Skip to main navigation menu Skip to main content Skip to site footer

Potential of Multispectral Satellite Data for Superficial Iron Oxide Detection in Sulaimaniyah, Iraqi Kurdistan Region

Abstract

This study primarily investigates the total (Fe) iron presence in Sulaimaniyah Governorate, the Iraqi Kurdistan Region (IKR), which has an abundance of iron mines. Spatial quantification and frequent monitoring of mineral existence in the soil are essential in the mining regions. To achieve this goal, a remote sensing technique was utilized to predict soil minerals, particularly iron, in the study area using a multispectral satellite image, Landsat-7 Enhanced Thematic Mapper Plus (ETM+).  A robust methodology was perceived and developed from image processing to estimate and map iron oxide-rich soils, and the soil’s spectral indices were obtained after algorithms were applied in processing the bands of the Landsat image. Soil samples were collected and analyzed in the laboratory to determine the chemical, physical, and mineralogical characteristics of soils. Correlation coefficients were carried out between soil properties and spectral band values retrieved from image analysis to examine the band potentials of Landsat. The statistical results showed that there was a significant relationship between the 3rd band of the ETM+ image and each of the total iron (R2 = 0.643), the free iron oxide (R2 = 0.659), and sand particles (R2 = 0.561). The predicted soil mineral maps were generated for the study area to visualize the study site's soil characterization and total iron spread. This study's results could help primarily identify the spatial distribution of some soil properties in Sulaimaniyah, Iraq.

Keywords

Iron Oxide, Multispectral Satellite Data, Landsat ETM , Sulaimaniyah, Iraqi Kurdistan Region

