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Abstract 

The wide-spread Internet of Things (IoT) utilization in almost every scope of our life made it possible to automate daily life tasks with no 

human intervention. This promising technology has immense potential for making life much easier and open new opportunities for newly 

developed applications to emerge. However, meeting the diverse Quality of Service (QoS) demands of different applications remains a 

formidable topic due to diverse traffic patterns, unpredictable network traffic, and resource-limited nature of IoT devices. In this context, 

application-tailored QoS provisioning mechanisms have been the primary focus of academic research. This paper presents a literature 

review on QoS techniques developed in academia for IoT applications and investigates current research trends. Background knowledge 

on IoT, QoS metrics, and critical enabling technologies will be given beforehand, delving into the literature review. According to the 

comparison presented in this work, the commonly considered QoS metrics are Latency, Reliability, Throughput, and Network Usage. The 

reviewed studies considered the metrics that fit their provisioning solutions. 
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I. INTRODUCTION 

The growth in technological advancement has increased data 
generated from connected devices to the cloud. The cloud is a 
large data unit where computing and storing are done and made 
available to emphasize consumer needs [1]. The world will see 
a tripling of Internet-connected devices in the next decade, from 
11 billion in 2019 to 30 billion by 2030 [2]. These services and 
software are used worldwide in various scenarios, include smart 
factories, intelligent farming, and cities [3]. A considerable 
storage size is required due to this prompt raise in data. This 
increase also means for data processing, a large bandwidth 
consumption and higher latency [4]. 

To enable connecting digital worlds with real worlds, the IoT 
has been identified as one of the enabling technologies for 
computing the next age. IoT applications' growth has advanced 
a range of fields like smart cities, smart health, connected 
vehicles. By 2025, the global market of IoT will reach $1567 
billion, according to Statista Inc. 

With this strain on the Internet today, service providers (SPs) 
have been between two options, either invest more in their 
networks or implementing stringent regulations. Both options 
will either lead to increase costs or not satisfying the customers. 

Besides, SPs are obligated to provide specific QoS according to 
the Service Level Agreement (SLA). That is why there is much 
money at stake for SPs due to the enormous excess in the 
numbers of devices connected to the Internet [5]. At that point, 
maintaining QoS while efficiently managing the network capital 
becomes challenging for many SPs or network operators [6]. 

QoS provisioning stands for the degree of quality granted to 
the user while carrying out a service. This definition has been 
receiving a significant focus over the last decades. It became a 
source for academia and technological solutions such as 
algorithms, protocols, and commercial products. However, 
when academia delivers a solution, either new services’ criteria 
or growing users' standards made such a solution insufficient. 
For example, after thousands of contributions went into the 
routing area, there is still room for improvement [7]. 

Currently, adopting remote processing at the cloud with its 
first subsidiary product referred to as fog is widely agreed up on 
for meeting QoS requirements of IoT [8]. For this scenario, 
many technologies and techniques are involved such as 
Software Defined Network (SDN) [9- 11], Network Function 
Virtualization (NFV) and 5G mobile networking [12]. 
Moreover, due to the artificial intelligence (AI) and Machine 
Learning (ML) ability to solve problems and automate tasks at a 
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network level, they become of great interest during IoT system 
development [13-15]. These technologies and techniques could 
easy-up or complicate finding the right solution for QoS 
provisioning in IoT systems. For the reasons above, this work's 
main objective is to review the most recent studies involved 
proposing QoS provisioning schemes for IoT systems. The next 
section will provide the reader with background knowledge 
about key concepts in the topic at hand. The surveyed studies 
will then be reviewed and compared with tables summarizing 
the utilized techniques, QoS metrics and baselines. The paper 
ends with giving conclusions in the last section. 

II. BACKGROUND AND THEORY 

This section gives a brief epitome about the topic key 
concepts to comprehend IoT's characteristics and architecture 
with its QoS parameters. Moreover, the introduction of critical 
enabling technologies will also be mentioned. 

A. IoT Concept and Principles 

IoT is an advanced framework leveraging modern 
information technology. It covers a range of technological 
fields, such as sensor technology, integrated circuit (IC), data 
transmission, automation, high-end computing, information 
processing and security [16]. Objects can interact with one 
another without human involvement in IoT. The four sections of 
IoT industrial chain are identification, sensing, processing and 
data transmission [17]. These sections utilize key technologies 
such as Radio-frequency identification (RFID), on-chip sensor, 
intelligent chip and wireless communication.  For example, 
objects with RFID tags produce radio wave identification signal 
detected wirelessly by RFID reader. The reader obtains the 
object’s information and sends it to an information network 
system middleware through Internet or other communication 
channel [18]. The object names are usually represented through 
Object Naming Service (ONS), while Electronic Product Code 
(EPC) interfaces can provide other variety of object information 
[19]. The system’s whole operation gains support from the 
Internet, utilizing varieties of description languages and 
communication protocols. Thus, it can be said that the IoT is a 
combination of different physical product information services 
based on the Internet’s construction. 

B. IoT Devices 

Linking computers and "things" to the Internet and other 
networks has been a commonplace. Technological 
developments such as automated teller machine (ATM), 
wireless sensor network (WSN), machine to machine (M2M) 
systems and similar connections have occurred over the years. 
The above does not mean that all the systems and devices listed 
are part of what is currently known as the IoT. IoT devices are 
not all connected, and not all connected devices are IoT devices. 
The term 'Internet of Things' is used when referring to uniquely 
addressable things [20]. There are several IoT definitions, and it 
is not easy to establish a universal definition. It depends on the 
approach is taken, such as the technical approach, the 
application approach, or the business approach. However, the 
IoT signifies the interconnectivity and interdependence of 
devices with integrated sensing, actuating, and communication 
capabilities [21]. A thing can sense the cyber-physical 
surrounding to generate outcomes which upon it actuates 

outcomes. Then the thing share with the cyber-physical 
environment the outcomes that resulted from both sensing and 
actuating (Fig. 1) [22]. Data in IoT is collected, analyzed, 
organized, and communicated through hardware, software, and 
software systems. 

 

Fig. 1. Thing's duties in IoT model 

C. IoT Architecture 

IoT is an interconnection of intelligent things in nature and 
function in coordination over the network [23]. IoT's 
architecture concerns are network protocols, smart things, 
security, scalability, and interoperability through diverse 
devices [24]. The architecture can have three-layer as can be 
seen in Fig. 2 [25].  

