Skip to main navigation menu Skip to main content Skip to site footer

Alzheimer’s Classification with a MaxViT-Based Deep Learning Model Using Magnetic Resonance Imaging

Abstract

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, poses significant challenges for early diagnosis due to subtle symptom onset and overlap with normal aging. This study aims to develop an effective deep learning model for classifying four AD stages (Non-Demented, Very Mild Demented, Mild Demented, Moderate Demented) using brain MRI scans. We propose a Multi-Axis Vision Transformer (MaxViT)-based framework, leveraging transfer learning and robust data augmentation on the Kaggle Alzheimer’s MRI Dataset to address class imbalance and enhance generalization. The model employs MaxViT’s multi-axis attention mechanisms to capture both local and global patterns in MRI images. Our approach achieved a classification accuracy of 99.60%, with precision of 99.0%, recall of 98.1%, and F1-score of 98.51%. These results highlight MaxViT’s superior ability to differentiate AD stages, particularly in distinguishing challenging early stages. The proposed model offers a reliable tool for early AD diagnosis, laying a strong foundation for future clinical applications and interdisciplinary research in neurodegenerative disease detection. Future work should explore larger, more diverse datasets and additional biomarkers to further validate and enhance model performance.

Keywords

alzheimer , classification, ddeep learning, transfer learning, MaxVit, MRI

PDF

References

  1. E. Aslan and Y. Özüpak, “Comparison of machine learning algorithms for automatic prediction of Alzheimer s disease,” Journal of the Chinese Medical Association, vol. 88, no. 2, pp. 98–107, Feb. 2025, doi: 10.1097/JCMA.0000000000001188.
  2. M. Menagadevi, S. Devaraj, N. Madian, et al., “Machine and deep learning approaches for Alzheimer disease detection using magnetic resonance images: An updated review,” Measurement, Elsevier B.V., 2024, doi: 10.1016/j.measurement.2023.114100.
  3. O. M. Dumitrascu, L. M. Xin, M. W. Zh., et al., “Color fundus photography and deep learning applications in Alzheimer’s disease,” Mayo Clinic Proc.: Digit. Health, pp. 1–9, 2024, doi: 10.1016/j.mcpdig.2024.08.005.
  4. M. A. Ebrahimighahnavieh, S. Luo, and R. Chiong, “Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review,” Comput. Methods Programs Biomed., pp. 1–21, 2020, doi: 10.1016/j.cmpb.2019.105242.
  5. R. Gautam and M. Sharma, “Prevalence and diagnosis of neurological disorders using different deep learning techniques: A meta-analysis,” J. Med. Syst., vol. 44, no. 2, pp. 1–9, 2020, doi: 10.1007/s10916-019-1519-7.
  6. P. Saikia and S. K. Kalita, “Alzheimer disease detection using MRI: Deep learning review,” Springer, pp. 1–13, 2024, doi: 10.1007/s42979-024-02868-4.
  7. M. V. Dasu, C. Priyanka, G. Tejaswini, et al., “Classification of Alzheimer disease using machine learning algorithm,” in Proc. Int. Conf. Autom. Comput. (AUTOCOM 2024), IEEE, pp. 215–221, 2024, doi: 10.1109/AUTOCOM60220.2024.10486165.
  8. E. Aslan and Y. Özüpak, “Performance Comparison of Deep Learning Models in Brain Tumor Classification,” Balkan Journal of Electrical and Computer Engineering, vol. 13, no. 2, pp. 203–209, Jul. 2025, doi: 10.17694/bajece.1617698.
  9. P. G. Asteris, A. H. Gandomi, J. Danial, et al., “Prognosis of COVID-19 severity using DERGA, a novel machine learning algorithm,” Eur. J. Intern. Med., vol. 125, pp. 67–73, 2024, doi: 10.1016/j.ejim.2024.02.037.
  10. N. Raza, A. Naseer, M. Tamoor, et al., “Alzheimer disease classification through transfer learning approach,” Diagnostics, vol. 13, no. 4, pp. 1–12, 2023, doi: 10.3390/diagnostics13040801.
  11. N. Garg, M. S. Choudhry, and R. M. Bodade, “A review on Alzheimer’s disease classification from normal controls and mild cognitive impairment using structural MR images,” J. Neurosci. Methods, Jan. 2023, doi: 10.1016/j.jneumeth.2022.109745.
