Skip to main navigation menu Skip to main content Skip to site footer

IoT Provisioning QoS based on Cloud and Fog Computing

Abstract

The wide-spread Internet of Things (IoT) utilization in almost every scope of our life made it possible to automate daily life tasks with no human intervention. This promising technology has immense potential for making life much easier and open new opportunities for newly developed applications to emerge. However, meeting the diverse Quality of Service (QoS) demands of different applications remains a formidable topic due to diverse traffic patterns, unpredictable network traffic, and resource-limited nature of IoT devices. In this context, application-tailored QoS provisioning mechanisms have been the primary focus of academic research. This paper presents a literature review on QoS techniques developed in academia for IoT applications and investigates current research trends. Background knowledge on IoT, QoS metrics, and critical enabling technologies will be given beforehand, delving into the literature review. According to the comparison presented in this work, the commonly considered QoS metrics are Latency, Reliability, Throughput, and Network Usage. The reviewed studies considered the metrics that fit their provisioning solutions.

Keywords

IoT, QoS, Provisioning, Cloud Computing, Fog Computing, Virtualization, SDN

PDF

References

  1. B. Paharia and K. Bhushan, “Fog Computing as a Defensive Approach Against Distributed Denial of Service (DDoS): A Proposed Architecture,” in 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Jul. 2018, pp. 1–7, doi: 10.1109/ICCCNT.2018.8494060.
  2. N. H. Mahmood et al., “White Paper on Critical and Massive Machine Type Communication Towards 6G,” arXiv, Apr. 2020, [Online]. Available: http://arxiv.org/abs/2004.14146v2.
  3. I. Sitton-Candanedo, R. S. Alonso, S. Rodriguez-Gonzalez, J. A. Garcia Coria, and F. De La Prieta, “Edge Computing Architectures in Industry 4.0: A General Survey and Comparison,” in Advances in Intelligent Systems and Computing, vol. 950, 2020, pp. 121–131.
  4. I. S. Abdulkhaleq and S. Askar, “Evaluating the impact of network latency on the safety of blockchain transactions,” Int. J. Sci. Bus., vol. 5, no. 3, pp. 71–82, 2021, doi: 10.5281/zenodo.4497512.
  5. A. V. Bataev, I. Zhuzhoma, and N. N. Bulatova, “Digital Transformation of the World Economy: Evaluation of the Global and Russian Internet of Things Markets,” in 2020 9th International Conference on Industrial Technology and Management (ICITM), Feb. 2020, pp. 274–278, doi: 10.1109/ICITM48982.2020.9080392.
  6. A. Constantin and I. B. Bacis, “Performance targets and QoS requirements for the service provided to users/subscribers of public IP networks,” in Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies X, Dec. 2020, no. December 2020, p. 32, doi: 10.1117/12.2570968.
  7. M. Molnar, “QoS Routing for Data Gathering with RPL in WSNs,” in Advances in Intelligent Systems and Computing, vol. 1132, 2020, pp. 87–111.
  8. E. Ahmed, I. Yaqoob, A. Gani, M. Imran, and M. Guizani, “Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges,” IEEE Wirel. Commun., vol. 23, no. 5, pp. 10–16, Oct. 2016, doi: 10.1109/MWC.2016.7721736.
  9. S. Askar, “SDN-Based Load Balancing Scheme for Fat-Tree Data Center Networks,” Al-Nahrain J. Eng. Sci., vol. 20, no. 5, pp. 1047–1056, 2017.
  10. F. S. Fizi and S. Askar, “A novel load balancing algorithm for software defined network based datacenters,” in 2016 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), Sep. 2016, pp. 1–6, doi: 10.1109/COBCOM.2016.7593506.
  11. G. Aziz and S. Askar, “Software Defined Network Based VANET,” Nature, vol. 5, no. 3, pp. 83–91, 2021, doi: 10.5281/zenodo.4497640.