The Sensing Layer represents physically interconnected set-
up monitor and maintain things remotely. Sensing is the most 
crucial task in the IoT system [23]. Intelligent sensor nodes and 
RFID are usually used for the sensing task. In this layer, RFID 
tags or wireless sensor nodes are designed to sense and exchange 
data among different things [26]. Superior technology advances 
IoT sensing and recognition of connecting more devices. 
Sensing and recognition are essential concerning networks like 
the IoT [27, 28]. 

The network layer is the second one which enables all the 
connected devices/things to exchange information among each 
other. This layer automatically discovers accessible network 
devices, and maps each device to a network interface. [29]. It 
also automatically assigns devices to their roles such as modules 
for deployment, work scheduling, and when needed, connecting 
with any other network devices. The IoT network layer's 
development includes dealing with network management 
technologies such as mobile or stationary, wireless spectrum 
license, security and privacy, and service recuperation [30]. 

The third one is the service layer. Here, IoT communicates 
using middleware technology that alleviates various 
functionalities to incorporate unstrained [31]. The main chore of 
the layer is to cover middleware’s stipulates. Different groups 
industrialize these specifications. The middleware technology 
brings forth a cost-effective platform for IoT applications. In this 
platform hardware and software, schemes can be reprocessed. 
The service-oriented problems processed by this layer are 
storage administration, search engine, communications, and 
information transfer. Some of the service layer’s components 
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include service discovery, service composition, trustworthiness 
management, and services APIs [32]. 

The last IoT layer is the interface layer. In IoT, unalike 
industries and companies usually do not adopt similar network 
protocols [33]. Numerous issues posed in the exchange of 
information between different things, result from this adaption. 
This issue is addressed by shortening interrelation of things. 
Without this layer's existence, the steady increase of IoT devices 
will become more challenging to communicate, operate, connect 
and disconnect [34]. An active interface is a set of generalization 
services that defines the configuration between applications and 
services. 

 

Fig. 2. Illustration of IoT Architecture 

D. Cloud Computing 

The technology of cloud computing provides services to the 
user anywhere at any time [35, 36]. Here, resources are shared 
all around the job for speedy servicing the user. The term 
"cloud" comes from the different resources pool that offers 
services to the end-users [37]. The “computing” term refers to 
the computing done based on the SLA to provide the resources 
with efficiency to the users [38]. The aggregation of the two 
terms is referred to as cloud computing. Load balancing is done 
to increase the utilization of resources [39, 40]. However, it is 
considered a significant challenge in the cloud. The challenge is 
to distribute the computing resources effectively among the 
users [41, 42]. The resources are offered on-demand to meet the 
SLA’s requirements. Load balancing in cloud system is done 
through virtualization technology to effectively handle dynamic 
resources [43, 44].  Cloud services provided to the users can be 
private, public or hybrid [45, 46]. Businesses usually uses 
tailored private cloud for internal purposes, while public clouds 
are used by individuals or organizations based on their need 
[47]. The integration of public and private clouds provides 
hybrid services to the users. The SP should guarantee the QoS 
for each application in the data center while achieving the 
server’s utilization and energy efficiency [48, 49]. The cloud 
developers are responsible for fulfilling the users and cloud 
providers requirements. Lastly, cloud computing is considered a 
critical enabler to meet IoT applications' demand [50]. 

E. Fog Computing 

Cisco describes Fog Computing (FC) as a cloud expansion 
that spread from the center to the edge to increase performance 
and data analytics [51]. This expansion consists of several fog 
nodes (FNs) distributed in various locations to provide data 

services and applications [52]. The FNs are each lightweight 
versions of the cloud server [53]. These assets provide 
information and processing closer to the end-devices, usually 
IoT. FC provides a network of collaborating units that automate 
storage and processing functions in real-time [54]. 

Moreover, the FNs' hardware and software are customizable 
according to the application's requirements or environment 
where it will be deployed [55]. FC offers localized processing 
services with appropriate latency for enterprises, and because 
the data are not standardized, the fog analyzes them locally 
before transmitting them [56, 57]. It executes applications 
locally because of the scalability and high efficiency of its data 
storage system. FC is not meant to compete with cloud 
computing but boost and strengthen cloud computing efficacy 
[58]. Low latency, mobility, position awareness, scalability, 
security, and interaction with heterogeneous devices are 
supported by this technology [59]. 

Moreover, it reduces traffic between users and the cloud and 
energy usage while saving the bandwidth [60]. The FNs provide 
computing power, storage, and networking services for the 
infrastructure’s applications [61]. These nodes are 
heterogeneous devices that range from access points, servers, 
edge routers, base stations, to smart end devices [51]. Scalability 
of FC can be internal as adding hardware or software to the node 
[62], or externally by adding more nodes as required to meet 
service provisioning. Utilizing distributed cloud service 
development at each node, achieving higher scalability and 
reliability for the system. The node's performance is influenced 
by the deployment location and resources allocation among the 
nodes [63]. 

F. QoS in IoT 

Connecting things to the Internet is the main aim of IoT. This 
aim is achieved by creating a network of things that 
communicate with each other [64]. As IoT devices increase, the 
amount of data being generated would dramatically increase 
[65]. The devices’ capability to provide several services at once 
is the reason behind this increase. As a result, various factors 
required for QoS prediction on the user side have been 
elucidated [66]. 

