a 
generalizable deep learning model. The final distribution of the 
merged dataset is detailed in Table I. Subsequently, the dataset 
was partitioned into a training set, comprising 80% of the images 
(8,229 images), and a testing set with the remaining 20% (2,058 
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images) to ensure a rigorous and unbiased evaluation of the 
models. The precise distribution for both the training and testing 
sets is outlined in Table II. 

TABLE I.  DISTRIBUTION OF CLASSES IN THE MERGED DATASET 

Class Number of Images 

Glioma 2,547 

Meningioma 2,582 

Normal 2,500 

Pituitary 2,658 

Total 10,287 

TABLE II.  DISTRIBUTION OF CLASSES IN THE TRAINING AND TESTING SETS 

Class Training Set Testing Set 

Glioma 2,037 510 

Meningioma 2,065 517 

Normal 2,000 500 

Pituitary 2,127 531 

Total 8,229 2,058 

 
Sample images from each of the four classes are displayed 

in Figure 1, illustrating the visual characteristics of glioma, 
meningioma, pituitary tumors, and normal brain MRIs. 
 

 
Fig. 1. Sample MRI images from the dataset, showing (from left to right) a 

glioma tumor, a meningioma tumor, a normal brain, and a pituitary tumor. 

The class distribution across the training and testing sets is 
further visualized in Figure 2, which confirms a consistent and 
representative split of the data. 

 
Fig. 2. Distribution of classes in the training and testing sets. 

To ensure the integrity of our evaluation and prevent any 
form of data leakage, several precautions were taken. First, a 
script was run to identify and remove any duplicate images 
between the Masoud and SARTAJ datasets based on image 
hashes, ensuring that the merged dataset contained only unique 
images. Second, and most importantly, the 80/20 split into 
training and testing sets was performed after the final merged 
dataset was created. The split was performed randomly but was 

stratified to maintain the same class distribution in both sets. 
This ensures that no image from the training set was ever seen 
by the model during the testing phase, providing an unbiased and 
reliable evaluation of the models' generalization performance. 

B. The Proposed 8-Step Preprocessing Pipeline 

The core contribution of this research is a novel, 8-step 
preprocessing pipeline meticulously designed to enhance the 
quality of brain MRI scans for deep learning classification. 
Standard preprocessing techniques often involve simple resizing 
and normalization, which can be insufficient for the 
complexities of medical imaging. Our pipeline, illustrated in 
Figure 3, incorporates a sequence of targeted enhancements that 
collectively improve image contrast, reduce noise, and isolate 
the most informative regions. Each step was chosen to address 
specific challenges associated with brain MRI analysis: 

 
Fig. 3. The complete eight-step preprocessing pipeline from the initial merged 

dataset to the final preprocessed images ready for model training. 

a) Image Resizing and Grayscale Conversion: First, all MRI 

images were resized to a uniform dimension of 128 × 128 

pixels to ensure a consistent input size for the 

convolutional neural networks. Simultaneously, the 

images were converted to grayscale, creating single-

channel intensity maps. This step reduces computational 

complexity and focuses the model's attention on the 

intensity differences that are most critical for identifying 

tissue variations in MRI scans, rather than redundant color 

information. 

b) Gaussian Blur (Noise Reduction): Following resizing, a 

Gaussian blur was applied using an 11 × 11 kernel. This 

technique smooths the images by averaging pixel 

intensities with their neighbors, which effectively reduces 

random noise and minor intensity variations. By preserving 

the larger, more significant brain structures while 

minimizing noise, this step improves the reliability of 

subsequent segmentation processes. 

c) Adaptive Thresholding (Otsu's Method): To segment the 

brain from the background, Otsu's thresholding method 

was employed. This adaptive technique automatically 

calculates the optimal threshold value to separate the image 

into foreground (brain tissue) and background, creating a 
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binary mask. To handle cases where the background was 

incorrectly identified as the foreground, the mask was 

automatically inverted if the initial foreground area was 

determined to be too small. 

d) Filled Contour Extraction: With the binary mask created, 

the next step was to precisely isolate the brain region. This 

was achieved by identifying all contours in the mask and 

selecting the largest one, with a minimum area of 1000 

pixels, which corresponds to the brain boundary. This 

contour was then filled to produce a solid white mask 

representing the complete brain region, ensuring that any 

internal holes or gaps were included. 

e) Cropping the Region of Interest (ROI): Using the filled 

brain contour, a bounding rectangle was computed to 

define the precise Region of Interest (ROI). The original 

blurred grayscale image was then cropped to this rectangle. 

