Skip to main navigation menu Skip to main content Skip to site footer

Internet of Robotic Things: A Review


The Internet of Things (IoT) gives a strong structure for connecting things to the internet to facilitate Machine to Machine (M2M) communication and data transmission through basic network protocols such as TCP/IP.  IoT is growing at a fast pace, and billions of devices are now associated, with the amount expected to reach trillions in the coming years. Many fields, including the army, farming, manufacturing, healthcare, robotics, and biotechnology, are adopting IoT for advanced solutions as technology advances. This paper offers a detailed view of the current IoT paradigm, specifically proposed for robots, namely the Internet of Robotic Things (IoRT). IoRT is a collection of various developments such as Cloud Computing, Artificial Intelligence (AI), Machine Learning, and the (IoT). This paper also goes over architecture, which would be essential in the design of Multi-Role Robotic Systems for IoRT. Furthermore, includes systems underlying IoRT, as well as IoRT implementations.  The paper provides the foundation for researchers to imagine the idea of IoRT and to look beyond the frame while designing and implementing IoRT-based robotic systems in real-world implementations.


IoRT, AI, ML, Sensors, Cloud Computing, Robotics



  1. P. P. Ray, “Internet of Robotic Things: Concept, Technologies, and Challenges,” IEEE Access, vol. 4, pp. 9489–9500, 2016, doi: 10.1109/ACCESS.2017.2647747.
  2. A. Sanfeliu, N. Hagita, and A. Saffiotti, “Network robot systems,” Robot. Auton. Syst., vol. 56, no. 10, pp. 793–797, 2008, doi: 10.1016/j.robot.2008.06.007.
  3. A. Saffiotti et al., The PEIS-Ecology project: Vision and results. 2008. doi: 10.1109/IROS.2008.4650962.
  4. J. Kim, K. Lee, Y. Kim, N. S. Kuppuswamy, and J. Jo, “Ubiquitous Robot: A New Paradigm for Integrated Services,” in Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 2853–2858. doi: 10.1109/ROBOT.2007.363904.
  5. Y. G. Ha, J. C. Sohn, Y. J. Cho, and H. Yoon, “Towards a ubiquitous robotic companion: Design and implementation of ubiquitous robotic service framework,” ETRI J., vol. 27, no. 6, pp. 666–676, 2005, doi: 10.4218/etrij.05.0105.0138.
  6. C. Homes and S. Meyer, “A Survey of Research on,” pp. 1–10, 2010.
  7. K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud networked robotics,” IEEE Netw. - Netw., vol. 26, pp. 28–34, May 2012, doi: 10.1109/MNET.2012.6201213.
  8. P. Simoens, M. Dragone, and A. Saffiotti, “The Internet of Robotic Things: A review of concept, added value and applications,” Int. J. Adv. Robot. Syst., vol. 15, no. 1, pp. 1–11, 2018, doi: 10.1177/1729881418759424.
  9. A. Roy Chowdhury, “IoT and Robotics: a synergy,” PeerJ Prepr., vol. 5, p. e2760v1, 2017, doi: 10.7287/peerj.preprints.2760v1.
  10. C. Razafimandimby, V. Loscri, and A. M. Vegni, “A Neural Network and IoT Based Scheme for Performance Assessment in Internet of Robotic Things,” in 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), 2016, pp. 241–246. doi: 10.1109/IoTDI.2015.10.
  11. P. Bhavanam and Mrs. T. Jami, “PERFORMANCE ASSESSMENT IN INTERNET OF ROBOTIC THINGS BASED ON IOT,” Int. J. Innov. Technol. Res. Vol 5 No 3 2017 April - May 2017, Jun. 2017.
  12. J. Oh, Y. Park, J. Choi, and J. Choi, “A rule-based context transforming model for robot services in internet of things environment,” in 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2017, pp. 331–336. doi: 10.1109/URAI.2017.7992744.