  12. P. Krishnan, S. Duttagupta, and K. Achuthan, “SDN/NFV security framework for fog-to-things computing infrastructure,” Softw. Pract. Exp., vol. 50, no. 5, pp. 757–800, May 2020, doi: 10.1002/spe.2761.
  13. H. Song, J. Bai, Y. Yi, J. Wu, and L. Liu, “Artificial Intelligence Enabled Internet of Things: Network Architecture and Spectrum Access,” IEEE Comput. Intell. Mag., vol. 15, no. 1, pp. 44–51, Feb. 2020, doi: 10.1109/MCI.2019.2954643.
  14. C. M. Mohammed and S. Askar, “Machine Learning for IoT HealthCare Applications: A Review,” Int. J. Sci. Bus., vol. 5, no. 3, pp. 42–51, 2021, doi: 10.5281/zenodo.4496904.
  15. K. D. Ahmed and S. Askar, “Deep Learning Models for Cyber Security in IoT Networks: A Review,” Int. J. Sci. Bus., vol. 5, no. 3, pp. 61–70, 2021, doi: 10.5281/zenodo.4497017.
  16. M. A. M.Sadeeq, S. R. M. Zeebaree, R. Qashi, S. H. Ahmed, and K. Jacksi, “Internet of Things Security: A Survey,” in 2018 International Conference on Advanced Science and Engineering (ICOASE), Oct. 2018, no. October, pp. 162–166, doi: 10.1109/ICOASE.2018.8548785.
  17. S. I. Saleem, S. R. M. Zeebaree, D. Q. Zeebaree, and A. M. Abdulazeez, “Building smart cities applications based on IoT technologies: A review,” Technol. Reports Kansai Univ., vol. 62, no. 3, pp. 1083–1092, 2020.
  18. L. M. Haji, O. M. Ahmad, S. R. M. Zeebaree, H. I. Dino, R. R. Zebari, and H. M. Shukur, “Impact of cloud computing and internet of things on the future internet,” Technol. Reports Kansai Univ., vol. 62, no. 5, pp. 2179–2190, 2020.
  19. H. Aftab, K. Gilani, J. Lee, L. Nkenyereye, S. Jeong, and J. Song, “Analysis of identifiers in IoT platforms,” Digit. Commun. Networks, vol. 6, no. 3, pp. 333–340, Aug. 2020, doi: 10.1016/j.dcan.2019.05.003.
  20. K. Ali and S. Askar, “Security Issues and Vulnerability of IoT Devices,” Int. J. Sci. Bus., vol. 5, no. 3, pp. 101–115, 2021, doi: 10.5281/zenodo.4497707.
  21. H. Raad, Fundamentals of IoT and Wearable Technology Design. Wiley, 2020.
  22. A. Qamar, M. Asim, Z. Maamar, S. Saeed, and T. Baker, “A Quality-of-Things model for assessing the Internet-of-Things’ nonfunctional properties,” Trans. Emerg. Telecommun. Technol., Jun. 2019, doi: 10.1002/ett.3668.
  23. L. Da Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,” IEEE Trans. Ind. Informatics, vol. 10, no. 4, pp. 2233–2243, Nov. 2014, doi: 10.1109/TII.2014.2300753.
  24. P. P. Ray, “A survey on Internet of Things architectures,” J. King Saud Univ. - Comput. Inf. Sci., vol. 30, no. 3, pp. 291–319, Jul. 2018, doi: 10.1016/j.jksuci.2016.10.003.
  25. T. Poongodi, A. Rathee, R. Indrakumari, and P. Suresh, Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm, vol. 174. Cham: Springer International Publishing, 2020.
  26. S. Fosso Wamba, A. Anand, and L. Carter, “A literature review of RFID-enabled healthcare applications and issues,” Int. J. Inf. Manage., vol. 33, no. 5, pp. 875–891, Oct. 2013, doi: 10.1016/j.ijinfomgt.2013.07.005.
  27. J. Guerrero-Ibáñez, S. Zeadally, and J. Contreras-Castillo, “Sensor Technologies for Intelligent Transportation Systems,” Sensors, vol. 18, no. 4, p. 1212, Apr. 2018, doi: 10.3390/s18041212.
