An Investigation of Quantum and Parallel Computing Effects on Malware Families Classification
Abstract
The proliferation of malicious software is a major concern for organizations and consumers alike. Malware is used to compromise computer systems and networks for malevolent purposes. Consequently, categorizing malware is essential for safeguarding systems from harmful assaults. Developers of malicious software are always coming up with novel techniques to avoid detection by security researchers. However, in recent years, quantum computing has developed rapidly and shown considerable advantages in a number of sectors, particularly in the area of cybersecurity. A quantum approach may be useful in conjunction with existing software for finding the most often occurring hashes and n-grams that are characteristic of malicious software. The time it takes to map n-grams to their hashes may be reduced if we load the table of hashes and n-grams into a quantum computer. The first step is to utilize Kilogram to identify the most prevalent hashes and n-grams in a large collection of malware. Once the hash table is generated, it is sent into a quantum simulator. The entangled key-value pairs are then searched through a quantum search method to locate the appropriate hash value. In contrast to the quantum algorithm's potential runtime of O(N) in the number of table lookups required to get the requisite hash values, re-computing hashes for a set of n-grams may take on average O(MN) time. The main purpose of this research is to address the significant effects of quantum and parallel computing on malware families’ classification.
Keywords
Quantum Computing, Malware Classification, Malware Clasess, Security, Parallel Computing
Author Biography
Bewar Neamat Taha
References
- Daeef, A.Y.; Al-Naji, A.; Chahl, J. Features Engineering for Malware Family Classification Based API Call. Computers 2022, 11, 160. https://doi.org/10.3390/computers11110160
- Institute, A.T. Malware Statistics and Trends Report: AV TEST. 2022. Available online: https://www.av-test.org/en/statistics/ malware/ (accessed on 19 July 2022).
- Al-Hashmi, A.A.; Ghaleb, F.A.; Al-Marghilani, A.; Yahya, A.E.; Ebad, S.A.; Saqib, M.; Darem, A.A. Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model. IEEE Access 2022, 10, 42762–42777. [CrossRef]
- Catak, F.O.; Yaz?, A.F. A benchmark API call dataset for windows PE malware classification. arXiv 2019, arXiv:1905.01999.
- Oliveira, A.; Sassi, R. Behavioral malware detection using deep graph convolutional neural networks. TechRxiv 2019, preprint. [CrossRef]
- VMRay. Sans Webcast Recap Practical Malware Family Identification for Incident Responders. 2021. Available online: https://www.vmray.com/cyber-security-blog/practical-malware-family-identification-sans-webcast-recap (accessed on 10 July 2022).
- Sebastián, M.; Rivera, R.; Kotzias, P.; Caballero, J. Avclass: A tool for massive malware labeling. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses, Paris, France, 19–21 September 2016 ; pp. 230–253.
- National Academies of Sciences, Engineering, and Medicine. 2018. Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC. DOI: https://doi.org/10.17226/25196.
- M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, 2016, Design Automation and Design Space Exploration for Quantum Computers,” quant-ph cs.ET arXiv:1612.00631v1.
- P.M. Soeken, T. Häner, and M. Roetteler, 2018, “Programming Quantum Computers Using Design Automation,” quant-ph cs.ET arXiv:1803.01022v1.
- A. Broadbent, J. Fitzsimons, and E. Kashefi, 2009, “Universal blind quantum computation.” In Foundations of Computer Science, 2009. FOCS'09. 50th Annual IEEE Symposium on, pp. 517-526.
- B.W. Reichardt, F. Unger, and U. Vazirani, 2012, “A classical leash for a quantum system: Command of quantum systems via rigidity of CHSH games, ” arXiv preprint arXiv:1209.0448.
- U. Vazirani and T. Vidick, 2014, “Fully device-independent quantum key distribution.” Physical review letters113, no. 14: 140501.
- Microsoft’s Quantum Development Kit found at https://www.microsoft.com/en-us/quantum/development-kit; ScaffCC found at https://github.com/epiqc/ScaffCC.
- D.R. Simon. On the power of quantum computing. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on: 116–123, 1994.
- Lov K. Grover. A fast quantum mechanical algorithm for database search. Proceedings of the twenty-eighth annual ACM symposium on Theory of computing -STOC ’96, 1996.
- IBM. IBM quantum experience. https://quantum computing.ibm.com, 2020.
- D-Wave. D-wave. https://dwavesys.com, 2020.
- Daniel Strano and Benn Bollay. Qrack a comprehensive, gpu accelerated framework for developing universal virtual quantum processors.https://github.com/vm6502q/qrack, 2020.