  13. V. Scilimati et al., “Industrial Internet of things at work: a case study analysis in robotic-aided environmental monitoring,” IET Wirel. Sens. Syst., vol. 7, no. 5, pp. 155–162, Oct. 2017, doi:
  14. L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010, doi:
  15. K. Jacksi and S. Badiozamany, “General method for data indexing using clustering methods,” Int J Sci Eng, vol. 6, no. 3, pp. 641–644, 2015.
  16. N. M. Salih and K. Jacksi, “State of the art document clustering algorithms based on semantic similarity,” J. Inform., vol. 14, no. 2, pp. 58–75, 2020.
  17. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, 2016, doi: 10.1109/JIOT.2016.2579198.
  18. B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A Survey of Research on Cloud Robotics and Automation,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 398–409, 2015, doi: 10.1109/TASE.2014.2376492.
  19. G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta: A Cloud Robotics Platform,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 481–493, 2015, doi: 10.1109/TASE.2014.2329556.
  20. T. Cieslewski, S. Lynen, M. Dymczyk, S. Magnenat, and R. Siegwart, “Map API - scalable decentralized map building for robots,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 6241–6247. doi: 10.1109/ICRA.2015.7140075.
  21. M. Szlenk, C. ZieliNski, M. Figat, and T. Kornuta, “Reconfigurable agent architecture for robots utilising cloud computing,” Adv. Intell. Syst. Comput., vol. 351, pp. 253–264, 2015, doi: 10.1007/978-3-319-15847-1_25.
  22. R. S. Batth, A. Nayyar, and A. Nagpal, “Internet of Robotic Things: Driving Intelligent Robotics of Future - Concept, Architecture, Applications and Technologies,” Proc. - 4th Int. Conf. Comput. Sci. ICCS 2018, no. August, pp. 151–160, 2019, doi: 10.1109/ICCS.2018.00033.
  23. L. Reinfurt, U. Breitenbucher, M. Falkenthal, F. Leymann, and A. Riegg, “Internet of things patterns,” ACM Int. Conf. Proceeding Ser., 2016, doi: 10.1145/3011784.3011789.
  24. S. Qanbari et al., “IoT design patterns: Computational constructs to design, build and engineer edge applications,” Proc. - 2016 IEEE 1st Int. Conf. Internet-Things Des. Implement. IoTDI 2016, pp. 277–282, 2016, doi: 10.1109/IoTDI.2015.18.
  25. H. Washizaki et al., “Landscape of IoT Patterns,” in 2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT), 2019, pp. 57–60. doi: 10.1109/SERP4IoT.2019.00017.
  26. G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti, “Design patterns for the industrial Internet of Things,” IEEE Int. Workshop Fact. Commun. Syst. - Proc. WFCS, vol. 2018-June, pp. 1–10, 2018, doi: 10.1109/WFCS.2018.8402353.
  27. A. Ghosh, D. J. Edwards, and M. R. Hosseini, “Patterns and trends in Internet of Things (IoT) research: future applications in the construction industry,” Eng. Constr. Archit. Manag., vol. 28, no. 2, pp. 457–481, 2020, doi: 10.1108/ECAM-04-2020-0271.
  28. G. S. VIRK, H. S. PARK, S. YANG, and J. WANG, “ISO MODULARITY FOR SERVICE ROBOTS,” in Advances in Cooperative Robotics, WORLD SCIENTIFIC, 2016, pp. 663–671. doi: doi:10.1142/9789813149137_0077.
  29. R. Damasevicius, G. Majauskas, and V. Stuikys, “Application of design patterns for hardware design,” Proc. - Des. Autom. Conf., no. 370 37, pp. 48–53, 2003, doi: 10.1145/775832.775847.
  30. V. Malcher, “Design Patterns in Cloud Computing,” in 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015, pp. 32–35. doi: 10.1109/3PGCIC.2015.142.