  28. Z. J. Hamad and S. Askar, “Machine Learning Powered IoT for Smart Applications,” Int. J. Sci. Bus., vol. 5, no. 3, pp. 92–100, 2021, doi: 10.5281/zenodo.4497664.
  29. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet Things J., vol. 4, no. 5, pp. 1125–1142, Oct. 2017, doi: 10.1109/JIOT.2017.2683200.
  30. E. Borgia, “The Internet of Things vision: Key features, applications and open issues,” Comput. Commun., vol. 54, pp. 1–31, Dec. 2014, doi: 10.1016/j.comcom.2014.09.008.
  31. M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for Internet of Things: A Survey,” IEEE Internet Things J., vol. 3, no. 1, pp. 70–95, Feb. 2016, doi: 10.1109/JIOT.2015.2498900.
  32. M. A. A. da Cruz, J. J. P. C. Rodrigues, J. Al-Muhtadi, V. V. Korotaev, and V. H. C. de Albuquerque, “A Reference Model for Internet of Things Middleware,” IEEE Internet Things J., vol. 5, no. 2, pp. 871–883, Apr. 2018, doi: 10.1109/JIOT.2018.2796561.
  33. P. Gokhale, O. Bhat, and S. Bhat, “Introduction to IoT,” Int. Adv. Res. J. Sci. Eng. Technol., vol. 5, no. 1, pp. 41–44, Jan. 2018, doi: 10.17148/IARJSET.2018.517 41.
  34. C.-L. Zhong, Z. Zhu, and R.-G. Huang, “Study on the IOT Architecture and Gateway Technology,” in 2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Aug. 2015, pp. 196–199, doi: 10.1109/DCABES.2015.56.
  35. M. Xu, W. Tian, and R. Buyya, “A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing,” Concurr. Comput. Pract. Exp., vol. 22, no. 6, pp. 685–701, Jul. 2016, doi: 10.1002/cpe.4123.
  36. Z. N. Rashid, S. R. M. Zeebaree, and A. Shengul, “Design and Analysis of Proposed Remote Controlling Distributed Parallel Computing System Over the Cloud,” in 2019 International Conference on Advanced Science and Engineering (ICOASE), Apr. 2019, pp. 118–123, doi: 10.1109/ICOASE.2019.8723695.
  37. Z. N. Rashid, S. R. M. Zebari, K. H. Sharif, and K. Jacksi, “Distributed Cloud Computing and Distributed Parallel Computing: A Review,” in 2018 International Conference on Advanced Science and Engineering (ICOASE), Oct. 2018, pp. 167–172, doi: 10.1109/ICOASE.2018.8548937.
  38. C. M. Mohammed and S. R. M. Zeebaree, “Sufficient Comparison Among Cloud Computing Services: IaaS , PaaS , and SaaS: A Review,” Int. J. Sci. Bus., vol. 5, no. 2, pp. 17–30, 2021, doi: 10.5281/zenodo.4450129.
  39. Z. J. Hamad and S. R. M. Zeebaree, “Recourses Utilization in a Distributed System: A Review,” Int. J. Sci. Bus., vol. 5, no. 2, pp. 42–53, 2021, doi: 10.5281/zenodo.4461813.
  40. H. I. Dino, S. R. M. Zeebaree, O. M. Ahmad, H. M. Shukur, R. R. Zebari, and L. M. Haji, “Impact of Load Sharing on Performance of Distributed Systems Computations,” Int. J. Multidiscip. Res. Publ., vol. 3, no. 1, pp. 30–37, 2020.
  41. B. Muthulakshmi and K. Somasundaram, “A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment,” Cluster Comput., vol. 22, no. S5, pp. 10769–10777, Sep. 2019, doi: 10.1007/s10586-017-1174-z.
  42. H. Shukur et al., “A State of Art Survey for Concurrent Computation and Clustering of Parallel Computing for Distributed Systems,” J. Appl. Sci. Technol. Trends, vol. 1, no. 4, pp. 148–154, Dec. 2020, doi: 10.38094/jastt1466.
