Skip to main navigation menu Skip to main content Skip to site footer

Deep Learning-Driven Visual Analytics Framework for Next-Generation Environmental Monitoring

Abstract

In this paper, we propose a deep learning-based visual analytics pipeline for next-generation environmental monitoring with multispectral and temporal remote sensing data. We used large-scale benchmark images (MODIS, Landsat-8, Sentinel-2 to record a wide range of the land-use/land-cover, vegetation cover, atmospheric and water-body features. The pre-processing pipeline consisted of noise filtering, normalization and dimensionality reduction through PCA to improve the quality of data and model parsimony. The key hyperparameters like learning rate, batch size and layers depth- of system were optimized with hybrid PSO optimization technique which enhanced the convergence behaviour and classification ability of model.Deep learning models, such as convolutional neural networks (CNNs) like VGG16, GoogleNet, and ResNet50, and transformer-based ones, have been used to extract spatial-temporal information out of the satellite images. The three different types of networks provided more generalization based on transfer learning to utilize the already trained ImageNet weights and then fine-tune them in the domain. The models proposed were tested in various environmental surveillance problems such as land-cover classification, vegetation health monitoring and detection of water-quality anomalies, which proved to be robust and adjustable to a variety of remote sensing problems.Experiments illustrate that ResNet50 can outperform other architectures in all datasets, i.e., it attains highest accuracy 95.2%, 94.6% and 90.8% for Sentinel-2, Landsat-8 and MODIS data sources, respectively with corresponding F1-score greater than 94% and AUC >0:96. These results demonstrate the successful application of optimized deep-learning models, which can ensure real-time and scalable deployed monitoring with high precision for remote-sensing images.

Keywords

deep learning, remote sensing, cnn, environment monitoring, Transfer Learning, Hyperparameter Optimization