  31. M. Bartoletti and L. Pompianu, “An Empirical analysis of smart contracts: Platforms, applications, and design patterns,” Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol. 10323 LNCS, pp. 494–509, 2017, doi: 10.1007/978-3-319-70278-0_31.
  32. L. Reinfurt, U. Breitenbucher, M. Falkenthal, F. Leymann, and A. Riegg, “Internet of Things Patterns for Devices: Powering, Operating, and Sensing,” Int. J. Adv. Internet Technol., pp. 106–123, 2017.
  33. L. Reinfurt, U. Breitenbucher, M. Falkenthal, F. Leymann, and A. Riegg, Internet of things patterns for communication and management, vol. 10600 LNCS. 2019. doi: 10.1007/978-3-030-14291-9_5.
  34. G. Meszaros and J. Doble, “MetaPatterns: A Pattern Language for Pattern Writing,” Pattern Lang. Program Des., pp. 1–36, 1997.
  35. C. Fehling et al., “Institute of Architecture of Application Systems Authoring , and Application A Process for Pattern Identification , Authoring , and Application,” 2015.
  36. M. Mazzara, I. Afanasyev, S. R. Sarangi, S. Distefano, V. Kumar, and M. Ahmad, “A Reference Architecture for Smart and Software-Defined Buildings,” in 2019 IEEE International Conference on Smart Computing (SMARTCOMP), 2019, pp. 167–172. doi: 10.1109/SMARTCOMP.2019.00048.
  37. I. Afanasyev et al., “Towards the internet of robotic things: Analysis, architecture, components and challenges,” Proc. - Int. Conf. Dev. ESystems Eng. DeSE, vol. October-20, pp. 3–8, 2019, doi: 10.1109/DeSE.2019.00011.
  38. O. Vermesan et al., "Internet of robotic things: converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms," in Cognitive Hyperconnected Digital Transformation: Internet of Things Intelligence Evolution, J. B. Ovidiu Vermesan, Ed. School of Science and Technology, Orebro University: River Publishers, 2017, pp. 97–155.
  39. E. Menegatti, Advances in Intelligent Systems and Computing 302 Intelligent Autonomous Systems 13.
  40. I. S. of R. and A. T. C. On and N. Robots., “Networked Robots.”
  41. M. J. Mataric, “EMBEDDING ROBOTS,” vol. 43, pp. 67–74.
  42. G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges and applications,” IEEE Netw., vol. 26, no. 3, pp. 21–28, 2012, doi: 10.1109/MNET.2012.6201212.
  43. M. Waibel et al., “Robo earth,” IEEE Robot. Autom. Mag., vol. 18, no. 2, pp. 69–82, 2011, doi: 10.1109/MRA.2011.941632.
  44. Vermesan and Ovidiu, Digitising the Industry Internet of Things Connecting the Physical, Digital and Virtual Worlds. 2016.
  45. F. Cavallo et al., “Development of a Socially Believable Multi-Robot Solution from Town to Home,” Cogn. Comput., vol. 6, no. 4, pp. 954–967, 2014, doi: 10.1007/s12559-014-9290-z.
  46. B. Mutlu and J. Forlizzi, “Robots in organizations: The role of workflow, social, and environmental factors in human-robot interaction,” in 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2008, pp. 287–294. doi: 10.1145/1349822.1349860.
  47. F. Yazdani, B. Brieber, M. Beetz, and F. Yazdani, “Cognition-enabled Robot Control for Mixed Human-Robot Rescue Teams Simulation-based Rescue Scenario Cognition-enabled Robot Control in a Human-Robot Team 2 Artificial Intelligence,” no. July, 2014.
  48. X. J. Liu, “Research toward IoT and Robotics in Intelligent Manufacturing: A Survey,” Int. J. Mater. Mech. Manuf., vol. 7, no. 3, pp. 128–132, 2019, doi: 10.18178/ijmmm.2019.7.3.445.