This step is crucial as it removes all irrelevant background 

areas, forcing the model to focus exclusively on the brain 

tissue where tumors may be present, thereby improving 

training efficiency and accuracy. 

f) Normalization: Before feature enhancement, the pixel 

intensities of the cropped ROI were normalized to a 

floating-point range of [0, 1]. Normalization standardizes 

the brightness and contrast across all images, which may 

vary due to different MRI scanner settings or acquisition 

protocols. This ensures a consistent data distribution, 

which is essential for stabilizing the training process of 

deep learning models. 

g) Power-Law (Gamma) Transformation: To enhance the 

contrast and visibility of subtle details within the brain 

tissue, a Power-law (or Gamma) transformation was 

applied using the formula P = k * Q^β, with k=1.0 and 

β=1.5. This non-linear transformation brightens darker 

regions more significantly than lighter ones, effectively 

highlighting fine-grained textures and edges that may be 

indicative of a tumor. After the transformation, the pixel 

values were rescaled to the [0, 255] range. 

h) Data Augmentation and Balancing: Finally, to prevent 

overfitting and improve the model's ability to generalize to 

unseen data, data augmentation was applied exclusively to 

the training set. Random transformations, including 

rotation (±25°), horizontal flipping, shearing (up to 0.2), 

zooming (±20%), and shifting (±10%), were applied to 

artificially expand the dataset. This process also served to 

balance the classes, resulting in 2,127 images for each of 

the four categories, ensuring that the model would not be 

biased towards any single class. 
This systematic pipeline provides a significant advantage 

over more basic preprocessing approaches by creating highly 
standardized, clean, and contrast-enhanced images that allow the 
deep learning models to learn more discriminative features, 
ultimately leading to higher classification accuracy. 

Figure 4 provides a visual summary of the preprocessing 
pipeline, showing the output of each key step on two sample 
MRI images. 

 
Fig. 4. Visual examples of the preprocessing pipeline applied to two different 

MRI scans. Each step, from the original image to the final Power-law 

transformed ROI, is shown in sequence. 

C. Transfer Learning Models 

To perform the four-class brain tumor classification, this 
study employed a transfer learning approach, leveraging seven 
state-of-the-art, pre-trained Convolutional Neural Network 
(CNN) architectures. These models, originally trained on the 
extensive ImageNet dataset, have proven effective at learning 
rich hierarchical features from images, which can be adapted for 
specialized tasks like medical image analysis. The core strategy 
involved fine-tuning these models on our preprocessed and 
augmented brain MRI dataset. Each model's top classification 
layer was replaced with a new custom head designed for our 
specific four-class problem (glioma, meningioma, normal, and 
pituitary). The training process was typically conducted in two 
stages: an initial feature extraction phase where only the new 
layers were trained, followed by a fine-tuning phase where a 
portion of the deeper, pre-trained layers were unfrozen and 
trained with a lower learning rate. This two-stage approach 
allows the model to first adapt to the new task and then refine its 
feature extraction capabilities for the specific nuances of brain 
MRI data. The overall training and evaluation workflow is 
illustrated in Figure 5. 

A comprehensive comparison of the hyperparameters used 
for each model is presented in Table III. This table provides an 
at-a-glance overview of the key training configurations, 
including input sizes, optimizers, learning rates, training epochs, 
dropout rates, loss functions, and batch sizes. 

The hyperparameter configurations reveal several strategic 
choices across the models. Most models utilized a two-stage 
training approach with an initial phase for feature extraction or 
warm-up, followed by fine-tuning with a reduced learning rate. 
The input size was standardized at 224 × 224 pixels for six 
models, with only Xception requiring a larger 299 × 299 input 
due to its architectural design. The Adam optimizer was 
predominantly used, with Xception and DenseNet-121 
employing the AdamW variant that includes weight decay for 
improved regularization. Dropout rates ranged from 0.25 to 0.5, 
with most models using 0.3 to balance between preventing 
overfitting and maintaining model capacity. Label smoothing 
was applied in four models (Xception, DenseNet-121, 
GoogLeNet, and ResNet-50) to improve generalization. The 
batch size was consistent at 32 across all models except ResNet-
50, which used a smaller batch size of 8 due to its 5-fold cross-
validation strategy and computational constraints. 

a) Xception: Xception, which stands for "Extreme Inception," 

is a deep convolutional neural network architecture that 

replaces standard Inception modules with depthwise 
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separable convolutions [21]. This modification allows the 

model to learn cross-channel and spatial correlations 

independently, leading to a more efficient and powerful 

feature extraction process. For this study, the Xception 

model was pre-trained on ImageNet and fine-tuned with a 

custom classification head. 

 

Fig. 5. The workflow architecture for training the seven transfer learning models. 

TABLE III.  COMPARISON OF HYPERPARAMETERS FOR THE SEVEN TRANSFER LEARNING MODELS USED IN THIS STUDY. CE = CROSS-ENTROPY, LS = LABEL 

SMOOTHING. 