The QoS service can be referred to as a quality assurance 
service of network connectivity, prioritizing applications across 
the network [22].  QoS is a crucial enabler of IoT networking 
because it handles network functionality, resources and offers 
secure connectivity. QoS systems identify traffic in order to 
manage delays, bandwidth, and package loss. Delivering data 
rapidly and with efficiency is an essential goal of IoT and its 
services [67]. That is why IoT needs to deliver various services 
and choose the right one based on QoS requirements. These 
requirements or metrics are diverse in IoT system because of 
combining things with computing and communication. There 
are QoS requirements for each one of these components to meet 
for efficient and effective IoT system. In terms of things, the IoT 
devices’ QoS may implicate power consumption, coverage, the 
optimal number of active sensors, sensor quality, data bulk, 
trustiness, and mobility [68- 71]. Any of the above metrics might 
not be significant when measured in isolation [70]. However, 
there is a lot more to consider when considering the vast number 
of devices involved in delivering the service. For example, the 
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cumulative power consumption of hundreds of 0.9W sensors 
can make a real impact on the network's power usage. For 
communication, the network's QoS would include metrics, like 
throughput, response time, availability, capacity, repair time, 
delay and jitter [71- 74]. Relating to computing, the data analysis 
programming models within the cloud requires QoS metrics that 
satisfy throughput and response time. However, CPU usage, 
memory usage, network latency, and network bandwidth 
represent the cloud infrastructure layer's QoS requirements [70]. 
From the IoT application perspective, the main QoS 
requirements change according to the application’s field. For 
example, a health-monitoring application requires privacy, 
security, precision, durability, responsiveness, robustness, 
accuracy, reliability and availability [68], [75, 76]. However, 
time-sensitive applications consider low latency as its highest 
priority requirement [68, 77], while high priority goes to 
network utilization and energy efficiency in less time-critical 
applications like building automation [68, 78].     

III. LITERATURE REVIEW 

The most recent and related academic works will be 
reviewed in this section and compared through tables in the next 
section. 

Shaheen et al. [79] pointed out that the considerable distance 
among users and end-devices expand the number of routers’ 
hops, resulting in rising latency and network utilization. 
Consequently, infrastructure provisioning in real-time is 
obstructed, and the QoS is reduced when using remote FNs for 
outsourced applications. A lightweight location-aware fog 
system (LAFF) is proposed in this work, using the fog head node 
model that keeps track of other FNs in terms of user registration 
and location. The proposed LAFF continuously improves QoS 
using a location-aware algorithm. In this work, the cloud layer 
used for data processing and storing for a longer duration. If the 
fog head struggles to offer user services, the cloud facilitates 
users. Fog heads are fixed and predetermined physically 
concerning the geographical region. According to the devised 
algorithm they worked to identify the user's location and the 
requested data type. Fog head knows the exact location of all 
FNs. If any nearest FN is unreachable, then the shortest path is 
found by implementing the k*-algorithm. The development of 
LAFF is conducting by using CloudSim to handle the simulation 
at the cloud, and iFogSim to handle FNs' events. Comparing to 
state-of-the-art frameworks, LAFF decreased latency by 
11.01%, network utilization by 7.51% and service time by 
14.8%. Furthermore, given RAM and CPU consumption, the 
proposed architecture surpasses intelligent FC analytical model 
(IFAM) and task placement on FC (TPFC) targeting IoT 
applications. 

Rani et al. [80] mentioned that the challenges of densely 
deployed IoT networks are energy-effective communication, 
scalability and network coverage. The authors proposed a new 
IoT QoS infrastructure to combine fault tolerance and effective 
communication in the transmission of sensitive data. They 
worked on optimizing IoT's sensing layer in WSN using 
hierarchical and multi-hop communication protocols 
(ZSEP/LEACH/SEP and TSEP) to solve scalability in IoT. The 
network simulated in MATLAB has 200m2 area split into four 
areas. In each region, a sink is used in the middle that gathers 

data from all the region's nodes and all four sinks forward data 
to the IoT's base station layer. Moreover, Cluster Heads (CHs) 
are chosen from within each region for data transmission 
between the sink and the normal node. CHs are selected 
according to energy levels and distance, while sinks are 
provided with unlimited power due to IoT restrictions. The 
proposed methodology was compared with CBCCP, ME-
CBCCP, HCR and ERP protocols. The IoT–QoS scheme took 
less time for transmission than Genetic HCR and ERP. 
However, ME-CBCCP received the lowest time among the 
protocols. 

Quedraogo et al. [81] stated that scaling in IoT platforms can 
answer the QoS requirements when the traffic load is increased. 
However, it would increase the provisioning costs. Their 
alternative answer is to scale up the network for end-to-end IoT 
traffic control using virtualized network functions. They relied 
on multi-objective optimization problem for planning network 
function and scaling action according to considered constraints. 
The planner developed by the author is called QoS for NFV 
enabled IoT platforms (QoS4NIP).  QoS4NIP uses a Genetic 
Algorithm (GA) to solve the multi-objective optimization 
problem by making a series of improvements in an iterative 
process. The scaling action is implemented by deploying Traffic 
Control Functions (TCF) as Application Network Function 
(ANF) or Virtualized Network Functions (VNF) on the FNs. 
The TCFs were evaluated by implementing Java Management 
Extensions (JMX)-based monitoring tools. Results reveal that 
TCFs implemented as VNFs use more CPU than ANFs. 
However, both (ANFs and VNFs) utilize the same RAM. The 
authors evaluate the QoS4NIP against First-Come-First-Served 
(FCFS), Auto-scaling (AS), QoSEF, QoSEFe in vehicle-to-
network (V2N) communication scenario which implemented in 
Python using Platypus library. The proposed scheme provided 
better end-to-end latency, excluding for traffic efficiency, where 
the auto-scaling scheme provided lower latency figures of 
160ms. 

Bhandari et al. [82] argued that Routing Protocol for Low-
power and Lossy network (RPL) is not efficient for multi-
purposes IoT applications which aim for diverse QoS 
requirements in the network. The reasons for that are the 
following. First, the RPL default Objective Functions (OFs) 
depend on a single metric, leading to trade-off in routing 
performance. Second, while multiple metrics are supported by 
RPL for parent selection, metric combinations are not defined 
by any specific guideline. Last reason is the RPL’s design is for 
low data traffic network, so it suffers issues in large scale 
networks. Therefore, the authors proposed different OFs that 
ensure the discrimination of QoS at the network level. Ensuring 
the QoS is done by virtually dividing the physical network into 
instances of DODAG network topology. Different OFs can be 
associated with each instance and routed it through the 
corresponding DODAG. Moreover, a new framework for parent 
selection is presented in this work. It relied on the approach of 
multi-attribute decision making to tackle the single routing-
metric issue in PRL. They resolved this issue by implementing 
a grey relational analysis (GRA). Three separate QoS 
requirements classes are identified: energy consumption, 
reliability and latency. Cooja simulator was used to examine the 
effect of network scale and data traffic load on OFs’ 
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performance in various situations. The scheme managed to show 
significant improvements on the QoS provision, comparing with 
the default RPL results. The improvements were in terms of 
reliability, delay, and packet loss while assuring the network's 
stability and minimal overhead. 