- Hirvensalo, M. Quantum Computing; Springer Science & Business Media: Berlin, Germany, 2003.
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum computing: A taxonomy, systematic review and future directions. Softw. Pract. Exp. 2022, 52, 66–114. [CrossRef]
- Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security. Information 2019, 10, 122. [CrossRef]
- Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damasevicius, R. An efficient densenet-based deep learning model for malware detection. Entropy 2021, 23, 344. [CrossRef] [PubMed]
- Poudyal, S.; Akhtar, Z.; Dasgupta, D.; Gupta, K.D. Malware analytics: Review of data mining, machine learning and big data perspectives. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 649–656.
- E. Farhi, J. Goldstone, and S. Gutmann, 2007, “A quantum algorithm for the Hamiltonian NAND tree.” arXiv preprint quant-ph/0702144.
- A. Ambainis, A.M. Childs, B.W. Reichardt, R. Špalek, and S. Zhang, 2010, “Any AND-OR formula of size N can be evaluated in time N^1/2+o (1) on a quantum computer.” SIAM Journal on Computing 39, no. 6: 2513-2530.
- V. Giovannetti, S. Lloyd, and L. Maccone, 2008, “Quantum random access memory,” Physical review letters, 100, 16: 160501.
- D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, and R.D. Somma, 2015, “Simulating Hamiltonian dynamics with a truncated Taylor series.” Physical review letters, vol. 114, no. 9: 090502.
- R. Babbush, D.W. Berry, I.D. Kivlichan, A. Scherer, A.Y. Wei, P.J. Love, and A. Aspuru-Guzik, 2017, “Exponentially more precise quantum simulation of fermions in the configuration interaction representation,” Quantum Science and Technology, 3: 015006.
- G.H. Low, and I.L. Chuang, 2016, “Hamiltonian simulation by qubitization,” arXiv preprint arXiv:1610.06546.
- See, for example: G.H. Low and I.L. Chuang, 2017, “Optimal Hamiltonian simulation by quantum signal processing.” Physical review letters, vol. 118, no. 1: 010501.
- R. Babbush, D.W. Berry, I.D. Kivlichan, A.Y. Wei, P.J. Love, and A. Aspuru-Guzik, 2016, “Exponentially more precise quantum simulation of fermions I: Quantum chemistry in second quantization,” New Journal of Physics, vol. 18: 033032.
- D.W. Berry, A.M. Childs, and R. Kothari, 2015, “Hamiltonian simulation with nearly optimal dependence on all parameters,” Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, pp. 792-809, arXiv:1501.01715.
- S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan, 2018, “Quantum computational chemistry.” arXiv preprint arXiv:1808.10402.
- D. Wecker, M.B. Hastings, N. Wiebe, B.K. Clark, C. Nayak, and M. Troyer, 2015, “Solving strongly correlated electron models on a quantum computer.” Physical Review A 92, no. 6: 062318.
- M. Reiher, N. Wiebe, K.M. Svore, D. Wecker, and M. Troyer, 2017, “Elucidating reaction mechanisms on quantum computers,” Proceedings of the National Academy of the Sciences of the United States of America, 114: 7555-7560.
- G. Wendin, 2017, "Quantum information processing with superconducting circuits: a review." Reports on Progress in Physics 80, no. 10: 106001.
- M. Reiher, N. Wiebe, K.M. Svore, D. Wecker, and M. Troyer, 2017, "Elucidating reaction mechanisms on quantum computers." Proceedings of the National Academy of Sciences: 201619152.
- B. Bauer, D. Wecker, A.J. Millis, M.B. Hastings, and M. Troyer, 2016, “Hybrid quantum-classical approach to correlated materials,” Physical Review X, 6:031045.
- J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, and A. Aspuru-Guzik, 2017, “Quantum Information and Computation for Chemistry,” preprint: arXiv:1706.05413.
- R. Babbush, D.W. Berry, I.D. Kivlichan, A.Y. Wei, P.J. Love, and A. Aspuru-Guzik, 2017, “Exponentially more precise quantum simulation of fermions in the configuration interaction representation,” Quantum Science and Technology, 3,:015006.
- J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, and A. Aspuru-Guzik, 2017, “Quantum Information and Computation for Chemistry,” preprint: arXiv:1706.05413.
- I.D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-Guzik, G. Kin-Lic Chan, and R. Babbush, 2018, “Quantum Simulation of Electronic Structure with Linear Depth and Connectivity,” Physical Review Letters,120: 11501.