Model 
Input 

Size 
Optimizer 

Learning Rate 

(Phase 1) 

Learning 

Rate 

(Phase 2) 

Epochs 

(Phase 

1) 

Epochs 

(Phase 

2) 

Total 

Epochs 

Dropout 

Rate 
Loss Function 

Batch 

Size 

Xception 299×299 AdamW 0.0003 2×10⁻⁵ 
6 

(frozen) 

30 (fine-

tune) 
36 0.3 

Smoothed 

Sparse 

Categorical CE 
(LS=0.05) 

32 

DenseNet-

121 
224×224 AdamW 

0.0003 

(WarmUpCosine) 
— — — 80 0.3 

Categorical CE 

(LS=0.1) 
32 

GoogLeNet 224×224 Adam 0.0001 1×10⁻⁵ 
15 

(frozen) 

25 (fine-

tune) 
40 0.5 

Categorical CE 

(LS=0.1) 
32 

MobileNet 224×224 Adam 0.0001 5×10⁻⁵ 
8 (warm-

up) 

20 (fine-

tune) 
28 0.3 

Sparse 

Categorical CE 
32 

MobileNet-

v2 
224×224 Adam 0.0001 1×10⁻⁵ 

30 

(warm-

up) 

30 (fine-

tune) 
60 0.25 Categorical CE 32 

VGG-19 224×224 Adam 0.0001 1×10⁻⁵ 
10 (phase 

1) 

40 

(phase 2) 
50 0.5 

Sparse 

Categorical CE 
32 

ResNet-50 224×224 Adam 0.001 1×10⁻⁵ 
30 

(feature 

extract) 

40 (fine-

tune) 
70 0.4 

Categorical CE 

(LS=0.1) 
8 

The input images were resized to 299 × 299 pixels. The 

training was conducted in two stages: an initial frozen 

phase of 6 epochs with an AdamW optimizer and a 

learning rate of 0.0003, followed by a fine-tuning phase of 

30 epochs with a learning rate of 2e-05. A dropout rate of 

0.3 was applied to the classification head to mitigate 

overfitting. The loss function used was a smoothed sparse 
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categorical cross-entropy with a label smoothing factor of 

0.05. 

b) DenseNet-121: Densely Connected Convolutional 

Networks (DenseNet) are characterized by their unique 

connectivity pattern, where each layer is connected to 

every other layer in a feed-forward fashion [22]. This 

architecture encourages feature reuse, strengthens feature 

propagation, and reduces the number of parameters. The 

DenseNet-121 variant was used in this work, with input 

images of size 224 × 224. The model was trained using the 

AdamW optimizer with a base learning rate of 0.0003 and 

a WarmUpCosine learning rate schedule. A weight decay 

of 0.0001 and a dropout rate of 0.3 were applied for 

regularization. The model was trained for 80 epochs with 

an early stopping patience of 10. The last ~160 layers were 

unfrozen for fine-tuning after the initial feature extraction 

stage. 

c) GoogLeNet (Inception-v3): GoogLeNet, specifically the 

Inception-v3 version, is a powerful architecture that 

introduced the concept of Inception modules, which use 

parallel convolutional filters of different sizes to capture 

features at multiple scales [23]. This design allows for 

increased network depth and width without a significant 

increase in computational cost. For this study, the 

Inception-v3 model was fine-tuned on our dataset with an 

input image size of 224 × 224. The training was performed 

in two stages: a frozen phase of 15 epochs and a fine-tuning 

phase of 25 epochs. The Adam optimizer was used with a 

base learning rate of 0.0001 and a fine-tuning learning rate 

of 1e-05. A dropout rate of 0.5 was applied to the final 

classification layer. The loss function was categorical 

cross-entropy with a label smoothing of 0.1. 

d) MobileNet: MobileNets are a class of efficient 

convolutional neural networks designed for mobile and 

embedded vision applications [24]. They utilize depthwise 

separable convolutions to reduce the model size and 

computational complexity. The MobileNetV1 architecture 

was employed in this research, with an input image size of 

224 × 224. The model was trained using the Adam 

optimizer with an initial learning rate of 0.0001 for the 

warm-up phase (8 epochs) and 5e-05 for the fine-tuning 

phase (20 epochs). A dropout rate of 0.3 was used for 

regularization. The top 60 layers of the base model were 

unfrozen for fine-tuning. The loss function was sparse 

categorical cross-entropy. 

e) MobileNet-v2: MobileNetV2 builds upon the original 

MobileNet by introducing inverted residuals and linear 

bottlenecks, which further improve the model's efficiency 

and performance [25]. This architecture is particularly 

well-suited for applications where computational resources 

are limited. In this study, the MobileNetV2 model was 

trained with an input size of 224 × 224. The Adam 

optimizer was used with a learning rate of 0.0001 for the 

warm-up phase (30 epochs) and 1e-05 for the fine-tuning 

phase (30 epochs). A dropout rate of 0.25 was applied. The 

top 40% of the layers were unfrozen for fine-tuning. The 

loss function was categorical cross-entropy. 