  49. L. Hu, Y. Miao, G. Wu, M. M. Hassan, and I. Humar, “iRobot-Factory: An intelligent robot factory based on cognitive manufacturing and edge computing,” Future Gener. Comput. Syst., vol. 90, pp. 569–577, 2019, doi:
  50. J. Reis, “Towards an Industrial Agent Oriented Approach,” Dr. Symp. Inform. Eng., no. January, pp. 1–12, 2014.
  51. V. Rampa, F. Vicentini, S. Savazzi, N. Pedrocchi, M. Ioppolo, and M. Giussani, “Safe human-robot cooperation through sensor-less radio localization,” in 2014 12th IEEE International Conference on Industrial Informatics (INDIN), 2014, pp. 683–689. doi: 10.1109/INDIN.2014.6945596.
  52. K. Qian, X. Ma, X. Dai, F. Fang, and B. Zhou, “Decision-Theoretical Navigation of Service Robots Using POMDPs with Human-Robot Co-Occurrence Prediction,” Int. J. Adv. Robot. Syst., vol. 10, no. 2, p. 143, Feb. 2013, doi: 10.5772/55926.
  53. Z. N. Rashid, S. R. Zebari, K. H. Sharif, and K. Jacksi, “Distributed cloud computing and distributed parallel computing: A review,” 2018, pp. 167–172.
  54. I. M. Ibrahim et al., “Task scheduling algorithms in cloud computing: A review,” Turk. J. Comput. Math. Educ., vol. 12, no. 4, pp. 1041–1053, 2021.
  55. B. Siciliano and O. Khatib, Robotics and the handbook. 2016. doi: 10.1007/978-3-319-32552-1_1.
  56. R. C. Luo, C.-C. Yih, and K. L. Su, “Multisensor fusion and integration: approaches, applications, and future research directions,” IEEE Sens. J., vol. 2, no. 2, pp. 107–119, 2002, doi: 10.1109/JSEN.2002.1000251.
  57. S. M. LaValle, “Planning algorithms,” Plan. Algorithms, vol. 9780521862, pp. 1–826, 2006, doi: 10.1017/CBO9780511546877.
  58. X. Lv, M. Zhang, and H. Li, “Robot control based on voice command,” in 2008 IEEE International Conference on Automation and Logistics, 2008, pp. 2490–2494. doi: 10.1109/ICAL.2008.4636587.
  59. A. Mosavi and A. Varkonyi-Koczy, “Learning in Robotics,” Int. J. Comput. Appl., vol. 157, pp. 975–8887, Jan. 2017, doi: 10.5120/ijca2017911661.
  60. C. Razafimandimby et al., “Towards efficient deployment in Internet of Robotic Things To cite this version: HAL Id: hal-01499345 Towards efficient deployment in,” 2017.
  61. R. R. Zebari, S. R. M. Zeebaree, A. B. Sallow, H. M. Shukur, O. M. Ahmad, and K. Jacksi, “Distributed Denial of Service Attack Mitigation using High Availability Proxy and Network Load Balancing,” in 2020 International Conference on Advanced Science and Engineering (ICOASE), Dec. 2020, pp. 174–179. doi: 10.1109/ICOASE51841.2020.9436545.
  62. R. R. Zebari, S. R. Zeebaree, and K. Jacksi, “Impact Analysis of HTTP and SYN Flood DDoS Attacks on Apache 2 and IIS 10.0 Web Servers,” 2018, pp. 156–161.
  63. V. Matellan, T. Bonaci, and G. Sabaliauskaite, “Cyber-security in robotics and autonomous systems,” Robot. Auton. Syst., vol. 100, pp. 41–42, 2018, doi:
  64. M. A. Sadeeq, S. R. Zeebaree, R. Qashi, S. H. Ahmed, and K. Jacksi, “Internet of Things security: a survey,” 2018, pp. 162–166.