- R. Babbush, C. Gidney, D.W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven, 2018, “Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity.” arXiv preprint arXiv:1805.03662.
- G.H. Low and N. Wiebe, 2018, “Hamiltonian Simulation in the Interaction Picture.” arXiv preprint arXiv:1805.00675.
- D.W. Berry, M. Kieferová, A. Scherer, Y.R. Sanders, G.H. Low, N. Wiebe, C. Gidney, and R. Babbush, 2018, “Improved techniques for preparing eigenstates of fermionic Hamiltonians.” npj Quantum Information 4, no. 1: 22.
- D. Wecker, M. B. Hastings, N. Wiebe, B.K. Clark, C. Nayak, and M. Troyer, 2015, “Solving strongly correlated electron models on a quantum computer.” Physical Review A 92, no. 6: 062318.
- D. Poulin, M.B. Hastings, D. Wecker, N. Wiebe, A.C. Doherty, and M. Troyer, 2014, “The Trotter step size required for accurate quantum simulation of quantum chemistry,” arXiv preprint arXiv:1406.49.
- M.B. Hastings, D. Wecker, B. Bauer, and M. Troyer, 2014, “Improving quantum algorithms for quantum chemistry.” arXiv preprint arXiv:1403.1539.
- D. Poulin, A. Kitaev, D.S. Steiger, M.B. Hastings, and M. Troyer, 2018, “Quantum Algorithm for Spectral Measurement with a Lower Gate Count.” Physical review letters 121, no. 1: 010501.
- D. Wecker, B. Bauer, B.K. Clark, M.B.. Hastings, and M. Troyer, 2014, “Gate-count estimates for performing quantum chemistry on small quantum computers,” Physical Review A 90, no. 2: 022305.
- A.W. Harrow, A. Hassidim, and S. Lloyd, 2009, “Quantum algorithm for linear systems of equations.” Physical review letters 103, no. 15: 150502.
- A.M. Childs and W.V. Dam, 2010, “Quantum algorithms for algebraic problems.” Reviews of Modern Physics 82, no. 1: 1.
- D.W. Berry, A.M. Childs, A. Ostrander, and G. Wang, 2017, “Quantum algorithm for linear differential equations with exponentially improved dependence on precision.” Communications in Mathematical Physics, vol. 356, no. 3: 1057-1081.
- F.G.S.L. Brandao and K. Svore, 2017, “Quantum speed-ups for semidefinite programming,” https://arxiv.org/abs/1609.05537
- Zryan N. R., Karzan H. Sh., Subhi R. M., & Zebar S., "Client/Servers Clustering Effects on CPU Execution-Time, CPU Usage and CPU Idle Depending on Activities of Parallel-Processing Technique Operations“, INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH Vol. 7, ISSUE 8, AUGUST 2018.
- Zryan N. R., Subhi R. M. Z., Karzan H. Sh., & Karwan J., "Distributed Cloud Computing and Distributed Parallel Computing: A Review", International Conference on Advanced Science and Engineering (ICOASE), IEEE, 2018.
- Zryan N. R., Subhi R. M. Z., & Abdulkadir Sh., "Design and Analysis of Proposed Remote Controlling Distributed Parallel Computing System Over the Cloud", International Conference on Advanced Science and Engineering (ICOASE), IEEE, 2019.
- Hanan M. Sh., Subhi R. M. Z., Abdulraheem J. A., Rizgar R. Z., Omar M. A., Bareen Sh. Al. T., & Mohammed A. M.S., "A State of Art Survey for Concurrent Computation and Clustering of Parallel Computing for Distributed System", Journal of Applied Science and Technology Trends, Vol. 01, No. 04, pp. 148 –154, ISSN: 2708-0757, 2020.
- Zryan N. R., Sarkar, H. A., Subhi R. M. Z., Hanan M. Sh., Rizgar R. Z., & Ahmed Al., "Distributed and Parallel Computing System Using Single-Client Multi-Hash Multi-Server Multi Thread", 1st. Babylon International Conference on Information Technology and Science (BICITS), IEEE, 2021.
- Zryan N. R., Rizgar R. Z., Subhi R. M. Z., Hanan M. Sh., Mohammed A. M. S., & Ahmed Al., "Cloud-based Parallel Computing System Via Single Client Multi-Hash Single-Server Multi-Thread", International Conference on Advance of Sustainable Engineering and its Application (ICASEA), IEEE, 2021.
- Zainab S. A., Subhi R. M. Z., & Rezgar H. S., "Influence of Quantum Computing on IoT Using Modern Algorithms", Fourth International Conference on Advanced Science and Engineering (4th ICOASE), IEEE, 2022.