Badidi et al. [83] considered selecting a fog service that 
ensures low latency service delivery because mapping tasks to 
distributed services is considered an NP-hard class problem. 
Thus, they presented a FC architecture based on a Fog Broker 
(FB) element with different scheduling algorithms. The broker 
receives inquiries from various applications and upon available 
fog services resources provide a scheduling plan for the different 
tasks. The application’s inquiries are sent to the FB by assigning 
it with a collection of appropriate FNs to meet their QoS 
requirements. CloudAnalyst simulation tool simulated a fog 
cluster scenario with five FNs as proof of concept. This tool 
utilizes three scheduling policies to determine fog service 
efficiency. Three broker scheduling policies provided by 
CloudAnalyst, and they are Reconfigure Dynamically with Load 
(RDL), Optimise Response Time (ORT) and Closest Fog Node 
(CFN). According to the results, the average request service time 
was no more than 2ms for all cluster nodes and the scheduling 
policies. Consistent average request servicing time across 
cluster FNs allowed by the CFN scheduling policy. The ORT 
scheduling policy had the shortest time for average request 
servicing on almost all FNs. 

Badawy et al. [84] mentioned that a dynamic service-
oriented environment is essential to meet the QoS requirements 
while satisfying the user demands. Moreover, in the long run, 
IoT complex services will suffer from performance debasement 
and real-time adaptive sensing. Thus, relying on the 
Backtracking Search Optimization Algorithm (BSOA), they 
designed a dynamic QoS Provisioning Framework (QoPF) for 
service-oriented IoT. The QoPF's main objective is to optimize 
complex service quality in the IoT application layer through 
balancing service reliability with a reasonable computational 
time cost. Assessed, intrinsic and perceived QoS are three QoS 
models classified by the authors. The performance metrics used 
to evaluate the framework efficacy are throughput, jitter, delay 
time, and packet delivery ratio. NS2.35 simulator was used for 
evaluation, while the benchmark algorithms were GA, PSO, 
ACA and Differential evolution (DE). The BSOA significantly 
outperforms all the benchmark algorithms for all metrics except 
the packet delivery ratio metric against PSO algorithm. 

Asad et al. [85] argued that the QoS parameters might differ 
between the access network and the core network. Furthermore, 
network-based QoS provisioning schemes usually require the 
end-devices to inform the network devices about their QoS 
requirements. To tackle the points mentioned above, the authors 
developed a QoS aware selection scheme for multi-radio access 
technologies (M-RAT). The IoT nodes with M-RAT can 
connect to one or more AP simultaneously. For optimal access 
device selection, the optimization problem runs separately at 
each node. The problem had four constraints. First constrain is 
to ensure the parameters considered for QoS provisioning satisfy 
the predefined thresholds. The second one is to limit the number 
of access devices that a node can connect to simultaneously. 
Constrain number three limits the number of nodes that can 
connect to an access device. The last one limits the workload at 

the access devices from all connected nodes. Mixed-integer 
linear programming (MILP) and binary possibilities were used 
to solve the problem. The Mininet emulation environment was 
used because it requires low computing power. The proposed 
scheme's performance was compared to best-SNR and 
maximum bandwidth selection methods in average throughput 
and delay. The results illustrated that the proposed scheme was 
closer to the ideal system than the others in terms of throughput. 
However, it was closer to the best-SNR selection method in 
terms of delay. 

In another work by Asad et al. [86], the authors also worked 
on a QoS aware selection scheme for a M-RAT client. They 
found by reviewing the literature that the selection techniques 
are only client-centric RAT or network-centric QoS 
provisioning. Thus, they presented a novel hybrid end-to-end 
QoS provisioning technique that combines client-centric and 
SDN based network-centric approaches. The proposed 
architecture for the QoS scheme has four layers. The first layer 
is the end-devices layer that contains clients with M-RAT. The 
second one is the access layer for M-RAT access devices. The 
fourth layer composites from SDN controllers. The core layer is 
the last one where interconnecting devices such as routers are 
responsible for carrying data between networks. The core-QoS 
algorithm is implemented in the controller layer. The access-
QoS algorithm implemented by the client device to select an 
access device by a single parameter. On the other hand, the core 
network's minimum cost path is calculated by the core-QoS 
algorithm according to the client's requirements. Mininet-WiFi 
network emulator was used to emulate a scenario of an indoor 
wireless LAN network with two WiFi APs. Moreover, two 
Raspberry Pi 4 equipped with 2.4GHz IEEE 802.11ac network 
interface cards were used in an experiment as WiFi APs, while 
three Android-based smartphones and a tablet used as end-
devices. The emulation results showed that the proposed 
methods outperformed the AP selection approach based on the 
Received Signal Strength Indicator (RSSI) in the hardware 
experiment. 

Ali et al. [87] considered ensuring QoS for IoT mission-
critical application or services while providing wireless channel 
access to every connecting object. Accordingly, accommodating 
the demand for IoT over a limited wireless spectrum is a new 
challenge for communication. This work's primary focus is 
priority differentiation among secondary users (SUs) in 
cognitive Radio IoT. The authors worked on reducing high 
priority SU call blocking probability and increasing channel 
utilization efficiency. Thus, they developed a scheme for 
priority-based call admission and channel allocation by using 
traffic-aware dynamic channel reservation. First, they surveyed 
the available licensed channels based on the traffic patterns of 
its primary users. Second, for queuing analysis, the SU traffic 
rate is estimated by a Markov Chain model. According to it, the 
channels are reserved for each priority. The workflow of the 
scheme is as the following. Different SU application with 
different priorities contacts the secondary base station (SBS) 
which decide to block or allow the channel allocation. Here the 
allocation is based on priority class and the total available 
channel, which detected according to the primary user (PU) 
traffic activities probability. The proposed scheme's 
performance was evaluated and compared with greedy non-
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priority and fair proportion schemes in call-blocking, call-
dropping, channel utilization and throughput. According to 
simulation results, the proposed priority scheme surpasses the 
baseline schemes. However, the baseline schemes' figures fell 
between the four priority classes for the SU application 
suggested by the authors. 

