Trust-Aware and Adaptive Malicious Node Detection in Fog Network using Independent DQN with Centralized Training
Abstract
The proliferation of decentralized and dynamic networks, such as fog computing and the Internet of Things (IoT), has significantly raised the demand for network security and resilience solutions. This study presents a decentralized trust management framework for detecting malicious nodes in fog-to-fog networks using Multi-Agent Reinforcement Learning (MARL). Our approach utilizes Independent Deep Q-Networks (I-DQN) for decentralized decision making at each fog node with dynamic trust evaluation, allowing them to learn an optimal detection policy based on local observations. Importantly, we enhance this by centralized training controlled by a central orchestrator, which uses a shared global critic and parameter sharing. The proposed system was evaluated on a 10-15 nodes fog network under three distinct attack scenarios: aggressive, stealth, and gradual. Experimental results demonstrate superior performance with detection rates of 92.0% for aggressive attacks, 78.0% for stealth attacks, and 67.9% for gradual attacks. Security focused results demonstrate exceptional false negative performance with FNR values of 8.3% ± 2.0% for aggressive attacks (excellent performance), 22.0% ± 2.0% for stealth attacks (good performance), and 31.9% ± 1.9% for gradual attacks (acceptable performance), ensuring minimal malicious nodes remain undetected across all attack types. The proposed approach provides a highly secure and scalable solution for detecting malicious nodes in fog networks, offering superior threat detection through intelligent trust based decision making and coordinated multi-agent learning.
Keywords
Fog Computing, Reinforcement Learning, Trust, Network
References
- Burhan, M., Alam, H., Arsalan, A., Rehman, R. A., Anwar, M., Faheem, M., & Ashraf, M. W. (2023). A comprehensive survey on the cooperation of fog computing paradigm-based IoT applications: layered architecture, real-time security issues, and solutions. IEEE Access, 11, 73303-73329. DOI: 10.1109/ACCESS.2023.3294479
- Jin, J., Pang, Z., Kua, J., Zhu, Q., Johansson, K. H., Marchenko, N., & Cavalcanti, D. (2025). Cloud-Fog Automation: The New Paradigm towards Autonomous Industrial Cyber-Physical Systems. IEEE Journal on Selected Areas in Communications. DOI: 10.1109/JSAC.2025.3574587
- Liang, F., Zhang, Z., Lu, H., Li, C., Leung, V., Guo, Y., & Hu, X. (2024). Resource allocation and workload scheduling for large-scale distributed deep learning: A survey. arXiv preprint arXiv:2406.08115.
- Wang, X., Wang, B., Wu, Y., Ning, Z., Guo, S., & Yu, F. R. (2024). A survey on trustworthy edge intelligence: From security and reliability to transparency and sustainability. IEEE Communications Surveys & Tutorials. DOI: 10.1109/COMST.2024.3446585
- Saidi, A. (2024). An adaptive trust system for misbehavior detection in wireless sensor networks. Wireless Networks, 30(4), 2589-2615. https://doi.org/10.1007/s11276-024-03687-4
- Abughazalah, M., Alsaggaf, W., Saifuddin, S., & Sarhan, S. (2024). Centralized vs. Decentralized Cloud Computing in Healthcare. Applied Sciences, 14(17), 7765 https://doi.org/10.3390/app14177765
- Hu, K., Li, M., Song, Z., Xu, K., Xia, Q., Sun, N., ... & Xia, M. (2024). A review of research on reinforcement learning algorithms for multi-agents. Neurocomputing,128068. https://doi.org/10.1016/j.neucom.2024.128068
- Zhu, C., Dastani, M., & Wang, S. (2024). A survey of multi-agent deep reinforcement learning with communication. Autonomous Agents and Multi-Agent Systems, 38(1), 4. https://doi.org/10.1007/s10458-024-09644-x
- Al-Khafajiy, M., Baker, T., Asim, M., Guo, Z., Ranjan, R., Longo, A., ... & Taylor, M. (2020). COMITMENT: A fog computing trust management approach. Journal of Parallel and Distributed Computing, 137, 1-16. https://doi.org/10.1016/j.jpdc.2019.10.006
- Rehman, A., Awan, K. A., Ud Din, I., Almogren, A., & Alabdulkareem, M. (2023). FogTrust: fog-integrated multi-leveled trust management mechanism for internet of things. Technologies, 11(1), 27. https://doi.org/10.3390/technologies11010027
- Ghaleb, M., & Azzedin, F. (2023). Trust-aware fog-based iot environments: Artificial reasoning approach. Applied Sciences, 13(6), 3665. https://doi.org/10.3390/app13063665
- P. K. R. Goel, J. Jain, S. Sahu, and S. Singh, "PREPUTATION BASED TRUST MANAGEMENT SYSTEM FOR MALICIOUS FOG NODE DETECTION," Journal of Theoretical and Applied Information Technology, vol. 100, no. 24, pp. 6463-6472, 2022.