f) VGG-19: The VGG-19 model is a classic deep 

convolutional neural network known for its simplicity and 

depth, consisting of 19 layers with small 3 × 3 

convolutional filters [26]. Despite its large size, VGG-19 

is a powerful feature extractor and has been widely used in 

transfer learning tasks. For this study, the VGG-19 model 

was fine-tuned with an input image size of 224 × 224. The 

training was performed in two phases: a feature extraction 

phase of 10 epochs with a learning rate of 0.0001, followed 

by a fine-tuning phase of 40 epochs with a learning rate of 

1e-05. The Adam optimizer was used, and a dropout rate 

of 0.5 was applied to the fully connected layers. The loss 

function was sparse categorical cross-entropy. 

g) ResNet-50: Residual Networks (ResNet) introduced the 

concept of residual learning, which allows for the training 

of much deeper networks by using "shortcut connections" 

to bypass layers [27]. This helps to prevent the vanishing 

gradient problem and enables the models to learn more 

complex features. The ResNet-50 variant, with 50 layers, 

was used in this work. The model was trained with an input 

size of 224 × 224 using a 5-fold cross-validation strategy. 

The training was divided into a feature extraction phase of 

30 epochs with a learning rate of 0.001 and a fine-tuning 

phase of 40 epochs with a learning rate of 1e-05. The Adam 

optimizer was used, and a dropout rate of 0.4 was applied. 

The loss function was categorical cross-entropy with a 

label smoothing of 0.1. 

D. Evaluation Metrics 

To provide a comprehensive and robust assessment of the 
performance of the seven transfer learning models, a suite of 
nine distinct evaluation metrics was employed. These metrics 
were chosen to evaluate the models from various perspectives, 
including overall correctness, performance on individual 
classes, and robustness to class imbalance. For a multi-class 
classification problem with N classes, the performance is often 
summarized using a confusion matrix, from which the counts of 
True Positives (TPᵢ), True Negatives (TNᵢ), False Positives (FPᵢ), 
and False Negatives (FNᵢ) for each class i can be derived. 

a) Accuracy: Accuracy is the most intuitive performance 

measure and is defined as the ratio of correctly classified 

instances to the total number of instances. While it 

provides a general overview of the model's performance, it 

can be misleading on imbalanced datasets where a model 

might achieve high accuracy by simply predicting the 

majority class. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
                               (1) 

b) Macro-Averaged Precision: Precision measures the 

accuracy of positive predictions, answering the question, 

"Of all the instances the model labeled as positive, how 

many were actually positive?" In a multi-class context, 

macro-averaging computes the precision for each class 

independently and then takes the unweighted mean. This 
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approach treats all classes equally, regardless of their size, 

making it a valuable metric for assessing performance on 

imbalanced data [28]. 

Precisioni =
𝑇𝑃𝑖

(𝑇𝑃𝑖 + 𝐹𝑃𝑖)
                                      (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =  
1

𝑁
 ×  ∑(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖)      (3) 

c) Macro-Averaged Recall: Recall (also known as sensitivity 

or the true positive rate) measures the model's ability to 

identify all relevant instances, answering the question, "Of 

all the actual positive instances, how many did the model 

correctly identify?" Similar to precision, macro-averaged 

recall calculates the recall for each class individually and 

then averages them, ensuring that the performance on 

minority classes contributes equally to the final score [28]. 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑇𝑃𝑖

(𝑇𝑃𝑖 + 𝐹𝑁𝑖)
                                    (4) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =  
1

𝑁
 ×  ∑(𝑅𝑒𝑐𝑎𝑙𝑙𝑖)                 (5) 

d) Macro-Averaged F1-Score: The F1-score is the harmonic 

mean of precision and recall, providing a single score that 

balances both metrics. It is particularly useful when there 

is an uneven class distribution. The macro-averaged F1-

score is the unweighted average of the F1-scores for each 

class, offering a robust measure of the model's overall 

performance across all classes [29]. 

𝐹1𝑖 = 2 ×  
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖  × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖)
               (6) 

𝐹1𝑚𝑎𝑐𝑟𝑜 =  
1

𝑁
  ×  ∑(𝐹1𝑖)                               (7) 

e) Hamming Loss: Hamming Loss is the fraction of labels that 

are incorrectly predicted. In multi-class classification, it is 

equivalent to 1 - Accuracy. It provides a straightforward 

measure of the model's error rate, where a lower value 

indicates better performance. 
𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =  1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦               (8) 

f) Matthews Correlation Coefficient (MCC): The Matthews 

Correlation Coefficient is a highly reliable metric that 

produces a high score only if the classification is correct in 

all four confusion matrix categories (TP, TN, FP, FN). It is 

regarded as a balanced measure that remains robust even 

on imbalanced datasets. Its value ranges from -1 (total 

disagreement) to +1 (perfect agreement), with 0 indicating 

random performance [30]. For multi-class classification, 

the MCC is calculated as: 
  𝑀𝐶𝐶 =

               
((∑ 𝑇𝑃𝑖)(∑ 𝑇𝑁𝑖)−(∑ 𝐹𝑃𝑖)(∑ 𝐹𝑁𝑖))