PDF

References

  1. J. W. Stucki, B. A. Goodman, and Schwertmann, Iron in Soils and Clay Minerals (NATO Science Series C: 1988). Springer, 1988.
  2. R. A. Rossel, E. N. Bui, P. Caritat, and N. J. McKenzie, "Mapping iron oxides and the color of Australian soil using visible–nea r?infrared reflectance spectra," J. Geophys. Res., vol. 115, p. F04031, 2010 2010, doi: 10.1029/2009JF001645.
  3. W. L. Lindsay, Chemical equilibria in soils. Wiley Inter science, 1979.
  4. Z. Al-Aathami, "Studies of some effecting factors in iron availability in alluvial and brown soil [in Iraq]," 1981.
  5. S. D. Al-Malak, "Iron availability in some calcareous soils in northern Iraq," M.Sc. thesis, Salahadin University, Erbil, 1986.
  6. K. M. N. Al-Azawy, "Influence of nitrogen and iron application on growth, yield and nutrie nt content of soil and corn plant," M.Sc. Thesis, Baghdad Univ., 1988.
  7. I. J. Mohamed, "The chemical behavior of zinc, copper, and other selected nutrients el ements in some Iraqi arid soils," Ph. Degree Thesis, State Univ. of Ghent, 1988.
  8. A. K. Al-Jadoa, "Iron, manganese, zinc, and copper in soil particles," Ph.D. Thesis, Baghdad Univ., 1990.
  9. M. A. J. Al-Obaidi, N. F. Khalil, and M. Sadullah, "Iron status in some soils of Northern Iraq," Jour. Agron. Sci., no. 2, 1994 1994.
  10. K. S. Al-Bassam and M. Y. Tamar-Agha, "Genesis of the Hussainiyat ironstone deposit, Western Desert, Iraq," Mineralium Deposita, vol. 33, pp. 266-282, 1998 1998.
  11. G. Sposito, The Chemistry of Soils. Oxford University Press, 1989.
  12. M. F. Baumgardner, L. F. Silva, L. L. Biehl, and E. R. Stoner, "Reflectance properties of soils," Advances in Agronomy, vol. 38, pp. 1-44, 1985 1985.
  13. G. R. Hunt, B. S. Siegal and A. R. Gillespite, Eds. Electromagnetic radiation: The communications link in remote sensing. Wiley, 1980.
  14. R. A. Weismiller, V. S. G. E, P. S. E, L. K, and B. M.F, "Use of soil spectral properties for monitoring soil erosion," Proc. Conf. Soil Erosion and Conservation, pp. 119-127, 1985 1985.
  15. A. M. Fadhil, "Drought mapping using Geoinformation technology for some sites in the Iraqi Kurdistan region," Int. Journal of Digital Earth, vol. 4, no. 3, pp. 239-257, 2011 2011, doi: 10.1080/17538947.2010.489971.
  16. A. M. Fadhil, "Sand dunes monitoring using remote sensing and GIS techniques for some sites in Iraq," 2013, 2013///, doi: 10.1117/12.2019735.
  17. W. Wu, A. S. Muhaimeed, W. M. Al-Shafie, and A. M. F. Al-Quraishi, "Using L-band radar data for soil salinity mapping—a case study in Cent ral Iraq," Environ. Res. Commun., vol. 1081004, 2019 2019, doi: 10.1088/2515-7620/ab37f0.
  18. A. M. F. Al-Quraishi, H. A. Sadiq, and J. P. Messina, "Characterization and Modeling Surface Soil Physicochemical Properties Using Landsat Images: A Case Study in the Iraqi Kurdistan Region," 2019, vol. XLII-2/W16, 2019///, pp. 21-28, doi: 10.5194/isprs-archives-XLII-2-W16-21-2019.
  19. A. S. Alqasemi, M. E. Hereher, G. Kapland, A. M. F. Al-Quraishi, and H. Saibi, "Impact of COVID-19 lockdown upon the air quality and surface urban hea t island intensity over the United Arab Emirates," Science of The Total Environment, vol. 767, p. 144330, 2021 2021, doi: 10.1016/j.scitotenv.2020.144330.
  20. M. Kumar, A. M. F. Al-Quraishi, and I. Mondal, "Glacier changes monitoring in Bhutan High Himalaya using remote sensin g technology," Environmental Engineering Research, vol. 26, no. 1, p. 190255, 2021 2021, doi: 10.4491/eer.2019.255.
  21. A. M. F. Al-Quraishi, H. A. A. Gaznayee, and M. Crespi, "Drought Trend Analysis in Sulaimaniyah (Iraqi Kurdistan Region) for th e Period 1998-2017 using Remote Sensing and GIS," J. of Arid Land, 2021 2021.
  22. W. Wu et al., "Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq," Land Degradation and Development, vol. 29, no. 11, pp. 4005-4014, 2018 2018, doi: 10.1002/ldr.3148.
  23. Y. Yao et al., "Evaluation of EDI derived from the exponential evapotranspiration mode l for monitoring China’s surface drought," Environmental Earth Sciences, vol. 63, no. 2, pp. 425-436, 2011 2011, doi: 10.1007/s12665-011-0972-5.
  24. A. Ciampalini, F. Garfagnoli, and B. Antonielli, "Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa," Arab J Geosci, vol. 6, pp. 4529-4546, 2013 2013, doi: 10.1007/s12517-012-0725-0.
  25. P. Gopinathan, S. Parthiban, T. Magendran, A. M. F. Al-Quraishi, A. K. Singh, and P. K. Singh, "Mapping of ferric (Fe3+) and ferrous (Fe2+) iron oxides distribution u sing band ratio techniques with ASTER data and geochemistry of Kanjama lai and Godumalai, Tamil Nadu, south India," Remote Sensing Applications: Society and Environment, vol. 18, p. 100306, 2020 2020, doi: 10.1016/j.rsase.2020.100306.
  26. D. F. Ducart, A. M. Silva, C. Labouré, B. Toledo, and L. M. Assis, "Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil," Brazilian Journal of Geology, vol. 46, no. 3, 2016 2016.
  27. A. A. Madani, "Utilization of Landsat ETM+ Data for Mapping Gossans and Iron Rich Zon es Exposed at Bahrah Area, Western Arabian Shield, Saudi Arabia," Earth Sci., vol. 20, no. 1, pp. 35-49, 2009 2009.
  28. K. White, J. Walden, N. Drake, F. Eckardt, and E. Settlell, "Mapping the iron oxide content of dune sands, Namib Sand Sea, Namibia, using landsat thematic mapper data," Remote Sensing of Environment, vol. 62, no. 1, pp. 30-39, 1997 1997.
  29. R. T. Mzuri, A. A. Omar, and Y. T. Mustafa, "Spatiotemporal analysis of vegetation cover and its response to terrain and climate factors in Duhok Governorate, Kurdistan Region, Iraq," The Iraqi Geological Journal, pp. 110-126, 2021.
