Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of Groundwater Potential Zone in Selected Coastal and Non-Coastal Regions of Nigeria

Abstract

For socioeconomic development, groundwater is a vital resource, especially in areas with limited water supplies. This study assesses groundwater potential zones (GWPZs) in two distinct Nigerian regions, the inland crystalline basement complex of Ile-Ife and the coastal sedimentary basin of Ilaje using integrated geospatial techniques. The novelty of this research lies in its direct comparative analysis of these two disparate hydrogeological and anthropogenic contexts, which fills a critical gap in the existing literature. The study utilized Remote Sensing, GIS, and the Analytical Hierarchy Process (AHP), including a sensitivity analysis to improve methodological robustness. For GWPZ delineation, nine key thematic layers, including geology, land use/land cover, NDWI, NDVI, drainage density, lineament density, rainfall, DEM, and slope, were processed and weighted using AHP. Significant differences were found in the results. Ilaje had a higher percentage of highly available GWPZs (6.15%) than Ile-Ife (4.00%), which was indicative of fundamental variations in hydrogeological, geomorphological, and hydrological controls. Importantly, the results highlight how these differences call for tailored management approaches; Ile-Ife's resources are being depleted by increasing urbanization, while Ilaje's potential is accompanied by serious risks of pollution and saltwater intrusion. This research demonstrates that a “one-size-fits-all’’ approach to groundwater management is untenable in diverse environments and offers fresh empirical insights for both hydrogeological theory and practical policy formulation. It is important to note that the resulting GWPZ maps, based on secondary data, should be interpreted as preliminary indicators requiring future validation through borehole logs and pump test data.

Keywords

Groundwater Potential Zone, Analytical Hierarchy Process , Remote Sensing (RS), Sensitivity Analysis, Ilaje, Ile-Ife