Yousefpour et al. [88] introduced a framework for QoS-
aware Dynamic Fog Service Provisioning (QDFSP) and called 
it FOGPLAN. It is based on dynamically deploy application 
services on FNs, or releasing previously deployed ones on FNs 
to meet QoS requirements while minimizing cost. Dynamically 
placing fog services on either FNs or cloud servers has an 
essential effect on network utilization and end-to-end delay. The 
framework does not make any assumptions about IoT devices' 
capabilities. Integer Nonlinear Programming (INLP) 
formulation and two greedy algorithms were used to address the 
optimization problem of QDFSP. The proposed framework's 
performance evaluation was done through simulation of real 
work traffic traces and a Discrete-Time Markov Chain (DTMC)-
based traffic generator. The asymptotic complexity was the 
same for both minimum-delay and minimum-cost algorithms. 
However, according to the results, minimum-cost is faster than 
the minimum-delay algorithm, particularly for more FNs and 
services case. Except for the optimum execution reached by 
INLP, minimal-delay algorithm had the lowest average 
operation delay and average delay violations. It was concluded 
that minimum delay output comes at a slower run-time rate. 

Yao et al. [89] addressed the failure issue during virtual 
machines (VMs) renting by fog provisioning to manages tasks 
and reduce device cost. Scaling VMs should boost reliability and 
QoS, but it will increase device cost. The authors investigated 
reliability maximization while reducing the system cost for 
providing fog resources in IoT networks. They formulated an 
Integer Linear Programming (ILP) problem. However, it 
suffered from complex computation. Thus, another algorithm 
was designed to accomplish sub-optimal solutions with 
improved time efficiency. Fog resource provisioning formulated 
as a multi-objective problem, then converted into a single-
objective problem by weighted sum method. The principle here 
is that the different computing tasks of IoT devices are offloaded 
to the FN. Then the FN schedules these tasks to be processed on 
several VMs. The authors designed a Modified Best Fit 
Decreasing (MBFD) algorithm to attain sub-optimal solutions 
for the scheduling problem. MBFD was simulated in MATLAB, 
and the outcomes were compared against the the IBM CPLEX 
Optimizer’s optimal solution. Moreover, they benchmarked the 
proposed algorithm with another from a past work called 
(Bench), which only considered the system cost. The simulation 
demonstrated that MBFD provides near-optimal solutions. 
However, it performed similarly to the Bench algorithm in terms 
of reliability. 

Yao et al. [90] also worked on leasing and releasing VMs by 
the FN in an on-demand fashion. They focused on power 
management to sustain stable wireless transmission rate and 
acceptable QoS. This work addresses jointly optimize the 
number of rented VMs and power management problem for 
system cost minimization whilst guarantee QoS requirements. 
The Mixed-Integer Non-Linear Programming (MINLP) to 
formulate the optimization problem. Then it was converted to a 

convex optimization problem solved by the gradient projection 
algorithm through relaxing its integer variables. An adequate 
solution is obtained by an integer recovery scheme. The 
proposed system architecture consists of FN connected to IoT 
gateway and mobile IoT devices, that move within the gateway's 
coverage. The proposed QoS scheme was simulated and 
compared with the problem’s lower bound. The convex problem 
is solved to obtain the bound after relaxing the number of rented 
VMs at a given location. The comparison was also made with a 
Fog Provisioning Problem (FPP) scheme that selects a fixed 
transmission power during the connection period. According to 
the outcomes the proposed algorithm performed similarly to the 
relaxed MINLP’s lower bound and surpassed the FPP scheme. 

Verma et al. [91] considered the hot-spot problem in multi-
hop communication among the IoT-based Wireless Sensor 
Network (WSN). This issue occurs when the nodes nearest to 
the sink node get burdened by the other  nodes' traffic data. Thus, 
they presented two QoS provisioning-based routing protocols 
based on multiple WSN-based IoT sinks. The authors called 
them Optimized Energy and Threshold Sensitive Stable Election 
Protocol (O-ETSSEP), and Multiple data Sinks-based 
Optimized-ETSSEP (MSO-ETSSEP). They relied on energy 
threshold, residual energy, distance and node density variables 
for optimizing Cluster Head (CH) selection in both protocols. 
For network energy balancing, the protocols use three energy 
heterogeneity levels. Also, MSO-ETSSEP uses four data sinks 
along each square-shaped network periphery to minimize hot-
spot problems by surrounding multi-hop communication. 
MATLAB simulations evaluated the protocols through 
considering multiple scenarios. The QoS provisioning 
performance metrics were; stability period, network lifetime, 
network efficiency, networks remaining energy, throughput, 
latency and reliability. The performance of O-ETSSEP was 
validated against the TSEP38 and ETSSEP protocols. MS-
ETSSEP and MS-SEP were compared against the MSO-
ETSSEP. The results pointed out that integrating multiple data 
sinks into the network improves its reliability and stability. 
Moreover, the observed increase in performance of the MSO-
ETSSEP was related to the proposed selection of CH and it 
achieved enhanced stability compared to MS-ETSSEP and MS-
SEP. 

Srinidhi et al. [92] utilized the multi-objective optimization 
problem to approximate the network's outage performance and 
lifetime. They combined quantum particle swarm optimization 
(QPSO) and improved non-dominated sorting genetic algorithm 
(NGSA) to produce Hybrid Energy Efficient and QoS Aware 
(HEEQA) algorithm. The HEEQA algorithm is designed to 
balance the devices by tuned MAC layer parameters to reduce 
energy consumption. To solve the multi-objective optimization 
problem, NSGA was applied, while the QPSO algorithm is used 
to get the best suitable combination. This work stress more on 
finding equilibrium between network lifetime and QoS 
provisioning. NS-2 simulator was used to evaluate the HEEQA 
algorithm, which compared to the QPSO. The comparison's 
metrics were the maximizing residual energy, end-to-end delay, 
packet delivery ratio (PDR), transmission overhead, maximizing 
network lifetime and throughput. Tuning up of MAC layer 
parameters reduced energy consumption of each node in the IoT 
network. The HEEQA outperforms QPSO in terms of all 
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performance metrics. However, it could perform poorly in 
energy conservation when nodes are mobile with different 
moving speeds. 