  43. H. Shukur, S. Zeebaree, R. Zebari, D. Zeebaree, O. Ahmed, and A. Salih, “Cloud Computing Virtualization of Resources Allocation for Distributed Systems,” J. Appl. Sci. Technol. Trends, vol. 1, no. 3, pp. 98–105, 2020, doi: 10.38094/jastt1331.
  44. S. Askar, “Adaptive Load Balancing Scheme For Data Center Networks Using Software Defined Network,” Sci. J. Univ. Zakho, vol. 4(A), no. 2, pp. 275–286, 2016, doi: 10.25271/2016.4.2.118.
  45. L. M. Haji, S. R. M. Zeebaree, O. M. Ahmed, A. B. Sallow, K. Jacksi, and R. R. Zeabri, “Dynamic Resource Allocation for Distributed Systems and Cloud Computing,” test Eng. Manag. J., vol. 83, no. May-June, pp. 22417–22426, 2020.
  46. Y. S. Jghef and S. R. M. Zeebaree, “State of Art Survey for Significant Relations between Cloud Computing and Distributed Computing,” Int. J. Sci. Bus., vol. 4, no. 12, pp. 53–61, 2020, doi: 10.5281/zenodo.4237005.
  47. P. Y. Abdullah, S. R. M. Zeebaree, H. M. Shukur, and K. Jacksi, “HRM System using Cloud Computing for Small and Medium Enterprises (SMEs),” Technol. Reports Kansai Univ., vol. 62, no. 4, pp. 1977–1987, 2020.
  48. J. Upadhyaya and N. J. Ahuja, “Quality of service in cloud computing in higher education: A critical survey and innovative model,” in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Feb. 2017, pp. 137–140, doi: 10.1109/I-SMAC.2017.8058324.
  49. G. A. Qadir and S. R. M. Zeebaree, “Evaluation of QoS in Distributed Systems: A Review,” Int. J. Sci. Bus., vol. 5, no. 2, pp. 89–101, 2021, doi: 10.5281/zenodo.4462245.
  50. B. BAGIROZ, M. GUZEL, U. YAVANOGLU, and S. OZDEMIR, “QoS Prediction Methods in IoT A Survey,” in 2019 IEEE International Conference on Big Data (Big Data), Dec. 2019, pp. 2128–2133, doi: 10.1109/BigData47090.2019.9006523.
  51. Y. Chen, E. Sun, and Y. Zhang, “Joint optimization of transmission and processing delay in fog computing access networks,” in 2017 9th International Conference on Advanced Infocomm Technology (ICAIT), Nov. 2017, pp. 155–158, doi: 10.1109/ICAIT.2017.8388906.
  52. B. H. Husain and S. Askar, “Survey on Edge Computing Security,” Int. J. Sci. Bus., vol. 5, no. 3, pp. 52–60, Jun. 2021, doi: 10.5281/zenodo.4496939.
  53. A. Khakimov, A. Muthanna, and M. S. A. Muthanna, “Study of fog computing structure,” in 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Jan. 2018, vol. 2018-Janua, pp. 51–54, doi: 10.1109/EIConRus.2018.8317028.
  54. C.-C. Lin and J.-W. Yang, “Cost-Efficient Deployment of Fog Computing Systems at Logistics Centers in Industry 4.0,” IEEE Trans. Ind. Informatics, vol. 14, no. 10, pp. 4603–4611, Oct. 2018, doi: 10.1109/TII.2018.2827920.
  55. W. Steiner and S. Poledna, “Fog computing as enabler for the Industrial Internet of Things,” e i Elektrotechnik und Informationstechnik, vol. 133, no. 7, pp. 310–314, Nov. 2016, doi: 10.1007/s00502-016-0438-2.
  56. M. Aazam, S. Zeadally, and K. A. Harras, “Deploying Fog Computing in Industrial Internet of Things and Industry 4.0,” IEEE Trans. Ind. Informatics, vol. 14, no. 10, pp. 4674–4682, Oct. 2018, doi: 10.1109/TII.2018.2855198.