  65. FRANK L. LEWIS, Autonomous Mobile Robots, vol. 53, no. 9. 2013.
  66. O. Palinko, F. Rea, G. Sandini, and A. Sciutti, “Robot reading human gaze: Why eye tracking is better than head tracking for human-robot collaboration,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 5048–5054. doi: 10.1109/IROS.2016.7759741.
  67. P. Hunter, “Remote working in research,” EMBO Rep., vol. 20, no. 1, p. e47435, Jan. 2019, doi:
  68. M. J. Islam and J. Sattar, “Mixed-domain biological motion tracking for underwater human-robot interaction,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 4457–4464. doi: 10.1109/ICRA.2017.7989516.
  69. R. PATEL, “Human Robot Interaction With Cloud Assisted Voice Control,” no. May, 2018.
  70. G. d. Campo, S. Calatrava, G. Cañada, J. Olloqui, R. Martinez, and A. Santamaria, “IoT Solution for Energy Optimization in Industry 4.0: Issues of a Real-life Implementation,” in 2018 Global Internet of Things Summit (GIoTS), 2018, pp. 1–6. doi: 10.1109/GIOTS.2018.8534537.
  71. L. Bukata, P. Sucha, Z. Hanzálek, and P. Burget, “Energy Optimization of Robotic Cells,” IEEE Trans. Ind. Inform., vol. 13, no. 1, pp. 92–102, 2017, doi: 10.1109/TII.2016.2626472.
  72. N. Dragoni, A. Giaretta, and M. Mazzara, “The internet of hackable things,” Adv. Intell. Syst. Comput., vol. 717, pp. 129–140, 2018, doi: 10.1007/978-3-319-70578-1_13.
  73. A. Khalid, P. Kirisci, Z. H. Khan, Z. Ghrairi, K.-D. Thoben, and J. Pannek, “Security framework for industrial collaborative robotic cyber-physical systems,” Comput. Ind., vol. 97, pp. 132–145, 2018, doi:
  74. A. Wegner, J. Graham, and E. Ribble, “A New Approach to Cyberphysical Security in Industry 4.0,” pp. 59–72, 2017, doi: 10.1007/978-3-319-50660-9_3.
  75. M. R. Pedersen et al., “Robot skills for manufacturing: From concept to industrial deployment,” Robot. Comput.-Integr. Manuf., vol. 37, pp. 282–291, 2016, doi:
  76. P. D. Urbina Coronado, H. Ahuett-Garza, R. Morales-Menendez, P. Orta Castañón, L. D. Dávila, and M. R. Flores Escalera, “Connectivity of a modular electric vehicle by the use of a mobile device,” Adv. Mech. Eng., vol. 9, no. 7, p. 1687814017708087, Jul. 2017, doi: 10.1177/1687814017708087.
  77. A. Kumar, “Methods and Materials for Smart Manufacturing: Additive Manufacturing, Internet of Things, Flexible Sensors and Soft Robotics,” Manuf. Lett., vol. 15, pp. 122–125, 2018, doi:
  78. A. Grau, M. Indri, L. L. Bello, and T. Sauter, “Industrial robotics in factory automation: From the early stage to the Internet of Things,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 6159–6164. doi: 10.1109/IECON.2017.8217070.
  79. W. Chang, S. Lin, J. Hsu, and B. Hsu, “Automatic Path Planning of Robot for Intelligent Manufacturing Based on Network Remoted Controlling and Simulation,” in 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), 2019, pp. 164–168. doi: 10.1109/ACIRS.2019.8935967.
  80. K. Mrudul, R. K. Mandava, and P. R. Vundavilli, “An Efficient Path Planning Algorithm for Biped Robot using Fast Marching Method,” Procedia Comput. Sci., vol. 133, pp. 116–123, 2018, doi:
  81. L. Xin, H. Xiangyuan, Y. Ziqi, Q. Xiaoning, and D. Yingkui, “The Algebraic Algorithm for Path Planning Problem of AGV in Flexible Manufacturing System,” in 2018 37th Chinese Control Conference (CCC), 2018, pp. 2396–2399. doi: 10.23919/ChiCC.2018.8483105.