Li et al. [93] discussed that spectrum shortages contributed 
to the changing of spectrum use from an exclusive to a sharing 
mode due to the increase of wirelessly connected IoT. However, 
it is not easy to assure QoS while using a shared spectrum due 
to its unpredictable availability. Thus, the authors suggested 
metric that guarantee the QoS statistically by evaluating how 
much data can be delivered during a session period via a shared 
band, and called it probabilistic link capacity (PLC). A 
Distributionally Robust (DR) data-driven approach was 
developed based on the first and second-order statistics to 
estimate the PLC's value. The DR-PLC was formulated into a 
semi-definite programming problem based on the worst-case 
conditional-value-at-risk (CvaR) to calculate it for each case. 
Accordingly, a service-based spectrum aware data transmission 
scheme was designed to satisfy the various IoT service by 
allowing efficient use of different spectrum. They also proposed 
a network model named a cognitive capacity harvesting network 
(CCHN), that ease the IoT data transmissions over a shared 
spectrum. This architecture aimed to enhance the existent 
cellular network by transforming it into an ultra-dense network 
similar to the 5G design. It includes Macro-cell Base Station 
(MBS), femtocell Base Station (FBS), and Cognitive Radio 
Router (CRR). Finally, it was numerically evaluated and 
compared the PLC under different probability distribution and 
DR-PLC for under exact data-driven statistics or uncertain ones. 
According to the results, PLC and DR-PLC cannot accomplish 
similar confidence levels, while the gap among them becomes 
more extensive due to historical data fluctuations. DR-PLC 
provided an efficient way to insure QoS while utilizing the 
shared spectrum. 

Khan et al. [94] considered the security of the relay nodes in 
multi-hop communication while assuring QoS. They suggested 
a secured communication scheme that is QoS-aware (QoS-IoT). 
The scheme is based on a Sybil attack detection mechanism for 
identifying compromised nodes and their counterfeit identities. 
The scheme selects an optimal contention window (CW) after 
detection to efficiently utilize the available bandwidth and 
achieve per-flow fairness. The detection mechanism is a signal-
print based on the node's obtained signal strength information to 
detect malfunctioning nodes. The size of CW depends upon the 
actual to fair bandwidth allocation ratio. The Binary Exponential 
Back-off (BEB) mechanism was used to select the optimal CW. 
The proposed scheme is based on the following network model. 
An area of 100x100m2 was split into smaller IoT networks, 
where each one dwell of static, mobile, Sybil and high-powered 
nodes. Thus, only delay and throughput were considered as QoS 
requirements because they are deeply affected by Sybil nodes' 
existence. The Sybil nodes block actual or genuine nodes from 
the use of network services with various forged identities. The 
network model is simulated in NS-2. The scheme was evaluated 
and compared with First-In-First-Out (FIFO), Round Robbin 
(RR) scheduling, and Cross-layer based on Utilization 
evaluation to Contention Window (CUCW) schemes in terms of 
throughput, fairness and the utilization of link. By increasing the 
offered load, the QoS-IoT received better fairness index 
compared to the other schemes. However, it performed similarly 

to CUCW in term of throughput. The QoS-IoT received smaller 
queue length by increasing the offered load than the other 
schemes. 

Guo et al. [95] stated that queueing delay is nun-negligible 
in IoT applications due to the scarce edge server's computation 
resource. They also argued that due have workload at the edge 
of the network, the cloud energy consumption can be lower than 
in the edge servers. Therefore, to achieve green computing while 
providing QoS for end-users, they formulated a problem for the 
Delay-Based Workload Allocation (DBWA). The problem is 
based on optimal workload allocation between local edge, 
neighboring edge-servers, and the cloud to reduce energy 
consumption while guaranteeing the delay. A DBWA algorithm 
was proposed for solving the problem and it was based on the 
theory of Lyapunov drift-plus-penalty. The proposed scheme's 
network model was structured as IoT devices pushing 
computation jobs stochastically to a layer of edge nodes 
containing edge servers and edge communication infrastructures 
to connect to the cloud layer. The edge nodes make workload 
allocation decisions to offload the arrival jobs to a neighbor edge 
or the cloud or execute it locally. The ping-pong effect was 
avoided by not offloading already offloaded jobs again. The 
event-based simulator combines MATLAB and C++ to simulate 
a scenario with three IoT-devices regions, three edge nodes and 
the cloud. The scheme is compared with the edge-only and 
cloud-only offloading versions. The DBWA surpassed the other 
energy consumption schemes and obtained average end-to-end 
delay by increasing job generation rate or size. 

End-to-End Delay (E2ED) estimators are significant for 
designing efficient QoS provisioning scheme for IoT systems. 
Therefore, Maslouhi et al. [96] proposed real-time evaluation 
metrics and addressed varying packet payload (PP) size effects 
in multi-hop wireless IoT networks through counting hops from 
source to destination. The authors considered the following four 
elements (Radio propagation delay, Transmission delay, 
Queueing delay and Signal processing delay) that contribute to 
the end-to-end packet delay in one direction from source to 
destination in their theoretical study. IP6, IP4 and ATM network 
protocols evaluated in terms of packet transmission delay vs 
packet number. Because of E2ED strongly dependent on the 
message size, this work concentrates on the message's average 
length and header. In MATLAB simulation, the IoT wireless 
network is considered and a single source node is transmitting 
packets to a single destination node across several IoT nodes. 
The results are compared with Ethernet's use and the speed of 
the Internet using fixed values. According to the results, the 
estimator provided reasonable estimates of payload packets, 
End-to-End delay and jitter. Thus, it provided valuable insight 
into multi-hop wireless networks' QoS provisioning. 

To optimize sharing resources among IoT services, Skarlat 
et al. [97] presented a system model called fog landscape. It 
consisted of fog cells, fog colonies, and a FC management 
system. Fog colonies are micro data centers that are created by 
the accumulation of fog cells. Each fog colony has a control 
node that provision resources by coordinating fog cells. Also, it 
communicates with other colonies to coordinate extra resources 
if needed. The colonies connect to a middleware running in the 
cloud called FC management system. Also, the authors 
introduced the Fog Service Placement Problem (FSPP) scheme 
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to address the placement of IoT services on virtualized fog 
resources. The placement considered QoS constraints such as 
deadlines on the execution time of applications. FSPP was 
implemented as an ILP problem and solved using IBM CPLEX 
solver. The solution was evaluated in terms of the execution cost 
and QoS support. The fog landscape environment was simulated 
using iFogSim, and the FSPP was compared to execution in the 
cloud. According to the results, 70% of services were utilized 
when FSPP included in the fog-landscape. This lead to a 35% 
reduction in the execution cost comparing to the execution in the 
cloud. The application's deadline was not violated by the FSPP 
scheme, unlike the baseline approach. 