  57. K. D. Ahmed and S. R. M. Zeebaree, “Resource Allocation in Fog Computing: A Review,” Int. J. Sci. Bus., vol. 5, no. 2, pp. 54–63, 2021, doi: 10.5281/zenodo.4461876.
  58. S. Shukla, M. F. Hassan, L. T. Jung, and A. Awang, “Architecture for Latency Reduction in Healthcare Internet-of-Things Using Reinforcement Learning and Fuzzy Based Fog Computing,” in Advances in Intelligent Systems and Computing, vol. 843, 2019, pp. 372–383.
  59. A. B. Manju and S. Sumathy, “Efficient Load Balancing Algorithm for Task Preprocessing in Fog Computing Environment,” in Smart Innovation, Systems and Technologies, vol. 105, Springer Singapore, 2019, pp. 291–298.
  60. J. Grover, A. Jain, S. Singhal, and A. Yadav, “Real-Time VANET Applications Using Fog Computing,” in Smart Innovation, Systems and Technologies, vol. 79, 2018, pp. 683–691.
  61. A. Mebrek, L. Merghem-Boulahia, and M. Esseghir, “Efficient green solution for a balanced energy consumption and delay in the IoT-Fog-Cloud computing,” in 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), Oct. 2017, vol. 2017-Janua, pp. 1–4, doi: 10.1109/NCA.2017.8171359.
  62. Z. Á. Mann, “Notions of architecture in fog computing,” Computing, vol. 103, no. 1, pp. 51–73, Jan. 2020, doi: 10.1007/s00607-020-00848-z.
  63. X. Yuan, Y. He, Q. Fang, X. Tong, C. Du, and Y. Ding, “An Improved Fast Search and Find of Density Peaks-Based Fog Node Location of Fog Computing System,” in 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Jun. 2017, vol. 2018-Janua, pp. 635–642, doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.100.
  64. G. White, A. Palade, C. Cabrera, and S. Clarke, “Quantitative Evaluation of QoS Prediction in IoT,” in 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Jun. 2017, pp. 61–66, doi: 10.1109/DSN-W.2017.26.
  65. H. F. Atlam, R. J. Walters, and G. B. Wills, “Internet of Things: State-of-the-art, Challenges, Applications, and Open Issues,” Int. J. Intell. Comput. Res., vol. 9, no. 3, pp. 928–938, Sep. 2018, doi: 10.20533/ijicr.2042.4655.2018.0112.
  66. G. White, A. Palade, C. Cabrera, and S. Clarke, “IoTPredict: Collaborative QoS Prediction in IoT,” in 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), Mar. 2018, pp. 1–10, doi: 10.1109/PERCOM.2018.8444598.
  67. Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog Orchestration for Internet of Things Services,” IEEE Internet Comput., vol. 21, no. 2, pp. 16–24, Mar. 2017, doi: 10.1109/MIC.2017.36.
  68. C.-L. Fok, C. Julien, G.-C. Roman, and C. Lu, “Challenges of satisfying multiple stakeholders: quality of service in the internet of things,” in Proceeding of the 2nd workshop on Software engineering for sensor network applications - SESENA ’11, 2011, p. 55, doi: 10.1145/1988051.1988062.
  69. J.-P. Calbimonte, M. Riahi, N. Kefalakis, J. Soldatos, and A. Zaslavsky, “Utility Metrics Specifications. OPENIoT Deliverable D4.2.2.,” 2014. [Online]. Available: https://infoscience.epfl.ch/record/210923/files/OpenIoT-WP4-D422-EPFL-140114-V26-QR.pdf.
  70. P. P. Jayaraman, K. Mitra, S. Saguna, T. Shah, D. Georgakopoulos, and R. Ranjan, “Orchestrating Quality of Service in the Cloud of Things Ecosystem,” in 2015 IEEE International Symposium on Nanoelectronic and Information Systems, Dec. 2015, pp. 185–190, doi: 10.1109/iNIS.2015.64.