PDF

References

  1. Chai, B., Nie, X., Zhou, Q., and Zhou, X. (2024). Enhanced cascade r-cnn for multiscaleobject detection in dense scenes from sar images. IEEE Sensors J. 24, 20143–20153.doi:10.1109/jsen.2024.3393750
  2. Feng, F., Ghorbani, H., and Radwan, A. E. (2024). Predicting groundwater level usingtraditional and deep machine learning algorithms. Front. Environ. Sci. 12, 1291327.doi:10.3389/fenvs.2024.1291327
  3. Gai, R., Chen, N., and Yuan, H. (2023). A detection algorithm for cherry fruits basedon the improved yolo-v4 model. Neural Comput. Appl. 35, 13895–13906. doi:10.1007/
  4. s00521-021-06029-z
  5. Titu, M. F. S., Chowdhury, A. A., Haque, S. R., Khan, R. (2024). Deep-Learning-Based Real-Time Visual Pollution Detection in Urban and Textile Environments. Sci, 6(1), 5.
  6. Jin, S., Yang, Z., Krolczykg, G., Liu, X., Gardoni, P., Li, Z. (2023). Garbage detection and classification using a new deep learning-based ´ machine vision system as a tool for sustainable waste recycling. Waste Management, 162, 123-130.
  7. Alsubaei, F. S., Al-Wesabi, F. N., Hilal, A. M. (2022). Deep learning-based small object detection and classification model for garbage waste management in smart cities and IoT environment. Applied Sciences, 12(5), 2281.
  8. Abebe, W.T., Endalie, D., 2023. Artificial intelligence models for prediction of monthly rainfall without climatic data for meteorological stations in Ethiopia. J. Big Data 10
  9. Castelli, M., Clemente, F.M., Popovi?c, A., Silva, S., Vanneschi, L., 2020. A machine learning approach to predict air quality in California. Complexity 2020, 1–23.
  10. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., et al. (2023). “Grounding dino: marrying dino with grounded pre-training for open-set object detection,” in European conference on computer vision.
  11. Lou, H., Duan, X., Guo, J., Liu, H., Gu, J., Bi, L., et al. (2023). Dc-yolov8: small-size object detection algorithm based on camera sensor. Electronics 12, 2323. doi:10.3390/electronics12102323
  12. Nigar, A., Li, Y., Jat Baloch, M. Y., Alrefaei, A. F., and Almutairi, M. H. (2024).Comparison of machine and deep learning algorithms using google earth engine andpython for land classifications. Front. Environ. Sci. 12, 1378443. doi:10.3389/fenvs.2024.1378443
  13. Satti, Z., Naveed, M., Shafeeque, M., Ali, S., Abdullaev, F., Ashraf, T. M., et al.(2023). Effects of climate change on vegetation and snow cover area in gilgitbaltistan using modis data. Environ. Sci. Pollut. Res. 30, 19149–19166. doi:10.1007/s11356-022-23445-3
  14. Singh, S. K., Shirzadi, A., and Pham, B. T. (2021). Application of artificial intelligencein predicting groundwater contaminants. Water Pollut. Manag. Pract., 71–105. doi:10.1007/978-981-15-8358-2_4
  15. Joshi, D. D., Kumar, S., Patil, S., Kamat, P., Kolhar, S., and Kotecha, K. (2024). Deeplearning with ensemble approach for early pile fire detection using aerial images. Front.Environ. Sci. 12, 1440396. doi:10.3389/fenvs.2024.1440396
  16. Lou, H., Duan, X., Guo, J., Liu, H., Gu, J., Bi, L., et al. (2023). Dc-yolov8: small-sizeobject detection algorithm based on camera sensor. Electronics 12, 2323. doi:10.3390/electronics12102323
  17. Miao, T., Zeng, H., Yang, W., Chu, B., Zou, F., Ren, W., et al. (2022). An improvedlightweight retinanet for ship detection in sar images. IEEE J. Sel. Top. Appl. EarthObservations Remote Sens. 15, 4667–4679. doi:10.1109/jstars.2022.3180159
  18. Zhang, H., Zhang, L., Wang, S., Zhang, L., 2022. Online water quality monitoring based on UV–Vis spectrometry and artificial neural networks in a river confluence near Sherfield-on-Loddon. Environ. Monit. Assess. 194 (9). https://doi.org/10.1007/ s10661-022-10118-4.
  19. Ye, Z., Yang, J., Zhong, N., Tu, X., Jia, J., Wang, J., 2020. Tackling environmental challenges in pollution controls using artificial intelligence: a review. Sci. Total Environ. 699, 134279. https://doi.org/10.1016/j.scitotenv.2019.134279
  20. Rostirolla, G., Grange, L., Minh-Thuyen, T., Stolf, P., Pierson, J.M., Da Costa, G., et al., 2022. A survey of challenges and solutions for the integration of renewable energy in datacenters. Renew. Sustain. Energy Rev. 155, 111787. https://doi.org/10.1016/j. rser.2021.111787.
  21. Rane, N., Choudhary, S., & Rane, J. (2024). Enhancing water and air pollution monitoring and control through ChatGPT and similar generative artificial intelligence implementation. Available at SSRN 4681733.
  22. Shalu, Singh, G., 2023. Environmental monitoring with machine learning. EPRA Int. J. Multidiscipl. Res. 208–212. https://doi.org/10.36713/epra13330.
  23. Panigrahi, N., Patro, S.G.K., Kumar, R., Omar, M., Ngan, T.T., Giang, N.L., Thu, B.T., Thang, N.T., 2023. Groundwater quality analysis and drinkability prediction using artificial intelligence. Earth Sci. Inform. 16 (2), 1701–1725. https://doi.org/ 10.1007/s12145-023-00977-x
  24. Majhi, S.K., Hossain, S.S., Padhi, T., 2019. MFOFLANN: moth flame optimized functional link artificial neural network for prediction of earthquake magnitude. Evol. Syst. 11 (1), 45–63. https://doi.org/10.1007/s12530-019-09293-6.
  25. Ma, W., Cui, J., Abdoulaye, B., Wang, Y., Du, H., Bourtsalas, A.C., Chen, G., 2022. Air pollutant emission inventory of waste-to-energy plants in China and prediction by the artificial neural network approach. Environ. Sci. Technol. 57 (2), 874–883. https://doi.org/10.1021/acs.est.2c01087.
  26. Nguyen, P.T., Ha, D.N., Jaafari, A., Nguyen, H.P., Van Phong, T., Al-Ansari, N., Prakash, I., Van Le, H., Pham, B.T., 2020a. Groundwater potential mapping combining artificial neural network and real adaboost ensemble technique: the DakNong Province Case-study, Vietnam. Int. J. Environ. Res. Public Health 17 (7), 2473. https://doi.org/10.3390/ijerph17072473.
  27. Marhain, S., Ahmed, A., Murti, M.A., Kumar, P., El-Shafie, A., 2021. Investigating the application of artificial intelligence for earthquake prediction in Terengganu. Nat. Hazards 108 (1), 977–999. https://doi.org/10.1007/s11069-021-04716-7

Downloads

Download data is not yet available.

Similar Articles

21-30 of 77

You may also start an advanced similarity search for this article.