Muralidharan et al. [98] mentioned a promising paradigm to 
handle the exponential increase in the global IoT traffic volume, 
called Named Data Networking (NDN). The NDN traditional 
version only supported PULL traffic, where interest pulls Data 
packets from the IoT devices. However, PULL traffic as well 
PUSH traffic is required by IoT applications. For effective 
exchange of data in IoT applications, the authors presented a 
hybrid PUSH-PULL Traffic (PPT) model that uses NDN's 
efficient qualities to amend the IoT QoS parameters. The NDN’s 
data exchange model is altered to push data as soon as IoT 
devices generate it without the need to remain online and check 
for an inbound request. The authors define the taxonomy of the 
network model as three entities. The IoT devices are smart 
sensors that can name Data packets. IoT gateway delivers 
messages and works as a point for entering and exiting from a 
network to another one. The third entity is the NDN cache router 
(CR) to hold and execute the proposed PPT algorithm. A 
Building Management System (BMS) was considered by this 
work in a smart building to evaluate the proposed model’s 
performance. The simulations implemented in Visual C/C++ 
and the PPT model results were compared with traditional NDN 
and IPv6 protocol. PPT results showed that the generated 
network load is 50% lower than the IPv6. This helped deliver 
almost 98% of the packets. Also, the PPT model was 50% higher 
than the IPv6 in terms of average throughput. 

IV. DISCUSSION AND COMPARISON 

The technologies and techniques used by the surveyed 
studies will be discussed and compared in this section. At the 
end of this section, three comparison tables for the reviewed 
studies that focused on QoS provisioning for IoT. Table I present 
the problems considered by the surveyed studies and the 
techniques used for solving them. Table II summaries the 
considered QoS metrics with the corresponding references. The 
third table includes the baseline algorithms or approach 
considered by the corresponding authors in their evaluation. The 
solutions presented by all the mentioned studies addressed their 
legit corresponding problems. According to the comparison 
table (Table I), the commonly used QoS metrics were Latency, 
Energy efficiency, Throughput, Availability and Reliability. 
However, the reviewed studies did not settle on using all the 
metrics mentioned in the background knowledge section. 
Instead, each one used the metrics that fit their provisioning 
solutions. Moreover, some studies introduced their metrics, 
usually a combination of fundamental QoS metrics [93, 94]. 
Some works were done on ready protocols or standards such as 
PRL and NDN to make them more feasible for provisioning QoS 

in IoT system [82, 98]. In terms of the network model, most of 
the reviewed studies relied on FC paradigm to propose their 
schemes [79, 81, 83, 88- 90, 97]. The reviewed studies also 
included provisioning schemes for IoT environments that 
needed resources allocation for NFV [81, 89, 90, 97]. These 
studies shared with the other ones, the necessity to solve 
objective optimization problems, which usually done by linear 
or nonlinear integer programming [86, 88]. However, others 
used a Markov chain model to formulate their problems [87], 
[88]. Towards modern communication techniques, a selective 
number of studies designed QoS provisioning schemes for IoT 
devices with M-RAT or the ability to share the spectrum [85-87, 
93]. Two studies out of the reviewed studies focused on multi-
hop communication, while one considered security during 
designing the QoS provisioning scheme [91, 94]. Finally, 
comparing the solutions’ effectiveness presented in the reviewed 
papers is out of the scope of this work. However, this is difficult 
to do because the authors considered different baselines and QoS 
metrics. 

TABLE I.  PROBLEMS AND TECHNIQUES CONSIDERED BY RECENT 

STUDIES THAT FOCUSED ON QOS PROVISIONING FOR IOT 

Ref. Problems Techniques 

[79] The distance among users and 
end devices increases the 

number of routers/hops, 

resulting in higher latency and 
network utilization 

A lightweight location-aware fog 
system (LAFF) based on fog head 

node model 

[80] The challenges of densely 

deployed IoT networks are 
energy-efficient 

communication, network 
coverage and scalability. 

Optimize IoT's sensing layer in 

WSN using hierarchical and multi-
hop communication protocols 

(ZSEP/LEACH/SEP and TSEP) to 
solve IoT's scalability. 

[81] Scaling in IoT platforms can 

answer the QoS requirements 
when the traffic load increases, 

but it would increase the 

provisioning costs. 

Scaling up the network for end-to-

end IoT traffic management using 
VNF. 

[82] RPL protocol is not efficient for 

multipurpose IoT applications 

Virtually dividing the physical 

network into instances of DODAG 

network topology. Each instance can 
be associated with the different 

objective function. 

[83] Selecting a fog service that 

ensures low latency service 

delivery because mapping tasks 
to distributed services is 

considered an NP-hard class 

problem. 

a FC architecture based on a fog 

broker element with several 

scheduling algorithms 

[84] In the long run, IoT complex 

service will suffer from 

performance degradation and 
real-time adaptive sensing. 

A Dynamic QoS provisioning 

framework (QoPF) for service-

oriented IoT based on BSOA 
algorithm 

[85] IoT's heterogeneous 

characteristic causes the QoS 
requirements to differ from one 

IoT node to another 

a QoS aware selection scheme for 

IoT nodes with multi-radio access 
technologies (RAT) 
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[86] Past literature focused only on 

network-centric QoS 

provisioning or client-centric 
RAT. 

A novel hybrid end-to-end QoS 

provisioning technique that 

combines client-centric and SDN 
based network-centric approaches. 

[87] Accommodating the demand for 

IoT over a limited wireless 
spectrum is a new challenge for 

communication 

A scheme for priority-based call 

admission and channel allocation by 
using traffic-aware dynamic channel 

reservation. 

[88] Ensuring Quality 
of Service (QoS) for delay-

sensitive complex applications 

is challenging. 