  12. A. Shukla, R. Tiwari, and S. Tiwari, “Review on Alzheimer disease detection methods: Automatic pipelines and machine learning techniques,” Sci., vol. 5, no. 1, Mar. 2023, doi: 10.3390/sci5010013.
  13. Z. Hu, Y. Li, Z. Wang, et al., “Conv-Swinformer: Integration of CNN and shift window attention for Alzheimer’s disease classification,” Comput. Biol. Med., vol. 164, pp. 1–15, 2023, doi: 10.1016/j.compbiomed.2023.107304.
  14. M. R. Khanna, “Multi-level classification of Alzheimer disease using DCNN and ensemble deep learning techniques,” Signal Image Video Process., vol. 17, no. 7, pp. 3603–3611, 2023, doi: 10.1007/s11760-023-02586-z.
  15. F. M. J. Shamrat, A. Shamima, A. Sami, et al., “AlzheimerNet: An effective deep learning-based proposition for Alzheimer’s disease stages classification from functional brain changes in magnetic resonance images,” IEEE Access, vol. 11, pp. 16376–16395, 2023, doi: 10.1109/ACCESS.2023.3244952.
  16. T. Illakiya, K. Ramamurthy, M. V. Siddharth, et al., “AHANet: Adaptive hybrid attention network for Alzheimer’s disease classification using brain magnetic resonance imaging,” Bioengineering, vol. 10, no. 6, pp. 1–14, 2023, doi: 10.3390/bioengineering10060714.
  17. Z. Zhao, H. C. Joon, W. L. Khin, et al., “Conventional machine learning and deep learning in Alzheimer’s disease diagnosis using neuroimaging: A review,” Front. Comput. Neurosci., vol. 17, p. 1038636, 2023, doi: 10.3389/fncom.2023.1038636.
  18. D. Shigemizu, A. Shintaro, S. Mutsumi, et al., “Classification and deep-learning–based prediction of Alzheimer disease subtypes by using genomic data,” Transl. Psychiatry, vol. 13, no. 1, pp. 1–9, 2023, doi: 10.1038/s41398-023-02531-1.
  19. S. L. Warren and A. A. Moustafa, “Functional magnetic resonance imaging, deep learning, and Alzheimer’s disease: A systematic review,” J. Neuroimaging, Jan. 2023, doi: 10.1111/jon.13063.
  20. D. A. Arafa, H. E. D. Moustafa, H. A. Ali, et al., “A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images,” Multimed. Tools Appl., vol. 83, no. 2, pp. 3767–3799, 2024, doi: 10.1007/s11042-023-15738-7.
  21. S. E. Sorour, A. A. A. El-Mageed, K. M. Albarrak, et al., “Classification of Alzheimer’s disease using MRI data based on deep learning techniques,” J. King Saud Univ. Comput. Inform. Sci., vol. 36, no. 2, pp. 1–10, 2024, doi: 10.1016/j.jksuci.2024.101940.
  22. K. N. Rao, B. R. Gandhi, M. V. Rao, et al., “Prediction and classification of Alzheimer’s disease using machine learning techniques in 3D MR images,” in Proc. Int. Conf. Sustain. Comput. Smart Syst. (ICSCSS 2023), IEEE, pp. 85–90, 2023, doi: 10.1109/ICSCSS57650.2023.10169550.
  23. P. S. Pallawi and D. K. Singh, “Review and analysis of deep neural network models for Alzheimer’s disease classification using brain medical resonance imaging,” Cogn. Comput. Syst., Mar. 2023, doi: 10.1049/ccs2.12072.
  24. P. Balaji, M. A. Chaurasia, S. M. Bilfaqih, et al., “Hybridized deep learning approach for detecting Alzheimer’s disease,” Biomedicines, vol. 11, no. 1, pp. 1–12, 2023, doi: 10.3390/biomedicines11010149.
  25. J. F. Carlsen, R. Amjad, A. Teg, et al., “An efficient ensemble approach for Alzheimer’s disease detection using an adaptive synthetic technique and deep learning,” Diagnostics, pp. 1–15, 2023, doi: 10.3390/diagnostics.
  26. “Augmented Alzheimer MRI Dataset,” Kaggle, 2024. [Online]. Available: https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset
  27. F. Alpsalaz, Y. Özüpak, E. Aslan, and H. Uzel, “Classification of maize leaf diseases with deep learning Performance evaluation of the proposed model and use of explicable artificial intelligence,” Chemometrics and Intelligent Laboratory Systems, vol. 262, pp. 1–14, Apr. 2025, doi: 10.1016/j.chemolab.2025.105412.
  28. D. Yang, “Deep learning in medical image analysis,” Health Inf. Sci. Syst., vol. 11, no. 1, pp. 1–10, 2023, doi: 10.1186/s13755-023-00291-5.