  30. Z. Adil, S. Jabbar, R. H. Sulaiman, Y. T. Mustafa, and H. Karimi, "Land suitability analysis for identifying industrial zones in Duhok District, Kurdistan Region of Iraq," Journal of Civil Engineering Frontiers, vol. 2, no. 02, pp. 51-56, 2021.
  31. Y. T. Mustafa, "Multi-temporal Satellite Data for Land Use/Cover (LULC) Change Detection in Zakho, Kurdistan Region-Iraq," in Environmental Remote Sensing and GIS in Iraq: Springer Water, 2020.
  32. P. R. S. Moorey, Ancient Mesopotamian Materials and Industries. Oxford University Press, 1994.
  33. P. M. Mather and M. Koch, Computer Processing of Remotely-Sensed Images, Fourth Edition ed. John Wiley, 2011.
  34. Y. Divya, P. Gopinathan, K. Jayachandran, and A. M. F. Al-Quraishi, "Color slices analysis of land use changes due to urbanization in a cit y environment of Miami Area, South Florida, USA," Model. Earth Syst. Environ., 2020 2020, doi: 10.1007/s40808-020-00883-x.
  35. Y. Mustafa, "Spatiotemporal Analysis of Vegetation Cover in Kurdistan Region-Iraq using MODIS Image Data," Journal of Applied Science and Technology Trends, vol. 1, no. 1, pp. 01-07, 03/10 2020, doi: 10.38094/jastt119.
  36. S. Zakaria, N. Al-Ansari, Y. Mustafa, M. Alshibli, and S. Knutsson, "Macro rain water harvesting network to estimate annual runoff at Koysinjaq (Koya) district, Kurdistan region of Iraq," Engineering, vol. 5, no. 12, pp. 956-966, 2013.
  37. M. Boccaletti and P. Dainelli, RegmaticosystemNeogenico-Quaternary Mediterranean nell'area: esempio d i deformazione plastic-collisionale rigid post. Memorial Society of Geology, 1982.
  38. C. Buondonno, A. P. Leone, F. Ortolani, S. Pagliuca, and P. Tedeschi, Marginal area 'Fortorebeneventano'. Help diattito excursion. National Council of Research Department: Irrigation Institute, 1987.
  39. A. P. Leone, G. G. Wright, and C. Corves, "The application of satellite remote sensing for soil studies in upland areas of Southern Italy," NT. J. Remote Sensing, vol. 16, no. 6, pp. 1087-1105, 1995 1995.
  40. L. R. Van Reeuwijk, Procedures for soil analysis, 5th edition ed. (Technical paper 9). International soil reference, 1995.
  41. ASTM, Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, 1986.
  42. W. H. Gardner, "Water content," Methods of soil Analysis, pp. 493-544, 1986 1986.
  43. D. W. Nelson and L. E. Sommers, "Total carbon, organic carbon, and organic matter," Methods of soil analysis. Part 2. Chemical and microbiological propert ies, pp. 539-580, 1982 1982.
  44. D. L. Rowell, Soil science: Methods and applications. Longman. Group UK Limited, 1996.
  45. J. Ryan, G. Estefan, and A. Rashid, Soil and plant analysis laboratory manual, 2nd edition ed. International Center for Agriculture Research in the Dry Areas (ICARDA ), 2001.
  46. J. M. Bremner and C. S. Mulvaney, "Nitrogen - Total," Methods of soil analysis. Part 2. chemical and microbiological propert ies, pp. 595-622, 1982 1982.
  47. J. M. M. Bremner, C. S. , A. L. Page and others, Eds. Methods of soil analysis. Part 2. Chemical and microbiological propert ies (Agron. Monogr. 9). ASA, 1982.
  48. O. P. Mehra and M. L. Jackson, "Iron oxide removal from soils and Clays by a dithionite- citrate syste m buffered with sodium bicarbonate," Madison, Wisconsin, 1955 1955.
  49. J. A. M. Dematte, M. R. Nanni, A. R. Formaggio, and J. C. N. Epiphanio, "Spectral reflectance for the mineralogical evaluation of Brazilian low clay activity soils," Ph.D. Thesis, Sao Paulo, Brazil, 2006.
  50. M. J. Barnsley, Environmental Modeling: A Practical Introduction. CRC Press, 2007.
  51. H. M. Dogan and O. M. Kilic, "Modeling and mapping some soil Surface properties of Central Kelkit Ba sin in Turkey by using Landsat-7 ETM+ images," Int. J. of Remote Sensing, vol. 3, no. 15, pp. 5623-5640, 2013 2013.
  52. W. B. Cohen and S. N. Goward, "Landsat’s Role in Ecological Applications of Remote Sensing," Bioscience, vol. 54, pp. 535-545, 2004 2004.
  53. F. S. Khan, Q. U. Zaman, A. A. Farooque, and S. R. Saleem, "Relationship of soil properties to apparent ground conductivity in wil d blueberry fields," Truro, Nova Scotia, Canada, 2012 2012.
  54. S. A. Bowers and R. J. Hanks, "REFLECTION OF RADIANT ENERGY FROM SOILS," Soil Science, vol. 100, no. 2, 1965. [Online]. Available: https://journals.lww.com/soilsci/fulltext/1965/08000/reflection_of_radiant_energy_from_soils.9.aspx.
  55. S. L. West, G. N. White, Y. Deng, K. J. McInnes, and J. B. Dixon, "Kaolinite, halloyside, and iron oxide influence on physical behavior o f formulated soils," Soil Science Society of America Journal, vol. 68, pp. 1452-1460, 2004 2004.
  56. NASA, Ada style guide (no. SEL-87-002). NASA, Goddard Space Flight Center, 1987.
  57. E. H. Horvath, D. F. Post, and J. B. Kelsey, "The relationships of Landsat digital data to the properties of Arizona Rangeland," Soil Science Society American Journal, vol. 48, pp. 1331-1334, 1984 1984.
  58. M. A. Mulders, Remote sensing in soil science (Developments in soil science). Elsevier, 1987.
  59. A. I. Obukhov and D. S. Orlov, "Spectral reflectivity of the major soil groups and possibility of usin g diffuse reflection in soil investigations," Soviet Soil Science (Engl. Transl), vol. 2, pp. 174-184, 1964 1964.

Downloads

Download data is not yet available.

Similar Articles

1-10 of 63

You may also start an advanced similarity search for this article.