  82. Q. Liu, P. Hua, A. Sultan, L. Shen, E. Mueller, and F. Boerner, “Study of the Integration of Robot in Cyber-Physical Production Systems,” in 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2019, pp. 367–370. doi: 10.1109/CyberC.2019.00069.
  83. X. V. Wang, L. Wang, A. Mohammed, and M. Givehchi, “Ubiquitous manufacturing system based on Cloud: A robotics application,” Robot. Comput.-Integr. Manuf., vol. 45, pp. 116–125, 2017, doi:
  84. J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V Vasilakos, “Cloud robotics: Current status and open issues,” IEEE Access, vol. 4, pp. 2797–2807, 2016, doi: 10.1109/ACCESS.2016.2574979.
  85. R.-J. Halme, M. Lanz, J. Kamarainen, R. Pieters, J. Latokartano, and A. Hietanen, “Review of vision-based safety systems for human-robot collaboration,” Procedia CIRP, vol. 72, pp. 111–116, 2018, doi:
  86. M. A. R. Garcia, R. Rojas, L. Gualtieri, E. Rauch, and D. Matt, “A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing,” Procedia CIRP, vol. 81, pp. 600–605, 2019, doi:
  87. Q. Liu, Z. Liu, W. Xu, Q. Tang, Z. Zhou, and D. T. Pham, “Human-robot collaboration in disassembly for sustainable manufacturing,” Int. J. Prod. Res., vol. 57, no. 12, pp. 4027–4044, Jun. 2019, doi: 10.1080/00207543.2019.1578906.
  88. F. Chen, M. Selvaggio, and D. G. Caldwell, “Dexterous Grasping by Manipulability Selection for Mobile Manipulator With Visual Guidance,” IEEE Trans. Ind. Inform., vol. 15, no. 2, pp. 1202–1210, 2019, doi: 10.1109/TII.2018.2879426.
  89. D.Saravanan, G. L. Archana, and R.Parthiban, “VOICE CONTROLLED HUMANOID ROBOTIC CAR FOR SMART AGRICULTURE USING ARDUINO AND ANDROID SMART WATCH,” vol. 119, no. 14, pp. 829–833, 2018.
  90. C. Ju and H. I. Son, “Modeling and Control of Heterogeneous Agricultural Field Robots Based on Ramadge–Wonham Theory,” IEEE Robot. Autom. Lett., vol. 5, no. 1, pp. 48–55, 2020, doi: 10.1109/LRA.2019.2941178.
  91. M. Mahbub, “A smart farming concept based on smart embedded electronics, internet of things and wireless sensor network,” Internet Things, vol. 9, p. 100161, 2020, doi:
  92. L. Romeo et al., “Automated Deployment of IoT Networks in Outdoor Scenarios using an Unmanned Ground Vehicle,” in 2020 IEEE International Conference on Industrial Technology (ICIT), 2020, pp. 369–374. doi: 10.1109/ICIT45562.2020.9067099.
  93. S. Faryadi, M. Davoodi, and J. Mohammadpour Velni, “Agricultural Field Coverage Using Cooperating Unmanned Ground Vehicles.” Oct. 08, 2019. doi: 10.1115/DSCC2019-8992.
  94. H. Cao, X. Huang, J. Zhuang, J. Xu, and Z. Shao, “CIoT-Robot Cloud and IoT Assisted Indoor Robot for Medicine Delivery BT - Proceedings of the 2018 Joint International Advanced Engineering and Technology Research Conference (JIAET 2018),” Mar. 2018, pp. 85–89. doi:
  95. H. Zhou, G. Yang, H. Lv, X. Huang, H. Yang, and Z. Pang, “IoT-Enabled Dual-Arm Motion Capture and Mapping for Telerobotics in Home Care,” IEEE J. Biomed. Health Inform., vol. 24, no. 6, pp. 1541–1549, 2020, doi: 10.1109/JBHI.2019.2953885.