A framework for QoS-aware 
Dynamic Fog Service Provisioning 

(QDFSP) called FOGPLAN. 

[89] Fail issue during VMs renting by 

fog provisioning to manages 
tasks and reduce device cost. 

Formulating reliability 

maximization while reducing the 
system cost to provide fog resources 

in IoT networks using ILP problem 

[90] The QoS may be degraded for 

the power limited mobile IoT 

devices because the conditions 

of the wireless channel are not 
consistent. 

Jointly optimize how many VMs can 

rent and power control problems for 

system cost minimization while 

ensuring QoS requirements. 

[91] The hot-spot problem in multi-

hop communication among the 
IoT-based Wireless Sensor 

Network (WSN). 

Two QoS provisioning-based 

routing protocols based on multiple 
WSN-based IoT sinks. They called 

them Optimized Energy and 

Threshold Sensitive Stable Election 
Protocol (O-ETSSEP), and Multiple 

data Sinks-based Optimized-

ETSSEP (MSO-ETSSEP). 

[92] Reducing energy utilization in 

industrial IoT network 
without compromising the QoS. 

Combining quantum particle swarm 

optimization (QPSO) and improved 
non-dominated sorting genetic 

algorithm (NGSA) to produce 

Hybrid Energy Efficient and QoS 
Aware (HEEQA) algorithm. 

[93] The challenge of ensuring QoS 

while using a shared spectrum 
due to its unpredictable 

availability 

A Distributionally Robust (DR) 

data-driven approach was developed 
based on the first and second-order 

statistics to estimate the value of 

probabilistic link capacity (PLC). 

[94] Ensuring the security of the relay 

nodes in multi-hop 

communication while assuring 
QoS. 

a QoS-aware secured 

communication scheme (QoS-IoT) 

based on a Sybil attack detection 
mechanism for identifying 

compromised nodes and their 

counterfeit identities. 

[95] Achieve green computing while 

providing QoS for end-users is a 
challenge 

A Delay-Base Workload Allocation 

(DBWA) algorithm based on 
Lyapunov drift-plus-penalty theory 

[96] Accurate and efficient End-to-

end delay (E2ED) estimators are 
significant for designing 

efficient QoS provisioning 

scheme for IoT systems. 

A real-time evaluation metrics and 

addressed varying packet payload 
(PP) size effects in multi-hop 

wireless IoT networks through 

counting hops from source to 
destination. 

[97] Optimizing sharing resources 

among IoT services by using FC 

Fog Service Placement Problem 

(FSPP) scheme designed to address 
the placement of IoT services on 

virtualized fog resources 

[98] The exponential increase in the 

volume of global IoT traffic 

A hybrid PUSH-PULL Traffic 

(PPT) model uses NDN's efficient 

qualities to amend the IoT QoS 
parameters. 

 

TABLE II.  QOS METRICS CONSIDERED BY RECENT STUDIES THAT 

FOCUSED ON QOS PROVISIONING FOR IOT 

QoS metrics Reference 

Latency [79,  81, 82, 84 - 86, 88, 91 - 97] 

Network Usage [79, 87, 91 - 94, 97, 98] 

Service Time [79, 83, 97] 

RAM Consumption [79] 

CPU Utilization [79] 

Stability [80, 91, [94] 

Scalability [80, 88] 

Energy efficiency [80, 82, 90, 93, 95] 

Throughput [81, 82, 85, 87, 91-94, 98] 

Availability [81, 86- 88, 90- 92] 

Reliability [82, 84, 87- 93, 96, 98] 

Response Time [83, 97] 

jitter [84, 96] 

Device/Network Cost [88- [90, 97] 
 

TABLE III.  EVALUATION BASELINES CONSIDERED BY RECENT STUDIES 

THAT FOCUSED ON QOS PROVISIONING FOR IOT 

Ref. Baselines 

[79] Intelligent FC Analytical Model (IFAM) and Task Placement on FC 

(TPFC) model 

[80] CBCCP, ME-CBCCP, HCR and ERP protocols. 

[81] First-Come-First-Served (FCFS), Auto-scaling (AS), QoSEF, 

QoSEFe 

[82] Default RPL 

[83] Optimize Response time (ORT), Closest Fog Node (CFN), and 
Reconfigure Dynamically with 

Load (RDL). 

[84] GA, PSO, ACA and Differential evolution (DE) algorithms 

[85] best-SNR and maximum bandwidth selection methods 

[86] the Received Signal Strength Indicator (RSSI) AP selection approach 

[87] Greedy non-priority and fair proportion schemes 

[88] All IoT’s requests to the cloud and Static Fog approach where the 

services are 
deployed statically at the beginning 

[89] The IBM CPLEX Optimizer’s optimal solution  and Bench algorithm. 

[90] The problem’s lower bound acquired by solving the convex problem 

through relaxing the number of rented VMs at a given location and 

fixed transmission power approach. 

[91] O-ETSSEP is performed versus the ETSSEP and TSEP38 protocols, 

while MSO-ETSSEP  compared against MS-ETSSEP and MS-SEP. 

[92] QPSO algorithm 

[93] PLC under different probability distribution (normal, uniform and 

Gamma distribution) 

[94] First-In-First-Out FIFO, Round Robbin (RR) scheduling, and Cross-

layer based on Utilization evaluation to Contention Window (CUCW) 

schemes 

[95] Edge-only and cloud-only offloading approaches 

[96] IP6, IP4 and ATM network protocols 

[97] Execution in the cloud. 

[98] Traditional NDN and IPv6 protocol 
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V. CONCLUSION 

All the mentioned studies had legit problems to solve, and 
they addressed it with brilliant solutions. According to Table II, 
the commonly considered QoS metrics are Latency, Reliability, 
Throughput, and Network Usage. However, these studies did 
not settle on using all the metrics mentioned in the background 
knowledge section. Instead, each one used the metrics that fit 
their provisioning solutions. Moreover, most of the reviewed 
studies considered FC paradigm as their network model for the 
proposed schemes which required resources allocation for NFV. 
Finally, due to the IoT system's heterogeneous characteristics, 
the metrics for QoS provisioning cannot be unified. Thus, there 
is no one solution fits all cases. To conclude, the academic 
community will still have many cases to go through while new 
communication technologies are coming up or still in the 
pipeline, such as LiFi and 6G. 
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