  29. Y. Özüpak, F. Alpsalaz, E. Aslan, and H. Uzel, “Hybrid deep learning model for maize leaf disease classification with explainable AI,” New Zealand Journal of Crop and Horticultural Science, vol. 53, no. 5, pp. 2942–2964, Jul. 2025, doi: 10.1080/01140671.2025.2519570.
  30. Q. Liu, “Improving Alzheimer’s disease diagnosis using deep learning algorithms: A survey,” J. Neurosci. Methods, vol. 383, pp. 1–11, 2023, doi: 10.1016/j.jneumeth.2023.109716.
  31. F. Alpsalaz, “Fault Detection in Power Transmission Lines Comparison of Chirp-Z Algorithm and Machine Learning Based Prediction Models,” Eksploatacja i Niezawodno?? – Maintenance and Reliability, vol. 27, no. 4, pp. 1–15, Apr. 2025, doi: https://dx.doi.org/10.17531/ein/203949
  32. S. Benkaihoul, F. Ibrahim, A. Ayyoub, A. Zeghlache, M. Abdullah, Y. Özüpak, R. Bouddou, A. Soleimani, A. Pinnarelli, E. Aslan, and I. Zaitsev, “Hybrid MPC–third-order sliding mode control with MRAS for fault-tolerant speed regulation of PMSMs under sensor failures,” Int. Trans. Electr. Energy Syst., vol. 2025, no. 5984024, pp. 1–22, 2025, doi: 10.1155/etep/5984024.
  33. E. Aslan, Y. Özüpak, F. Alpsalaz, And Z. M. S. Elbarbary, “A Hybrid Machine Learning Approach for Predicting Power Transformer Failures Using Internet of Things-Based Monitoring and Explainable Artificial Intelligence,” IEEE Access, vol. 113618, no. 113633, pp. 113618–16, Jul. 2025, doi: 10.1109/access.2025.3583773.
  34. A. Kanwal, D. D. Danielle, J. A. John, et al., “Alzheimer’s disease classification using deep convolutional neural networks with MRI images,” Int. J. Imaging Syst. Technol., vol. 34, pp. 202–213, 2024, doi: 10.1002/ima.22984.
  35. V. Kumar and M. Bansal, “Automated Alzheimer’s disease diagnosis using CNNs with advanced preprocessing techniques,” J. Biomed. Inf., vol. 126, pp. 103–118, 2024, doi: 10.1016/j.jbi.2024.103109.
  36. Y. Zhao, M. A. Hanan, H. M. Ibrahim, et al., “A novel convolutional neural network model for Alzheimer’s disease detection using structural MR images,” Comput. Med. Imaging Graph., vol. 98, pp. 1–10, 2023, doi: 10.1016/j.compmedimag.2023.102153.
  37. S. Saha and P. Singh, “Integration of multi-modality data for Alzheimer’s disease diagnosis using deep learning techniques,” Brain Inform., vol. 11, no. 1, pp. 1–14, 2024, doi: 10.1007/s40708-024-00112-9.
  38. B. Özdemir, E. Aslan, and ?. Paçal, “Attention Enhanced InceptionNeXt-Based Hybrid Deep Learning Model for Lung Cancer Detection,” IEEE Access, vol. 13, pp. 27050–27069, Jan. 2025, doi: 10.1109/ACCESS.2025.3539122.
  39. S. Ahmed and S. Alam, “Deep learning-based early diagnosis of Alzheimer’s disease using brain MRI,” IEEE Access, vol. 11, pp. 36900–36911, 2023, doi: 10.1109/ACCESS.2023.3214567.
  40. F. Liu, S. H. Seyedhamidreza, S. M. T. Fatemi, et al., “Deep learning for Alzheimer’s disease diagnosis: A systematic review,” Med. Image Anal., vol. 89, pp. 1–16, 2023, doi: 10.1016/j.media.2023.102073.
  41. M. Rasheed and M. Hussain, “A novel hybrid deep learning architecture for Alzheimer’s disease diagnosis using MRI images,” Soft Comput., vol. 27, no. 6, pp. 2457–2469, 2023, doi: 10.1007/s00542-023-08945-7.
  42. X. Zhang, S. K. Kwang, K. Majdi, et al., “Enhancing Alzheimer’s disease diagnosis using multi-scale convolutional neural networks,” Neurocomputing, vol. 459, pp. 81–95, 2024, doi: 10.1016/j.neucom.2023.09.095.
  43. M. Zhang and J. Zhao, “Transfer learning for Alzheimer’s disease diagnosis using MRI scans and deep neural networks,” Int. J. Comput. Appl., vol. 46, no. 3, pp. 112–121, 2023, doi: 10.5120/ijca2023200303
  44. E. . A. Radhi, M. . Y. Kamil, and M. . Abed Mohammed , Trans., “Hybrid Quantum-Assisted Deep Learning Model for Early-Stage Alzheimer’s Disease Classification Based on MRI Images”, Mesopotamian Journal of Big Data, vol. 2025, pp. 156–177, Aug. 2025, doi: 10.58496/MJBD/2025/011.

Downloads

Download data is not yet available.

Similar Articles

11-20 of 35

You may also start an advanced similarity search for this article.