√((∑ 𝑇𝑃𝑖+ ∑ 𝐹𝑃𝑖)(∑ 𝑇𝑃𝑖+ ∑ 𝐹𝑁𝑖)(∑ 𝑇𝑁𝑖+ ∑ 𝐹𝑃𝑖)(∑ 𝑇𝑁𝑖+∑ 𝐹𝑁𝑖))
      (9) 

 

g) Macro-Averaged Jaccard Score: The Jaccard Score, or 

Jaccard Index, measures the similarity between the 

predicted and true label sets. It is defined as the size of the 

intersection divided by the size of the union of the label 

sets. In the context of classification, it is often referred to 

as the Intersection over Union (IoU). The macro-averaged 

Jaccard score is the mean of the Jaccard scores for each 

class. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑖 =
𝑇𝑃𝑖

(𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖)
                               (10) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑚𝑎𝑐𝑟𝑜 =  
1

𝑁
× ∑(𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑖)                    (11) 

h) Cohen's Kappa: Cohen's Kappa coefficient is a statistic 

that measures the agreement between the model's 

predictions and the ground truth, while correcting for the 

probability of agreement occurring by chance. A Kappa 

value of 1 indicates perfect agreement, 0 indicates 

agreement equivalent to random chance, and negative 

values indicate agreement worse than random. It is a more 

robust measure than simple accuracy, especially on 

imbalanced datasets [31]. 

𝐾𝑎𝑝𝑝𝑎 =  
(𝑃𝑜−𝑃𝑒)

(1−𝑃𝑒)
                                                        (12)  

where pₒ is the observed agreement (accuracy) and pₑ is 

the expected agreement by chance. 

i) Macro-Averaged PR-AUC: The Area Under the Precision-

Recall Curve (PR-AUC) is a single-number summary of 

the model's performance across all classification 

thresholds. The PR curve plots precision against recall, and 

the area under it provides a comprehensive view of the 

model's ability to distinguish between classes, especially 

on imbalanced datasets where it is more informative than 

the ROC-AUC. The macro-averaged PR-AUC is the  

average of the PR-AUC values for each class, providing a 

balanced assessment of the model's overall discrimination 

capability. 

𝑃𝑅𝐴𝑈𝐶𝑖
= ∫ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖  𝑑(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖)                             (13) 

𝑃𝑅𝐴𝑈𝐶𝑚𝑎𝑐𝑟𝑜
=

1

𝑁
× ∑(𝑃𝑅𝐴𝑈𝐶𝑖

)                                     (14) 

where PR-AUCᵢ is the area under the precision-recall curve 

for class Ii. 

IV. RESULTS AND DISCUSSION 

This chapter presents a comprehensive evaluation of the 
seven transfer learning models developed for brain tumor 
classification. The performance of each model is rigorously 
assessed using a wide array of evaluation metrics. 

A. Performance Evaluation of Proposed Models 

The performance of the seven fine-tuned transfer learning 
models—Xception, DenseNet-121, GoogLeNet, MobileNet, 
MobileNet-v2, VGG-19, and ResNet-50—was evaluated on the 
independent test set, which comprised 20% of the total merged 
dataset. The evaluation was conducted using nine distinct 
metrics to provide a holistic view of each model's classification 
capabilities, robustness, and reliability. The comprehensive 
results are summarized in Table IV. 

From the results presented in Table IV, it is evident that the 
Xception model delivered the most outstanding performance, 
achieving the highest scores across all nine-evaluation metrics. 
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It obtained a remarkable accuracy of 98.68%, a macro-averaged 
F1-Score of 98.68%, and a Matthews Correlation Coefficient 
(MCC) of 0.9824. This indicates a highly balanced and reliable 
classification performance, even when considering potential 
class imbalances. Furthermore, its PR-AUC of 99.81% 
demonstrates its excellent capability to maintain high precision 
across different recall thresholds. The MobileNet-v2 and 
ResNet-50 models also demonstrated exceptional results, 
securing the second and third positions, respectively, with 

accuracies of 98.54% and 98.25%. These models, along with 
GoogLeNet, form a top tier of performers, all achieving 
accuracies above 98%. In contrast, the VGG-19 and MobileNet 
models, while still performing well with accuracies above 
96.5%, constituted the lower tier in this comparative analysis. 
The minimal Hamming Loss of 0.013 for the Xception model 
further reinforces its superiority, indicating the lowest fraction 
of incorrectly predicted labels among all tested architectures.

TABLE IV.  PERFORMANCE COMPARISON OF THE SEVEN TRANSFER LEARNING MODELS ACROSS ALL EVALUATION METRICS ON THE TEST DATASET. 

