Skip to main navigation menu Skip to main content Skip to site footer

Morphotectonic Controls on the Geomorphic Evolution: A Case Study of Diyala River Basin

Abstract

This study investigates the influence of tectonic activity on the geomorphic evolution of the Diyala River Basin, located within variant tectonic zones (Suture, Imbricate, High-folded, and Low-folded zones) of the Arabian and Eurasian plates, and the Mesopotamia Fordeep. Spatial and topographic data, primarily derived from the SRTM v3/NASADEM with a resolution of one arc-second, were used to delineate the basin and extract key morphological parameters. A set of morphotectonic indices was calculated using ArcGIS Pro 3.4.2 to quantify tectonic signatures across the basin. The results reveal a spatial gradient in tectonic activity, with the middle and upstream sections, which are dominated by active ridges and structurally deformed landforms, showing significantly higher tectonic activity than the downstream areas. The methodology demonstrates a practical framework for assessing tectonic impacts on fluvial systems and can support broader applications in natural hazard assessment, watershed management, and regional planning. The study emphasizes the importance of integrated geomorphological analysis in identifying zones of elevated tectonic activity, particularly in structurally complex regions like the Zagros Fold-Thrust Belt.

Keywords

Morphotectonic, Geomorphometry, Tectonic Activity, Suture Zone, GIS, Iraq

PDF

References

  1. [1] J. V. Pérez-Peña, A. Azor, J. M. Azañón, and E. A. Keller, “Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis,” J Geomorphology, vol. 119, no. 1-2, pp. 74-87, 2010. https://doi.org/10.1016/j.geomorph.2010.02.020.
  2. [2] M. Ezati, and M. Agh-Atabai, “Active tectonic analysis of Atrak river subbasin located in NE Iran (East Alborz),” J J Tethys, vol. 1, pp. 177-188, 2013.
  3. [3] R. Dubey, and G. P. Satyam, “Morphotectonic appraisal of Yamuna river basin in headwater region: a relative active tectonics purview,” Journal of the Geological Society of India, vol. 92, no. 3, pp. 346-356, 2018. https://doi.org/10.1007/s12594-018-1090-5.
  4. [4] A. K. Anand, and S. P. Pradhan, “Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin,” J Journal of Mountain Science, vol. 16, no. 8, pp. 1943-1961, 2019. https://doi.org/10.1007/s11629-018-5172-2.
  5. [5] M. Pourali, R. Hoseynzadeh, and M. Akbari, “Quantitative analysis of relative active tectonics using geomorphic indices in Band-Golestan basin, northeastern Iran,” J Spatial Information Research, vol. 28, pp. 419-429, 2020. https://doi.org/10.1007/s41324-019-00303-y.
  6. [6] S. Bhatt, R. Singh, M. Ansari, and S. Bhatt, “Quantitative Morphometric and Morphotectonic Analysis of Pahuj Catchment Basin, Central India,” Journal of the Geological Society of India, vol. 96, no. 5, pp. 513-520, 2020. https://doi.org/10.1007/s12594-020-1590-1.
  7. [7] A. N. Strahler, “Hypsometric (Area-Altitude) Analysis of Erosional Topography,” Geological Society of America Bulletin, vol. 63, no. 11, pp. 1117, 1952. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
  8. [8] R. E. Horton, “Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology,” Geological Society of America Bulletin, vol. 56, no. 3, pp. 275, 1945. https://doi.org/ 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
  9. [9] S. Shekhar, Y. Mawale, P. Giri, R. Jaipurkar, and N. Singh, “Remote Sensing and GIS Based Extensive Morphotectonic Analysis of Tapti River Basin, Peninsular India,” Journal of Scientific Research, vol. 65, no. 3, 2021. https://doi.org/10.37398/JSR.2021.650304.
  10. [10] A. Khalifa, B. Bashir, A. Alsalman, and N. Ö?retmen, “Morpho-tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis,” ISPRS International Journal of Geo-Information, vol. 10, no. 11, pp. 784, 2021. https://doi.org/10.3390/ijgi10110784.
  11. [11] S. Baharvand, “Analysis of Tectonic Activity using Morphotectonic Indices (Case study: Kesmat Basin, Lorestan Province, Iran),” J Geotechnical Geology, vol. 18, no. 1, pp. 643-647, 2022.