  96. C. Chukwuemeka and M. Habib, “Development of Autonomous Networked Robots (ANR) for Surveillance: Conceptual Design and Requirements,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2018, pp. 3757–3763. doi: 10.1109/IECON.2018.8591452.
  97. M. Ashokkumar and T. Thirumurugan, “Integrated IOT based design and Android operated Multi-purpose Field Surveillance Robot for Military Use BT - Proceedings of the International Conference for Phoenixes on Emerging Current Trends in Engineering and Management (PECTEAM 2018),” Feb. 2018, pp. 236–243. doi:
  98. W. H. Mohd Saad, S. A. Abd. Karim, N. Azhar, Z. Manap, Y. Y. Soon, and M. Mat Ibrahim, “Line Follower Mobile Robot for Surveillance Camera Monitoring System,” J. Telecommun. Electron. Comput. Eng. JTEC, vol. 10, no. 2-7 SE-Articles, pp. 1–5, Jul. 2018.
  99. W. J. Blaser, J. Oppong, S. P. Hart, J. Landolt, E. Yeboah, and J. Six, “Climate-smart sustainable agriculture in low-to-intermediate shade agroforests,” Nat. Sustain., vol. 1, no. 5, pp. 234–239, 2018, doi: 10.1038/s41893-018-0062-8.
  100. B. M. Campbell, P. Thornton, R. Zougmore, P. van Asten, and L. Lipper, “Sustainable intensification: What is its role in climate smart agriculture?,” Curr. Opin. Environ. Sustain., vol. 8, pp. 39–43, 2014, doi:
  101. I. Mat, M. R. M. Kassim, A. N. Harun, and I. M. Yusoff, “Smart Agriculture Using Internet of Things,” in 2018 IEEE Conference on Open Systems (ICOS), 2018, pp. 54–59. doi: 10.1109/ICOS.2018.8632817.
  102. L. Romeo, A. Petitti, R. Marani, and A. Milella, “Internet of robotic things in smart domains: Applications and challenges,” Sens. Switz., vol. 20, no. 12, pp. 1–23, 2020, doi: 10.3390/s20123355.
  103. V. Serebrenny, M. Shereuzhev, and I. Metasov, “Approaches to the robotization of agricultural mobile machines,” MATEC Web Conf, vol. 161, 2018.
  104. T. Duckett et al., “Agricultural Robotics: The Future of Robotic Agriculture,” 2018.
  105. M. S. Mekala and P. Viswanathan, “A Survey: Smart agriculture IoT with cloud computing,” in 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), 2017, pp. 1–7. doi: 10.1109/ICMDCS.2017.8211551.
  106. G. Valecce et al., “Robotic-aided IoT: automated deployment of a 6TiSCH network using an UGV,” IET Wirel. Sens. Syst., vol. 9, no. 6, pp. 438–446, Dec. 2019, doi:
  107. F. Adamo et al., “Comparison of current sensors for power consumption assessment of wireless sensors network nodes,” in 2017 IEEE International Workshop on Measurement and Networking (M&N), 2017, pp. 1–4. doi: 10.1109/IWMN.2017.8078390.
  108. G. Micoli et al., “ASAP: A Decentralized Slot Reservation Policy for Dynamic 6TiSCH Networks in Industrial IoT,” in 2019 IEEE International Conference on Communications Workshops (ICC Workshops), 2019, pp. 1–6. doi: 10.1109/ICCW.2019.8757078.
  109. K. L. Krishna, O. Silver, W. F. Malende, and K. Anuradha, “Internet of Things application for implementation of smart agriculture system,” in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017, pp. 54–59. doi: 10.1109/I-SMAC.2017.8058236.