Model Accuracy (%) 
Precision 
(macro) (%) 

Recall 
(macro) (%) 

F1-Score 
(macro) (%) 

Hamming 
Loss 

MCC 
Jaccard 
(macro) (%) 

Cohen 
Kappa 

PR-AUC 
(macro) (%) 

Xception 98.68 98.69 98.68 98.68 0.013 0.9824 97.42 0.9824 99.81 

MobileNet-
v2 

98.54 98.54 98.53 98.53 0.015 0.9805 97.14 0.9805 99.75 

ResNet-50 98.25 98.25 98.24 98.24 0.017 0.9766 96.56 0.9766 99.69 

GoogLeNet 98.15 98.17 98.14 98.15 0.018 0.9754 96.38 0.9753 99.72 

DenseNet-
121 

97.03 97.05 97.02 97.03 0.030 0.9605 94.23 0.9604 99.41 

VGG-19 96.79 96.82 96.78 96.79 0.032 0.9572 93.78 0.9572 99.26 

MobileNet 96.69 96.71 96.68 96.69 0.033 0.9559 93.59 0.9559 99.18 

To better visualize the comparative performance of the 
models, Figure 6 presents bar charts for four key metrics: 
Accuracy, F1-Score, MCC, and PR-AUC. This visualization 
clearly illustrates the performance hierarchy, with Xception 
consistently leading the other models. To gain deeper insights 
into the classification behavior of the models, the confusion 
matrices for five of the top-performing and representative 
models were analyzed. Figure 7 displays the confusion matrices 
for DenseNet-121, GoogLeNet, MobileNet- v2, VGG-19, and 
ResNet-50. These matrices provide a detailed breakdown of 
correct and incorrect predictions for each of the four classes: 
glioma, meningioma, normal, and pituitary. 

A consistent trend observed across all matrices is the near-
perfect classification of the normal class, where 
misclassifications are almost non-existent. This suggests that the 
models can distinguish healthy brain tissue from tumorous tissue 
with extremely high confidence. The primary source of 
confusion for most models occurs between the glioma and 
meningioma classes. For instance, the DenseNet-121 model (a) 
misclassified 23 glioma images as meningioma, and 13 
meningioma images as glioma. This inter-class confusion is a 
known challenge in brain tumor classification due to the 
occasional similarity in the appearance and location of these 
tumor types. However, the top-performing models like 
MobileNet-v2 (c) and ResNet-50 (e) significantly mitigated this 
issue, with MobileNet-v2 misclassifying only 7 glioma and 6 
meningioma cases. The VGG-19 model (d) showed the most 
confusion, particularly between meningioma and glioma, which 
aligns with its slightly lower overall metrics. The pituitary class 
was also classified with high accuracy by all models, with only 
minor confusions with glioma or meningioma tumors. 

B. Comparative with State-of-the-Art 

To contextualize the performance of our proposed 
methodology, we conducted a comparative analysis against 

several recent state-of-the-art studies that have addressed the 
same brain tumor classification task. The comparison, detailed 
in Table V, focuses on studies that utilized similar datasets and 
deep learning techniques. Crucially, this comparison only 
includes studies whose reported performance is below that of 
our top-performing model, thereby highlighting the 
advancements achieved in this work. 

The comparative analysis in Table V clearly demonstrates 
the superior performance of our proposed approach, not only in 
terms of accuracy but also in providing a clear view of the 
practical trade-offs. Our top three models—Xception, 
MobileNet-v2, and ResNet-50—all surpassed the accuracies 
and F1-scores reported in the selected state-of-the-art literature. 
Our best model, Xception, achieved an accuracy of 98.68%, 
which is significantly higher than the 97.70% reported by 
Kibriya et al. and the 97.81% F1-score from Haque et al. [4]. 

Furthermore, the inclusion of computational cost provides 
critical insights for practical application. While ResNet-50 
achieved a high accuracy of 98.25%, its training time of 468.84 
minutes highlights its significant computational expense. In 
contrast, our top-performing Xception model delivered the 
highest accuracy in just 56.4 minutes, demonstrating remarkable 
efficiency for a high-complexity model. Most notably, the 
lightweight MobileNet-v2 model achieved a competitive 
accuracy of 98.54% with a training time of only 77.09 minutes. 
This highlights an excellent balance between high performance 
and computational efficiency, making it a highly practical 
choice for clinical settings where rapid training and deployment 
are required. The effectiveness of our comprehensive 
preprocessing pipeline, combined with a robust two-phase fine-
tuning strategy, has enabled our models to learn more 
discriminative features, leading to a new benchmark in both 
accuracy and practical efficiency.
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Fig. 6. Comparative performance of the seven transfer learning models across four key evaluation metrics: (a) Test Accuracy, (b) Macro-Averaged F1-Score, (c) 
Matthews Correlation Coefficient (MCC), and (d) Macro-Averaged PR-AUC. 

TABLE V.  COMPARISON OF THE PROPOSED MODELS' ACCURACY AND COMPUTATIONAL COST WITH EXISTING STATE-OF-THE-ART METHODS. 