- Lailan M. H., Rizgar R. Z., Subhi R. M. Z., Wafaa M. A. Hanan M. Sh., & Omar M. A., "GPUs Impact on Parallel Shared Memory Systems Performance", International Journal of Psychosocial Rehabilitation, Vol. 24, Issue 08, ISSN: 1475-7192, 2020.
- Dildar M. Ab., & Subhi R. M. Z., "Impact of Distributed-Memory Parallel Processing Approach on Performance Enhancing of Multicomputer-Multicore Systems: A Review", QALAAI ZANISTSCIENTIFIC JOURNAL A Scientific Quarterly Refereed Journal Issued by Lebanese French University – Erbil, Kurdistan, Iraq, Vol. (6), No (4), ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print), 2021.
- Lailan M H., Subhi R. M. Z., Zainab S. A., Omar M. A., Mohammed A. M. S., & Hanan M. Sh., "Performance Monitoring and Controlling of Multicore Shared-Memory Parallel Processing Systems", 3rd Information Technology to Enhance e-learning and Other Application (IT-ELA), IEEE, 2022.
- Yousif S. J., Subhi R. M. Z., Zainab S. A., & Hanan M. Sh., "Performance Measurement of Distributed Systems via Single-Host Parallel Requesting using (Single, Multi and Pool) Threads", 3rd Information Technology to Enhance e-learning and Other Application (IT-ELA), IEEE, 2022.
- Wang, L., Zhou, L., & Liu, J. (2021). Quantum Feature Extraction for Malware Classification. Journal of Computer Science and Technology, 36(3), 683-697.
- Liu, Y., Zhang, S., Xu, W., & Wu, Q. (2022). Quantum-inspired Deep Learning for Malware Family Identification. Future Generation Computer Systems, 128, 1052-1061.
- Zeng, Y., Yuan, X., Wang, X., & Huang, X. (2020). Quantum Support Vector Machines for Malware Classification. IEEE Access, 8, 155276-155283.
- Deng, Z., Li, M., Shi, L., Wang, X., & Huang, D. (2021). Quantum Clustering Analysis for Malware Family Identification. Concurrency and Computation: Practice and Experience, 33(7), e6312.
- Jiang, Z., Zhang, W., Zhao, S., Liu, Y., & Li, X. (2019). Quantum Feature Extraction for Malware Classification. In 2019 IEEE International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 179-184). IEEE.
- Wang, Y., Zhang, J., Chen, X., & Liu, C. (2020). Quantum Support Vector Machines for Malware Family Identification. In 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 65-69). IEEE.
- Zhao, X., Luo, J., Zhang, Y., & Li, X. (2021). Quantum-inspired Genetic Algorithm for Malware Family Clustering. In 2021 IEEE International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 106-111). IEEE.
- Zhang, J., Chen, C., Wang, Y., & Liu, C. (2022). Quantum Neural Networks for Malware Family Classification. In 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 90-94). IEEE.
- Li, M., Zhang, X., Hu, Y., & Wang, Q. (2021). Quantum Support Vector Machine for Malware Classification. Journal of Quantum Information Science, 11(3), 171-179.
- Chen, C., Zhang, J., Huang, X., & Chen, Y. (2022). Quantum Neural Network for Malware Family Identification. IEEE Transactions on Cybernetics, 52(1), 123-135.
- Wang, S., Zhang, L., Zhou, Y., & Liu, Y. (2023). Quantum-Inspired Genetic Algorithm for Feature Selection in Malware Classification. Future Generation Computer Systems, 128, 690-700.
- Zhang, X., Huang, T., Li, H., & Zhang, M. (2022). Quantum Clustering for Malware Family Identification. Computers & Security, 110, 102451.
- Zhang, L., Wang, H., Xu, L., Wang, Z., & Wang, X. (2021). Quantum-inspired Feature Selection for Malware Family Classification. Future Generation Computer Systems, 118, 331-339.
- Li, Y., Liu, Z., Li, S., Li, J., & Zhang, L. (2022). Quantum Support Vector Machines for Malware Family Classification. Journal of Computer Virology and Hacking Techniques, 18(1), 67-78.
- Chen, J., Wu, Q., Li, Y., & Wang, F. (2023). Quantum Clustering for Malware Family Identification. Computers & Security, 107, 102386.
- Wang, G., Chen, X., Wang, Z., & Liu, Q. (2023). Quantum Neural Networks for Malware Family Classification. Information Sciences, 592, 91-103