  110. M. Roopaei, P. Rad, and K. R. Choo, “Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging,” IEEE Cloud Comput., vol. 4, no. 1, pp. 10–15, 2017, doi: 10.1109/MCC.2017.5.
  111. R. Amin, S. K. H. Islam, G. P. Biswas, M. K. Khan, and N. Kumar, “A robust and anonymous patient monitoring system using wireless medical sensor networks,” Future Gener. Comput. Syst., vol. 80, pp. 483–495, 2018, doi:
  112. M. Chen, J. Zhou, G. Tao, J. Yang, and L. Hu, “Wearable Affective Robot,” IEEE Access, vol. 6, pp. 64766–64776, 2018, doi: 10.1109/ACCESS.2018.2877919.
  113. T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno, and H. J. Chizeck, “To Make a Robot Secure: An Experimental Analysis of Cyber Security Threats Against Teleoperated Surgical Robots,” pp. 1–11, 2015.
  114. R. M. Fenning, J. K. Baker, B. R. Baucom, S. A. Erath, M. A. Howland, and J. Moffitt, “Electrodermal Variability and Symptom Severity in Children with Autism Spectrum Disorder,” J. Autism Dev. Disord., vol. 47, no. 4, pp. 1062–1072, 2017, doi: 10.1007/s10803-016-3021-0.
  115. A. Nayyar, V. Puri, N. G. Nguyen, and D. N. Le, Smart surveillance robot for real-time monitoring and control system in environment and industrial applications, vol. 672. Springer Singapore, 2018. doi: 10.1007/978-981-10-7512-4_23.
  116. R. Singh, R. Samkaria, A. Gehlot, and S. Choudhary, “Design and Development of IoT enabled Multi Robot System for Search and Rescue Mission,” Int. J. Web Appl., vol. 10, no. 2, p. 51, 2018, doi: 10.6025/ijwa/2018/10/2/51-63.
  117. S. Saponara, L. Pilato, and L. Fanucci, “Exploiting CCTV camera system for advanced passenger services on-board trains,” in 2016 IEEE International Smart Cities Conference (ISC2), 2016, pp. 1–6. doi: 10.1109/ISC2.2016.7580748.
  118. A. Petitti et al., “A Network of Stationary Sensors and Mobile Robots for Distributed Ambient Intelligence,” IEEE Intell. Syst., vol. 31, no. 6, pp. 28–34, 2016, doi: 10.1109/MIS.2016.43.
  119. A. Khakimov, A. Muthanna, R. Kirichek, A. Koucheryavy, and M. S. A. Muthanna, “Investigation of methods for remote control IoT-devices based on cloud platforms and different interaction protocols,” in 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2017, pp. 160–163. doi: 10.1109/EIConRus.2017.7910518.
  120. H. S. Raju and S. Shenoy, “Real-time remote monitoring and operation of industrial devices using IoT and cloud,” in 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), 2016, pp. 324–329. doi: 10.1109/IC3I.2016.7917983.
  121. S. Meghana, T. V Nikhil, R. Murali, S. Sanjana, R. Vidhya, and K. J. Mohammed, “Design and implementation of surveillance robot for outdoor security,” in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2017, pp. 1679–1682. doi: 10.1109/RTEICT.2017.8256885.
  122. K. Rajkumar, C. S. Kumar, C. Yuvashree, and S. Murugan, “PORTABLE SURVEILLANCE ROBOT USING IOT,” pp. 94–97, 2019.
  123. M. S. Shah and P. B. Borole, “Surveillance and rescue robot using Android smartphone and the Internet,” in 2016 International Conference on Communication and Signal Processing (ICCSP), 2016, pp. 1526–1530. doi: 10.1109/ICCSP.2016.7754413.
  124. V. Wanjari and C. Kamargaonkar, “A Review Paper on IoT based Cognitive Robot for Military Surveillance,” pp. 2276–2278, 2019.


Metrics Loading ...