- Ogundoyin, S. O., & Kamil, I. A. (2021). A trust management system for fog computing services. Internet of Things, 14, 100382 https://doi.org/10.1016/j.iot.2021.100382
- Alruwaythi, M., Kambhampaty, K., & Nygard, K. E. (2019). User Behavior and Trust Evaluation in Cloud Computing. In CATA (pp. 378-386).
- Hady, M. A., Hu, S., Pratama, M., Cao, J., & Kowalczyk, R. (2025). Multi-Agent Reinforcement Learning for Resources Allocation Optimization: A Survey. arXiv preprint arXiv:2504.21048.
- We, X., Farooq, J., & Chen, J. (2024, November). Multi-Agent Distributed Decentralized Dynamic Resource Orchestration in 5G Edge-Cloud Networks. In 2024 IEEE 13th International Conference on Cloud Networking (CloudNet) (pp. 1-8). IEEE. DOI: 10.1109/CloudNet62863.2024.10815780
- Lu, J., Hong, C., & Wang, R. (2024). MAGT-toll: A multi-agent reinforcement learning approach to dynamic traffic congestion pricing. PloS one, 19(11), e0313828 https://doi.org/10.1371/journal.pone.0313828
- Alnaim, A. K., & Alwakeel, A. M. (2025). Zero-Trust Mechanisms for Securing Distributed Edge and Fog Computing in 6G Networks. Mathematics (2227-7390), 13(8). DOI 10.3390/math13081239
- Shehada, D., Gawanmeh, A., Yeun, C. Y., & Zemerly, M. J. (2022). Fog-based distributed trust and reputation management system for internet of things. Journal of King Saud University-Computer and Information Sciences, 34(10), 8637-8646. https://doi.org/10.1016/j.jksuci.2021.10.006
- Alvi, A. N., Ali, B., Saleh, M. S., Alkhathami, M., Alsadie, D., & Alghamdi, B. (2024). Secure computing for fog-enabled industrial IoT. Sensors, 24(7), 2098. https://doi.org/10.3390/s24072098
- Alvi, A. N., Ali, B., Saleh, M. S., Alkhathami, M., Alsadie, D., & Alghamdi, B. (2023). TETES: trust based efficient task execution scheme for fog enabled smart cities. Applied Sciences, 13(23), 12799 https://doi.org/10.3390/app132312799
- Shabut, A. M., Dahal, K. P., Bista, S. K., & Awan, I. U. (2014). Recommendation based trust model with an effective defence scheme for MANETs. IEEE Transactions on mobile computing, 14(10), 2101-2115. DOI: 10.1109/TMC.2014.2374154
- ALGESHARI, W., RAMAZAN, M. S., ALOTAIBI, F., & ALYOUBI, K. (2024). AN EXTENSIVE REVIEW OF SECURITY ISSUES AND CHALLENGES IN FOG COMPUTING ENVIRONMENT. Journal of Theoretical and Applied Information Technology, 102(22).
- Moudoud, H., Abou El Houda, Z., & Brik, B. (2024). Advancing security and trust in wsns: A federated multi-agent deep reinforcement learning approach. IEEE Transactions on Consumer Electronics. DOI: 10.1109/TCE.2024.3440178
- Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M., ... & Graepel, T. (2017). Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296.
- Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., & Whiteson, S. (2020). Monotonic value function factorisation for deep multi-agent reinforcement learning. Journal of Machine Learning Research, 21(178), 1-51
- Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., & Mordatch, I. (2017). Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural information processing systems, 30.
- Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the tenth international conference on machine learning (pp. 330-337).
- Samann, F. E. F., Zeebaree, S. R., & Askar, S. (2021). IoT provisioning QoS based on cloud and fog computing. Journal of Applied Science and Technology Trends, 2(01), 29-40 https://doi.org/10.38094/jastt20190.
- Hasan, R. T. (2022). Internet of things and big data analytic: A state of the art review. Journal of Applied Science and Technology Trends, 3(02), 93-100. https://doi.org/10.38094/jastt302135
- Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021). Stable-baselines3: Reliable reinforcement learning implementations. Journal of machine learning research, 22(268), 1-8.
- Zhang, Y., & Ross, K. W. (2021, July). On-policy deep reinforcement learning for the average-reward criterion. In International Conference on Machine Learning (pp. 12535-12545). PMLR.
- Alshehri, M. D., & Hussain, F. K. (2019). A fuzzy security protocol for trust management in the internet of things (Fuzzy-IoT). Computing, 101(7), 791-818.
- Alghofaili, Y., & Rassam, M. A. (2022). A trust management model for IoT devices and services based on the multi-criteria decision-making approach and deep long short-term memory technique. Sensors, 22(2), 634. https://doi.org/10.3390/s22020634
- Naramalli Jayakrishna & N. Narayanan Prasanth, A hybrid deep learning model for detection and mitigation of DDoS attacks in VANETs, Scientific Reports, (2025) 15:34170. https://doi.org/10.1038/s41598-025-15215-1