  12. [12] P. Singh, K. Prakash, S. Kumar, A. K. Kannaujiya, and T. Mohanty, “A synergistic approach to morphotectonic evolution for watershed management in the Bearma River Basin, Central India,” J Journal of Hydroinformatics, vol. 25, no. 5, pp. 1822-1843, 2023. https://doi.org/10.2166/hydro.2023.055.
  13. [13] S. C. Bhatt, A. Patel, P. Srivastava, V. K. Singh, M. Singh, and S. K. Singh, "A GIS-based morphometric and morphotectonic analysis of Johilla River Basin, Central India," Geospatial Technologies for Integrated Water Resources Management: Mapping, Modelling, and Decision-Making, pp. 49-64: Springer, 2024. https://doi.org/10.1007/978-3-031-57777-2_4.
  14. [14] R. Sharma, Y. Singh, Rajwant, N. Singh, J. N. Malik, M. Dhali, E. Srivastava, and N. Sharma, “Appraisal of Active Tectonics: An Insight from the Morphotectonic Study of Drainage Basins and OSL Dating in the Kangra Area, Himachal Pradesh,” Journal of the Geological Society of India, vol. 100, no. 7, pp. 996-1006, 2024. https://doi.org/10.17491/jgsi/2024/173942.
  15. [15] A. K. Al-Ali, and R. M. Amin, “Tectonic Evaluation by Using Morphotectonic Indices at Zurbatiyah Area, Eastern Iraq,” Iraqi Geological Journal, pp. 18-39, 2025. https://doi.org/10.46717/igj.2025.58.1D.2.
  16. [16] H. Deopa, and M. J. A. J. o. G. Resmi, “Quantification of geomorphic signatures of neotectonic activity within the Khoh River Basin: a geospatial approach,” vol. 18, no. 6, pp. 1-16, 2025. https://doi.org/10.1007/s12517-025-12265-7.
  17. [17] P. Gahlaut, R. C. Patel, R. Ayyamperumal, M. Sati, and D. C. Nainwal, “Assessment of Recent Tectonic Activity along the Yamuna Basin, Garhwal Region, NW-Himalaya, India: Based on Morphotectonic Analysis,” Open Journal of Geology, vol. 11, no. 12, pp. 734-755, 2021. https://doi.org/10.4236/ojg.2021.1112036.
  18. [18] S. F. Fouad, “Tectonic map of Iraq, scale 1: 1000 000, 2012,” Iraqi Bulletin of Geology and Mining, vol. 11, no. 1, pp. 1-7, 2015.
  19. [19] Y. Mustafa, “Spatiotemporal analysis of vegetation cover in Kurdistan region-Iraq using MODIS image data,” Journal of Applied Science and Technology Trends, vol. 1, no. 1, pp. 01-07, 2020. https://doi.org/10.38094/jastt119.
  20. [20] M. Ghorbani, M. Ghorbani, and Metamorphism, “Faults and tectonic phases of Iran,” The Geology of Iran: Tectonic, Magmatism, pp. 81-149, 2021. https://doi.org/10.4236/ojg.2021.1112036. https://doi.org/10.1007/978-3-030-71109-2_3.
  21. [21] O. S. Al-Tamimi, and S. A. A. Gamel, “The Climatic Regions and Desertification Level for Diyala River Basin in Iraq,” Iraqi Journal of Science, pp. 1759-1767, 2016.
  22. [22] S. K. Yadav, and S. K. Singh, “Morpho-tectonic assessment of Central Northern escarpment of Peninsular India, based on tectonically sensitive geomorphic indices,” J Physical Geography, vol. 43, no. 6, pp. 753-783, 2022. https://doi.org/10.1080/02723646.2021.1899478.
  23. [23] P. G. Silva, J. Goy, C. Zazo, and T. Bardaj?, “Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity,” J Geomorphology, vol. 50, no. 1-3, pp. 203-225, 2003. https://doi.org/10.1016/S0169-555X(02)00215-5.
  24. [24] M. A. Bhat, T. Dar, and B. S. Bali, “Morphotectonic analysis of Aripal Basin in the North-Western Himalayas (India): An evaluation of tectonics derived from geomorphic indices,” Quaternary International, vol. 568, pp. 103-115, 2020. https://doi.org/10.1016/j.quaint.2020.10.032.
  25. [25] P. K. Gautam, D. S. Singh, D. Kumar, and A. K. Singh, “A GIS-based Approach in Drainage Morphometrie Analysis of Sai River Basin, Uttar Pradesh, India,” J Journal of the Geological Society of India, vol. 95, no. 4, pp. 366-376, 2020. https://doi.org/10.1007/s12594-020-1445-9.
  26. [26] R. T. Cox, “Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment,” J Geological society of america bulletin, vol. 106, no. 5, pp. 571-581, 1994. https://doi.org/10.1130/0016-7606(1994)106<0571:AODBSA>2.3.CO;2.
  27. [27] J. T. Hack, “Stream-profile analysis and stream-gradient index,” Journal of Research of the us Geological Survey, vol. 1, no. 4, pp. 421-429, 1973.
  28. [28] [R. El Hamdouni, C. Irigaray, T. Fernández, J. Chacón, and E. Keller, “Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain),” J Geomorphology, vol. 96, no. 1-2, pp. 150-173, 2008. https://doi.org/10.1016/j.geomorph.2007.08.004.