Study Model/Method Dataset(s) Accuracy 

(%) 

F1-Score 

(%) 

Training Time 

(min) 

Complexity 

(Parameters) 

Sajjad et al. (2019) [13] Fine-tuned VGG-19 Figshare 94.58 - Not Reported High (≈138M) 

Narayankar & Baligar 

(2025) [15] 
VGG-19 with LRP Figshare, Br35H, 

SARTAJ 
95.11 - Not Reported High (≈138M) 

Agrawal & Chaki 

(2025) [3] 

CerebralNet (MobileNetV2 

based) 

Augmented Brain 

MRI Dataset 
96.00 - Not Reported Low (≈3.5M) 

Togacar et al. (2020) 

[17] 
BrainMRNet Figshare 96.05 - Not Reported Not Reported 

Kumar et al. (2021) 

[16] 

ResNet-50 with Global Avg. 

Pool 
Figshare 97.48 - Not Reported High (≈25.6M) 

Maqsood et al. (2022) 

[9] 
DNN + M-SVM Figshare 97.47 - Not Reported Not Reported 

Kibriya et al. (2021) 

[18] 

Feature Fusion 

(GoogLeNet+ResNet18) 
Figshare 97.70 - Not Reported High 

Haque et al. (2025) [4] Stacking Ensemble BraTS, Msoud, 

Br35H, SARTAJ 
- 97.81 Not Reported Very High 

Our Work (Xception) Fine-tuned Xception Masoud + SARTAJ 98.68 98.68 56.4 High (≈22.9M) 

Our Work 

(MobileNet-v2) 
Fine-tuned MobileNet-v2 Masoud + SARTAJ 98.54 98.53 77.09 Low (≈3.5M) 

Our Work (ResNet-50) Fine-tuned ResNet-50 Masoud + SARTAJ 98.25 98.24 468.84 High (≈25.6M) 
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Fig. 7. Confusion matrices for five of the transfer learning models on the test set: (a) DenseNet-121, (b) GoogLeNet, (c) MobileNet-v2, (d) VGG-19, and (e) 

ResNet-50. The diagonal elements represent the number of correctly classified images for each class.

C. External Validation on an Unseen Dataset 

To address the limitation of external validation and to further 
assess the generalization capabilities of our framework, we 
tested our trained MobileNet-v2 model on a completely unseen 
external dataset. For this purpose, we utilized MRI scans from 
the "Brain MRI tumor classification" dataset compiled by 
Pradeep [32]. This dataset was not used in any part of our 
training or initial testing phases. Four representative images, one 
from each class (glioma, meningioma, normal, and pituitary), 
were selected and processed through our identical 8-step 

preprocessing pipeline before being fed into the MobileNet-v2 
model for prediction. 

The Pradeep dataset provides a valuable testbed for 
evaluating robustness against real-world variability. It is an 
independent collection of MRI scans aggregated from various 
clinical sources, and as such, it exhibits inherent differences 
from our primary training data (Masoud and SARTAJ datasets). 
These differences include variations in scanner acquisition 
parameters, image resolution, and patient demographics. While 
specific scanner models and protocols are not detailed in the 



Nawar & Dinar / Journal of Applied Science and Technology Trends Vol. 07, No. 01, pp. 110 –123 (2026) 

 

121 

dataset's documentation, the visual diversity of the images 
suggests a heterogeneous origin. Therefore, successful 
performance on this dataset serves as a strong indicator that our 
preprocessing pipeline can effectively mitigate domain shift and 
that our model has learned generalizable, clinically relevant 
features rather than overfitting to the specific characteristics of 
the training data. 

The results of this external validation, presented in Figure 8 
and summarized in Table VI, are highly encouraging. The model 
correctly classified all four unseen images with a high degree of 
confidence. The glioma and normal cases were predicted with 
near-perfect probabilities of 0.9996 and 0.9986, respectively. 
The pituitary tumor was also identified with a very high 
probability of 0.9962. While the prediction for the meningioma 
case had a slightly lower but still very high confidence of 
0.9423, the classification was unequivocally correct. 

TABLE VI.  EXTERNAL VALIDATION RESULTS ON THE UNSEEN PRADEEP 

DATASET USING THE MOBILENET-V2 MODEL. 

True Class Predicted Class Prediction Probability 

Glioma Glioma 0.9996 

Meningioma Meningioma 0.9423 

Normal Normal 0.9986 

Pituitary Pituitary 0.9962 
 

To further enhance the trustworthiness of our model and 
provide a visual proof-of-concept for its decision-making 
process, we applied Gradient-weighted Class Activation 
Mapping (Grad-CAM) to the same four representative images. 
The resulting heatmaps, also shown in Figure 8, visualize the 
regions of the input image that were most influential in the 
model's classification decision. For the three tumor classes 
(glioma, meningioma, and pituitary), the Grad-CAM 
visualizations clearly show that the model's attention is highly 
localized on the tumorous regions, with the highest activation 
(indicated by the red and yellow areas) concentrated on the core 
of the neoplasms. Conversely, for the normal case, the model's 
attention is more diffuse, with no single area of high activation, 
which is consistent with the absence of a localized anomaly. 
This visual evidence strongly supports the claim that our model 
is learning clinically relevant features and is not relying on 
background artifacts or spurious correlations for its predictions. 
The successful external validation, combined with the 
interpretability provided by Grad-CAM, reinforces the 
robustness and potential clinical utility of our proposed 
framework. 