PDF

References

  1. Das, B., Pal, S., Malik, S., & Chakrabortty, R. (2018). Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geology, Ecology, and Landscapes, 3, 223–237.
  2. Kordestani, M. D., Naghibi, S. A., Hashemi, H., Ahmadi, K., Kalantar, B., & Pradhan, B. (2019). Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeology Journal, 27(1), 211–224.
  3. Upadhyay, R. K., Tripathi, G., Ðurin, B., Šamanovic, S., Cetl, V., Kishore, N., Sharma, M., Singh, S. K., Kanga, S., & Wasim, M. (2023). Groundwater Potential Zone Mapping in the Ghaggar River Basin, North-West India, Using Integrated Remote Sensing and GIS Techniques. Water, 15, 961. https://doi.org/10.3390/w15050961
  4. Gnanachandrasamy, G., Zhou, Y., Bagyaraj, M., Venkatramanan, S., Ramkumar, T., & Wang, S. (2018). Remote sensing and GIS based groundwater potential zones mapping in Ariyalur district, Tamil Nadu. Journal of the Geological Society of India, 92(4), 484–490.
  5. Jhariya, D. C., Khan, R. A., Mondal, K. C., Kumar, T., Lekha, I., & Singh, V. P. (2021). Assessment of groundwater potential zone using GIS-based multi-influencing factor (MIF), multi-criteria decision analysis (MCDA) and electrical resistivity survey techniques in Raipur city, Chhattisgarh, India. Journal of Water Supply: Research and Technology-Aqua, 70(1), 129–148.
  6. Doke, A. B., Zolekar, R. B., Patel, H., & Das, S. (2021). Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hardrock basaltic terrain in India. Ecological Indicators, 127, 107685.
  7. Saidu, A. A., Aldrees, A., Dan'azumi, S., & Abba, S. I. (2024). Groundwater potential mapping in a semi-arid region of Northern Nigeria by integrating the analytic hierarchy process and GIS.
  8. Ifediegwu, S. I., Nnebedum, D. O., & Nwatarali, A. N. (2021). Assessment of groundwater potential zones using GIS and AHP techniques: a case study of the Lafia district, Nasarawa State, Nigeria. Applied Water Science, 12(1), 1–21.
  9. Kassa, S. B., Zimale, F. A., Mulu, A., Worku, T. A., Wossene, M. L., Meshesha, T. M., ... & Mekonnen, H. A. (2025). Groundwater Potential Assessment Using Integrated Geospatial and Analytic Hierarchy Process Techniques (AHP) in Chemoga Watershed, Upper Blue Nile Basin, Ethiopia. Air, Soil and Water Research, 18(1), 14-19.
  10. Ahmed, S., Ifeakor, A. R., Zayyan, A. S., & Dadan-Garba, A. (2022). Groundwater potential zone (GWPZ) mapping using analytical hierarchy process (AHP), remote sensing and GIS for Enugu metropolis, Nigeria. Academy Journal of Science and Engineering, 16(1), 10-21.
  11. Ejepu, J. S., Jimoh, M. O., Abdullahi, S., & Mba, M. A. (2022). Groundwater exploration using multi-criteria decision analysis and analytic hierarchy process in Federal Capital Territory, Abuja, Central Nigeria. International Journal of Geosciences, 13(1), 33–53.
  12. Bekri, S., & Hoskan, N. (2023). Investigation of Groundwater Potential within the Coastal and the Orontes Basins in Syria by Using Remote Sensing, Analytical Hierarchy Processes (AHP) and Geographic Information Systems (GIS). Research Square. https://doi.org/10.21203/rs.3.rs-2650753/v1
  13. Albhadili, S., Almallah, I., & Almulla, S. (2023). Mapping groundwater potential recharge zones of Wadi Al-Batin alluvial fan, using remote sensing and GIS techniques, Southwestern Iraq. Iraqi Journal of Science, 19(1), 99–115.
  14. Ali, D., Szucs, P., & Mohammed, S. H. (2021). Integrated remote sensing and GIS techniques to delineate groundwater potential area of Chamchamal basin, Sulaymaniyah, NE Iraq. Kuwait Journal of Science, 48(3), 2-10. https://doi.org/10.48129/kjs.v48i3.9699
  15. Ankana, H., & Dhanaraj, G. (2021). Study of selected influential criteria on groundwater potential storage using geospatial technology and multi-criteria decision analysis (MCDA) approach: A case study. The Egyptian Journal of Remote Sensing and Space Sciences, 24(1), 22-25.
  16. Ndhlovu, G. Z., & Woyessa, Y. E. (2021). Integrated Assessment of Groundwater Potential Using Geospatial Techniques in Southern Africa: A Case Study in the Zambezi River Basin. Water, 13, 2610. https://doi.org/10.3390/w13192610
  17. Selvam, S., Majesh, N., Sabarathinam, C., Rajamanickam, M., & Sashikkumar, M. (2015). A GIS-based identification of groundwater recharge potential zones using RS and IF technique: A case study in Ottapidaram taluk, Tuticorin district, Tamil Nadu. Environmental Earth Sciences, 73(7), 3785–3799.
  18. Bourjila, A., Dimane, F., Hossain, E., Ouarghi, N., Nouayti, N., Morad Taher, ... & Bensiali, A. (2021). Groundwater potential mapping by applying GIS, remote sensing and multi-criteria decision analysis in the Ghiss basin, Northern Morocco. Groundwater for Sustainable Development, 10, 100293. https://doi.org/10.1016/j.gsd.2021.100293
  19. Mallick, S., Standish, J. J., & Bizimis, M. (2016). Constraints on the mantle mineralogy of slow and ultra-slow spreading ridges: Hafnium isotopes in abyssal peridotites and basalts from the 9–15 S Southwest Indian Ridge. Earth and Planetary Science Letters, 440, 42–53.
  20. Roy, B. P., Rramkumar, M., & NnagAran, R. (2018). Cenozoic Chemostratigraphy: Understanding the Most Recent Era of the Earth’s History. In G. A. N. & F. M. (Eds.), Geophysical Monograph Series (Vol. 240, pp. 261–277): Chemostratigraphy across Major Chronological Boundaries. https://doi.org/10.1002/978111938822508.ch13
  21. Fatah, K. K., Mustafa, Y. T. & Hassan, I. O (2022. Flood susceptibility mapping using an analytic hierarchy process model based on remote sensing and GIS approaches in Akre District, Kurdistan Region, Iraq. The Iraqi Geological Journal, 123-151