  29. [29] B. Gailleton, S. M. Mudd, F. J. Clubb, D. Peifer, and M. D. Hurst, “A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles,” J Earth Surface Dynamics, vol. 7, no. 1, pp. 211-230, 2019. https://doi.org/10.5194/esurf-7-211-2019.
  30. [30] M. F. Ahmed, J. D. Rogers, and E. H. Ismail, “Knickpoints along the upper Indus River, Pakistan: An exploratory survey of geomorphic processes,” J Swiss Journal of Geosciences, vol. 111, pp. 191-204, 2018. https://doi.org/10.1007/s00015-017-0290-3.
  31. [31] E. Kusratmoko, A. Wibowo, and A. A. Kurnia, "Changes in the Value of Sinuosity Index in Komering River Channel, Province South Sumatera Years 1990-2016." p. 012024. https://doi.org/10.1088/1755-1315/338/1/012024.
  32. [32] K. Hjerdt, J. McDonnell, J. Seibert, and A. Rodhe, “A new topographic index to quantify downslope controls on local drainage,” J Water resources research, vol. 40, no. 5, 2004. https://doi.org/10.1029/2004WR003130.
  33. [33] A. H. Al-Sulttani, and A. A. Beg, “Hypsometric analysis of Al-Adhaim Basin using a new GIS-technique,” The Iraqi Geological Journal, pp. 154-170, 2020. https://doi.org/10.46717/IGJ.53.2B.8RS-2020.09.08.
  34. [34] A. A. F. Beg. "Morphometric analysis toolbox used with ArcGIS desktop v.10.X," https://arcg.is/1bO8r51.
  35. [35] P. K. Gautam, and A. K. Singh, “Evaluation of active tectonic features of Nandakini River Basin, Lesser Himalaya, India by using morphometric indices: A GIS approach,” Advances in Environmental and Engineering Research, vol. 4, no. 1, pp. 1-24, 2023. https://doi.org/10.18517/ijaseit.8.6.6089.
  36. [36] J. A. Zinck, “Physiography and soils,” J ITC Lecture Notes SOL, vol. 41, pp. 1988, 1988.
  37. [37] E. Mosavi, and M. Arian, “Neotectonics of Kashaf Rud River, NE Iran by Modified Index of Active Tectonics (MIAT),” J International Journal of Geosciences, vol. 6, no. 07, pp. 776, 2015. https://doi.org/10.4236/ijg.2015.67063.
  38. [38] D. Gentana, N. Sulaksana, E. Sukiyah, and E. Yuningsih, “Index of active tectonic assessment: quantitative-based geomorphometric and morphotectonic analysis at way Belu drainage basin, Lampung Province, Indonesia,” International Journal of Advanced Science Engineering Information Technology, vol. 8, no. 6, pp. 2460-2471, 2018. https://doi.org/10.18517/ijaseit.8.6.6089.
  39. [39] A. A. F. Beg, “Morphometric Toolbox: A New Technique in Basin Morphometric Analysis Using ArcGIS,” Global Journal of Earth Science and Engineering, vol. 2, pp. 21-30, 2015. https://doi.org/10.15377/2409-5710.2015.02.02.1.
  40. [40] N. A. Aziz, Z. Abdulrazzaq, and M. N. Mansur, “GIS-BASED WATERSHED MORPHOMETRIC ANALYSIS USING DEM DATA IN DIYALA RIVER, IRAQ,” The Iraqi Geological Journal, pp. 36-49, 2020/03/29, 2020. https://doi.org/10.46717/igj.53.1C.3Rx-2020.04.03.
  41. [41] T. H. Kadhim, and M. S. Al-kubaisi, “Relative tectonics activity assessment of diyala river area using lithological strength ratio and morphometric indices,” Bulletin of Pure & Applied Sciences- Geology, vol. 41f, no. 1, pp. 115-128, 2022.
  42. [42] A. T. Othman, and A. A. Omar, “Evaluation of relative active tectonics by using geomorphic indices of the Bamo anticline, Zagros Fold-Thrust Belt, Kurdistan Region of Iraq,” Heliyon, vol. 9, no. 7, 2023. https://doi.org/10.1016/j.heliyon.2023.e17970.
  43. [43] Z. Elias, V. K. Sissakian, and N. Al-Ansari, “Assessment of the tectonic activity in northwestern part of the Zagros Mountains, northeastern Iraq by using geomorphic indices,” Geotechnical and geological engineering, vol. 37, no. 5, pp. 3995-4007, 2019. https://doi.org/10.1007/s10706-019-00888-z.
  44. [44] L. H. Abdullah, H. S. Al Daghastani, and A. K. S. Bety, “Evaluation of neotectonic activity using watershed geomorphic analysis: A case study in the west of Dokan Lake, Kurdistan Region, Iraq,” Heliyon, vol. 9, no. 2, 2023. http://dx.doi.org/10.1016/j.heliyon.2023.e13187.

Downloads

Download data is not yet available.

Similar Articles

11-20 of 61

You may also start an advanced similarity search for this article.