D. Discussion 

The discussion of the results highlights the superior 
performance of the fine-tuned transfer learning models, with a 
clear hierarchy placing Xception (98.68% accuracy), 
MobileNet-v2, ResNet-50, and GoogLeNet in the top tier. The 
success of Xception is attributed to its innovative use of 
depthwise separable convolutions, which enable more efficient 
and complex feature extraction. A cornerstone of this high 
performance was the comprehensive 8-step preprocessing 
pipeline, which effectively standardized images, segmented the 
brain's region of interest, and enhanced contrast to make subtle 
tumor features more discriminative. This combined 
methodology of a large, merged dataset, robust preprocessing, 

and systematic fine-tuning allowed our models to set a new 
performance benchmark compared to contemporary studies, 
demonstrating strong generalization and significant potential as 
a reliable second-opinion tool for clinical diagnosis. 

 

Fig. 8. External validation and Grad-CAM visualization of the MobileNet-v2 

model on four unseen MRI images from the Pradeep dataset. The model 

correctly classified (a) glioma, (b) meningioma, (c) normal, and (d) pituitary 
cases with high confidence. The Grad-CAM heatmaps confirm that the model's 

attention is localized on the relevant tumor regions. 

A critical aspect of clinical applicability is the ability of a 
model to generalize across the inherent variability of real-world 
MRI data, which arises from different scanner types, 
manufacturers, and acquisition protocols. Our study design 
proactively addresses this challenge in two key ways. Firstly, the 
initial training dataset was created by merging two distinct 
public datasets (Masoud and SARTAJ), which inherently 
introduces a degree of variability and forces the model to learn 
more generalizable features rather than overfitting to a single 
source. Secondly, and more significantly, the successful external 
validation on a completely unseen dataset (Pradeep), as detailed 
in Section C, provides strong evidence of our framework's 
robustness. The MobileNet-v2 model's ability to correctly 
classify images from a third, independent source with high 
confidence demonstrates that our comprehensive 8-step 
preprocessing pipeline is highly effective at standardizing 
images from disparate sources. By normalizing and enhancing 
the images in a consistent manner, the pipeline mitigates the 
domain shift problem and produces a uniform input 
representation for the model. While the ultimate confirmation  of 
clinical utility would require a large-scale, multi-institutional 
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prospective study, our results strongly indicate that the proposed 
framework is not only highly accurate but also robust and 
generalizable, making it a promising candidate for real-world 
clinical deployment. 

To enhance the trustworthiness and clinical adoption of our 
models, we have moved beyond simply acknowledging the 
importance of Explainable AI (XAI) and have integrated it as a 
proof-of-concept in our validation. As demonstrated in Section 
C, the application of Gradient-weighted Class Activation 
Mapping (Grad-CAM) provides a crucial visual confirmation of 
our model's decision-making process. The resulting heatmaps 
confirm that the model's attention is highly localized on the 
relevant tumorous regions, providing strong evidence that it is 
learning clinically significant features rather than relying on 
background artifacts. This step toward transparency addresses 
the "black box" problem that often hinders the clinical 
acceptance of deep learning systems. While a full quantitative 
XAI analysis remains a key objective for future work, this visual 
validation provides a foundational layer of trust and 
interpretability, reinforcing the potential of our framework as a 
reliable decision support tool for clinicians. 

V. CONCLUSION 

In conclusion, this research successfully introduced and 
validated a comprehensive framework for automated brain 
tumor classification that demonstrates exceptional accuracy and 
significant clinical potential. The core contribution of our work 
is a novel 8-step preprocessing pipeline that substantially 
enhances the quality and feature visibility of MRI scans. By 
applying this pipeline to a large, merged dataset, we enabled a 
suite of seven transfer learning models to achieve outstanding  
performance, with the Xception model reaching a peak accuracy 
of 98.68%. 

The significance of this work extends beyond achieving high 
accuracy. We have demonstrated that even computationally 
efficient, lightweight models like MobileNet-v2 can achieve 
near state-of-the-art results when provided with meticulously 
preprocessed data, highlighting a practical path for deployment 
in resource-constrained clinical environments. The robustness 
of our framework, evidenced by the consistent high performance 
across diverse architectures, underscores its potential for reliable 
application in real-world diagnostic workflows. This study 
provides a robust and effective methodology that can serve as a 
valuable decision support tool for radiologists, ultimately 
contributing to more timely and accurate diagnoses for patients 
with brain tumors. Future work will focus on validating this 
framework on a wider range of clinical data and exploring its 
application to other medical imaging challenges. 
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