  71. R. Duan, X. Chen, and T. Xing, “A QoS Architecture for IOT,” in 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Oct. 2011, pp. 717–720, doi: 10.1109/iThings/CPSCom.2011.125.
  72. B. Li and J. Yu, “Research and Application on the Smart Home Based on Component Technologies and Internet of Things,” Procedia Eng., vol. 15, pp. 2087–2092, 2011, doi: 10.1016/j.proeng.2011.08.390.
  73. A. Alqahtani, Y. Li, P. Patel, E. Solaiman, and R. Ranjan, “End-to-End Service Level Agreement Specification for IoT Applications,” in 2018 International Conference on High Performance Computing & Simulation (HPCS), Jul. 2018, vol. 49, no. 12, pp. 926–935, doi: 10.1109/HPCS.2018.00147.
  74. Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo, “A Survey of Multi-Objective Optimization in Wireless Sensor Networks: Metrics, Algorithms, and Open Problems,” IEEE Commun. Surv. Tutorials, vol. 19, no. 1, pp. 550–586, 2017, doi: 10.1109/COMST.2016.2610578.
  75. B. N. Silva, M. Khan, and K. Han, “Internet of Things: A Comprehensive Review of Enabling Technologies, Architecture, and Challenges,” IETE Tech. Rev., vol. 35, no. 2, pp. 205–220, Mar. 2018, doi: 10.1080/02564602.2016.1276416.
  76. R. M. Savola, P. Savolainen, A. Evesti, H. Abie, and M. Sihvonen, “Risk-driven security metrics development for an e-health IoT application,” in 2015 Information Security for South Africa (ISSA), Aug. 2015, pp. 1–6, doi: 10.1109/ISSA.2015.7335061.
  77. M. Díaz, C. Martín, and B. Rubio, “State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing,” J. Netw. Comput. Appl., vol. 67, pp. 99–117, May 2016, doi: 10.1016/j.jnca.2016.01.010.
  78. M. Moreno, B. Úbeda, A. Skarmeta, and M. Zamora, “How can We Tackle Energy Efficiency in IoT BasedSmart Buildings?,” Sensors, vol. 14, no. 6, pp. 9582–9614, May 2014, doi: 10.3390/s140609582.
  79. Q. Shaheen, M. Shiraz, M. U. Hashmi, D. Mahmood, Z. Zhiyu, and R. Akhtar, “A Lightweight Location-Aware Fog Framework (LAFF) for QoS in Internet of Things Paradigm,” Mob. Inf. Syst., vol. 2020, pp. 1–15, Sep. 2020, doi: 10.1155/2020/8871976.
  80. S. Rani, N. Saravanakumar, S. Rajeyyagari, V. Porkodi, and S. H. Bouk, “QoS aware cross layer paradigm for urban development applications in IoT,” Wirel. Networks, vol. 26, no. 8, pp. 6203–6214, Nov. 2020, doi: 10.1007/s11276-020-02430-z.
  81. C. A. Ouedraogo, S. Medjiah, C. Chassot, K. Drira, and J. Aguilar, “A Cost-Effective Approach for End-to-End QoS Management in NFV-enabled IoT Platforms,” IEEE Internet Things J., pp. 1–1, 2020, doi: 10.1109/JIOT.2020.3025500.
  82. K. S. Bhandari, I.-H. Ra, and G. Cho, “Multi-Topology Based QoS-Differentiation in RPL for Internet of Things Applications,” IEEE Access, vol. 8, pp. 96686–96705, 2020, doi: 10.1109/ACCESS.2020.2995794.
  83. E. Badidi and A. Ragmani, “An Architecture for QoS-Aware Fog Service Provisioning,” Procedia Comput. Sci., vol. 170, pp. 411–418, 2020, doi: 10.1016/j.procs.2020.03.083.
  84. M. M. Badawy, Z. H. Ali, and H. A. Ali, “QoS provisioning framework for service-oriented internet of things (IoT),” Cluster Comput., vol. 23, no. 2, pp. 575–591, Jun. 2020, doi: 10.1007/s10586-019-02945-x.