  22. Fatah, K. K., Mustafa, Y. T., & Hassan, I. O. (2024). Geoinformatics-based frequency ratio, analytic hierarchy process and hybrid models for landslide susceptibility zonation in Kurdistan Region, Northern Iraq. Environment, Development and Sustainability, 26(3), 6977-7014.
  23. Oyelowo, G. B., Martins, O. O., Francis, O. A., & Ademilua, O. L. (2014). Integration of hydrogeophysical and remote sensing data in the assessment of groundwater potential of the basement complex terrain of Ekiti State, Southwestern Nigeria. Ife Journal of Science, 16(3), 353–363. https://doi.org/10.4314/IJS.V16I3
  24. Idris, M. A., Garba, M. L., Kasim, S. A., Madabo, I. M., & Dandago, K. A. (2018). The role of geological structures on groundwater occurrence and flow in crystalline basement aquifers: a status review. Bayero Journal of Pure and Applied Sciences, 11(1), 155–164. https://doi.org/10.4314/BAJOPAS.V11I1.27
  25. Akinwumiju, A. S. (2016). GIS-based integrated groundwater potential assessment of Osun drainage basin, southwestern Nigeria. Ife Journal of Science, 18(1), 147–168. https://doi.org/10.4314/IJS.V18I1
  26. Oni, A. G., Adediran, T. A., Olorunfemi, M. O., Eniola, P. J., & Adewale, E. A. (2020). Evaluation of the groundwater potential of Modomo Community in Ile-Ife, Southwest Nigeria, using integrated geophysical techniques. Sustainable Water Resources Management, 6(6), 1–18. https://doi.org/10.1007/S40899-020-00467-8
  27. Grinevskii, S. O. (2014). The Effect of Topography on the Formation of Groundwater Recharge. Moscow University Geology Bulletin, 69(1), 47–52. https://doi.org/10.3103/S0145875214010025
  28. Michael, H. A., Scott, K. C., Koneshloo, M., Yu, X., Khan, M. R., & Li, K. (2016). Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf. Geophysical Research Letters, 43(20). https://doi.org/10.1002/2016GL070863
  29. Scherler, D., & Lodes, E. (2023). Exploring lithological controls on drainage density in Santa Gracia, Central Chile. https://doi.org/10.5194/egusphere-egu23-11578
  30. Ige-Olumide, O. (2013). Spatial analysis of soil fertility estimates and NDVI in south-western Nigeria: A new paradigm for routine soil fertility mapping.
  31. Chu, D., Lu, L., & Zhang, T. (2007). Sensitivity of Normalized Difference Vegetation Index (NDVI) to Seasonal and Interannual Climate Conditions in the Lhasa Area, Tibetan Plateau, China. Arctic, Antarctic, and Alpine Research, 39(4), 635–641. https://doi.org/10.1657/1523-0430(07-501)[CHU]2.0.CO;2
  32. Prajesh, P. J., Kannan, B., Pazhanivelan, S., Kumaraperumal, R., & Ragunath, K. P. (2019). Analysis of seasonal vegetation dynamics using MODIS derived NDVI and NDWI data: a case study of Tamil Nadu. Madras Agricultural Journal, 106, 362–368. https://doi.org/10.29321/MAJ.2019.000275
  33. Fang, W., Qin, X., Liu, C., Wang, R., Pu, J., Jiang, H., & He, W. (2022). Quantitative Evaluation of Well Performance Affected by Fracture Density and Fracture Connectivity in Fractured Tight Reservoirs. Geofluids, 2022, 1–14. https://doi.org/10.1155/2022/2805348
  34. Petrik, A., Vahle, C., Gianotten, I. P., Trøan, L. I., Rojo, L., & Galbraith, K. (2024). Fracture Connectivity and Effective Permeability based on High-Resolution Borehole Images. https://doi.org/10.3997/2214-4609.202410437
  35. Jeon, B. C., Lee, S. G., Kim, S. S., Kim, K. S., & Kim, N. (2019). A Study on the Rainfall Infiltration Capacity of Soil (A Study on the Mid-Mountain Area of Jeju Island). 29(2), 99–112. https://doi.org/10.9720/KSEG.2019.2.099
  36. Nimmo, J. R., & Shillito, R. (2023). Infiltration of Water Into Soil. Oxford Research Encyclopedia of Environmental Science. https://doi.org/10.1093/acrefore/9780199389414.013.768
  37. Dijksma, R., Brooks, E. S., & Boll, J. (2011). Groundwater recharge in Pleistocene sediments overlying basalt aquifers in the Palouse Basin, USA: modeling of distributed recharge potential and identification of water pathways. Hydrogeology Journal, 19(2), 489–500. https://doi.org/10.1007/S10040-010-0695-9
  38. Naik, P. C. (2017). Seawater Intrusion in the Coastal Alluvial Aquifers of the Mahanadi Delta. https://www.amazon.com/Seawater-Intrusion-Alluvial-SpringerBriefs-Technology/dp/3319665103
  39. Abd-Elhamid, H. F., Abd-Elaty, I., & Negm, A. M. (2018). Control of Saltwater Intrusion in Coastal Aquifers (pp. 355–384). Springer, Cham. https://doi.org/10.1007/698_2017_138
  40. Ijila, P., Kolebaje, O., Ojo, A., & Akinyemi, P. (2018). Geophysical Characterization of the Basement Rocks and Groundwater Potential Zones Using Electrical Resistivity Sounding Technique. Journal of Environment and Earth Science, 8(7), 21–33. https://www.iiste.org/Journals/index.php/JEES/article/download/43352/44680
  41. Zwick, P. C. (2007). Smart land-use analysis: The LUCIS model. Esri.
  42. Paquette, J., & Lowry, J. (2012). Flood hazard modelling and risk assessment in the Nadi River Basin, Fiji, using GIS and MCDA. South Pacific Journal of Natural and Applied Sciences, 30, 33. https://doi.org/10.1071/SP12003
  43. Hiscock, K. M., Balashova, N., Cooper, R. J., Bradford, P., Patrick, J., & Hullis, M. (2023). Developing managed aquifer recharge (MAR) to augment irrigation water resources in the sand and gravel (Crag) aquifer of coastal Suffolk, UK. Journal of Environmental Management, 351, 119639. https://doi.org/10.1016/j.jenvman.2023.119639

Downloads

Download data is not yet available.

Similar Articles

1-10 of 66

You may also start an advanced similarity search for this article.