  85. M. Asad, A. Basit, S. Qaisar, and M. Ali, “Beyond 5G: Hybrid End-to-End Quality of Service Provisioning in Heterogeneous IoT Networks,” IEEE Access, vol. 8, pp. 192320–192338, 2020, doi: 10.1109/ACCESS.2020.3032704.
  86. M. Asad, S. Qaisar, and A. Basit, “Client Based Access Layer QoS Provisioning in Beyond 5G IoT Networks,” in 2020 3rd International Conference on Advanced Communication Technologies and Networking (CommNet), Sep. 2020, pp. 1–8, doi: 10.1109/CommNet49926.2020.9199612.
  87. A. Ali et al., “Quality of Service Provisioning for Heterogeneous Services in Cognitive Radio-Enabled Internet of Things,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, pp. 328–342, Jan. 2020, doi: 10.1109/TNSE.2018.2877646.
  88. A. Yousefpour et al., “FOGPLAN: A Lightweight QoS-Aware Dynamic Fog Service Provisioning Framework,” IEEE Internet Things J., vol. 6, no. 3, pp. 5080–5096, Jun. 2019, doi: 10.1109/JIOT.2019.2896311.
  89. J. Yao and N. Ansari, “Fog Resource Provisioning in Reliability-Aware IoT Networks,” IEEE Internet Things J., vol. 6, no. 5, pp. 8262–8269, Oct. 2019, doi: 10.1109/JIOT.2019.2922585.
  90. J. Yao and N. Ansari, “QoS-Aware Fog Resource Provisioning and Mobile Device Power Control in IoT Networks,” IEEE Trans. Netw. Serv. Manag., vol. 16, no. 1, pp. 167–175, Mar. 2019, doi: 10.1109/TNSM.2018.2888481.
  91. S. Verma, N. Sood, and A. K. Sharma, “QoS provisioning-based routing protocols using multiple data sink in IoT-based WSN,” Mod. Phys. Lett. A, vol. 34, no. 29, p. 1950235, Sep. 2019, doi: 10.1142/S0217732319502353.
  92. N. N. Srinidhi, J. Lakshmi, and S. M. Dilip Kumar, “Hybrid Energy Efficient and QoS Aware Algorithm to Prolong IoT Network Lifetime,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, vol. 276, Springer International Publishing, 2019, pp. 80–95.
  93. X. Li, H. Ding, M. Pan, J. Wang, H. Zhang, and Y. Fang, “Statistical QoS Provisioning Over Uncertain Shared Spectrums in Cognitive IoT Networks: A Distributionally Robust Data-Driven Approach,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12286–12300, Dec. 2019, doi: 10.1109/TVT.2019.2946834.
  94. F. Khan et al., “A Quality of Service-Aware Secured Communication Scheme for Internet of Things-Based Networks,” Sensors, vol. 19, no. 19, p. 4321, Oct. 2019, doi: 10.3390/s19194321.
  95. M. Guo, L. Li, and Q. Guan, “Energy-Efficient and Delay-Guaranteed Workload Allocation in IoT-Edge-Cloud Computing Systems,” IEEE Access, vol. 7, no. c, pp. 78685–78697, 2019, doi: 10.1109/ACCESS.2019.2922992.
  96. I. Maslouhi, E. Miloud, K. Ghoumid, and K. Baibai, “Analysis of End-to-End Packet Delay for Internet of Things in Wireless Communications,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 9, pp. 338–343, 2018, doi: 10.14569/IJACSA.2018.090944.
  97. O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-Aware Fog Service Placement,” in 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), May 2017, pp. 89–96, doi: 10.1109/ICFEC.2017.12.
  98. S. Muralidharan, B. J. R. Sahu, N. Saxena, and A. Roy, “PPT: A Push Pull Traffic Algorithm to Improve QoS Provisioning in IoT-NDN Environment,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1417–1420, Jun. 2017, doi: 10.1109/LCOMM.2017.2677922.

Downloads

Download data is not yet available.

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)